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JÜRİ VE ENSTİTÜ ONAYI

Hakkı Ulaş ÜNAL’ın H∞ Controller Design for Uncertain
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ABSTRACT

Ph.D. Dissertation

H∞ Controller Design for Uncertain Multiple-Time-Delay Systems

Hakkı Ulaş ÜNAL

Anadolu University
Graduate School of Sciences

Electrical and Electronics Engineering Program

Supervisor: Prof. Dr. Altuğ İFTAR

2010, 160 pages

In this dissertation, H∞ controller design for systems with multiple

uncertain time-delays is studied. In the H∞ controller design for these sys-

tems, since the nominal time-delays are taken outside the generalized plant, the

uncertainty block of the overall system may become non-causal. However, the

H∞ controller is designed by the small-gain theorem, which assumes the causal-

ity of the feedback interconnected subsystems. To alleviate this difficulty, the

sufficient conditions are derived to satisfy the validity of the small-gain theo-

rem for feedback interconnection of non-causal systems. Utilizing these results,

an optimal H∞ flow controller is designed for data-communication networks.

Stable H∞ controller design is also studied and different design approaches

are presented. Furthermore, to satisfy one of the time-domain requirements

of the flow controller, sufficient conditions are introduced to choose the free

parameter in the structure of the designed controller.

Keywords: Multiple-time-delay systems, H∞ controller design, Ro-

bust control, Non-causal systems, Stable H∞ controller design, Flow control,

Data-communication networks.
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ÖZET

Doktora Tezi

Çoklu-Zaman-Gecikmeli Belirsiz Sistemler İçin H∞ Denetleyici

Tasarımı

Hakkı Ulaş ÜNAL

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Altuğ İFTAR

2010, 160 sayfa

Bu tezde, belirsiz çoklu zaman gecikmelerine sahip sistemler için H∞

denetleyici tasarımı üzerine çalışılmıştır. Bu sistemler için H∞ denetleyici

tasarımı yapılırken nominal zaman gecikmeleri dışarı alındığından dolayı sis-

temin belirsizlik bloğu nedensel olamayabilmektedir. Fakat, H∞ denetleyici

tasarımı birbirine geri-besleme ile bağlı sistemlerin nedensel olduğunu kabul

eden küçük-kazanç teoremi kullanılarak yapılmaktadır. Bu durumun üste-

sinden gelmek için, birbirine geri-besleme ile bağlı nedensel olmayan sistem-

lerde küçük-kazanç teoremini sağlamak için yeterli koşullar türetilmiştir. Bu

sonuçlardan faydalanarak da veri-iletişim ağları için optimal H∞ akış denet-

leyicisi tasarlanmıştır. Kararlı H∞ denetleyicisi üzerine de çalışılmış ve farklı

tasarım yaklaşımları sunulmuştur. Bunlara ilaveten, tasarlanan denetleyicinin

zaman bölgesi kısıtlarını yapısındaki serbest parametre ile sağlaması için, ser-

best parametrenin seçimi için yeterli koşullar verilmiştir.

Anahtar Kelimeler: Çoklu-zaman-gecikmeli sistemler, H∞ denet-

leyici tasarımı, Gürbüz denetim, Nedensel olmayan sistemler, Kararlı H∞

denetleyici tasarımı, Akış denetimi, Veri-iletişim ağları.
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1 INTRODUCTION

1.1 Overview and Motivation

Time-delays appear in the dynamics of most physical systems, be-

cause the reactions of the physical systems to external actions never take place

instantaneously due to the transportation and propagation phenomena. In

data-communication networks, signals that are sent from the sources do not

arrive instantly to the destination. In economic systems or political systems,

the effects of taken decisions happen after a time interval (see [1] for a wide

survey). Therefore, systems with delays abound in the world.

Handling delays in a control system is difficult and a long-standing

problem, since systems with time-delay are a class of infinite-dimensional sys-

tems. It is well known that if the time-delays of the system to be controlled

are “sufficiently” small, then a controller can be designed by neglecting the

delays, and it may satisfy the design requirements. However, under significant

time-delays, the delays can not be neglected. A controller designed by ne-

glecting the time-delays may fail to stabilize the actual system or may exhibit

poor performance. On the other hand, inserted time-delays are used to yield

a stabilizing controller for many systems, e.g. oscillatory systems (see [2]).

One of the most important issues of the feedback control theory is

to overcome the destabilizing effect of the existing uncertainties, which is the

discrepancy between the physical plant and the mathematical model for which

a controller is to be designed. In addition to these uncertainties, unmeasured

noises and disturbances that act on the physical plant may destabilize the

feedback system. In order to design a controller, which stabilizes the physical

plant and meets the design specifications against uncertainties, robust control

tools can be used. H∞ control is one of the powerful robust control tools,

since it utilizes the magnitude of the plant uncertainties in a proper way by

the small-gain theorem which verifies the internal stability of the feedback

1



interconnected stable causal subsystems [3–5].

In the literature, there exists numerous robust controller design ap-

proaches for time-delay systems [1]. These controller design approaches can

be classified as operator-theoretical approaches, state-space methods, and J-

spectral factorization. Toker and Özbay [6] used the operator theory [7, 8]

to formulate an H∞-optimal controller design approach for SISO infinite-

dimensional systems. This approach, however, can be used only for SISO

systems. In [9], design of an H∞ controller is given for SISO general time-delay

systems by the Skew-Toeplitz operator approach [8]. Nagpal and Ravi [10] and

Tadmor [11] used state-space methods to design an H∞ controller for single-

time-delay systems. In [12], J-spectral factorizations are used to solve the

same problem for systems which involve a single delay. The general solution of

the H∞-optimal controller design problem for systems which involve multiple

delays is given in [13]. In [13], the problem with multiple time-delays is de-

composed into a nested sequence of simpler problems each with a single delay,

called an adobe problem, then a controller is obtained solving each problem.

In order to design a stabilizing controller for a system with multiple

time-delays by the approach of [13], the known nominal time-delays are taken

outside the generalized plant. Therefore, if there exists uncertainties in the

actual time-delays, then, they appear in the uncertainty block of the gener-

alized framework. However, in this case, the uncertainty block may become

non-causal and the small-gain theorem, which assumes the causality of the

interconnected subsystems in the feedback loop, may not be used. Therefore,

since the H∞ controller design is based on the small-gain theorem, the sta-

bilizing H∞ controller can not be designed unless uncertainty block is made

causal by introducing some constraints on the uncertain part of the actual

time-delays. Non-causal subsystems also appear in multi-dimensional systems

with non-causal spatial dynamics [14]. In the stabilizing controller design for

the multi-dimensional systems with non-causal spatial dynamics, LMI and µ-

frameworks are used utilizing the scaled small-gain theorem [14–18]. How-

ever, in these studies, the systems are restricted to be linear time- and space-
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invariant discrete-time systems. In this dissertation, sufficient conditions will

be introduced to satisfy the validity of the small-gain theorem, if at least one

of the subsystems in the feedback interconnection is non-causal.

A good example for systems with multiple time-delays which pos-

sess time-varying uncertainties is data-communication networks. In data-

communication networks, flow control mechanisms are used to avoid traffic

congestion and satisfy a QoS level. These mechanisms are rate-based and

window-based feedback mechanisms. In [19], [20], flow controllers were de-

signed using proportional control and Smith’s principle. The proposed con-

troller in [19] ensures the congestion avoidance by keeping the queue length

at the bottleneck in a desired level and high utilization of the network links

whereby ensuring the positiveness of the queue length. In these studies, the ac-

tual time-delays, however, were taken constant. An H∞ rate-based controller

for high-speed data-communication networks was proposed in [21] using the

controller design method in [6]. Later, the implementation of this controller

was given in [22]. However, in these studies, the uncertain time-delays were

taken constant and the controllers were designed by equalizing all the delays in

the channels to the longest one. This stems from the used controller design ap-

proach proposed in [6], which was for SISO systems with a single time-delay.

Using the same controller approach, a rate-based H∞ flow controller design

considering the uncertain time-varying time-delays was presented in [23]. In

this study, different than [21, 22], separate H∞ controllers were designed for

channels with different delays and then the obtained controllers were weighted

and blended to obtain the overall controller. Hence, the designed controllers

in [23] are less conservative compared to the controllers in [21, 22], however,

they are sub-optimal in the H∞-sense. In [24], flow controllers were designed

using the µ synthesis. In that approach, the controller was designed using the

D-K iterations by approximating the time-delay system utilizing the Padé-

approximation. In order to find an optimal solution to this problem, the

approach of [13] was first considered in [25]. In the present dissertation, an op-

timal H∞ flow controller design for high-speed data-communication networks
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is given using the same approach. The performance level and the actual sta-

bility margin of the designed H∞ flow controllers are presented. Furthermore,

the performance improvement of the designed H∞ flow controllers utilizing the

non-causal uncertainty blocks compared to the causal ones, are also addressed.

The set of all stabilizing H∞ controllers is parameterized by a free

stable norm-bounded TFM. Utilizing the free parameter, some of the design

requirements, which are not introduced in the controller design process, can

be achieved by the controller. For instance, in the stable H∞ controller design,

first the stabilizing H∞ controllers are found, and then the appropriate free

parameter is sought which stabilizes the controller (e.g., [26–28]). In addition,

some of the design requirements, e.g. time-domain constraints, which are

not introduced in the controller design process, can be met utilizing the free

parameter [29, 30]. In this dissertation, we will give the sufficient conditions

to choose the free parameter denoted by QΛ, which ensures that the designed

stabilizing controller satisfies the desired time-domain constraint, which is not

taken into account in the design process.

The controllers are designed to stabilize the system and, if any, to

achieve some other design requirements. In general, the designed controller

may or may not be stable. If the designed controller is unstable, although it

theoretically stabilizes the overall system, it is undesirable due to two reasons:

• the closed-loop system becomes highly sensitive to sensor/actuator faults,

since such a fault can make the overall system unstable (a stable con-

troller, however, guarantees overall stability under such a fault if the

plant is also stable);

• an unstable controller introduces additional right-half-plane zeros, which

reduce the tracking ability and disturbance rejection of the closed-loop

system and makes it more sensitive to numerical errors and nonlinear

effects [31]. Such effects, may indeed cause an unstable behaviour in a

practical implementation.
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Due to above reasons, stable controller design problem, which is also referred

to as the strong stabilization problem, has been considered in the literature

for a long time (e.g., [26, 32]). Strong stabilization problem has also been

considered for time-delay systems (e.g., [33–35]). However, these studies have

been limited to SISO time-delay systems. In this dissertation, stable H∞ con-

troller design algorithms for the flow control problem in data-communication

networks, which is an example of multiple-time-delay systems, are given.

1.2 Dissertation Outline

In Chapter 2, standard background material are brought together to

clarify the definitions, lemmas, theorems and proofs in the dissertation. First,

the chain-scattering representation and its properties are given. Then, the

adobe problem in the optimal H∞ controller design for multiple-time-delay

systems is defined and the general solution is given. Finally, the flow control

problem in data-communication networks is introduced.

In Chapter 3, validity of the small-gain theorem for feedback inter-

connection of non-causal subsystems is discussed. The sufficient conditions

are proposed to satisfy the validity of the small-gain theorem for non-causal

subsystems. A less conservative result for the validity of the small-gain the-

orem is also given if the interconnected subsystems in the feedback loop are

SIMO and MISO respectively. In this chapter, appearance of non-causal un-

certainty blocks in the robust controller design problem is also given. Instead

of designing a robust controller utilizing the non-causal uncertainty blocks, an

alternative way, which considers the robust controller design of an equivalent

problem with causal uncertainty blocks, is also presented. The results pre-

sented in this chapter, with the exception of those given in Section 3.5, were

published in [36–39].

In Chapter 4, an optimal H∞ flow controller design for data-com-

munication networks is given utilizing the results in Chapter 3. The perfor-
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mance level and actual stability margins of the designed flow controller are

defined. The performance improvement obtained by utilizing the non-causal

uncertainty blocks compared to the causal ones are addressed. In this chap-

ter, the sufficient conditions are also presented to choose an appropriate free

parameter QΛ such that the designed controller meets one of the time-domain

constraints which was not introduced in the design process. Parts of the results

in this chapter were published in [40–46].

In Chapter 5, utilizing the results in Chapter 4, some design algo-

rithms that yield a stable H∞ flow controller are given. A number of different

approaches are given. In the first approach, a strong H∞ stabilization problem

is solved in order to design a stable H∞ flow controller. In the second approach,

another strong H∞ stabilization problem is solved to design a stable H∞ flow

controller. However, the latter problem is more relaxed compared to the one

which is to be solved in the first approach. The third approach tries to ensure

the stability of the controller by stabilizing the finite-dimensional part of the

controller. In the fourth approach, a stable H∞ flow controller is sought by

increasing the gain of the defined uncertainty weighting TFM in the problem.

In the last approach, a stable H∞ flow controller design problem is defined

as a strong stabilization problem for finite dimensional systems utilizing the

rational approximation of the infinite dimensional part of the controller. Parts

of the results in this chapter were published in [47–49].

In Chapter 6, the concluding remarks and possible future studies are

given.
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2 BACKGROUND

In this chapter, important background material and definitions to be used

in subsequent chapters are presented. In Section 2.1, the chain-scattering rep-

resentation of systems and its properties are given. In addition, J-lossless

systems, which play an important role in Section 2.2, are introduced. In Sec-

tion 2.2, the adobe problem is defined to obtain the optimal H∞ controller

design for systems with multiple time-delays. In Section 2.3, the flow control

problem in data-communication networks is introduced.

2.1 Chain-scattering Framework and J-lossless Systems

The standard H∞ optimal control problem setup is given in Fig-

ure 2.1a. Here, the vectors z, w, y, u represent, respectively, the regulated

outputs, the exogenous signals, the measured outputs, the control inputs, and

P̂ denotes the TFM containing the plant to be controlled and weighting func-

tions, if any, to satisfy some design criteria, and K is the controller to be

designed. Note that, for the system in Figure 2.1a,

z = P̂11w + P̂12u (2.1)

y = P̂21w + P̂22u, (2.2)

where P̂ is partitioned as P̂ =


 P̂11 P̂12

P̂21 P̂22


. If P̂21 is square and has a proper

inverse, then (2.2) can be written as

w = −P̂−1
21 P̂22u+ P̂−1

21 y . (2.3)

P̂

�

- K

�

� w

uy

z

(a)

Ψ = CHAIN(P̂ )

�z

-w 6

K

�u

y

(b)

Figure 2.1: a) Generalized framework b) It’s chain-scattering representation
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By replacing w in (2.1) by (2.3), we obtain

z = (P̂12 − P̂11P̂
−1
21 P̂22)u+ P̂11P̂

−1
21 y

w = −P̂−1
21 P̂22u+ P̂−1

21 y .

Therefore, if we define

Ψ :=


 P̂12 − P̂11P̂

−1
21 P̂22 P̂11P̂

−1
21

−P̂−1
21 P̂22 P̂−1

21


 =:


 Ψ11 Ψ12

Ψ21 Ψ22


 , (2.4)

the system in Figure 2.1a can be represented as in Figure 2.1b, where Ψ is called

the chain-scattering representation of P̂ and denoted by Ψ = CHAIN(P̂ ) [50].

The H∞ optimal control problem for the system described in Fig-

ure 2.1a is to design a stabilizing controller K which minimizes the H∞ norm

of the closed loop TFM from w to z. The closed-loop TFM from w to z in

Figure 2.1a, called Tzw, can be written as;

Tzw =: Fl(P̂ , K) = P̂11 + P̂12K(I − P̂22K)−1P̂21, (2.5)

where Fl(·, ·) is the lower-LFT [5]. If the chain-scattering representation is

considered, the closed-loop TFM in Figure 2.1b, from w to z, can be written

as [50]:

Tzw =: HM(Ψ, K) = (Ψ11 + Ψ12K)(Ψ21 + Ψ22K)−1. (2.6)

Thus Fl(P̂ , K) = HM(Ψ, K). If Ψ in (2.4) is invertible, and the closed-loop

TFM Q := HM(Ψ, K) is known, then K is easily obtained as [50]:

K = HM(Ψ−1, Q) . (2.7)

The main reason for using the chain scattering representation is for its

simplicity in representing cascade connections. Indeed, the cascade connection

in chain scattering representation corresponds to star-product representation

in the generalized framework. The star product of systems plays a crucial role

in the H∞ controller design, since all the stabilizing controllers can be param-

eterized as K = Fl(J,Q), where J is obtained from the solutions of two alge-

braic Riccati equations, and Q ∈ H∞ is a free parameter such that ‖Q‖∞ < γ,
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�

b
b

b
b

b
bb
�
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�
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�

� w
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K

(a)

Ψ1

�z �

-
Ψ2

�

w - 6

Q

ū

ȳ

u

y

(b)

Figure 2.2: a) Star product of systems, b) Cascade connection in chain-

scattering representation

where the stabilizing controller K achieves ‖Fl(P,K)‖∞ < γ (see [5] for de-

tails). Then the overall system in Figure 2.1b can be described as shown

in Figure 2.2a. Suppose that, J is partitioned as J =


 J11 J12

J21 J22


, where

J21 is invertible. Then, if Ψ1 and Ψ2 are the corresponding chain-scattering

representation of the systems P̂ and J , then the system in Figure 2.2a can

be represented as in Figure 2.2b. The cascade connection of two chain scat-

tering representations Ψ1 and Ψ2, as shown in Figure 2.2b, is represented as

the product Ψ1Ψ2 of each chain scattering representations. Furthermore, the

closed-loop TFM in Figure 2.2b, from w to z is obtained as

HM(Ψ1, HM(Ψ2, Q)) = HM(Ψ1Ψ2, Q) . (2.8)

However, the same closed-loop TFM in Figure 2.2a, from w to z is obtained

as; Fl(P̂ , Fl(J,Q)) which is more complicated compared to (2.8), since its

expansion may not be expressed as the product of two functions, in general.

For the chain-scattering representation of the proper TFM P̂ , it is

assumed that P̂21 is square and invertible, i.e., rank(P̂21(s)|s=∞
) = nw = ny.

However, P̂21 may not be square in general and in this case the chain-scattering

representation of P̂ does not exist. If P̂21 is not square but full row rank,

rank(P̂21(s)|s=∞
) = ny < nw, then the plant can be augmented by a fictitious

9



Ψ = CHAIN(P̂ )

�z

-w
6

K

�u

y
-

y′

Figure 2.3: Chain scattering representation of output augmented system

measured output y′ of dimension nw − ny given by

y′ = P̂ ′
21w + P̂ ′

22u, (2.9)

such that


 P̂21

P̂ ′
21




−1

=:
[
P̂ †

21 P̂⊥
21

]
exists, where P̂ †

21 is nw × ny and P̂⊥
21 is

nw × (nw − ny). Then the augmented plant P̂ can be described by




z

y

y′


 = P̂


 w

u


 =




P̂11 P̂12

P̂21 P̂22

P̂ ′
21 P̂ ′

22





 w

u


 ,

and then the chain-scattering representation of the augmented plant P̂ can be

represented as shown in Figure 2.3, where

Ψ =


 P̂12 − P̂11(P̂

†
21P̂22 + P̂⊥

21P̂
′
22) P̂11P̂

†
21 P̂11P̂

⊥
21

−(P̂ †
21P̂22 + P̂⊥

21P̂
′
22) P̂ †

21 P̂⊥
21


 .

Lossless systems will play an important role in the following sections.

The H∞ controller design utilizing the chain-scattering approach is also based

on the J-lossless factorization [50]. In order to clarify the lossless systems,

some definitions, a lemma, and a theorem are given below.

Definition 2.1. A TFM G is said to be stable if it is analytic in C+.

Definition 2.2. An invertible TFM G is said to be bistable if both it and its

proper inverse are analytic in C+.

Definition 2.3. The transpose of a real rational TFM G(s) with state-space

realization G(s) =


 A B

C D


 is denoted by GT (s) =


 AT CT

BT DT


 .
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Definition 2.4. [50] A TFM G is said to be unitary if it satisfies

G∼G = I.

Definition 2.5. [50] A unitary TFM G is said to be lossless if it is stable.

Definition 2.6. [50] A TFM Θ ∈ RL∞
(nz+nw)×(nu+ny) is said to be (Jzw, Juy)-

unitary, if

Θ∼JzwΘ = Juy. (2.10)

Definition 2.7. [50] A (Jzw, Juy)-unitary TFM Θ(s) is said to be (Jzw, Juy)-

lossless, if

Θ∗(s)JzwΘ(s) ≤ Juy, ∀ s ∈ C+. (2.11)

The interpretation of (Jzw, Juy)-lossless or (Jzw, Juy)-unitary systems

arises in the chain-scattering framework.

Lemma 2.1. [50] A TFM Θ is (Jzy, Juy)-unitary (lossless) if and only if it

is a chain-scattering representation of a unitary (lossless) matrix.

Theorem 2.1. [50] Assume that Θ is a (Jzy, Juy)-unitary TFM. Then, there

exists a TFM Q such that HM(Θ, Q) is stable and ‖HM(Θ, Q)‖∞ < 1 if and

only if Θ is (Jzy, Juy)-lossless. In that case, ‖HM(Θ, Q)‖∞ < 1 if and only if

Q is stable and ‖Q‖∞ < 1.

2.2 Adobe Problem in H∞ Controller Design for Mul-

tiple-Time-Delay Systems

In this section, an optimal H∞ controller design for systems with mul-

tiple input/output delays proposed in [13] is reviewed. The controller design

problem for systems with multiple time-delays is solved by decomposing the

problem into a nested sequence of problems, called adobe problems, each of

which involves a single delay. The solution of the problem is then obtained by

tailoring the solutions of subproblem in a proper way.
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For the sake of clarity, some definitions are introduced. Consider a

real rational TFM G(s) with state-space realization

G(s) =


 A B

C D


 .

Definition 2.8. The square real matrix A is called Hurwitz if all the eigen-

values of A are in C−.

Definition 2.9. (A,B) is said to be stabilizable if the matrix
[
A− λI B

]

has full row rank for all λ ∈ C+, and (C,A) is detectable if (AT , CT ) is stabi-

lizable.

Lemma 2.2. If D is square and non-singular, then the inverse of G(s) is given

by

G−1(s) =


 A−BD−1C −BD−1

D−1C D−1


 .

Definition 2.10. A TFM Q is called contractive, if Q belongs to H∞ and

‖Q‖∞ < 1.

Definition 2.11. For an n × n real matrix A and real symmetric matrices

Q and R, the 2n × 2n matrix H =


 A R

−Q −AT


 is called a Hamiltonian

matrix. Furthermore, the algebraic Riccati equation associated with H is

ATX +XA+XRX +Q = 0.

Theorem 2.2. [51] Suppose that Q, M , and R are matrices such that M and

Q are symmetric. Then the following are equivalent:

• Both the matrix inequalities Q > 0 and M − RQ−1RT > 0 hold.

•


 M R

RT Q


 > 0 is satisfied.

Definition 2.12. A Hamiltonian matrixH without purely imaginary eigenval-

ues is said to be in the domain of the Riccati operator, denoted as dom(Ric), if

12



there exist square n×n matrices H− and X such that


 I

X


H− = H


 I

X


,

where H− is Hurwitz. In this case, the function Ric is defined as: Ric: H → X.

Thus, X=Ric(H).

Definition 2.13. πh is called the “completion operator” [13], and it is defined

as πh


e−hs


 A B

C 0




 =


 A B

Ce−Ah 0


−e−hs


 A B

C 0


, which describes

an FIR filter of duration h. In addition, the impulse response of this FIR filter,

g(t), is :

g(t) =





CeA(t−h)B , 0 ≤ t < h

0 , otherwise
. (2.12)

The H∞ controller design setup for a system with multiple time-delays

is depicted in Figure 2.4. Here, it is assumed that the TFM P has a state-space

representation as:

P =




A B1 B2

C1 D11 D12

C2 D21 D22


 , (2.13)

and the following hold:

(i) (A,B2) is stabilizable

(ii) (C2, A) is detectable

(iii)


 A− jωI B2

C1 D12


 has full column rank ∀ ω ∈ R

(iv)


 A− jωI B1

C2 D21


 has full row rank ∀ ω ∈ R.

The assumptions (i)–(iv) are called standard RH∞ assumptions. The delay

blocks in Figure 2.4 are assumed to be diagonal such as

Λu(s) =




e−hu,qsImq

. . .

e−hu,1sIm1

Im0



, (2.14)
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Figure 2.4: Four-block problem

where 0 < hu,1 < . . . < hu,q,
∑q

i=0mi = nu, and

Λy(s) =




Ip0

e−hy,1sIp1

. . .

e−hy,rsIpr



, (2.15)

with 0 < hy,1 < · · · < hy,r

∑r
i=0 pi = ny. The standard H∞ problem for the

system depicted in Figure 2.4 can be posed as finding a proper stabilizing KΛ

such that K := ΛuKΛΛy internally stabilizes the system and guarantees that

‖Fl(P,ΛuKΛΛy)‖∞ < γ (2.16)

for a given γ > 0.

In the approach of [13], the four-block H∞ problem with multiple

time-delays is reduced to a one-block H∞ problem with multiple time-delays.

To do this, firstly, the solution of the delay-free counterpart of the four-block

H∞ problem is obtained. Then, utilizing this solution and properties of chain-

scattering representation, the four-block H∞ problem with multiple delays is

posed as a one-block problem with multiple delays.

To obtain the solution for the delay-free counterpart of the four-block

H∞ problem, let us define the followings:

• γz := ‖(I −D12(D
T
12D12)

−1DT
12)D11‖2

• γw := ‖D11(I −DT
21(D21D

T
21)

−1D21)‖2.
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Let us introduce the following Hamiltonian matrices HX , HY

HX =


 A 0

−CT
1 C1 −AT


−


 B1 B2

−CT
1 D11 −CT

1 D12





 DT

11D11 − γ2I DT
11D12

DT
12D11 DT

12D12




−1 
 DT

11C1 BT
1

DT
12C1 BT

2


 , (2.17)

HY =


 AT 0

−B1B
T
1 −A


−


 CT

1 CT
2

−B1D
T
11 −B1D

T
12





 D11D

T
11 − γ2I D11D

T
21

D21D
T
11 D21D

T
21



−1 
 D11B

T
1 C1

D21B
T
1 C2


 . (2.18)

Utilizing the above definitions, there exists a solution for the delay-free version

of the problem depicted in Figure 2.4 if and only if the following conditions

hold

i) max{γz, γw} < γ

ii) HX ∈ dom(Ric) and X := Ric(HX) ≥ 0

iii) HY ∈ dom(Ric) and Y := Ric(HY ) ≥ 0

iv) ρ(XY ) < γ2.

Define the following matrices:

F =


 F1

F2


 = −Θ−1

z




 BT

1

BT
2


X +


 DT

11

DT
12


C1


 (2.19)

L =
[
L1 L2

]
=
(
Y
[
CT

1 CT
2

]
+B1

[
DT

11 DT
21

])
Θ−1

w , (2.20)

where Θz =


 DT

11D11 − γ2I DT
11D12

DT
12D11 DT

12D12


, Θw =


 D11D

T
11 − γ2I D11D

T
21

D21D
T
11 D21D

T
21


.

If the solvability conditions given above are satisfied, then the matrix Z :=

(I − γ−2Y X)−1 is well-defined and the matrices

AF = A +B1F1 +B2F2 (2.21)

AL = A + L1C1 + L2C2, (2.22)
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are Hurwitz. Using these definitions, let us introduce

G∞(s) := D∞


 AL B∞

C∞Z I


 , (2.23)

where

B∞ :=
[
−(B2 + L1D12 + L2D22) L2

]

C∞ :=


 F2

−C2 +D21F1 +D22F2




and nonsingular D∞ satisfies

DT
∞JuyD∞ = −γ2


 DT

12 DT
22

0 −I


Θ−1

w


 D12 0

D22 −I


 . (2.24)

It can be shown [50] that

G∞(s)−1 =


 AF −ZB∞

C∞ I


D−1

∞ , (2.25)

which is stable, hence, G∞ is bistable.

Using the above definitions, the delay-free version of the problem in

Figure 2.4, i.e. Λu = I and Λy = I, is to find a proper stabilizing K which

results in

Q := HM(G∞, K) (2.26)

is contractive. From (2.7), the stabilizing controllers K can be obtained from

(2.26) as

K = HM(G−1
∞ , Q), (2.27)

where Q is a free contractive parameter.

In delay case, the used inversion property above may not be used, since

existing Λu and Λy in K, K = ΛuKΛΛy, results in non-causal KΛ in general.

However, to obtain a solution for the four-block H∞ problem with multiple

time-delays the problem can alternatively be posed as to find a stabilizing

controller KΛ which yields contractive Q = HM(G∞,ΛuKΛΛy). This problem

can be depicted as in Figure 2.5. Utilizing the properties of the chain-scattering
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Figure 2.6: Alternative representation of one block problem

representation, an alternative representation for the problem setup shown in

Figure 2.5 can be obtained as in Figure 2.6, where

G(s) := G∞(s)D−1
∞ =


 AL B∞D

−1
∞

D∞C∞Z I


 , (2.28)

and

Λ = e−hy,rsbdiag(Λu,Λ
−1
y )

=




e−hq+rsInq+r

. . .

e−h1sIn1

In0



, (2.29)

where hq+r > · · · > h1 > 0. Here, hq+r = hu,q + hy,r, where hu,i (i = 1, . . . , q)

and hy,j (j = 1, . . . , r) are defined in (2.14) and (2.15).

Now, the problem is reduced to the one-block H∞ problem:

OBP(G,Λ): Find a proper stabilizing controller KΛ such that

‖HM(GΛ, KΛ)‖∞ < 1, (2.30)

where G is bistable with lims→∞G(s) = I, as in (2.28), and Λ is a diagonal

delay block, as in (2.29) [13].
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An adobe delay problem is described as OBP(Ga,Λa) where Λa, called

adobe delay, has a special form as: Λa :=


 e−hasIµa 0

0 Iρa


 such that µa <

nu + ny and µa + ρa = nu + ny. In this problem, Ga is a bistable TFM

Ga =




Aa Bµa Bρa

Cµa Iµa 0

Cρa 0 Iρa


 , (2.31)

where the partitioning is compatible with that of Λa [13]. OBP(Ga,Λa) is to

find a stabilizing controller Ka such that Qa = HM(GaΛa, Ka) is contractive.

To obtain the solution for OBP(Ga,Λa), let us define the following as in [13]:

Jµa :=
[
Iµa 0

]
Juy


 Iµa

0




Jρa :=
[

0 Iρa

]
Juy


 0

Iρa




Ha :=


 Aa − BρaCρa −BρaJρaB

T
ρa

−CT
µa
JµaCµa −AT

a + CT
ρa
BT

ρa




Σ(t) =


 Σ11(t) Σ12(t)

Σ21(t) Σ22(t)


 := eHat,

and Σa =


 Σa11 Σa12

Σa21 Σa22


 := Σ(ha).

Theorem 2.3. [13] The solution for OBP(Ga,Λa) exists if and only if Σ22(t)

is nonsingular for all t ∈ [0, ha] and the controller Ka solves OBP(Ga,Λa) if

and only if

Ka = HM




 I 0

Πa I


 G̃−1

a , Q̃a


 , (2.32)

where

G̃a :=




Aa ΣT
a22
Bµa + ΣT

a12
CT

µa
Jµa Bρa

CµaΣ
−T
a22

Cρa − JρaB
T
ρa

Σ−1
a22

Σa21

Iµa+ρa


 , (2.33)
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is finite-dimensional and bistable,

Πa(s) := πha


e

−has




Ha

Bµa

−CT
µa
Jµa

Cρa JρaB
T
ρa

0





 (2.34)

is a FIR filter of duration ha, and Q̃a is contractive, but otherwise arbitrary.

Utilizing the solution given by (2.32) for the OBP(Ga,Λa), the solution

to the OBP (G,Λ), where Λ is the joint delay operator that contains q + r

descendantly ordered delay-blocks can be obtained in q+ r iterations. The ith

iteration involves solving the adobe delay problem OBP (Gi,Λi), where

Λi :=


 e−(hi−hi−1)sIµi

0

0 Iρi


 , ρi =

i−1∑

j=0

nj (2.35)

and bistable Gi’s are generated by the following sequence:

Gi = G̃i−1, (2.36)

where G1 = G, which is partitioned compatibly with Λ1 =


 e−h1sIµ1 0

0 Iρ1


,

similar to Ga in (2.31). After obtaining the solutions of OBP(Gi,Λi), for i =

1, . . . , q + r, the solution to OBP(G,Λ) is obtained by the following theorem.

Theorem 2.4. [13] The problem OBP (G,Λ) is solvable if and only if all

OBP (Gi,Λi) for i = 1, . . . , q + r are solvable. In that case, the stabilizing

controller K can be parameterized as

K = HM(ΠΛG
−1
Λ , QΛ), (2.37)

where GΛ = G̃q+r is bistable and finite dimensional and the TFM

ΠΛ = Λ−1

q+r∏

i=1

Λi


 I 0

Πi I




is bistable. The TFM QΛ is contractive but otherwise arbitrary.

19



2.3 Flow Control Problem in Data-communication Net-

works

During the past decades, increasing demands on utilization of differ-

ent traffic sources such as data, voice, video, have resulted in a large growth

in the size and diversity of communication networks. However, this growth

has brought problems along with it, thereby, managing and controlling the

networks to satisfy reliable service to the users have become more difficult.

In telephone networks, which are good examples of circuit switching

systems, constant transmission rate is satisfied during connection. However,

the network is underutilized since the communication links are hold by the es-

tablished connections. In modern computer networks, packet-switching tech-

nology is used. This technology improves the link utilization, since, unlike the

circuit-switching, the packet is transmitted over the communication links with-

out reserving any unused bandwidth. On the other hand, this technology does

not assure quality of the real data transmission. The ATM technology merges

the benefits of both circuit-switching and packet-switching technologies.

The network service model defines the characteristics of end-to-end

transport of data between one “edge” of the network and the other. Today’s

internet provides only a single service model, the datagram service [52]. It

is known as best-effort-service and provides unreliable QoS. Meanwhile, the

ATM network provides multiple service models: CBR, VBR, UBR, and ABR

services, which satisfy minimum data-transmission and provide feedback for

the congestion notification.

One of the major problems of nowadays’ modern communications is

congestion. Congestion occurs when demand exceeds the network capacity

and causes long queueing delays, packet dropping, and retransmission. Flow

control methodologies are used to avoid congestion by regulating the data

transmission from sources to destinations. Window-based flow control mecha-

nism is used in packet-switching networks, meanwhile, rate-based flow control
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mechanism is used in ATM networks. In the rate-based flow control approach,

the flow control is implemented at the bottleneck node and adjusts the rate of

data that is sent from sources to the bottleneck node to avoid traffic congestion.

In the literature, there exist numerous rate-based flow controller design

approaches. The challenging aspect of the flow controller design is the existence

of time-delays. Since the flow controller is implemented at the bottleneck node,

which is designed to regulate the data rates of the sources, a time-delay occurs

between the time a rate command signal is issued and the actual time this rate

command arrives to the source, called backward time-delay. In addition, the

data packets sent from the source does not arrive the bottleneck node instantly,

hence, there exists a time delay between the time a data packet is sent from

the source and the actual time this packet arrives, called forward time-delay.

The total time-delay is the sum of backward and forward time-delays, called

round trip time-delay. These delays are usually uncertain and time-varying.
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3 SMALL-GAIN THEOREMS

One of the most important results in the control literature is the celebrated

small gain condition introduced in the 1960’s [3,4,53]. This condition lets one

to verify the stability of a feedback interconnection of two stable systems (e.g.,

see [54]). In the 1980’s this condition became a basic part of the robust control

theory (e.g., see [5]). Various results have been obtained based on this condi-

tion. However, all of the results published to date consider interconnection of

causal (in time) systems only.

Although most physical systems satisfy the causality (in time) assump-

tion, the need to consider non-causal systems may arise in some problems. One

of the problems is the robust controller design problem for systems with un-

certain time-delays, which will be considered in the next chapter. Another

problem arises in multidimensional systems, which are not causal in spatial

coordinates [14].

This chapter is organized as follows. In Section 3.1, the motivation

behind the study to show the validity of the small-gain theorem for non-causal

systems is discussed. In Section 3.2, sufficient conditions to satisfy the validity

of the small-gain theorem for interconnection of two stable systems, at least

one of which is non-causal, are given. In Section 3.3, a more relaxed condition

is introduced for the feedback interconnection of two subsystems one of which

is MISO and the other is SIMO. In Section 3.4, the utilization of non-causal

uncertainty blocks in the robust controller design problem for multiple-time-

delay systems is addressed. Considering different uncertainty representations

of the finite-dimensional part of the system, a new strong small-gain condition

is introduced to utilize the non-causal uncertainty blocks in the H∞ controller

design. In Section 3.5, an alternative approach to robust controller design

for the system in Section 3.4 is given by replacing the non-causal uncertainty

blocks with causal ones. This chapter ends with a summary of the results

derived.
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3.1 Existence of Non-Causal Uncertainty Blocks in the

H∞ Controller Design for Systems with Multiple

Time-Delays

Consider a plant with input and output delays, represented by the

input-output map G = ΛyGfΛu, where Λu and Λy are diagonal operators with

delay elements on the diagonal. Each input or output delay is assumed to be

in the form τ •i (t) = h•i + δ•i (t), where t is the time variable, h•i is the known

constant nominal delay, δ•i (t) is the time-varying unknown delay uncertainty,

and • stands for either u or y, where u refers to input signals and y refers to

output signals. Therefore, τu
i corresponds to the delay in the ith input channel,

and τ y
i corresponds to the delay in the ith output channel. Gf is the finite-

dimensional part of the plant, possibly including time-varying uncertainties.

The nominal part of Gf , however, is assumed to be linear and time-invariant.

The uncertainties in the time-delays are assumed to satisfy either

0 ≤ δ•i (t) < δ•,max
i (3.1)

or

|δ•i (t)| < δ•,max
i (3.2)

for a given positive bound δ•,max
i (in addition, time derivative of δ•i (t) may also

be bounded). It is further assumed that τ •i (t) ≥ 0 (i.e., δ•i (t) ≥ −h•i ) for all t.

A controller design problem, which guarantees the robust stability and

certain performance conditions may be set-up as shown in Figure 3.1a, where

∆ is an LTV uncertainty block representing uncertainties in the time-delays

and in the finite-dimensional part of the plant (if any), M is the general-

ized plant representing the nominal plant Gf with input/output delays and

weighting functions, if any, and K is the controller to be designed using an

H∞-optimization approach (e.g., [5]). To design an H∞-optimal controller for

the problem depicted in Figure 3.1a, the known constant nominal time-delays

are taken outside of the generalized plant as depicted in Figure 3.1b to use

the approach given in Section 2.2. Here, Λ0
u and Λ0

y, respectively, denote the
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Figure 3.1: Robust control problem; a) Generalized plant includes time-delays;

b) Time delays are taken outside the generalized plant [36]

nominal parts of Λu and Λy, Mf is a finite-dimensional generalized plant, ∆

again represents the uncertainties, which is different than the one shown in

Figure 3.1a.

When this approach is undertaken, however, the uncertainty block,

∆, turns out to be non-causal, if uncertainties in the delays are assumed to be

bounded as in (3.2) (see Chapter 4). In this case, a difficulty arises in the H∞

controller design, since it uses the small-gain theorem [3–5], which assumes the

causality of the systems. To overcome this difficulty, it may be assumed that

the uncertainties are bounded as in (3.1). Therefore, ∆ turns out to be causal,

and the H∞ optimal controller can be designed. However, this assumption,

requires taking h•i ’s as the minimum delays, rather than nominal, which are

most probable, and taking the bound δ•,max
i larger (twice as much) compared

to the case in (3.2). This, in turn, introduces conservativeness in the robust

controller design and the performance is optimized not for the actual nominal

plant, but for the plant which has minimum delays. By using the results

presented in the following sections, it may be possible to let ∆ be non-causal

and thus use (3.2) rather than (3.1). This should reduce the conservatism and

improve performance.

24



3.2 A Small-Gain Theorem for Feedback Systems with

Non-Causal Subsystems

In this section, the sufficient conditions are given to satisfy the internal

stability of a feedback interconnection of two stable systems, at least one of

which is non-causal. The results presented in this section have been published

in [36]. For the sake of completeness, some definitions and a lemma, borrowed

from [55], are first introduced .

Definition 3.1. Given p ∈ [1,∞), a =
[
a1 · · · an

]T
∈ Rn, and a positive

integer n, the set Ln
p [a,∞) consists of all n-tuples f =

[
f1 · · · fn

]T
, with

fi ∈ Lp[ai,∞) for i = 1, . . . , n. The norm on Ln
p [a,∞) is defined as ‖f‖p :=[

n∑

i=1

‖fi‖2
p

]1/2

.

Remark 3.1. The initial time a is assumed to be same for each component of

a vector function in an Ln
p space, in many references, including [55]. There-

fore, the usual notation for an Ln
p space is Ln

p [a,∞), where a ∈ R. How-

ever, throughout the dissertation, to represent non-causal systems with differ-

ent time-advances in each channel, each component of a should be different.

Therefore, the notation is generalized as above.

Definition 3.2. Suppose f =
[
f1 · · · fn

]T
, where fi : [ai,∞) → R

i = 1, . . . , n. Then, for each finite T , fT :=
[

(fT )1 · · · (fT )n

]T
, called

the truncation of f , where (fT )i : [ai,∞) → R (i = 1, . . . , n) is defined as

(fT )i(t) :=





0, ∀t ≥ ai, if T < ai

fi(t), ai ≤ t ≤ T

0, t > T ≥ ai

.

Definition 3.3. The set Ln
pe[a,∞), where a =

[
a1 · · · an

]T
, consists of all

f =
[
f1 · · · fn

]T
, where fi : [ai,∞) → R (i = 1, . . . , n), with the property

that fT ∈ Ln
p [a,∞) for all finite T , and is called the extension of Ln

p or the

extended Ln
p -space.

Lemma 3.1. For each real p ∈ [1,∞) and f ∈ Ln
pe[a,∞),
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Figure 3.2: Feedback system [36]

(i) ‖fT‖p is a non-decreasing function of T ,

(ii) f ∈ Ln
p [a,∞) if and only if there exists a finite constant m such that

‖fT‖p ≤ m, for all finite T ; in which case, ‖f‖p = limT→∞ ‖fT‖p.

Proof. See [55].

Definition 3.4. A mapping A : Ln1
pe [a1,∞) → Ln2

pe [a2,∞), where a1 ∈ Rn1

and a2 ∈ Rn2, is said to be Lp-stable with finite gain (Lp-sfg) if there exist

non-negative finite constants γ, called the gain of A, and b, called the bias of

A, such that, ‖Ax‖p ≤ γ‖x‖p + b, for all x ∈ Ln1
p [a1,∞).

Definition 3.5. A mapping A : Ln1
pe [a1,∞) → Ln2

pe [a2,∞) is said to be causal

if (Af)T = (AfT )T , for all finite T , ∀f ∈ Ln1
pe [a1,∞).

We consider the feedback configuration shown in Figure 3.2, where

u1 ∈ Ln1
p [a1,∞), e1, y2 ∈ Ln1

pe [a1,∞), u2 ∈ Ln2
p [a2,∞), and e2, y1 ∈ Ln2

pe [a2,∞).

We assume that G1 : Ln1
pe [a1,∞) → Ln2

pe [a2,∞) and G2 : Ln2
pe [a2,∞) →

Ln1
pe [a1,∞) are Lp-sfg, respectively with gain γ1 and γ2 and bias b1 and b2;

i.e.,

‖G1e1‖p ≤ γ1‖e1‖p + b1 , ∀e1 ∈ Ln1
p [a1,∞) (3.3)

and

‖G2e2‖p ≤ γ2‖e2‖p + b2 , ∀e2 ∈ Ln2
p [a2,∞) (3.4)

When G1 and G2 satisfy (3.3) and (3.4) and are both causal, the small gain

condition [3,55], γ1γ2 < 1, proves the stability of the closed-loop system shown

in Figure 3.2. This result, however, does not directly extend to the case when

at least one of the blocks is non-causal, as shown by the following example.
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Example 3.1. [36] Consider the feedback configuration shown in Figure 3.2.

Let, for some a ∈ R and h > 0, G1 : Lpe[a,∞) → Lpe[a − h,∞) and G2 :

Lpe[a − h,∞) → Lpe[a,∞) be defined as y1(t) = γ1e1(t+ h), ∀t ≥ a − h, and

y2(t) = γ2e2(t), ∀t ≥ a (the input of G2 at times a − h ≤ t < a does not

have any effect on its output), respectively, where γ1 and γ2 are positive finite

constants. It can easily be shown that, for i = 1, 2, Gi is Lp-sfg with gain γi

and bias zero. Note that

y1(t) = γ1 [u1(t+ h) − γ2 (u2(t+ h) + y1(t+ h))] , t ≥ a− h

This gives

y1(t+ h) = − 1

γ1γ2
y1(t) + v1(t) , t ≥ a− h

where v1(t) := 1
γ2
u1(t+h)−u2(t+h), t ≥ a−h, is an external signal. Similarly,

y2(t+ h) = − 1

γ1γ2

y2(t) + v2(t) , t ≥ a

where v2(t) := u1(t+ h) + 1
γ1
u2(t), t ≥ a. These show that the closed-loop map

from u =


 u1

u2


 to y =


 y1

y2


 (thus also the map from u to e =


 e1

e2


) is

Lp-sfg if and only if γ1γ2 > 1. Interestingly, this implies that this closed-loop

system is stable only if the small gain condition, γ1γ2 < 1, is not satisfied. 2

Now, we assume that at least one of the blocks in Figure 3.2 is non-

causal, but the two cascade connections of these blocks (i.e., the two systems

obtained by breaking the loop in Figure 3.2 (i) at e1, (ii) at e2) are both casual;

i.e., G1 and G2 satisfy

(G1G2e2)T = ((G1G2) (e2)T )T , ∀e2 ∈ Ln2
pe [a2,∞) (3.5)

and

(G2G1e1)T = ((G2G1) (e1)T )T , ∀e1 ∈ Ln1
pe [a1,∞) (3.6)

for all T . This condition is satisfied, for example, when G1 is such that, for

some h > 0, its output at time t depends on its input up to time t + h, i.e.,

G1 satisfies (G1e1)T =
(
G1 (e1)T+h

)
T
, ∀T , ∀e1 ∈ Ln1

pe [a1,∞), and G2 involves a
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pure delay which is not less than h, i.e., G2 satisfies (G2e2)T+h = (G2 (e2)T )T+h,

∀T , ∀e2 ∈ Ln2
pe [a2,∞).

We also assume that G1 and G2 satisfy

∥∥(G1

(
e11 ± e21

))
T

∥∥
p
≤
∥∥(G1

(
e11
))

T

∥∥
p
+
∥∥(G1

(
e21
))

T

∥∥
p
, (3.7)

∀e11, e21 ∈ Ln1
pe [a1,∞) and

∥∥(G2

(
e12 ± e22

))
T

∥∥
p
≤
∥∥(G2

(
e12
))

T

∥∥
p
+
∥∥(G2

(
e22
))

T

∥∥
p
, (3.8)

∀e12, e22 ∈ Ln2
pe [a2,∞), for all T . We note that the class of systems which satisfy

relations (3.7) and (3.8) are fairly large. In particular, these relations are satis-

fied by any linear G1 and G2, since in this case (G1 (e11 ± e21))T = (G1 (e11))T ±
(G1 (e21))T and (G2 (e12 ± e22))T = (G2 (e12))T ± (G2 (e22))T , ∀e11, e21 ∈ Ln1

pe [a1,∞),

∀e12, e22 ∈ Ln2
pe [a2,∞), and for all T (desired result then follows by the triangular

inequality for ‖ · ‖p).

Theorem 3.1. [36] Consider the feedback configuration shown in Figure 3.2.

Let G1 and G2 satisfy (3.3)–(3.8). Suppose γ1γ2 < 1. Then the closed-loop

system, i.e., the map from u =


 u1

u2


 to y =


 y1

y2


 (or to e =


 e1

e2


), is

Lp-sfg.

Proof. From Figure 3.2 we have

‖(y1)T‖p = ‖ (G1e1)T ‖p ≤ ‖ (G1u1)T ‖p + ‖ (G1G2e2)T ‖p

≤ ‖G1u1‖p + ‖ (G1G2) (e2)T ‖p

≤ γ1‖u1‖p + b1 + γ1γ2‖ (e2)T ‖p + γ1b2 + b1

≤ γ1‖u1‖p + γ1γ2‖u2‖p + γ1γ2‖ (y1)T ‖p + c1

where c1 := γ1b2 + 2b1 and we used Lemma 3.1, (3.3)–(3.5), (3.7), and the

triangular inequality [55] for ‖ · ‖p. Since γ1γ2 < 1, this implies that

‖(y1)T‖p ≤
γ1

1 − γ1γ2
‖u1‖p +

γ1γ2

1 − γ1γ2
‖u2‖p +

c1
1 − γ1γ2

. (3.9)

Since the right-hand-side of the above inequality is independent of T , by

Lemma 3.1, y1 ∈ Ln2
p [a2,∞) and, given ‖u1‖p and ‖u2‖p, the right-hand-side
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of (3.9) is an upper bound for ‖y1‖p. Similarly, by using (3.6) instead of (3.5),

and (3.8) instead of (3.7), we can also obtain

‖(y2)T‖p ≤
γ2

1 − γ1γ2
‖u2‖p +

γ1γ2

1 − γ1γ2
‖u1‖p +

c2
1 − γ1γ2

, (3.10)

where c2 := γ2b1 + 2b2. This in turn implies that y2 ∈ Ln1
p [a1,∞). Con-

sequently, since e1 = u1 − y2 and e2 = u2 + y1, e1 ∈ Ln1
p [a1,∞) and e2 ∈

Ln2
p [a2,∞). Furthermore, the right-hand-side of (3.10) is an upper bound for

‖y2‖p. Moreover, (3.9) and (3.10) also imply that

‖y‖p =
(
‖y1‖2

p + ‖y2‖2
p

) 1
2

≤ 1

1 − γ1γ2
(γ1(1 + γ2)‖u1‖p + γ2(1 + γ1)‖u2‖p + c1 + c2)

≤ γ‖u‖p + b

which implies that the closed-loop map from u to y is Lp-sfg with gain

γ :=
√

2max

(
γ1(1 + γ2)

1 − γ1γ2
,
γ2(1 + γ1)

1 − γ1γ2

)

and bias b :=
c1 + c2

1 − γ1γ2
. Similarly, it can also be shown that, under the hy-

pothesis, the closed-loop map from u to e is also Lp-sfg with gain

γ̂ :=
√

2max

(
1 + γ1

1 − γ1γ2
,

1 + γ2

1 − γ1γ2

)

and bias b.

3.3 A Small-Gain Theorem for Feedback Connection of

a SIMO System with a MISO System

In the previous section, the sufficient conditions to satisfy the inter-

nal stability of the feedback interconnection of two stable subsystems, at least

one of which is non-causal, were presented. The main result, Theorem 3.1, was

based on the assumption of the causality of cascade connections of subsystems.

However, this condition may not be satisfied in the flow controller design prob-

lem, considered in the next chapter. The flow control problem considered there

is for a network with a single bottleneck node fed by n sources. Thus, to show
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the validity of the small-gain theorem for this problem, the feedback system in

Figure 3.2 should be arranged as a feedback interconnection of a SIMO system

with a MISO system. Hence, a less conservative result can be found in com-

parison to the result derived in Section 3.2, since the systems in the feedback

connection have known structure. The results presented in this section have

been published in [37]

Let us consider the feedback system in Figure 3.2, where it is assumed

that G1 : Ln
pe[a,∞) → Lpe[ā,∞) and G2 : Lpe[ā,∞) → Ln

pe[a,∞) are Lp-sfg

and linear. Furthermore, the causality assumption (3.5) is also assumed to be

satisfied. The other causality assumption, (3.6), however, is not necessarily

satisfied. In the following theorem, instead of (3.6), a more relaxed condition

is introduced. It is shown that this condition is also sufficient for stability in

the present case.

Theorem 3.2. [37] Consider the feedback configuration shown in Figure 3.2,

where u1 ∈ Ln
p [a,∞), e1, y2 ∈ Ln

pe[a,∞), u2 ∈ Lp[ā,∞), e2, y1 ∈ Lpe[ā,∞),

where a ∈ R
n and ā ∈ R. Let G1 : Ln

pe[a,∞) → Lpe[ā,∞) and G2 :

Lpe[ā,∞) → Ln
pe[a,∞). Assume that both G1 and G2 are linear (thus (3.7)

and (3.8) are satisfied) and Lp-sfg with gain γ1 and γ2 respectively and bias

zero (thus (3.3) and (3.4) are satisfied with b1 = b2 = 0). For i = 1, . . . , n,

let G1i : Lpe[ai,∞) → Lpe[ā,∞) denote the map from the ith input of G1 to its

output and G2i : Lpe[ā,∞) → Lpe[ai,∞) denote the map from the input of G2

to its ith output (i.e., G1 =
[
G11 · · · G1n

]
and G2 =

[
G21 · · · G2n

]T
).

Suppose that G1G2 is causal (i.e., (3.5) is satisfied). Also suppose that G2iG1i

is causal, i.e.,

(G2iG1ie1i)T = ((G2iG1i) (e1i)T )T , ∀e1i ∈ Lpe[ai,∞) , (3.11)

∀T , for all i = 1, . . . , n. Moreover, suppose that γ1γ2 < 1. Then the closed-

loop system, i.e., the map from u =
[
uT

1 uT
2

]T
to y =

[
yT

1 yT
2

]T
(or to

e =
[
eT
1 eT

2

]T
), is Lp-sfg.

Proof. As in the proof of Theorem 3.1, taking u1 ∈ Ln
p [a,∞) and u2 ∈
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Figure 3.3: Feedback system with the loop broken at e1i [37]

Lp[ā,∞), using (3.3)–(3.5) (with b1 = b2 = 0) and the linearity of G1, it

can be shown that

‖(y1)T‖p ≤
γ1

1 − γ1γ2

‖u1‖p +
γ1γ2

1 − γ1γ2

‖u2‖p . (3.12)

Since the right-hand-side of this inequality is independent of T , y1 ∈ Lp[ā,∞)

and, given ‖u1‖p and ‖u2‖p, the right-hand-side of (3.12) is an upper bound

for ‖y1‖p.

To obtain a similar result for y2, instead of breaking the loop at e1, as

in the proof of Theorem 3.1, we will break the loop at each individual channel

of e1. Note that, when the loop is broken at the ith channel of e1, the system

shown in Figure 3.3 is obtained, where G1i, G2i, and u1i respectively denote

G1, G2, and u1 with their ith element removed.

Let γij denote the gain of Gij (thus γi =
√∑n

j=1 γ
2
ij) for j = 1, . . . , n,

i = 1, 2. Note that, by Schwarz inequality (by viewing γi as the 2-norm of[
γi1 · · · γin

]T

, i = 1, 2),

n∑

j=1

γ1jγ2j ≤ γ1γ2 . (3.13)

From Figure 3.3,

e2 =
1

1 +
n∑

j=1,j 6=i

G1jG2j

(
u2 +

n∑

j=1,j 6=i

G1ju1j +G1ie1i

)
. (3.14)
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Note that the feedback loop from the output of G1i to the input of G2i in

Figure 3.3 is well-posed, since, by (3.13) and the assumption γ1γ2 < 1, its loop

gain is
∑n

j=1,j 6=i γ1jγ2j < 1. Furthermore, by (3.11), the map
∑n

j=1,j 6=iG1jG2j is

causal. Therefore, the system with map
1

1 +
∑n

j=1,j 6=iG1jG2j
is causal. More-

over, an upper bound on its gain is ρi :=
1

1 −
∑n

j=1,j 6=i γ1jγ2j

.

Now, using (3.3) and (3.4) (with b1 = b2 = 0), the linearity of G1 and

G2, the fact that u1j ∈ Lp[aj,∞), u2 ∈ Lp[ā,∞), and (3.11), from Figure 3.3,

we obtain

‖(y2i)T‖p = ‖ (G2ie2)T ‖p

≤ ρi

(
‖ (G2iu2)T ‖p +

n∑

j=1,j 6=i

‖ (G2iG1ju1j)T ‖p + ‖ (G2iG1ie1i)T ‖p

)

≤ ρi

(
‖G2iu2‖p +

n∑

j=1,j 6=i

‖G2iG1ju1j‖p + ‖ (G2iG1i) (e1i)T ‖p

)

≤ ρi

(
γ2i‖u2‖p + γ2i

n∑

j=1

γ1j‖u1j‖p + γ2iγ1i‖(y2i)T‖p

)
, (3.15)

where e1i = u1i − y2i is also used in the last step. Using γ1γ2 < 1, from (3.13)

we obtain γ1iγ2i < 1 −∑n
j=1,j 6=i γ1jγ2j or ρiγ2iγ1i =

γ1iγ2i

1 −
∑n

j=1,j 6=i γ1jγ2j

< 1.

Therefore, from (3.15) we obtain

‖(y2i)T‖p ≤
γ2i

1 −∑n
j=1 γ1jγ2j

(
‖u2‖p +

n∑

j=1

γ1j‖u1j‖p

)
. (3.16)

Since the right-hand-side of this inequality is independent of T , y2i ∈ Lp[ai,∞)

and, given ‖u1j‖p, j = 1, . . . , n, and ‖u2‖p, the right-hand-side of (3.16) is an

upper bound for ‖y2i‖p. Repeating this for each i = 1, . . . , n, it is concluded

that y2 ∈ Ln
p [a,∞). Consequently, since e1 = u1 − y2 and e2 = u2 + y1,

e1 ∈ Ln
p [a,∞) and e2 ∈ Lp[ā,∞). Furthermore, from (3.12) and (3.16), we

also obtain

‖y‖p =

(
‖y1‖2

p +
n∑

i=1

‖y2i‖2
p

) 1
2

≤ γ‖u‖p (3.17)

where

γ :=

√
γ1γ2 (γ1γ2 + γ1 + γ2) + max (γ2

1 , γ
2
2)

1 − γ1γ2
.
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This implies that the closed-loop map from u to y is Lp-sfg. Similarly, it can

also be shown that the closed-loop map from u to e is also Lp-sfg. Thus, the

desired result follows.

3.4 Utilization of Non-Causal Uncertainty Blocks in the

Robust Controller Design Problem for Systems with

Multiple Time-Delays

In the previous two sections, the sufficient conditions were given for

the validity of the small-gain theorem for feedback interconnected non-causal

subsystems. As stated in Section 3.1, non-causal uncertainty blocks may arise if

the approach of [13] is used in the robust controller design problem for multiple-

time-delay systems. In this section, it is shown how the non-causal uncertainty

blocks arise in the H∞ controller design problem for systems with multiple

time-delays. In addition, utilization of non-causal uncertainty blocks in the

robust controller design is given under different uncertainty representations

of the finite dimensional part of the actual plant. To show the appearance of

non-causal uncertainty blocks in the problem setup, firstly, the structure of the

uncertainty blocks is derived in Subsection 3.4.1. Then, in Subsections 3.4.2–

3.4.5, a number of different representations for the uncertainties in the finite-

dimensional part of the actual plant are given. In Subsection 3.4.6, it is shown

that the design of an H∞-optimal controller for a plant whose uncertainties

may be represented in one of these forms is possible utilizing the special time-

advance form of the resulting uncertainty blocks with the introduced strong

small-gain condition. Results presented in this section have been published

in [38] and [39].
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3.4.1 Appearance of non-causal uncertainty blocks in robust con-

troller design

In this subsection, appearance of non-causal uncertainty blocks in the

robust controller design for systems with multiple time-delays by the approach

of [13] is given.

Definition 3.6. For a time function (including a constant) τ : [t0,∞) → R,

we let Dτ denote the delay operator by τ ; i.e., if r = Dτs, then

r(t) =





s(t− τ(t)) , t− τ(t) ≥ t0

0 , t− τ(t) < t0
, t ≥ t0 .

If τ =
[
τ1 · · · τn

]T
, then Dτ := diag(Dτ1 , . . . , Dτn); i.e., if r = Dτs, then

ri(t) =





si(t− τi(t)) , t− τi(t) ≥ t0

0 , t− τi(t) < t0
, t ≥ t0 , i = 1, . . . , n .

Note that, if τ = h + δ, with h ≥ 0, δ(t0) = 0, and |δ̇(t)| < 1, ∀t ≥ t0, then,

for t ≥ t0, Dτ = DhDδ = DδDh.

Let us consider the robust controller design problem for a MIMO linear

plant, whose each input and each output is subject to an uncertain time-

varying time-delay. To design a stabilizing controller by the approach of [13],

the problem should be stated in the generalized H∞-framework as depicted

in Figure 3.4. Here, ∆ is a linear (but possibly time-varying) norm-bounded

block which represents uncertainties, K is the controller to be designed, Λu

and Λy respectively represent the nominal input and output time-delays, as in

(2.14) and (2.15), G =




A B1 B2

C1 D11 D12

C2 D21 D22


 is the generalized plant from


 w

u




to


 z

y


, which is LTI, finite dimensional, and satisfies the standard RH∞

assumptions ((i)–(iv) given in Section 2.2).

In this set-up, if K stabilizes the nominal system (i.e., the system in

Figure 3.4 with ∆ = 0) and makes the L2-induced norm of the TFM from w
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to z less than or equal to some γ, then assuming that ∆ is causal, the small

gain theorem implies that the actual system is robustly stable for all ∆ whose

L2-induced norm is less than 1/γ. However, by the approach of [13], ∆ may

become non-causal if uncertain part of the actual time-delay is assumed to

be negative. If ∆ is non-causal, then robustly stabilizing controller K can be

designed if the sufficient conditions given in the previous sections are satisfied.

However, as shown in [38], these conditions may not always be satisfied.

To show the appearance of non-causal uncertainty blocks in the H∞

framework, consider a linear plant, Ω, with nu inputs and ny outputs. We

assume that the ith input is subject to a time-varying time-delay of τu
i (t) =

hu
i + δu

i (t), where hu
i is the known time-invariant nominal part and δu

i (t) is the

unknown time-varying uncertain part. Similarly, the ith output is subject to

a time-varying time-delay of τ y
i (t) = hy

i + δy
i (t), where hy

i is the known time-

invariant nominal part and δy
i (t) is the unknown time-varying uncertain part.

It is assumed that

max
t≥t0

{−δ•i (t)} ≤ δ̄•i ≤ h•i , i = 1, . . . , n•, (3.18)

for some δ̄•i > 0, where • represents either u or y. Furthermore it is assumed

that

|δ•i (t)| < δ̂•i , |δ̇•i (t)| < β•
i , ∀t ≥ t0, and δ•i (t0) = 0, (3.19)

for some bounds δ̂•i > 0 and 0 < β•
i < 1, i = 1, . . . , n•. We also assume that,

apart from these delays, the plant is time-invariant and finite-dimensional.

Then, the actual plant can be represented as Ω = DτyPDτu, where τ • :=

35



u -
W

−1
u

-k
W u

-l
Dδu -p

P -q
Dδy -m

W y
-n

W
−1
y

- y
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[
τ •1 · · · τ •n•

]T
and P is LTI and finite-dimensional. By defining Π :=

DδyPDδu , where δ• :=
[
δ•1 · · · δ•n•

]T
, the plant can also be represented as

Ω = ΛyΠΛu, where Λ• := Dh• , where h• :=
[
h•1 · · · h•n•

]T
.

To model the uncertain part of Ω considering the bounds and varia-

tions of the uncertain time-varying time-delays, one possible way is to intro-

duce the weighting matrices W • = diag(w•
1, . . . , w

•
n•

), where w•
i (s) =

a•i s+ 1

s+ b•i
,

where a•i , b
•
i > 0 are design parameters, to represent Π as in Figure 3.5. The

transfer function wu
i (s) in Figure 3.5, i = 1, . . . , nu, can be represented in

state-space form as follows:

ẋu
i (t) = −bui xu

i (t) + (1 − au
i b

u
i )ki(t), (3.20)

li(t) = xu
i (t) + au

i ki(t),

where xu
i (t) is the state variable and ki and li are the ith element of k and l,

respectively. For i = 1, . . . , nu, the ith element of p in Figure 3.5 can be written

as:

pi(t) = li(t− δu
i (t)) = xu

i (t− δu
i (t)) + au

i ki(t− δu
i (t)). (3.21)

If the solution of xu
i (t) is substituted in pi(t), (3.21) can be written as;

pi(t) =

∫ t−δu
i (t)

0

ki(υ)dυ − bui

∫ t−δu
i (t)

0

li(υ)dυ + au
i ki(t− δu

i (t))

=

∫ t−δu
i (t)

0

ki(υ)dυ −
∫ t

0

ki(υ)dυ +

∫ t

0

ki(υ)dυ

−bui
∫ t−δu

i (t)

0

li(υ)dυ + bui

∫ t

0

li(υ)dυ − bui

∫ t

0

li(υ)dυ

+au
i ki(t− δu

i (t))

= −
∫ t

t−δu
i (t)

eu
i (υ)dυ +

∫ t

0

eu
i (υ)dυ + au

i k(t− δu
i (t)), (3.22)

where eu
i (t) := ku

i (t)− bui l
u
i (t) and without loss of generality we assume t0 = 0.

Let us define w̃u
i (s) :=

s(1 − au
i b

u
i )

s+ bui
, then eu

i (s) = w̃u
i (s)ku

i (s). Therefore,
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Figure 3.6: Mapping from ki to pi [38]

utilizing (3.22), the mapping from the ith element of k to the ith element of p

can be depicted as in Figure 3.6. To find a bound on the uncertainty block

∆u
i,1, let us define

vi(t) :=

∫ t

t−δu
i (t)

eu
i (ν)dν ≤

∫ t

t−δu
i (t)

|eu
i (ν)|dν.

Let ru
i (t) := |eu

i (t)|, i = 1, · · · , nu, then, from the assumption in (3.19)

|vi(t)| ≤
∣∣∣∣∣

∫ t

t−δu
i (t)

ru
i (ν)dν

∣∣∣∣∣ ≤





|v̂i(t)|, if δu
i (t) ≥ 0

|vi(t)|, if δu
i (t) ≤ 0

, (3.23)

where v̂i(t) :=

∫ t

t−δ̂u
i

ru
i (ν)dν, and vi(t) :=

∫ t+δ̂u
i

t

ru
i (ν)dν. Taking Laplace

transformations of v̂i(t) and vi(t),

v̂i(s) =
eδ̂u

i s − 1

s
ru
i (s) (3.24)

vi(s) =
e−δ̂u

i s − 1

s
ru
i (s). (3.25)

From (3.24) and (3.25), both ‖v̂i(t)‖2 and ‖vi(t)‖2 are less than or equal

δ̂u
i ‖ru

i (t)‖2, i = 1, · · · , nu. Therefore, from (3.23), ‖vi(t)‖2 ≤ δ̂u
i ‖ru

i (t)‖2 =

δ̂u
i ‖eu

i (t)‖2, since

∫ ∞

0

|ru
i (t)|2dt =

∫ ∞

0

|(|eu
i (t)|)|2dt =

∫ ∞

0

|eu
i (t)|2dt for i =

1, . . . , nu. Hence, ‖∆u
i,1‖2 ≤ δ̂u

i , i = 1, . . . , nu.

To find a norm bound on ∆u
i,2, as in [23], let us define for i = 1, . . . , n•,

λ•i := υ − δ•i (υ) =: f •
i (υ). (3.26)
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The relation in (3.26) implies that

dλ•i
dυ

= 1 − dδ•i (υ)

dυ
:= 1 − g•i (λ

•
i ). (3.27)

Since by (3.19),

∣∣∣∣
dδ•i (υ)

dυ

∣∣∣∣ < 1, therefore,
df •

i (υ)

dυ
> 0. The latter inequality

implies that υ = f •
i
−1(λ•i ). From (3.26), g•i (λ

•
i ) =

dδ•i (υ)

dυ

∣∣∣∣
υ=f•

i
−1(λ•

i )

. Therefore,

if d(t) := c(t− δu
i (t)), i = 1, . . . , nu, then,

∫ ∞

0

|d(t)|2dt =

∫ ∞

0

|c(t− δu
i (t))|2dt =

∫ ∞

0

|c(λu
i )|2

dλu
i

1 − gu
i (λu

i )

<
1

1 − βu
i

∫ ∞

0

|c(λu
i )|2dλu

i , (3.28)

hence, ‖∆u
i,2‖2 <

1√
1 − βu

i

. As shown in Figure 3.6, ∆u
i,1 and ∆u

i,2 are non-

causal, since ∆u
i,1 becomes a non-causal integral block and ∆u

i,2 becomes a

time-advance block for δu
i (t) < 0. The maximum time-advance in both ∆u

i,1

and ∆u
i,2 is maxt≥0{−δu

i (t)} > 0. However, by (3.18), it is bounded by δ̄u
i ≤

hu
i . Let us define ∆u

i :=
[

1 ∆u
i,1 ∆u

i,2

]
, which is norm-bounded, and

wu
i (s) :=

[
1 − au

i b
u
i

au
i s+ 1

−s(1 − au
i b

u
i )

au
i s+ 1

au
i

s+ bui
au

i s+ 1

]T

, which is stable. Now,

defining ∆u := bdiag(∆u
1 , . . . ,∆

u
nu

) and Wu := bdiag(wu
1 , . . . , w

u
nu

), the map-

ping from u to p in Figure 3.5 can be obtained as ∆uWu.

Using the similar procedure, the mapping from q to ȳ can be obtained

as follows. The transfer function wy
j (s) in Figure 3.5, j = 1, . . . , ny, can be

represented in state-space form:

ẋy
j (t) = −byjxy

j (t) + (1 − ay
j b

y
j )mj(t), (3.29)

nj(t) = xy
j (t) + ay

jmj(t),

where xy
j (t) is the state variable and mj and nj are the jth element of m and

n, respectively. In Figure 3.5, mj(t) = qj(t− δy
j (t)). Therefore, the solution of

xy
j (t) in (3.29) can be written as below;

xy
j (t) = −byj

∫ t

0

xy
j (υ)dυ + (1 − ay

j b
y
j )

∫ t

0

qj(υ − δy
j (υ))dυ
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Figure 3.7: Mapping from qj to nj [38]

= −byj
∫ t

0

xy
j (υ)dυ + (1 − ay

j b
y
j )

[∫ t

0

qj(υ − δy
j (υ))dυ−

∫ t−δy
j (t)

0

qj(λ
y
j )dλ

y
j +

∫ t−δy
j (t)

0

qj(υ)dυ +

∫ t

0

qj(υ)dυ

−
∫ t

0

qj(υ)dυ

]
. (3.30)

From (3.26), since

∫ t−δy
j (t)

0

qj(λ
y
j )dλ

y
j =

∫ t

0

(1− gy
j (υ − δy

j (υ)))qj(υ − δy
j (υ))dυ,

(3.30) can be written as;

xy
j (t) = −byj

∫ t

0

xy
j (υ)dυ + (1 − ay

j b
y
j )

∫ t

0

(gy
j qj)(υ − δy

j (υ))dυ

−(1 − ay
j b

y
j )

∫ t

t−δy
j (t)

qj(υ)dυ + (1 − ay
j b

y
j )

∫ t

0

qj(υ)dυ

= −byj
∫ t

0

xy
j (υ)dυ + (1 − ay

j b
y
j )(Tqj)(t), (3.31)

where (Tqj)(t) :=

[∫ t

0

Dδy
j
[gy

j qj ](υ)dυ −
∫ t

t−δy
j (t)

qj(υ)dυ +

∫ t

0

qj(υ)dυ

]
. If the

Laplace transform of both sides in (3.31) are taken, then

xy
j (s) =

s(1 − ay
j b

y
j )

s + byj
L{(Tqj)(t)}.

Let us define w̃y
j (s) :=

s(1 − ay
j b

y
j )

s+ byj
and q̃y

j (s) := L{(Tqj)(t)}. Then, xy
j (s) =

w̃y
j (s)q̃

y
j (s). Since nj(t) = xy

j (t) + mj(t) = xy
j (t) + ay

jqj(t − δy
j (t)), the map-

ping from the jth element of q to the jth element of n can be depicted as in

Figure 3.7, where Mδ̇y
j

represents multiplication with δ̇y
j . Using the relation

in (3.26) and (3.27) , ‖∆y
j,1‖2 <

βy
j√

1 − βy
j

(see also [23]), ‖∆j,2‖2 ≤ δ̂y
j and
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‖∆y
j,3‖2 <

1√
1 − βy

j

, j = 1, . . . , ny. Here, all ∆y
j,l, l = 1, 2, 3, are non-causal for

δy
j (t) < 0, since ∆y

j,1 becomes a time-advance block, ∆y
j,2 becomes a non-causal

integral block, and ∆y
j,3 becomes a time-advance block. The maximum time-

advance in all ∆y
j,l, l = 1, 2, 3, is maxt≥0{−δy

j (t)} > 0, in general and, by (3.18),

is bounded by δ̄y
j ≤ hy

j . Defining ∆y := bdiag(∆y
1, . . . ,∆

y
ny

), where ∆y
j :=[

1 ∆y
j,1 ∆y

j,2 ∆y
j,3

]T
is norm-bounded, and Wy := bdiag(wy

1 , . . . , w
y
ny

),

where wy
j (s) :=

[
1 − ay

j b
y
j

ay
js+ 1

1 − ay
j b

y
j

ay
js+ 1

−
s(1 − ay

j b
y
j )

ay
js+ 1

ay
j

s + byj
ay

js+ 1

]
is stable,

the mapping from q to y in Figure 3.5 can be obtained as Wy∆y. Therefore,

Π can be written as:

Π = Wy∆yP∆uWu . (3.32)

In the following subsections, the robust controller design for the actual

plant Ω, whose finite-dimensional part is shown in one of the four different

uncertainty representations, is presented.

3.4.2 Additive uncertainty representation

Let

P = P 0 +W1∆̃W2, (3.33)

where P 0 is the nominal plant (apart from the time-delays), W1 and W2 are

the stable uncertainty weights, and ∆̃ is the stable uncertainty block. Then,

(3.32) can be written as

Π = Wy∆yP
0∆uWu +Wy∆yW1∆̃W2∆uWu .

Let us assume that P 0 has a left co-prime factorization,

P 0 = M−1N (3.34)

in H∞, where M is diagonal. Since Wy∆y and M−1 are both diagonal (hence

they commute), Π can be written as

Π = P 0 +Wy∆yW1∆̃W2∆uWu

+
[
Wy∆y −Iny

]

 M−1N 0

0 M−1N




 ∆uWu

Inu



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Figure 3.8: Feedback Configuration with left co-prime factorization [39]

= P 0 +M−1W y∆
l

aW u = P 0 +M−1∆l
a , (3.35)

where ∆
l

a := bdiag(∆yN∆u,∆yMW1∆̃W2∆u, N), W y :=
[
Wy Wy −Iny

]
,

and W u :=
[
W ′

u W ′
u Inu

]T
. Since W y,W u, and ∆

l

a are norm-bounded,

∆l
a := W y∆

l

aW u is also norm-bounded and its norm is bounded by the norms

of W• (which depends on design parameters a•i and b•i ), M , W1, W2, N , and

by the norm bounds of ∆̃ and ∆• (which depends on δ̂•i and β•
i ). Then, the

feedback configuration to control the actual plant can be represented as shown

in Figure 3.8, where ∆l = ∆l
a. Note that Figure 3.8 is equivalent to Figure 3.4

with ∆ = ∆l and

G =


 0 Inu

M−1 P 0


 , (3.36)

which satisfies the standard RH∞ assumptions ((i)–(iv) given in Section 2.2)

as long as the actual realization of P 0 is stabilizable and detectable. Moreover,

Figure 3.8 is also equivalent to Figure 3.2, where G1 = ∆l
a and G2 = ΛuK(I +

ΛyP
0ΛuK)−1ΛyM

−1 = ΛuK(M + ΛyNΛuK)−1Λy. G1 and G2 are both linear

and, since ∆l
a is stable and K is designed to stabilize the nominal plant, G1

and G2 are also both stable. Note that, the maximum time-advance from the

ith input of G1 = ∆l
a = Wy∆y(N + MW1∆̃W2)∆uWu − N to its jth output

is bounded by δ̄u
i + δ̄y

j , since W1, W2, ∆̃, M , and N are causal. On the other

hand, note that, due to Λu and Λy, G2 = ΛuK(M + ΛyNΛuK)−1Λy involves a

pure delay of hu
i + hy

j from its jth input to its ith output.

Alternatively, if P 0 does not have a left-coprime factorization (3.34)

where M is diagonal, but has a right-coprime factorization,

P 0 = ÑM̃−1 (3.37)
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Figure 3.9: Feedback configuration with right co-prime factorization [39]

in H∞ where M̃ is diagonal, then

Π = P 0 +Wy∆yW1∆̃W2∆uWu

+
[
Wy∆y −Iny

]

 ÑM̃−1 0

0 ÑM̃−1




 ∆uWu

Inu




= P 0 +W y∆
r

aW uM̃
−1 = P 0 + ∆r

aM̃
−1 , (3.38)

where ∆r
a := W y∆

r

aW u, where ∆
r

a := bdiag(∆yÑ∆u,∆yW1∆̃W2M̃∆u, Ñ).

Furthermore, ∆r
a is norm-bounded and its bound can be calculated in terms of

the norms of W•, M̃ , W1, W2, Ñ , and the norm bound of ∆• and ∆̃. Then the

feedback configuration to control the actual plant can be represented as shown

in Figure 3.9, where ∆r = ∆r
a. Furthermore, this feedback configuration is

equivalent to the one given in Figure 3.4 with ∆ = ∆r and

G =


 0 M̃−1

Iny P 0


 , (3.39)

which satisfies the standard RH∞ assumptions ((i)–(iv) given in Section 2.2)

as long as the actual realization of P 0 is stabilizable and detectable. Figure 3.9

is also equivalent to Figure 3.2, where G1 = ∆r
a and G2 = M̃−1ΛuKΛy(I +

P 0ΛuKΛy)
−1 = ΛuM̃

−1K(I + ΛyP
0ΛuK)−1Λy. In this feedback configura-

tion, G1 and G2 are both linear and, since ∆r
a is stable and K is designed

to stabilize the nominal plant, G1 and G2 are both stable. Furthermore,

the maximum time-advance from the ith input of G1 = ∆r
a = Wy∆y(Ñ +

W1∆̃W2M̃)∆uWu − Ñ to its jth output is bounded by δ̄u
i + δ̄y

j , since W1,

W2, ∆̃, M̃ , and Ñ are causal. On the other hand, due to Λu and Λy, G2 =

ΛuM̃
−1K(I + ΛyP

0ΛuK)−1Λy involves a pure delay of hu
i + hy

j from its jth

input to its ith output.
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3.4.3 Multiplicative input uncertainty representation

Let

P = P 0(Inu +W1∆̃W2), (3.40)

whereW1 andW2 are stable uncertainty weights and ∆̃ is the stable uncertainty

block. Then

Π = Wy∆yP
0∆uWu +Wy∆yP

0W1∆̃W2∆uWu .

Let us assume that, P 0 has a factorization in H∞ as given in (3.34) where M

is diagonal. Then

Π = P 0 +Wy∆yP
0W1∆̃W2∆uWu

+
[
Wy∆y −Iny

]

 M−1N 0

0 M−1N




 ∆uWu

Inu




= P 0 +M−1W y∆
l

mi
W u = P 0 +M−1∆l

mi
, (3.41)

where ∆
l

mi
:= bdiag(∆yN∆u,∆yNW1∆̃W2∆u, N), W y and W u are same as

in Subsection 3.4.2, and ∆l
mi

:= W y∆
l

mi
W u. Note that, ∆l

mi
is norm-bounded

(norm bound depends on the norms of W•, W1, W2, N , and the norm bounds of

∆•, ∆̃). Furthermore, representation of Π in (3.41) for the perturbed plant in

(3.40) is the same as in (3.35). Therefore, the feedback configuration to control

the actual plant which is represented by multiplicative input perturbation, can

be represented as in Figure 3.8, where ∆l = ∆l
mi

.

Since the structure of Π in (3.41) is same as in (3.35), the generalized

plant in the H∞-framework in this case is same as in (3.36). Furthermore, the

feedback configuration for this set up (Figure 3.8 with ∆l = ∆l
mi

) can also be

shown as in Figure 3.2, where G1 = ∆l
mi

and G2 = ΛuK(M + ΛyNΛuK)−1Λy.

Note that, G1 and G2 are both linear and, since ∆l
mi

is stable and K stabilizes

the nominal plant, G1 and G2 are also stable. Since (Inu + W1∆̃W2) and N

are causal, the maximum time-advance from the ith input of G1 = ∆l
mi

=

Wy∆yN(Inu + W1∆̃W2)∆uWu − N to its jth output is bounded by δ̄u
i + δ̄y

j .

Furthermore, as above, G2 = ΛuK(M + ΛyNΛuK)−1Λy involves a pure delay

of hu
i + hy

j from its jth input to its ith output.
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3.4.4 Multiplicative output uncertainty representation

Let

P = (Iny +W1∆̃W2)P
0, (3.42)

whereW1 andW2 are stable uncertainty weights and ∆̃ is the stable uncertainty

block. Then

Π = Wy∆yP
0∆uWu +Wy∆yW1∆̃W2P

0∆uWu .

Let us assume that, P 0 has a factorization in H∞ as given in (3.37) where M̃

is diagonal. Then

Π = P 0 +Wy∆yW1∆̃W2P
0∆uWu

+
[
Wy∆y −Iny

]

 ÑM̃−1 0

0 ÑM̃−1




 ∆uWu

Inu




= P 0 +W y∆
r

mo
W uM̃

−1 = P 0 + ∆r
mo
M̃−1 , (3.43)

where ∆
r

mo
:= bdiag(∆yÑ∆u,∆yW1∆̃W2Ñ∆u, Ñ), W y and W u are same as

in Subsection 3.4.2, and ∆r
mo

:= W y∆
r

mo
W u. Note that, ∆r

mo
is also norm-

bounded and the feedback configuration to control the actual plant can be

represented as in Figure 3.9, where ∆r = ∆r
mo

.

Since Π in (3.43) has the same structure as in (3.38), then the gen-

eralized plant to design a robust controller for this plant is the same as in

(3.39). Furthermore, this configuration is also equivalent to the one shown in

Figure 3.2 with G1 = ∆r
mo

and G2 = ΛuM̃
−1K(I + ΛyP

0ΛuK)−1Λy, which are

both linear and stable. Furthermore, the maximum time-advance from the ith

input of G1 to its jth output is bounded by δ̄u
i + δ̄y

j and G2 involves a pure

delay of hu
i + hy

j from its jth input to its ith output.

3.4.5 Multiplicative input/output uncertainty representation

Let

P = (Iny +Wy1∆̃
yWy2)P

0(Inu +Wu1∆̃
uWu2), (3.44)
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where ∆̃• are stable uncertainty blocks and W•k
are stable uncertainty weights

(• represents either u or y and k = 1, 2). Let us assume that either

(a) Wy1∆̃
yWy2 is diagonal and P 0 has a factorization in H∞ as given in (3.34)

where M is diagonal or

(b) Wu1∆̃
uWu2 is diagonal and P 0 has a factorization in H∞ as given in

(3.37) where M̃ is diagonal.

In case (a) we have

Π = Wy∆yP
0∆uWu +Wy∆yP

0Wu1∆̃
uWu2∆uWu

+Wy∆yWy1∆̃
yWy2P

0∆uWu + P 0 − P 0

+Wy∆yWy1∆̃
yWy2P

0Wu1∆̃
uWu2∆uWu

= P 0 +M−1∆l
mio

, (3.45)

where ∆l
mio

:= W̃y∆̃
l
mio
W̃u. In ∆l

mio
, the weighting matrices is of the form

W̃y :=
[
Wy Wy Wy Wy −Iny

]
, W̃u :=

[
W ′

u W ′
u W ′

u W ′
u Inu

]T
and

the uncertainty block is, ∆̃l
mio

:= bdiag
(
∆yN∆u , ∆yNWu1∆̃

uWu2∆u ,

∆yWy1∆̃
yWy2N∆u , ∆44 , N

)
, where ∆44 := ∆yWy1∆̃

yWy2NWu1∆̃
uWu2∆u.

Since ∆•, ∆̃•, W•, N , and W•k
are norm-bounded, ∆l

mio
is norm-bounded.

Since Π in (3.45) is in additive form as in (3.35), the feedback configuration

in Figure 3.8 with ∆l = ∆l
mio

can be used to control the actual plant. Fur-

thermore, the generalized plant in the H∞-framework is the same as in (3.36).

Moreover, this configuration is equivalent to the one given in Figure 3.2 with

G1 = ∆l
mio

and G2 = ΛuK(M+ΛyNΛuK)−1Λy. In this feedback configuration,

G1 and G2 are linear and since ∆l
mio

is stable and K stabilizes the nominal

plant, G1 and G2 are also stable. Moreover, the maximum time-advance from

the ith input of G1 to its jth output is bounded by δ̄u
i + δ̄y

j and G2 involves a

pure delay of hu
i + hy

j from its jth input to its ith output.

On the other hand, in case (b) we have

Π = P 0 + ∆r
mio
M̃−1, (3.46)
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where ∆r
mio

is same as ∆l
mio

with N replaced by Ñ . Thus, ∆r
mio

is also norm-

bounded. Since Π in (3.46) is in additive form as in (3.38), the feedback

configuration in Figure 3.9 with ∆r = ∆r
mio

can be used to control the actual

plant. Furthermore, the generalized plant in the H∞-framework is same as in

(3.39). Moreover, this configuration is equivalent to the one given in Figure 3.2

with G1 = ∆r
mio

and G2 = ΛuM̃
−1K(I+ΛyP

0ΛuK)−1Λy, which are both linear

and stable. Moreover, the maximum time-advance from the ith input of G1 to

its jth output is bounded by δ̄u
i + δ̄y

j and G2 involves a pure delay of hu
i + hy

j

from its jth input to its ith output.

From the results of this subsection, it is also evident that in the case of

multiplicative input uncertainty representation (presented in Subsection 3.4.3),

a right co-prime factorization, rather than a left co-prime factorization, can be

used if W1∆̃W2 in (3.40) is diagonal. Similarly, in the case of multiplicative

output uncertainty representation (presented in Subsection 3.4.4), a left co-

prime factorization, rather than a right co-prime factorization, can be used if

W1∆̃W2 in (3.42) is diagonal.

3.4.6 Utilization of the non-causal uncertainty blocks

So far, for a number of different uncertainty representations, we have

shown that the feedback configuration to design a stabilizing optimal H∞-

controller can be represented as in Figure 3.2, where G1 and G2 are both

linear (thus (3.7) and (3.8) are satisfied) and stable (thus (3.3) and (3.4) are

satisfied for some γ1 and γ2 and b1 = b2 = 0). Furthermore, in each case,

G1, which in general is non-causal, has the property that the maximum time-

advance from its ith input to its jth output is bounded by δ̄u
i + δ̄y

j and G2 has

the property that it involves a pure delay of hu
i + hy

j from its jth input to its

ith output. This implies that the maximum time-advance from the jth input

of G1G2 to its ith output is

max
k=1,...,nu

{
δ̄y
i + δ̄u

k − hu
k − hy

j

}
≤ δ̄y

i − hy
j , (3.47)
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where the inequality follows from the fact that, by (3.18), δ̄u
k ≤ hu

k , for k =

1, . . . , nu. Note that, (3.47) may be positive, unless δ̄y
i ≤ hy

j for all i, j. This

means that (3.5) may not be satisfied in general. The above properties of G1

and G2 also implies that the maximum time-advance from the jth input of

G2G1 to its ith output is

max
k=1,...,ny

{
δ̄u
j + δ̄y

k − hy
k − hu

i

}
≤ δ̄u

j − hu
i , (3.48)

where the inequality follows from the fact that, by (3.18), δ̄y
k ≤ hy

k, for k =

1, . . . , ny. Note that, (3.48) may also be positive, unless δ̄u
j ≤ hu

i for all i, j.

This implies that (3.6) may also not be satisfied in general. Although (3.5)

and (3.6) may not be satisfied, if the strong small-gain conditions, given in

the following theorem, are satisfied then the internal stability of the feedback

system in Figure 3.2 is guaranteed.

Theorem 3.3. [39] Consider the feedback configuration shown in Figure 3.2.

Let G1 : Ln1
pe [a1,∞) → Ln2

pe [a2,∞) and G2 : Ln2
pe [a2,∞) → Ln1

pe [a1,∞) be both

linear and Lp-sfg with gain γ1 and γ2 respectively, where n1 = nu and n2 = ny.

Denote the jth column of Gk (k = 1, 2) by Gu
kj (j = 1, . . . , nk) and its ith

row by Gy
ki (i = 1, . . . , nk̄, k̄ := k − (−1)k). Let γ•ki denote the gain of G•

ki.

Suppose that the maximum time-advance from the jth input of Γ1 := G1G2 to

its ith output is bounded by (3.47) and the maximum time-advance from the

jth input of Γ2 := G2G1 to its ith output is bounded by (3.48), where δ̄y
i ≤ hy

i ,

i = 1, . . . , n2, and δ̄u
j ≤ hu

j , j = 1, . . . , n1. Moreover, suppose that the strong

small-gain conditions for G1G2 and G2G1,

√√√√
n2∑

i=1

(γy
1i)

2

√√√√
n2∑

i=1

(γu
2i)

2 < 1 and

√√√√
n1∑

i=1

(γy
2i)

2

√√√√
n1∑

i=1

(γu
1i)

2 < 1 (3.49)

are both satisfied. Then the closed-loop system, i.e., the map from u =


 u1

u2




to y =


 y1

y2


 in Figure 3.2, is Lp-sfg.
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Proof. Let u1 ∈ Ln1
p [a1,∞) and u2 ∈ Ln2

p [a2,∞). From Schwarz inequality,

(3.49) implies that

n2∑

i=1

γy
1iγ

u
2i ≤

√√√√
n2∑

i=1

(γy
1i)

2

√√√√
n2∑

i=1

(γu
2i)

2 < 1 (3.50)

n1∑

i=1

γu
1iγ

y
2i ≤

√√√√
n1∑

i=1

(γy
2i)

2

√√√√
n1∑

i=1

(γu
1i)

2 < 1 (3.51)

Let yki denote the ith element of yk (k = 1, 2, i = 1, . . . , nk̄). Then,

from Figure 3.2

y11 = v11 −Gy
11G

u
21y11 − . . .−Gy

11G
u
2n2
y1n2

...

y1n2 = v1n2 −Gy
1n2
Gu

21y11 − . . .−Gy
1n2
Gu

2n2
y1n2

(3.52)

where v1i is the ith element of v1 := G1u1 − G1G2u2. Note that, since u1 ∈
Ln1

p [a1,∞), u2 ∈ Ln2
p [a2,∞), and both G1 and G2 are Lp-sfg, v1 ∈ Ln2

p [a2,∞).

Also note that, Gy
1n2
Gu

2n2
is the n2

th diagonal element of Γ1. Therefore, the

maximum time-advance in Gy
1n2
Gu

2n2
is bounded by δ̄y

n2
−hy

n2
≤ 0, which means

that Gy
1n2
Gu

2n2
is causal. Furthermore, by (3.50), its gain is γy

1n2
γu

2n2
< 1.

Therefore, from the last expression in (3.52), we obtain

y1n2 =
(
1 + G

y
1n2

Gu
2n2

)−1
[
v1n2 − G

y
1n2

Gu
21y11 − . . . − G

y
1n2

Gu
2(n2−1)y1(n2−1)

]
(3.53)

where
(
1 +Gy

1n2
Gu

2n2

)−1
is causal and an upper bound on its gain is 1

1−γy
1n2

γu
2n2

.

By substituting (3.53) into the (n2 − 1)st expression in (3.52), we obtain

y1(n2−1) = v1(n2−1) −Gy
1(n2−1)G

u
2n2

(
1 +Gy

1n2
Gu

2n2

)−1
v1n2 − G̃1y11

− . . .− G̃n2−1y1(n2−1) , (3.54)

where G̃i := Gy
1(n2−1)G

u
2i − Gy

1(n2−1)G
u
2n2

(
1 +Gy

1n2
Gu

2n2

)−1
Gy

1n2
Gu

2i, for i =

1, . . . , n2−1. Consider G̃n2−1. Note that Gy
1(n2−1)G

u
2(n2−1) is the (n2−1)st diag-

onal element of Γ1, and hence (by the same argument given above for the n2
th

diagonal element) is causal. Furthermore, Gy
1(n2−1)G

u
2n2

and Gy
1n2
Gu

2(n2−1) are

respectively the maps from the n2
th input to the (n2−1)st output and from (n2−

1)st input to the n2
th output of Γ1. Therefore, since

(
1 +Gy

1n2
Gu

2n2

)−1
is causal,
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the maximum time-advance in Gy
1(n2−1)G

u
2n2

(
1 +Gy

1n2
Gu

2n2

)−1
Gy

1n2
Gu

2(n2−1) is

bounded by δ̄y
n2−1 − hy

n2
+ δ̄y

n2
− hy

n2−1 ≤ 0. Consequently, G̃n2−1 is causal.

Furthermore, its gain is bounded by

γy
1(n2−1)γ

u
2(n2−1) +

γy
1(n2−1)γ

u
2n2
γy

1n2
γu

2(n2−1)

1 − γy
1n2
γu

2n2

=
γy

1(n2−1)γ
u
2(n2−1)

1 − γy
1n2
γu

2n2

< 1 ,

where the last inequality follows from the fact that, by (3.50),

γy
1(n2−1)γ

u
2(n2−1) + γy

1n2
γu

2n2
< 1.

This implies that y1(n2−1) can be solved from (3.54). Then, it can be substituted

into the third equation from the bottom in (3.52). Continuing in this way, it

is arrived at

y11 = Ḡv1 − G̃y11 , (3.55)

where G̃ is causal and has gain less than 1. Therefore, y11 =
(
1 + G̃

)−1

Ḡv1,

where
(
1 + G̃

)−1

Ḡ is Lp-sfg. Furthermore, since the map from u =


 u1

u2




to v1 is also Lp-sfg, this implies that the map from u to y11 is Lp-sfg. By

changing the order of substitutions above, it can also be shown that the maps

from u to y1i, i = 2, . . . , n2, are also Lp-sfg. Consequently, the map from u to

y1 =
[
y11 · · · y1n2

]T
is Lp-sfg. Similarly, it can be shown that, the map

from u to y2 =
[
y21 · · · y2n1

]T
is Lp-sfg. This implies that the map from

u to y =


 y1

y2


 is Lp-sfg.

Now, utilizing the strong small-gain condition, an optimal H∞ con-

troller can be designed to stabilize the actual plant Ω against all uncertain

time-varying time-delays. For example, let us consider the controller design

for the feedback system depicted in Figure 3.8. Let γ̂u
1i be the upper bound on

γu
1i, for i = 1, . . . , n1 and γ̂y

1i be the upper bound on γy
1i, where i = 1, . . . , n2,

where γy
1i and γu

1i are defined as in Theorem 3.3. Both γ̂u
1i and γ̂y

1i can be calcu-

lated from the uncertainty representations. Furthermore, note that, γy
2i ≤ γ2,

i = 1, . . . , n1, and γu
2i ≤ γ2, i = 1, . . . , n2, where γ2 is the H∞ norm of the

49



closed-loop TFM from w to z in Figure 3.8. Therefore, the designed controller,

K, which stabilizes the nominal system in Figure 3.8 for ∆l = 0 also robustly

stabilizes the actual plant, if K is chosen such that γ2 satisfies

γ2 <
1

max

{√
n2

∑n2

i=1 (γ̂y
1i)

2,
√
n1

∑n1

i=1 (γ̂u
1i)

2

} .

A similar approach can also be taken for the system shown in Fig-

ure 3.9.

3.5 Removing Non-Causal Uncertainty Blocks in Ro-

bust Controller Design Setup

In this section, we discuss how to replace the non-causal uncertainty

blocks, which appear as shown in the previous section, by causal blocks in

the robust controller design setup. This approach gives an alternative way to

directly using non-causal blocks.

The mapping from ū to p in Figure 3.5 is ∆uWu (see Subsection 3.4.1),

where ∆u = bdiag(∆u
1 , . . . ,∆

u
nu

), where ∆u
i =

[
1 ∆u

i,1 ∆u
i,2

]
is non-causal

for all i = 1, . . . , nu. In this mapping, Wu = bdiag(wu
1 , . . . , w

u
nu

), where

wu
i (s) =

[
1 − au

i b
u
i

au
i s+ 1

−s(1 − au
i b

u
i )

au
i s+ 1

au
i

s+ bui
au

i s+ 1

]T

(i = 1, . . . , nu). Utilizing

the structure of ∆u
i and wu

i , the mapping from the ith element of ū to the ith

element of p, can be expressed as ŵu
i + ∆

u

i w
u
i , where

ŵu
i :=

1 − au
i b

u
i

au
i s+ 1

∆
u

i :=
[

∆u
i,1 ∆u

i,2

]

wu
i (s) =

[
−s(1 − au

i b
u
i )

au
i s+ 1

au
i

s+ bui
au

i s+ 1

]T

,

for i = 1, . . . , nu. Now, let us define ∆u := bdiag
(
∆

u

1 , · · · ,∆
u

nu

)
, W u :=

bdiag
(
wu

1 , · · · , wu
nu

)
, and Ŵu := diag

(
ŵu

1 , . . . , ŵ
u
nu

)
, then the mapping from ū

to p is ∆uW u + Ŵu.
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Similarly, let us consider the mapping from q to ȳ in Figure 3.5, which

is Wy∆y (see Subsection 3.4.1). In the mapping, Wy = bdiag(wy
1 , . . . , w

y
ny

),

where wy
j (s) =

[
1 − ay

j b
y
j

ay
js+ 1

1 − ay
j b

y
j

ay
js+ 1

−
s(1 − ay

j b
y
j )

ay
js+ 1

ay
j

s+ byj
ay

js + 1

]
, and ∆y =

bdiag(∆y
1, . . . ,∆

y
ny

), where ∆y
j =

[
1 ∆y

j,1 ∆y
j,2 ∆y

j,3

]T
is non-causal for all

j = 1, . . . , ny. Using the structure of ∆y and Wy, the mapping from the jth

element of q to the jth element of ȳ can be obtained as wy
j∆

y

j + ŵy
j , where

∆
y

j :=
[

∆y
j,1 ∆y

j,2 ∆y
j,3

]T

wy
j (s) :=

[
(1 − ay

j b
y
j )

ay
js+ 1

−
s(1 − ay

j b
y
j )

ay
js+ 1

ay
j

s+ byj
ay

js+ 1

]

and

ŵy
j :=

1 − ay
j b

y
j

ay
js+ 1

,

for j = 1, . . . , ny. Now, let us define ∆y := bdiag
(
∆

y

1, . . . ,∆
y

ny

)
, W y :=

bdiag
(
wy

1, . . . , w
y
ny

)
and Ŵy := diag

(
ŵy

1, . . . , ŵ
y
ny

)
. Then, the mapping from

q to ȳ can be written as Ŵy +W y∆y.

Therefore, Π in (3.32), assuming that the finite dimensional part of

the plant does not involve any uncertainties, i.e., P = P 0, can be written

alternatively as below;

Π = (W y∆y + Ŵy)P
0(∆uW u + Ŵu). (3.56)

The feedback configuration for the actual plant Ω can be depicted as in Fig-

ure 3.10. In this configuration, Λu(s) = diag(e−hu
1 s, · · · , e−hu

nu
s) and Λy(s) =

diag(e−hy
1s, · · · , e−hy

ny s). To design a robust stabilizing controller for the ac-

tual plant Ω by the approach of [13], the feedback configuration depicted in

Figure 3.10 can be represented as in the generalized framework (Figure 3.4),

where z =


 z1

z2


, w =


 w1

w2


,

∆ =


 ∆u 0

0 ∆y


 , (3.57)
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g - K - Λu
- Ŵu

-

- Wu
- ∆u

?g- Po
- Ŵy

-

- ∆y
- W y

?g - Λy
-

6
− ȳ

y
u ū

z1 w1 z2 w2

Figure 3.10: Feedback configuration for the actual plant Ω

g - K - ŴuΛu
-

- Wu
-

∆1︷︸︸︷
∆uΛ̃u

?g- Po
- ΛyŴy

-

- Λ̃y∆y
-

∆2︷︸︸︷
W y

?g -
6
−

y
u

ẑ1 ŵ1 ẑ2 ŵ2

Figure 3.11: Equivalent system

which is non-causal, and

G =




0 0 W u

P 0 0 P 0Ŵu

ŴyP
0 W y ŴyP

0Ŵ u


 . (3.58)

Now, by using algebraic manipulations, an equivalent of the feedback system

in Figure 3.10 can be obtained as depicted in Figure 3.11. Here, Λ̃u(s) =

bdiag(e−hu
1 sI2, . . . , e

−hu
nu

sI2) and Λ̃y(s) = bdiag(e−hu
ysI3, . . . , e

−hy
nysI3). In this

case ∆1 := ∆uΛ̃u and ∆2 := Λ̃y∆y are causal. The input-output relation of

the feedback configuration in Figure 3.11 can be expressed as follows:



ẑ1

ẑ2

y


 =




0 0 W u

P 0 0 P 0ŴuΛu

ΛyŴyP
0 W y ΛyŴyP

0ŴuΛu







ŵ1

ŵ2

u


 =: G1




ŵ1

ŵ2

u


 .(3.59)

In this case, the approach of [13] can not be applied to design an H∞-

optimal controller for the system G1, since Λu does not appear in the mapping

from u to ẑ1 and Λy does not appear in the mapping from ŵ2 to y. That is,
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G̃2

�

- ∆̂

?
Λy

- −K̃

6

Λu

�

� w̃

ũỹ

ûŷ

z̃

Figure 3.12: Generalized plant for G2

the delay blocks in (3.59) can not be removed from the generalized plant G1

to set-up the generalized framework as shown in Figure 2.4.

Now, let us define the augmented plant G2 instead of G1 as shown

below:

G2 :=




0 0 W uΛu

P 0 0 P 0ŴuΛu

ΛyŴyP
0 ΛyW y ΛyŴyP

0ŴuΛu


 ,

where, 


z̃1

z̃2

ỹ


 := G2




w̃1

w̃2

ũ


 . (3.60)

Therefore, the generalized H∞-framework for G2 can be set-up as shown in

Figure 3.12, where G̃2 :=




0 0 W u

P 0 0 P 0Ŵu

ŴyP
0 W y ŴyP

0Ŵu


 , z̃ :=


 z̃1

z̃2


 , w̃ :=


 w̃1

w̃2


, and ∆̂ = bdiag(∆1,∆2), which is causal. Now, an H∞-optimal con-

troller can be designed for the generalized plant G̃2 by the approach of [13],

where G̃2 satisfies the standard RH∞ assumptions ((i)–(iv) given in Sec-

tion 2.2) as long as the actual realization of ŴyP
0Ŵu is stabilizable and de-

tectable.

In the sequel, it will be shown that the designed controller, which
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internally stabilizes the nominal system in Figure 3.12 (with ∆̂ = 0) and

achieves ‖Fl(G̃2,−ΛuK̃Λy)‖∞ < 1/‖∆̂‖2, also stabilizes the feedback system

in Figure 3.11, which is equivalent to the actual system, and achieves that the

norm of the closed-loop TFM from ŵ :=


 ŵ1

ŵ2


 to ẑ :=


 ẑ1

ẑ2


 in Figure 3.11

is less than
1

‖∆‖2

.

Let us assume that the designed controller K̃ internally stabilizes the

system in Figure 3.12 and achieves that ‖Fl(G̃2,−ΛuK̃Λy)‖∞ < 1/‖∆̂‖2. In

Figure 3.12, ∆̂ is causal and has the same L2-induced norm with the non-causal

uncertainty block ∆ given in (3.57) since

‖∆̂‖2 =

∥∥∥∥∥∥


 ∆uΛu 0

0 Λy∆y



∥∥∥∥∥∥

2

=

∥∥∥∥∥∥


 I 0

0 Λy




 ∆u 0

0 ∆y




 Λu 0

0 I



∥∥∥∥∥∥

2

=

∥∥∥∥∥∥


 ∆u 0

0 ∆y



∥∥∥∥∥∥

2

= ‖∆‖2.

From Figure 3.12 and (3.60),

ỹ = (I + ΛyŴyP
0ŴuΛuK̃)−1

[
ΛyŴyP

0 ΛyW y

]
w̃.

Therefore,

z̃ =


 0 0

P 0 0


 w̃ +


 W uΛu

P 0ŴuΛu


 ũ

=


 0 0

P 0 0


 w̃ −


 W uΛu

P 0ŴuΛu


 K̃ỹ

=


 0 0

P 0 0


 w̃ −




 W uΛu

P 0ŴuΛu


 K̃

(I + ΛyŴyP
0ŴuΛuK̃)−1

[
ΛyŴyP

0 ΛyW y

])
w̃

= Fl(G̃2,−ΛuK̃Λy)w̃.

Let us define S := (I + ΛyŴyP
0ŴuΛuK̃)−1, then

Fl(G̃2,−ΛuK̃Λy) =


 −WuΛuK̃SΛyŴyP

0 −WuΛuK̃SΛyW y

P 0(I − ŴuΛuK̃SΛyŴyP
0) −P 0ŴuΛuK̃SΛyW y


 . (3.61)
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Now, to show that the designed stabilizing controller K̃ also stabilizes

the actual system, or its equivalent depicted in Figure 3.11, let us replace K

in Figure 3.11 with K̃. Then,

ẑ1 = W uu (3.62)

ẑ2 = P 0w1 + P 0ŴuΛuu (3.63)

y = ΛyŴyP
0ŵ1 +W yŵ2 + ΛyŴyP

0ŴuΛuu ,

where u = −K̃y. Therefore,

y = (I + ΛyŴyP
0ŴuΛuK̃)−1

[
ΛyŴyP

0 Wy

]
ŵ (3.64)

u = −K̃(I + ΛyŴyP
0ŴuΛuK̃)−1

[
ΛyŴyP

0 W y

]
ŵ.

Using (3.62)–(3.64), the closed-loop TFM from ŵ to ẑ in Figure 3.11

can be obtained as:

ẑ =


 0 0

P 0 0


 ŵ −


 W u

P 0Ŵu


ΛuK̃Λyȳ

=


 0 0

P 0 0


 ŵ −




 W u

P 0Ŵu


ΛuK̃Λy

(I + ŴyP
0ŴuΛuK̃Λy)

−1
[
ŴyP

0 W y

])
ŵ

=


 −W uK̃SΛyŴyP

0 −W uK̃SŴy

P 0 − P 0W uΛuK̃SΛyŴyP
0 −P 0W uΛuK̃SŴy


 ŵ

=: Tzwŵ (3.65)

From (3.61) and (3.65),

Fl(G2,ΛuK̃Λy) =


 Λ̃u 0

0 I


Tzw


 I 0

0 Λ̃y


 , (3.66)

where Λ̃uW u = W uΛu and W yΛ̃y = ΛyW y. Therefore, Fl(G̃2,−ΛuK̃Λy) is

stable if and only if Tzw in (3.65) is stable [56]. In addition, since Λ̃u and Λ̃y

are inner functions, ‖Fl(G̃2,ΛuK̃Λy)‖∞ = ‖Tzw‖∞.

As a summary, in this section, to avoid utilization of non-causal un-

certainty blocks in the robust controller design, an equivalent problem with
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causal blocks is solved by using algebraic manipulations. As shown above,

the designed controller which stabilizes the augmented plant also stabilizes

the equivalent of the actual plant. In addition, the closed-loop H∞ norm

constraints are also satisfied.

3.6 Summary

In this chapter, the sufficient conditions to satisfy the validity of the

small-gain theorem for interconnected subsystems, at least one of which is non-

causal, were given. Using these results, non-causal uncertainty blocks can be

used in the H∞ controller design for systems with multiple time-delays

It was shown that, even though all the physical systems are causal,

the uncertainty representation of the multiple-time-delay systems in the ro-

bust controller design set-up may be non-causal. To show the appearance of

non-causal uncertainty blocks in the robust controller design, an uncertainty

model for systems with multiple uncertain time-delays was derived. However,

it should be noted that the uncertainty structure of the systems with multiple

time-delays derived in Subsection 3.4.1, is not unique. Different structures

may be obtained using different manipulations. As shown in Subsection 3.4.6,

the presented sufficient conditions in Sections 3.2 and 3.3 to satisfy the validity

of the small-gain theorem may not be satisfied in general. To overcome this

situation, the strong small-gain condition was defined which allows the use of

non-causal uncertainty blocks to represent the uncertainties in the time-delays

and design robust controllers for multiple-time-delay systems. Hence, to design

an H∞-optimal controller using the approach of [13] for a multiple-time-delay

system, where its finite dimensional part is subject to uncertainties, it is suffi-

cient to show that the designed controller, which stabilizes the nominal system,

makes the H∞ norm of the resulting closed-loop TFM in Figure 3.4 such that

the strong small-gain conditions for p = 2 are satisfied.

In Section 3.5, an alternative approach was presented in the robust
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controller design by replacing non-causal uncertainty blocks with the causal

ones. To achieve this, an equivalent problem, which had causal uncertainty

blocks, to the actual problem, which had non-causal uncertainty blocks, was

defined by using algebraic manipulations. Then, to design a robust stabilizing

controller by the approach of [13] for the equivalent problem, an augmented

problem was defined. As a result, by [56], it was shown that the designed

stabilizing controller for the augmented plant also stabilizes the actual plant.

Furthermore, it satisfies the closed-loop H∞ norm constraint.
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4 ROBUST FLOW CONTROLLER DESIGN

An arising problem in today’s data-communication networks is traffic

congestion. Congestion occurs at a node of the network when the sources send

data packets to that node at a rate more than the capacity of the outgoing

link. In this case, this node is called a bottleneck node. If congestion occurs

at the bottleneck node of the network, long queueing delays and overflow of

buffer can happen which result in loss of data. To overcome these problems,

rate of data packets sent from the sources to the bottleneck node should be

controlled.

One of the available mechanisms to control the rate of data that is sent

from the sources to the bottleneck node to avoid congestion occurrence is flow

control. In general, there are two flow control methods: rate-based [57–59] and

window-based [60, 61]. Although window-based control is widely used for end

to end congestion control in TCP/IP networks, rate-based control is preferred

for edge to edge control in newer generation networks [62, 63].

In the rate-based flow control method, the controller is implemented

at the bottleneck node and calculates a rate command for each source to adjust

the rate of data that is sent from the sources to the bottleneck node in order to

regulate the queue length for congestion avoidance. The challenge in the flow

controller design is the existence of uncertain time-varying time-delays. Both

the control signal issued by the flow controller to adjust the rate of data pack-

ets that will be sent from the sources and the data packets that will be sent

from sources to the bottleneck node are subject to these delays. Moreover, in

general, existence of more than one source feeding a bottleneck results in mul-

tiple time-delays. To design a flow controller to achieve congestion avoidance

despite the presence of uncertain time-varying time-delays, one of the robust

control tools, H∞ control can be used.

In this chapter, an optimal H∞ flow controller design for data-commu-

nication networks with multiple uncertain time-delays is given. In Section 4.1,
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the derivation of the mathematical model of the network is given. In Sec-

tion 4.2, the flow control problem is defined. The optimal H∞ flow controller

design is given in Section 4.3. To illustrate the performance of the controller

designed by the approach proposed in Section 4.3, simulation studies are given

in Section 4.4. In Section 4.5, the performance and stability margins of the

designed flow controller are examined. In Section 4.6, the benefits of utilizing

non-causal uncertainty blocks compared to causal ones are presented. In Sec-

tion 4.7, sufficient conditions are derived to choose the free parameter of the

controller to meet one of the time-domain constraints. In the last section, a

summary of the results is presented.

4.1 Network Model

In this section, the flow control problem in a data-communication

network with n sources feeding a single bottleneck node is considered. For the

model of the network, we will use a continuous flow model, which is called the

fluid-flow model. The network model presented in this section and the control

problem defined in the next section, as well as its solution given in Section 4.3,

have been published in [43].

The dynamics of the queue length are given as [23]:

q̇(t) =

n∑

i=1

rb
i (t) − c(t) (4.1)

where,

q(t) is the queue length at the bottleneck node at time t,

rb
i (t) is the rate of data received by the bottleneck node at time t from the ith

source, i = 1, . . . , n,

c(t) is the outgoing rate of data from the bottleneck node at time t, which

equals to the capacity of the outgoing link when q(t) is positive. When

q(t) = 0, c(t) is the outgoing link capacity if
∑n

i=1 r
b
i (t) is greater than

or equal to the outgoing link capacity, otherwise, c(t) =
∑n

i=1 r
b
i (t).
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The total amount of data received at the bottleneck node from the ith

source, i = 1, . . . , n, by time t is given as [23]:

∫ t

0

rb
i (ϕ)dϕ =





∫ t−τf
i (t)

0
rs
i (ϕ)dϕ , t− τ f

i (t) ≥ 0

0 , t− τ f
i (t) < 0

, (4.2)

where

rs
i (t) is the rate of data sent from the ith source at time t.

Let us define

rc
i (t) := ri(t− τ b

i (t)) as the rate command received by the ith source at time

t, where

ri(t) is the rate command for the ith source issued by the controller, which is

to be implemented at the bottleneck node, at time t.

By taking the derivative of both sides of (4.2) and using rs
i (t) = rc

i (t) =

ri(t− τ b
i (t)), the rate of data received by the bottleneck node, rb

i (t), is given in

terms of the rate command issued by the controller at time t, ri(t), as follows:

rb
i (t) =





(1 − δ̇f
i (t))ri(t− τi(t)), t− τ f

i (t) ≥ 0

0, t− τ f
i (t) < 0

. (4.3)

Here, τi(t) = τ b
i (t) + τ f

i (t) is the round-trip time-delay, where

τ b
i (t) = hb

i + δb
i (t) is the backward time-delay at time t, which is the time

required for the rate command to reach the ith source. Here, hb
i is the

nominal time-invariant known backward time-delay, and δb
i (t) is the time-

varying backward time-delay uncertainty,

τ f
i (t) = hf

i + δf
i (t) is the forward time-delay at time t, which is the time

required for the data sent from the ith source to reach the bottleneck

node. Here, hf
i is the nominal time-invariant known forward time-delay,

and δf
i (t) is the time-varying forward time-delay uncertainty.
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The nominal round-trip time-delay for the ith channel of the system

is hi = hb
i + hf

i , and the time-varying round-trip time-delay uncertainty is

δi(t) = δb
i (t) + δf

i (t). It is assumed that the uncertainties are bounded as

follows:

|δi(t)| < δ+
i , |δ̇i(t)| < βi, |δ̇i

f
(t)| < βf

i (4.4)

for some bounds δ+
i > 0 and 0 < βf

i ≤ βi < 1. It is further assumed that, δi(t)

is such that τi(t) ≥ 0 at all times. In a real application, there also exist some

hard constraints, such as non-negativity constraints and upper bounds on the

queue length and data rates. In this work, we assume that these constraints

are always satisfied for the purpose of controller design.

Remark 4.1. The term δ̇f
i in (4.3) arises from differentiation of (4.2). It is the

jitter effect and a characteristic of networks with a time-varying delay.

4.2 Control Problem

In any defined control problem, firstly, the design requirements should

be posed. In the flow control problem, the aim is to design a controller, for the

above described system, to regulate the queue length q(t) at the bottleneck

node against the presence of uncertain time-varying time-delays. Hence, the

controller to be designed should robustly stabilize the system against all exist-

ing time-varying uncertainties in the time-delays which satisfy (4.4). Besides

robustness, assuming that limt→∞ c(t) = c∞ exists, the controller should also

achieve the tracking requirement:

lim
t→∞

q(t) = qd , (4.5)

and the weighted fairness [23] requirement:

lim
t→∞

ri(t) = αic∞ , i = 1, . . . , n . (4.6)

Here, qd is the desired queue length and αi > 0, i = 1, . . . , n, are the fairness

weights [23], which satisfy
∑n

i=1 αi = 1.
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To state the robust flow control problem, let us consider the mathe-

matical model of the plant to be controlled. The uncertainty part of the plant

can be modelled as follows. From (4.1) and (4.3), q(t) can be written as:

q(t) =

∫ t

0

[
n∑

i=1

(1 − δ̇f
i (ν))ri(ν − τi(ν)) − c(ν)

]
dν + q(0) . (4.7)

Let us define the nominal queue length as:

q0(t) :=

∫ t

0

[
n∑

i=1

ri(ν − hi) − c(ν)

]
dν + q(0) . (4.8)

Therefore, the uncertainty in the queue length can be defined as δq(t) := q(t)−
q0(t). Then,

δq(t) =

n∑

i=1

∫ t

0

[
(1 − δ̇f

i (ν))ri(ν − τi(ν)) − ri(ν − hi)
]
dν

=
n∑

i=1

∫ t

0

[
(1 − δ̇f

i (ν))rh
i (ν − δi(ν)) − rh

i (ν)
]
dν , (4.9)

where rh
i (t) := ri(t− hi).

Similar to Section 3.4, let us define λi := ν − δi(ν) =: fi(ν). Then

dλi

dν
= 1 − dδi

dν
= 1 − gi(λi) (4.10)

where

gi(λ) :=
dδi
dν

∣∣∣∣
ν=f−1

i (λ)

.

Since the uncertain part of the actual time-delay has the property δ̇i(t) < 1,

by (4.10),
dfi(ν)

dν
> 0. Thus, ν = f−1

i (λ) exists.

Let us assume that δi(0) = 0. From (4.10), dν =
dλi

1 − gi(λi)
, therefore,

the uncertainty in the queue length, (4.9), can be rewritten as:

δq(t) =

n∑

i=1

[∫ t

0

(1 − δ̇f
i (ν))rh

i (ν − δi(ν)) dν −
∫ t

0

rh
i (ν) dν

]

=
n∑

i=1

[∫ t

0

(1 − δ̇f
i (ν))rh

i (ν − δi(ν)) dν −
∫ t

0

rh
i (ν) dν

+

∫ t−δi(t)

0

rh
i (ν) dν −

∫ t−δi(t)

0

rh
i (λi) dλi

]
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Figure 4.1: Uncertainty model [42]

=
n∑

i=1

[∫ t

0

(1 − δ̇f
i (ν))rh

i (ν − δi(ν)) dν −
∫ t

t−δi(t)

rh
i (ν) dν

−
∫ t

0

rh
i (ν − δi(ν)) [1 − gi(ν − δi(ν))] dν

]

=
n∑

i=1

[∫ t

0

[
gi(ν − δi(ν)) − δ̇f

i (ν)
]
rh
i (ν − δi(ν)) dν

−
∫ t

t−δi(t)

rh
i (ν) dν

]
.

We now have δq(t) =
∑n

i=1 δ
i
q(t), where δi

q(t) is the output of the

system shown in Figure 4.1. In Figure 4.1, ∆i,1 and ∆i,2 are possibly non-

causal uncertain LTV blocks, since it is assumed that:

|δi(t)| < δ+
i . (4.11)

To find a bound on the uncertainty blocks, let us consider (3.28),

which implies that the L2-induced norms of the delay blocks δi(t) are less than
1√

1 − βi

. Thus, the L2-induced norm of ∆i,1 is less than
(

βi+βf
i√

1−βi

)
1

ϕi,1
, since we

have |gi| < βi and |δ̇f
i | < βf

i . Then, defining ϕi,1 =
√

2
βi + βf

i√
1 − βi

, the L2-induced

norm of the LTV block ∆i,1 is less than 1√
2
.

To find a bound on the norm of ∆i,2, let us consider the relation in

(3.23), which implies that the L2-induced norm of ∆i,2 is less than or equal
δ+
i

ϕi,2
. Thus, choosing ϕi,2 =

√
2δ+

i , the L2-induced norm of ∆i,2 becomes less
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than or equal 1√
2
. Then, the L2-induced norm of ∆i :=


 ∆i,1

∆i,2


 is less than

1.

In Figure 4.1, the uncertainty blocks are non-causal in general. In

fact, the delay blocks in Figure 4.1 are time-advance blocks and the integral

is a non-causal integral when δi(t) < 0. In [40–42] robust flow controllers were

designed using the small-gain theorem in [5]. However, the controller design

was achieved by assuming that the uncertain part of the time-delays are always

non-negative:

0 ≤ δi(t) < δ+
i (4.12)

for some positive bound δ+
i . By this assumption, the time-delay in the ith

channel becomes the minimum possible time-delay, rather than the nominal

time-delay. In this case, the optimization problem is defined not for the actual

nominal plant, but for the plant with minimum possible time-delays. Further-

more, this also requires taking the bounds δ+
i larger, robustness range must

be larger which results in conservativeness in the robust controller design.

Therefore, assumption (4.12) brings two drawbacks. In order to overcome

these drawbacks, bounds (4.11), rather than (4.12) should be used and ei-

ther the problem can be converted to an equivalent problem without using

non-causalities (see Section 3.5) or the problem can directly be considered

by using non-causal uncertainty blocks by utilizing Theorem 3.2 to design an

H∞-optimal flow controller. Here, we will take the latter approach.

To define the overall problem, without loss of generality, let us assume

that h1 ≥ h2 ≥ . . . > hn ≥ 0. Let N be the number of distinct hi’s and let us

rename the nominal time-delays as h̄1 > h̄2 > . . . > h̄N ≥ 0 so that all h̄i’s are

distinct. For this, let h̄1 = h1, h̄2 = hi2 , where i2 is the smallest index such

that hi2 < h1, h̄3 = hi3 , where i3 is the smallest index such that hi3 < hi2 ,

and so on. Also let li (i = 1, . . . , N) be the number of channels with nominal

round trip time-delay h̄i. Then,
∑N

i=1 li = n.

Now, we can describe the overall system as shown in Figure 4.2,
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Figure 4.2: Overall system [43]

where Po(s) = 1
s
1n is the nominal plant, K is the controller to be designed,

Λu(s) = bdiag
(
e−h̄1sIl1 , . . . , e

−h̄NsIlN

)
represents the nominal time-delays,

which are taken outside the plant in order to apply the approach of [13],

W1(s) =
[
W 1(s) · · ·W n(s)

]
, where W i(s) =

[ϕi,1

s
ϕi,2

]
, and

∆ = bdiag




 ∆1,1

∆1,2


 , . . . ,


 ∆n,1

∆n,2






represents the uncertainties in the system. By using Theorem 3.2, we can apply

the small-gain theorem as long as τi(t) := hi + δi(t) ≥ 0, ∀t ≥ 0, ∀i, which

is naturally satisfied since round-trip time-delays can not actually be time-

advances. By Theorem 3.2, if we choose K to stabilize the system with ∆ = 0

and make the L2-induced norm of the system from w1 to z1 in Figure 4.2 less

than 1, then the overall system is robustly stable for all uncertainties satisfying

(4.4).

To show the utilization of Theorem 3.2 in the robust flow controller

design, as it was published in [37], let us define W̃1(s) :=
s

s+ ǫ
W1(s), for some

ǫ > 0. Then, as it was shown in [37], by suppressing external signals (which do

not have any effect on closed-loop stability), the system shown in Figure 4.2

can be represented as in Figure 3.2, where G1 = W̃1∆ and G2 = ΛuT , where

T := K (1 + PoΛuK)−1 s+ ǫ

s
is the closed-loop TFM from w̃1 := W̃1w1 to −r.

Now, we can consider the system in Figure 3.2 for G1 and G2 defined
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above. Since W̃1 and ∆ are stable, (3.3) is satisfied. Furthermore, since K is

chosen to stabilize the closed-loop nominal system (system shown in Figure 4.2

with ∆ = 0), the transfer function from w1 to r is stable. Thus, in particular,

−K (1 + PoΛuK)−1 ϕ1,1

s
, which is the transfer function from the first entry of

w1 to r and is strictly proper, is stable (the pole at zero is canceled by the pole

of Po). This implies that T is also stable. Therefore, since Λu is stable, G2 is

also stable, and hence (3.4) is also satisfied. (3.7) and (3.8) are satisfied since

G1 and G2 are both linear.

In order to show that (3.5) is satisfied, let us consider the cascade

connection of G1 with G2. Note that G1G2 = W̃1∆ΛuT , where ∆Λu =

bdiag (∆1λ1, . . . ,∆nλn), where λi(s) := e−his is the ith diagonal element of

Λu(s). Also note that (see Figure 4.1), the maximum time-advance in ∆i is

maxt≥0{−δi(t)}, which is not greater than hi, since the actual time-delays can

not be time-advance, i.e. τi(t) := hi + δi(t) ≥ 0, ∀t ≥ 0, ∀i. Thus, since λi is

a pure delay of hi, for i = 1, . . . , n, each element of ∆Λu, hence ∆Λu itself, is

causal. Since W̃1 and T are also causal, this implies that G1G2 is causal, and

hence (3.5) is satisfied.

To show that (3.11) is satisfied, note that G1i = W̃i,1∆i,1 + W̃i,2∆i,2,

where W̃i,1(s) :=
ϕi,1

s+ ǫ
and W̃i,2(s) :=

sϕi,2

s+ ǫ
. It was indicated above that the

maximum time-advance in ∆i,1 and ∆i,2 is not greater than hi. Since W̃i,1 and

W̃i,2 are causal, the maximum time-advance in G1i is not greater than hi. On

the other hand, G2i = λiti, where ti is the ith element of T , which is causal.

Therefore, since λi is a pure delay of hi, G2iG1i is causal for all i = 1, . . . , n, and

hence (3.11) is satisfied. Therefore, by Theorem 3.2, the small gain theorem

can be applied to our system.

In the above, it is assumed that the controller K is chosen to stabilize

the system with ∆ = 0 and make the L2-induced norm of the system from w1

to z1 in Figure 4.2 less than 1. However, if K stabilizes the system with ∆ = 0

and make the L2-induced norm of the system from w1 to z1 in Figure 4.2 less

than some γ > 0, then the overall system is robustly stable for all ∆ with
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Figure 4.3: System for the mixed sensitivity minimization problem [25]

L2-induced norm less than 1
γ
. The uncertainty block ∆ would have L2-induced

norm less than 1
γ

if, for example, |δi(t)| < δ+
i

γ
, |δ̇i(t)| < β̃i, and |δ̇i

f
(t)| < β̃f

i ,

i = 1, . . . , n, where 0 < β̃f
i ≤ β̃i < 1 are such that

β̃i + β̃f
i√

1 − β̃i

=
βi + βf

i

γ
√

1 − βi

.

4.3 Optimal H∞ Controller Design

To solve the control problem defined in the previous section, we con-

sider a mixed sensitivity minimization problem for the system shown in Fig-

ure 4.3. Here, W2(s) = 1
s
, W3(s) = σ1

s
, and

W4(s) =
σ2

s




α2

α1
−1 0 0

α3

α1
0 −1 0

...
...

. . .
...

αn

α1
0 0 −1



,

where σ1 > 0 and σ2 > 0 are design parameters. Furthermore, d := q̇d − c, e1

is the integral of the error, y := qd − q, and is introduced to achieve tracking

(4.5), and e2 is introduced to achieve the weighted fairness requirement (4.6).

Here, the weighting matrix W1, which was introduced in the previous

section, is used to normalize the uncertainty block. Weights W2 and W3 are

introduced to reject disturbances (in the variations of qd and c) and achieve the

tracking requirement (4.5). The weighting matrix W4 is introduced to achieve

the weighted fairness requirement (4.6). Design parameters σ1 and σ2, which
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Figure 4.4: Equivalent system for the mixed sensitivity minimization problem

[42]

appear respectively in W3 and W4, can be used to assign relative importance

to tracking and weighted fairness respectively.

Note that, the nominal plant, Po, has a pole at the origin. Further-

more, the integral terms in the weightsW2,W3, andW4 forceK to have integral

action, [5]. Therefore, the sensitivity function of the closed-loop system in Fig-

ure 4.3 has a double zero at the origin, which causes uncontrollable pole-zero

cancelations to occur between the weights and the sensitivity. To avoid this

problem, we let Po(s) = M̃−1(s)Ñ(s), where Ñ(s) = 1
s+ǫ

1n and M̃(s) = s
s+ǫ

,

where ǫ > 0 is arbitrary. By using this factorization and making some simple

block diagram manipulations, the system in Figure 4.3 is transformed to the

system in Figure 4.4, where M(s) = (s+ǫ)2

s2 , Ŵ1(s) = M̃(s)W1(s), Ŵ2(s) = 1
s+ǫ

,

Ŵ3(s) = σ1

s+ǫ
, and

K̂(s) =
s

s+ ǫ
K(s) . (4.13)

Therefore, the problem is now transformed into the general four block

problem of Figure 4.5, where the general plant is described as


 z

ŷ


 :=




z1

e1

e2

ŷ




=




0 0 I

−Ŵ3MŴ1 Ŵ3MŴ2 −Ŵ3MÑ

0 0 W4

−MŴ1 MŴ2 −MÑ







w1

d

u



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Figure 4.5: General four-block problem [42]

=: P̂


 w

u


 . (4.14)

Now, the problem can be posed as to design a stabilizing controller

K̂ which achieves that ‖Fl(P̂ ,ΛuK̂)‖∞ < γ, for minimum possible γ, where

Fl(P̂ ,ΛuK̂) is the closed-loop TFM from w to z in Figure 4.5. Let us define

the normalized plant P̂γ :=


 γ−1I 0

0 I


 P̂ =:


 Pγ11 Pγ12

Pγ21 Pγ22


, so that the

stabilizing controller K̂ must satisfy ‖Fl(P̂γ,ΛuK̂)‖∞ < 1.

As it was done in [13], the above defined 4-block problem can be

reduced to a 1-block problem by using chain scattering representations. It

can be shown that Pγ12(jω) has full column rank and Pγ21(jω) has full row

rank for all ω ∈ R, which guarantees existence of a solution in the delay-free

case (i.e., when Λu = I) for sufficiently large γ. Since Pγ21(jω) has full row

rank, using output augmentation, as pointed in Section 2.1, we can obtain

the chain-scattering representation of the augmented plant. To do this, let

us introduce an output augmentation by defining y := P γ21w + P γ22u, where


 Pγ21

P γ21


 is invertible. Then, the augmented plant, P̂ γ :=




Pγ11 Pγ12

Pγ21 Pγ22

P γ21 P γ22


,

has a chain-scattering representation Ψ := CHAIN(P̂ γ), which in turn has a

(Jzw, Juw)-lossless factorization

Ψ =: ΘΩ , (4.15)

as shown in Figure 4.6, where Θ is (Jzw, Juw)-lossless and Ω is unimodular [50].
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Figure 4.6: New problem definition under chain-scattering representation [42]

Furthermore, Ω is decomposed as Ω =


 Ω11 0

Ω21 Ω22


, where Ω11 is (nu +nŷ)×

(nu + nŷ) dimensional and bistable.

In Figure 4.6, the closed-loop TFM from w to z is HM
(
Θ, Q̂

)
, where

Q̂ := HM
(
Ω,Λu

[
K̂ 0

])
. Since Θ is (Jzw, Juw)-lossless, from Theorem 2.1,

HM(Θ, Q̂) is contractive if and only if Q̂ is contractive. Therefore, the prob-

lem of finding a stabilizing controller K̂ such that Fl(P̂γ ,ΛuK̂) is contractive

is equivalent to finding a stabilizing controller K̂ such that Q̂ is contractive,

since Fl(P̂γ ,ΛuK̂) = HM(Θ, Q̂). Furthermore, we can write Q̂ =
[
Q 0

]
,

where Q := HM(Ω11,ΛuK̂). Therefore, the problem of finding a stabiliz-

ing controller K̂ for the system in Figure 4.5 is reduced to finding a sta-

bilizing controller K̂ such that Q = HM(Ω11,ΛuK̂) is contractive. Since

HM(Ω11,ΛuK̂) = HM(Ω11Λ, K̂), where Λ = bdiag(Λu, 1), the problem is re-

duced to finding a stabilizing controller K̂ such that Q = HM(Ω11Λ, K̂) is

contractive. This problem is defined as a one block problem (OBP) (see Sec-

tion 2.2). Following [13], to obtain a causal stabilizing controller, we can write

Q = HM(Ω11Λ, K̂) = HM(Ω11Ω
−1
11∞Λ, Kγ), where Ω11∞ := lims→∞ Ω11(s) and

Kγ := HM(Λ−1Ω11∞Λ, K̂). In our case, we can choose Ω in (4.15) such that

Ω11∞ := lim
s→∞

Ω11(s) =


 In 0

0 γ√
D21DT

21


 , (4.16)

where D21 := lims→∞ Pγ21(s). Then, Λ−1Ω11∞Λ = Ω11∞ , and thus we would

have

Kγ := HM(Λ−1Ω11∞Λ, K̂) = HM(Ω11∞ , K̂) . (4.17)

Defining G := Ω11Ω
−1
11∞ , the problem can be written as:
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OBP(G,Λ): Find a stabilizing controllerKγ satisfying ‖HM(GΛ, Kγ)‖∞ < 1.

The solution to this problem is found by a sequence of iterations pre-

sented in Section 2.2, which is based on the approach given in [13]. In each

iteration, a problem which is called an adobe delay problem is solved. Utilizing

the procedure in Section 2.2, the solution to OBP(G,Λ) can be obtained as

shown in the sequel.

The problem OBP(G,Λ), is solved in N steps assuming that h̄N > 0.

However, if h̄N = 0, then it is solved in N − 1 steps.

Step 1: Assuming h̄N > 0 (if h̄N = 0, we directly start with step 2, using Λ̃1 :=

Λ and G̃1 := G), let Λ =: Λ1Λ̃1, where Λ1(s) :=


 e−h̄NsIµ1 0

0 Iρ1


, where

µ1 =
∑N

i=1 li = n and ρ1 = n+1−µ1 = 1. Then, using (2.8), HM(GΛ, Kγ) =

HM
(
GΛ1, HM(Λ̃1, Kγ)

)
. Letting

K1 := HM
(
Λ̃1, Kγ

)
, (4.18)

the problem becomes determining a stabilizing controller K1 which results

in ‖HM(GΛ1, K1)‖∞ < 1, which is the problem discussed in Section 2.2.

Therefore, by (2.32), its solution is

K1 = HM




 I 0

Π1 I


 G̃−1

1 , Q̃1


 , (4.19)

where Π1 and G̃1 are respectively determined as G̃a and Πa in (2.33) and

(2.34), respectively, and Q̃1 must be contractive. Using (2.7),

Q̃1 = HM


G̃1


 I 0

−Π1 I


 , K1


 , (4.20)

where K1 is given by (4.18). Hence, by (2.8) and using (4.18), Q̃1 in (4.20)

can be written as:

Q̃1 = HM
(
G̃1Λ̃1, K̃1

)
, (4.21)

where

K̃1 := HM


Λ̃−1

1


 I 0

−Π1 I


 Λ̃1, Kγ


 . (4.22)
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Therefore, using (4.21), the remaining problem is to determine a stabilizing

controller K̃1 such that
∥∥∥HM

(
G̃1Λ̃1, K̃1

)∥∥∥
∞
< 1, which is considered in the

next step.

Step 2: Let Λ̃1 =: Λ2Λ̃2, where Λ2(s) :=


 e−(h̄N−1−h̄N)sIµ2 0

0 Iρ2


, where

µ2 =
∑N−1

i=1 li = n − lN and ρ2 = n + 1 − µ2 = 1 + lN . Then, using (2.8),

HM
(
G̃1Λ̃1, K̃1

)
= HM

(
G̃1Λ2, HM

(
Λ̃2, K̃1

))
. Letting

K2 := HM
(
Λ̃2, K̃1

)
, (4.23)

the problem becomes determining a stabilizing controller K2 which yields

‖HM(G̃1Λ2, K2)‖∞ < 1, which is the problem discussed in Section 2.2. There-

fore, by (2.32), its solution is

K2 = HM




 I 0

Π2 I


 G̃−1

2 , Q̃2


 , (4.24)

where Π2 and G̃2 are respectively determined as G̃a and Πa in (2.33) and

(2.34), respectively, and Q̃2 must be contractive. Using (2.7),

Q̃2 = HM


G̃2


 I 0

−Π2 I


 , K2


 , (4.25)

where K2 is given by (4.23). Hence, by (2.8) and using (4.23), Q̃2 in (4.25)

can be written as:

Q̃2 = HM
(
G̃2Λ̃2, K̃2

)
, (4.26)

where

K̃2 := HM


Λ̃−1

2


 I 0

−Π2 I


 Λ̃2, K̃1


 . (4.27)

Therefore, using (4.26), the remaining problem is to determine a stabilizing

controller K̃2 such that
∥∥∥HM

(
G̃2Λ̃2, K̃2

)∥∥∥
∞
< 1, which is considered in the

next step.

...
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Step N : Let Λ̃N−1 =: ΛN Λ̃N , where ΛN(s) :=


 e−(h̄1−h̄2)sIµN

0

0 IρN


, where

µN =
∑1

i=1 li = l1 and ρN = n+1−µN = 1+
∑N

i=2 li. Note that, Λ̃N = I. Then,

using (2.8), HM
(
G̃N−1Λ̃N−1, K̃N−1

)
= HM

(
G̃N−1ΛN , HM

(
Λ̃N , K̃N−1

))
.

Letting

KN := HM
(
Λ̃N , K̃N−1

)
, (4.28)

the problem becomes determining a stabilizing controller KN which results in

‖HM(G̃N−1ΛN , KN)‖∞ < 1, which is the problem discussed in Section 2.2.

Therefore, by (2.32), its solution is

KN = HM




 I 0

ΠN I


 G̃−1

N , Q̃N


 , (4.29)

where ΠN and G̃N are respectively determined as G̃a and Πa in (2.33) and

(2.34), respectively, and Q̃N must be contractive, but otherwise arbitrary. Note

that, since Λ̃N = I, (4.28) gives KN = K̃N−1.

Now, using (2.7), from (4.22) we obtain

Kγ = HM


Λ̃−1

1


 I 0

Π1 I


 Λ̃1, K̃1


 . (4.30)

Similarly, from (4.27) we obtain

K̃1 = HM


Λ̃−1

2


 I 0

Π2 I


 Λ̃2, K̃2


 . (4.31)

Substituting (4.31) into (4.30) and using (2.8) we obtain

Kγ = HM


Λ̃−1

1


 I 0

Π1 I


 Λ̃1Λ̃

−1
2


 I 0

Π2 I


 Λ̃2, K̃2


 . (4.32)

Proceeding like this, through the first N − 1 steps and using the fact that

K̃N−1 = KN , which is given by (4.29), we obtain

Kγ = HM


Λ̃−1

1


 I 0

Π1 I


 Λ̃1 · · · Λ̃−1

N−1


 I 0

ΠN−1 I




Λ̃N−1


 I 0

ΠN I


 G̃−1

N , Q̃N


 . (4.33)
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On noting that Λ̃−1
1 = Λ−1Λ1, Λ̃1Λ̃

−1
2 = Λ2, . . ., Λ̃N−2Λ̃

−1
N−1 = ΛN−1, and

Λ̃N−1 = ΛN , as in (2.37), we can rewrite (4.33) as

Kγ = HM(ΠΛG
−1
Λ , QΛ) , (4.34)

where ΠΛ := Λ−1

N∏

i=1

Λi


 I 0

Πi I


 is a system which involves delays and FIR

filters (note that time-advances introduced by Λ−1 are all cancelled by Λi’s;

i.e., ΠΛ is causal), GΛ := G̃N is a finite-dimensional and bistable system, and

QΛ := Q̃N is such that ‖QΛ‖∞ < 1, but otherwise arbitrary.

Once the stabilizing controller Kγ is found as in (4.34), using (2.8) and

(2.7), the stabilizing controller K̂ is found by inverting (4.17) and the desired

stabilizing controller K is found from (4.13) as

K(s) =
s+ ǫ

s
HM

(
Ω−1

11∞ΠΛ(s)G−1
Λ (s), QΛ(s)

)
. (4.35)

By decomposing Πk’s as

Π1 =:
[

Π1
11 Π1

12 · · · Π1
1N

]
,

where Π1
1j is 1 × lj dimensional,

Π2 =:


 Π2

11 Π2
12 · · · Π2

1(N−1)

Π2
21 Π2

22 · · · Π2
2(N−1)


 ,

where Π2
1j is lN × lj and Π2

2j is 1 × lj dimensional, . . ., and

ΠN =:




ΠN
11

ΠN
21

...

ΠN
N1



,

where ΠN
j1 is lj+1 × l1 (j = 1, . . . , N − 1) and ΠN

N1 is 1 × l1 dimensional, the

stabilizing controller K can be implemented as shown in Figure 4.7. Here,

κ s+ǫ
s

is a proportional-integral term, where

κ :=
γ√

D21DT
21

=
γ√

2
∑n

i=1

(
δ+
i

)2 ,

74



HM(G−1
Λ

, QΛ)

�
r̄1

r̃1
?

ΠN
11

?�
r̄2

r̃2d++�

ΠN−1
11 ×

e−(h̄1−h̄2)sIl1

+ΠN−1
12 ΠN

11
+ΠN

21

ΠN−1
12

?
?

? ?d++ d++�� �
r̄3

r̃3

�
r̄N−1

r̃N−1......� d

Π2
1(N−1)

?

?d+ +�.......�
r̄N

d r̃N

- Π1
1N

6
d�

−

+e

- Π1
1(N−1)

e−(h̄N−1−h̄N )sIlN−1

+Π1
1N

Π2
1(N−1)

+ Π2
2(N−1)

6
d

−

+�

-

...

...
Π1

11e
−(h̄1−h̄N )sIl1 + . . . + ΠN

N1

6
d

−

+. . .

. . .. . .. . .

� κ
s + ǫ

s
� qd − qē
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Figure 4.7: The implementation of the controller K [43]

HM(G−1
Λ , QΛ) is a finite-dimensional system parameterized by QΛ, which is

assumed to be finite-dimensional and must be contractive, and each Πk
ij is an

FIR filter. Furthermore,

r̄1 :=




r1
...

rl1


 , r̄2 :=




rl1+1

...

rl1+l2


 , . . . , r̄N :=




r∑N−1
i=1 li+1

...

rn


 .

In the above, we assumed that γ > 0 is such that there exists a solution

to the adobe delay problem at each step. In order to find minimum such γ

and the corresponding stabilizing controller, i.e., to determine the optimal

controller Kopt(s) = s+ǫ
s
K̂opt(s), where stabilizing K̂opt solves

inf
K̂

‖Fl(P̂ ,ΛuK̂)‖∞ =: γopt , (4.36)

we first find the minimum γ, call it γ0, for which there exists a (Jzw, Juw)-

lossless factorization (4.15). If step 1 also has a solution for this γ, we let
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γ1 = γ0. Otherwise, we increase γ and determine the minimum γ, call it γ1,

for which there exists a solution to the adobe delay problem of step 1. After

solving step k (k = 1, . . . , N − 1), and thus determining γk, if step k + 1 also

has a solution for this γ, we let γk+1 = γk. Otherwise, we increase γ and

determine the minimum γ, call it γk+1, for which there exists a solution to the

adobe delay problem of step k+ 1 (of course, we resolve all the previous steps

for this new γ). In this way, γopt in (4.36) is determined as γN at the end of

step N . The stabilizing controller given by (4.35) for γ = γopt is the stabilizing

optimal controller.

Examining Figure 4.7, the controller to be implemented involves a

proportional-integral term (the right-most block in Figure 4.7), which can sim-

ply be realized as

ẋ(t) = κǫ(qd(t) − q(t))

ē(t) = x(t) + κ(qd(t) − q(t))

where x is the scalar state variable. This block is followed by an LTI block

with TFM HM(G−1
Λ , QΛ) put in a feedback loop with N FIR filters. FIR

filters are also connected from the kth output of this block to (k + 1)th, . . .,

N th output (k = 1, . . . , N − 1). The state-space dimension of the LTI block

with TFM HM(G−1
Λ , QΛ) is equal to nG−1

Λ
+ nQΛ

, where nG−1
Λ

and nQΛ
are

the state-space dimension of G−1
Λ and QΛ, respectively. It can be shown by

tracking back the design steps given above, the state-space dimension of G−1
Λ

is the same as the state-space dimension of G := Ω11Ω
−1
11∞ . In addition, since

Ω−1
11∞ is a constant matrix, the state-space dimension of G, hence G−1

Λ , is the

same as the state-space dimension of Ω11. The state-space dimension of Ω11

equals to the state-space dimension of the general plant in (4.14), since Ω11 is

obtained as G in (2.28), which is obtained by solving (2.17) and (2.18) for the

corresponding generalized plant. Since the second and fourth row blocks of

the generalized system in (4.14) can be realized as a second order system and

n − 1 states are needed to realize the third block, the state-space dimension

of the generalized plant, hence, Ω11, is n + 1. Therefore, for a constant QΛ,
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the state-space dimension of the LTI block with TFM HM(G−1
Λ , QΛ) equals

to n + 1. If the central controller is considered, i.e., QΛ = 0, a state-space

realization of HM(G−1
Λ , QΛ) can be written as

ẋ(t) = (Aa − ΣT
a22
BµaCµaΣ

−T
a22

− ΣT
a12
CT

µa
JµaCµaΣ

−T
a22

)x(t) +Bρae(t)

r̃(t) = −CµaΣ
−T
a22
x(t),

where r̃ :=
[
r̃T
1 r̃T

2 · · · r̃T
N−1 r̃T

N

]T
, x(t) is the n + 1 dimensional state

vector, and the appearing matrices are as defined in Section 2.2, corresponding

to Step N . Furthermore, each FIR filter, whose impulse response is in the form

of (2.12), can easily be realized in discrete-time using h
τ

delay elements, where

h is the length of the impulse response and τ is the sampling period. Therefore,

the implementation of the overall controller is relatively simple.

4.4 Time Domain Performance of the Designed Flow

Controller

In this section, we consider the time-domain performance of the con-

trollers designed by the approach proposed in the previous section. In ad-

dition, the designed controllers are compared to the controllers designed by

the approach of [23]. Simulations are carried out as in [43], but the cases

considered here are different than those in [43]. Simulations are done using

MATLAB/SIMULINK package, where non-linear effects (hard constraints) are

also taken into account. Although the controller was designed using a fluid-

flow model, a more realistic discrete model is used for the simulations. In the

simulations, all the links are assumed to have 100 Mbits/second physical ca-

pacity. Data flow is assumed to consist of discrete data packets of size 1 Mbits

and each packet is modeled as a pulse with 10 milliseconds width. Control

packets, which carry rate information from the bottleneck node to the sources,

on the other hand, have much smaller sizes. It is assumed that the designed

controller, which is implemented at the bottleneck, sends a control packet to

each source at every 5 milliseconds. Each source updates its data sending
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Figure 4.8: Topology of the example network [43]

rate when it receives a new control packet. However, control packets may not

be received at equal intervals due to the presence of time-varying backward

time-delays. This causes that data sending rates may not be updated at equal

intervals. In all simulations, simulation step size is taken as 1 millisecond.

We consider a network with two sources as shown in Figure 4.8. The

nominal time-delays (in seconds), controller design parameters, and the result-

ing optimal sensitivity level, γopt, for each case are shown in Table 4.1. In all

cases, we take QΛ = 0 and hf
i = hb

i = 1
2
hi, i = 1, 2. In all cases, the buffer size

(maximum queue length) is taken as 60 packets and the desired queue length,

qd, is taken as half of this value, 30 packets. The rate limits of the sources are

taken as 150 packets/second in all cases except Case 5. The capacity of the

outgoing link is taken as 90 packets/second in all cases. The uncertain part

of the actual time-delays (in seconds) are shown in Table 4.2. The simulation

results of the controllers designed by the approach of Section 4.3 are shown

in Figures 4.9–4.16. In all figures, q is the queue length, q(t) (whose scale is

shown on the right-hand-side of each graph), and rs
i, for i = 1, 2, is the ac-

tual rate, rs
i (t) := min (max (rc

i (t), 0) , di), of data sent from source i at time

t, where di is the rate limit of source i and rc
i (t) = ri(t − τ b

i (t)) is the rate

command received at source i at time t.
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Table 4.1: Controller design parameters and γopt

Case h1 h2 δ+
1 δ+

2 β1 β2 β
f
1 β

f
2 α1 α2 σ1 σ2 γopt

1,2,5 3 1 1/2 1 0.6 0.4 0.2 0.1 2
3

1
3 0.25 0.25 5.126

3 3 1 2 1 0.6 0.4 0.2 0.1 2
3

1
3 0.25 0.25 7.061

4 1 1 1/2 1 0.6 0.4 0.2 0.1 2
3

1
3 1 0.25 3.792

Table 4.2: The uncertain part of the actual time-delays

Case i δb
i (t) δf

i (t)

1, 4, 5 1 0.2+0.3sin(2π
40
t) 0.1+0.1sin( 2π

100
t)

2 0.6+0.3 sin(2π
50
t) 0.1+0.1sin( 2π

100
t)

2, 3 1 1.5+0.8sin(2π
40
t) 0.15+0.15sin( 2π

100
t)

2 0.6+0.3sin(2π
50
t) 0.1+0.1sin( 2π

100
t)

Case 1: This is the central case, which will be used to compare all other

simulation results. In Figure 4.9, the queue length remains almost zero up to

around 18 seconds, which is the time required for the incoming rates to reach

the capacity of the outgoing link. Then, queue length settles around 40 seconds

following an overshoot. The high-frequency oscillations in the queue length are

due to discrete arrival/departure of packets (those oscillations would not be

seen if a fluid-flow model was used, see simulation results in Sections 4.6, 4.7).

Moreover, existence of time-varying forward time-delays also cause oscillations.

As shown in Figure 4.9, at steady-state, the queue length oscillates around its

desired value, qd, and the flow rates oscillate around the values given by (4.6).

In addition, the controller is more conservative on rate 1, than it is on rate 2.

The reason for this is that the nominal delay of channel 1 is higher than that

of channel 2.

Case 2: In this case, we have the same controller as in Case 1, however, the

actual delay in channel 1 is increased. As shown in Figure 4.10, this results in
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Figure 4.9: Results for Case 1
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Figure 4.10: Results for Case 2

an increase on the settling time and the overshoot.

Case 3: We increased the value of the design parameter δ+
1 four times as

shown in Table 4.1. This makes the resulting controller more robust, but more

conservative. As shown in Figure 4.11, when we apply the same actual delays

as in Case 2, the queue length settles later than the settling time of the queue

length in Figure 4.10 with a smaller overshoot.

Case 4: We take equal nominal delays in the channels. By comparing Figure

4.12 to 4.9, the response of the controller in Figure 4.12 is faster compared to

the one in Figure 4.9. The reason of the faster response is that the nominal

time-delay in the 1st channel is less than the one in the 1st channel of Case 1.

In addition, apart from the ratio α1/α2, the rate response of the controller is

the same in both channels.

Case 5: The rate limits of the sources are decreased to 50 packets/second.

This causes the rate of the first source to saturate as shown in Figure 4.13.

However, the controller increases the rate of the second source to compensate.

Due to this extra compensation, however, the response here is slower compared

to the central case.

To compare our controller to the controller proposed in [23], we de-

signed controllers using the approach of [23] using the design parameters (ex-

cept σ1 and σ2, which are not used in the approach of [23], where tracking and

robustness are achieved by solving a two-block problem and fairness is achieved
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Figure 4.11: Results for Case 3
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Figure 4.12: Results for Case 4
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Figure 4.13: Results for Case 5
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Figure 4.14: Results of [23] for Case 1

by including the fairness weights in the controller derivation) shown in Table

4.1. The response of the controllers designed by the approach of [23] is given

in Figures 4.14–4.16 for cases 1–3 above. As seen by comparing Figure 4.14

to Figure 4.9, the response of the controller designed by the approach of [23]

is slower and has less overshoot compared to one designed by the approach

presented in the previous section. This difference indicates that the controller

designed by the approach of [23] is conservative compared to one designed by

the approach of Section 4.3.

As seen in Figure 4.15, the controller designed by the approach of [23]

can not stabilize the actual system if the uncertain part of the actual time-

delays in Case 1 are increased as in Case 2 given in Table 4.2. However, as seen

in Figure 4.10, the controller designed by the approach proposed in Section 4.3

stabilizes the actual system and achieves the performance requirements. In
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Figure 4.15: Results of [23] for Case 2
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Figure 4.16: Results of [23] for Case 3

Figure 4.16, the response of the controller, which is designed by the approach

of [23] for larger δ+
1 compared to previous one, is shown. However, the designed

controller still can not stabilize the actual system. On the other hand, as shown

in Figure 4.11, the controller designed by the approach proposed in Section 4.3

stabilizes the actual system and achieves the design requirements. Hence, the

controllers designed by the approach of Section 4.3 exhibit better robustness

properties compared to the ones designed by the approach of [23].

4.5 Performance Level and Stability Margins of the De-

signed Flow Controller

In this section, performance level and actual stability margins of the

flow controller designed by the approach of Section 4.3 are presented. Analysis

carried out in this section have been published in [44], but the example network

considered here is different than the one in [44].

The stabilizing H∞ flow controller K designed by the approach pro-

posed in Section 4.3 internally stabilizes the nominal system in Figure 4.3,

where ∆ = 0, and makes the H∞ norm of the closed-loop TFM from w to z in

Figure 4.3, called Tzw, less than a given γ > 0. By defining S := (1+PoΛuK)−1,

the closed-loop TFM Tzw in Figure 4.3 can be written as given below;
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Tzw =




−ΛuKSW1 ΛuKSW2

−W3SW1 W3SW2

−W4ΛuKSW1 W4ΛuKSW2


 . (4.37)

Therefore, the designed stabilizing controller K should satisfy;
∥∥∥∥∥∥∥∥∥




ΛuKSW1 ΛuKSW2

W3SW1 W3SW2

W4ΛuKSW1 W4ΛuKSW2




∥∥∥∥∥∥∥∥∥
∞

< γ, (4.38)

for a given γ > 0.

Since the optimal controller (besides stabilization) is designed to a-

chieve the minimum sensitivity level, γopt, its reciprocal,
1

γopt
, is defined as the

performance level of the designed optimal controller Kopt. Therefore, the per-

formance level indicates how much the performance requirements are satisfied

with the designed robustly stabilizing optimal controller.

The designed flow controller should robustly stabilize (internally) the

feedback system in Figure 4.2 for all possible ∆. By the small-gain theo-

rem, Theorem 3.2, since the non-causal uncertainty block ∆ is norm-bounded,

‖∆‖2 < 1, the controller K robustly stabilizes the actual system if it stabi-

lizes the nominal feedback system (the system in Figure 4.2 with ∆ = 0) and

satisfies ‖ΛuK(1 + PoΛuK)−1W1‖∞ ≤ 1. Furthermore, since Λu is an inner

function, the latter condition is equivalent to

‖K(1 + PoΛuK)−1W1‖∞ ≤ 1. (4.39)

Therefore, the designed controller robustly stabilizes the actual system

against all uncertain time-varying time-delays satisfying (4.4) if the stabilizing

optimal controller Kopt satisfies (4.39). Since Kopt satisfies ‖Tzw‖∞ = γopt,

from (4.37), ‖ΛuKSW1‖∞ = ‖KSW1‖∞ =: ρ ≤ γopt. Therefore, the designed

controller robustly stabilizes the overall feedback system for ‖∆‖2 <
1

ρ
. Note

that ‖∆‖2 < 1 when the stability margins on δi(t), δ̇i(t), and δ̇f
i (t) are respec-

tively δ+
i , βi and βf

i (see Section 4.2). Therefore, ‖∆‖2 <
1

ρ
is satisfied if the
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actual stability margins on δi(t), δ̇i(t), and δ̇f
i (t) are respectively changed to

δact
i , βact

i and βf
i

act
, where

δact
i =

1

ρ
δ+
i (4.40)

and
βact

i + βf
i

act

√
1 − βact

i

=
βi + βf

i

ρ
√

1 − βi

(4.41)

are satisfied for i = 1, · · · , n. Note that there are infinitely many solutions for

βact
i and βf

i

act
in (4.41). The system is robustly stable for any one of these

solutions. To obtain unique solutions, we introduce the additional constraint

βf
i

act

βact
i

=
βf

i

βi

. (4.42)

In order to show the performance level and the actual stability margins

of the designed optimal H∞ flow controllers while design parameters δ+
i , βi,

βf
i (i = 1, 2) change in given intervals, we consider a network with two sources

as depicted in Figure 4.8. In the controller design, the nominal time-delays

are assumed to be h1 = 3 tu and h2 = 1 tu, where tu stands for the time

unit. The flow controllers are designed for β1 = β2, which varies in the interval

[0, 0.99], while δ+
1 = δ+

2 varies in the interval [0.01, 1] and three cases for βf
i ,

βf
i = 0, βf

i = βi/2, and βf
i = βi, (i = 1, 2) are considered. Fairness weights

are chosen as α1 = 2/3, and α2 = 1/3 and other design parameters are chosen

as σ1 = σ2 = 0.25.

The performance level of the designed optimal H∞ controller is given

in Figure 4.17. As shown in Figure 4.17, increasing any one of the design

parameters, βi, β
f
i , or δ+

i , decreases the performance level of the designed

controller. This stems from the fact that increasing these design parameters

implies that the assumed uncertainty range is enlarged. Therefore, as expected,

as the uncertainty range is enlarged the controller gives more priority to ro-

bustness and trades this off from performance. In addition, as βi approaches

to 1, which implies that δ̇i(t) may become close to 1, the performance level of

the designed controller decreases to 0. In fact, if δ̇i(t) = 1, the rate commands

calculated at time t do not have any effect on the queue length at any time.

Therefore, in this case, the controller may be said to have no performance.
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Figure 4.17: Performance levels of the designed optimal H∞ flow controllers

The actual stability margin on δ̇i(t), β
act
i , of the designed H∞ con-

trollers is given in Figure 4.18. As seen in the figure, as βi increases, βact
i

increases without seriously being affected by δ+
i . Moreover, βact

i value for any

corresponding βi and δ+
i values in Figure 4.18 decreases as βf

i increases.

The actual stability margin on δi(t), δ
act
i , of the designed H∞ con-

trollers is given in Figure 4.19. As seen in the figure, as δ+
i increases, δact

i

increases almost independently from βi for small βi values. However, as βi

approaches to 1, δact
i approaches to 0. As stated above, since the controller

looses its effect as βi approaches to 1, its robustness properties vanishes.

Finally, the actual stability margin on δ̇f
i (t), βf

i

act
, of the designed

controller is given in Figure 4.20, as δ+
i and βf

i are changed, for two cases
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Figure 4.18: Actual stability margin on δ̇i(t) for the designed optimal H∞ flow

controllers

of βi, βi = βf
i and βi = 2βf

i . It should be noted that, in the latter case,

since βi < 1, βf
i is changed up to 0.495, so that βi ≤ 0.99. As shown in

Figure 4.20, βf
i

act
increases as βf

i increases without seriously being affected by

δ+
i . Furthermore, for a fixed βf

i , increasing βi decreases βf
i

act
.

To summarize, as the values of the design parameters βi, β
f
i , and δ+

i

are increased, stability margins of the designed controller increase, meanwhile

its performance level decreases, in general. However, for βi values, which are

close to 1, performance and actual stability margin on δi(t) of the controller

decreases drastically.
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Figure 4.19: Actual stability margin on δi(t) for the designed optimal H∞ flow

controllers

4.6 Performance and Robustness of Flow Controllers

Designed Using Non-Causal Uncertainty Blocks

To present the benefits of utilizing non-causal uncertainty blocks in

the stabilizing robust flow controller design, (i.e., using (4.11) instead of (4.12)

and allowing non-causal uncertainty blocks) performance levels and stability

margins of the stabilizing controllers designed by the approach given in Sec-

tion 4.3 can be compared to the stabilizing controllers designed by the approach

of [40–42]. For brevity, throughout this section, the controller design using the

approach proposed in [40–42], is called the causal approach and the controller

design using the approach proposed in Section 4.3 is called the non-causal ap-
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Figure 4.20: Actual stability margin on δ̇f
i (t) for the designed optimal H∞ flow

controllers

proach. In both approaches, the designed controller, Kopt, internally stabilizes

the system and satisfies inf
K=Kopt

‖Tzw‖∞ =: γopt (for a different γopt for each

approach), where Tzw is given in (4.37). Analysis carried out in this section is

the same as in [45], however, the cases considered here are different than those

considered in [45].

To compare the performance level, the stability margins, and time-

domain performance of the flow controllers designed by the two approaches,

a network with two sources, as depicted in Figure 4.8, is considered. For a

satisfactory comparison, five different cases for the possible time delays in each

channel are considered. The nominal time-delays and the uncertainty bounds

for each channel in each case are given in Table 4.3. In each case, the actual

time-delay in channel i is assumed to vary from τnom
i − δmax

i to τnom
i + δmax

i .

Therefore, for the causal approach we take

hi = τnom
i − δmax

i and δ+
i = 2δmax

i , i = 1, 2, (4.43)

and for the non-causal approach we take

hi = τnom
i and δ+

i = δmax
i , i = 1, 2. (4.44)

The other controller design parameters are given in Table 4.4.
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Table 4.3: Nominal time-delays and uncertainty bounds

τnom
1 τnom

2 δmax
1 δmax

2

Case 1 1.0 1.0 0.25 0.25

Case 2 1.0 1.0 0.5 0.5

Case 3 2.0 2.0 0.5 0.5

Case 4 2.0 1.0 0.5 0.75

Case 5 3.0 1.0 1.0 0.75

Table 4.4: Controller design parameters for all cases

β1 β2 βf
1 βf

2 α1 α2 σ1 σ2

0.2 0.1 0.01 0.01 2/3 1/3 0.5 0.5

The performance level and actual stability margins of the controller

designed by the causal and non-causal approach for each case are given in

Tables 4.5 and 4.6, respectively. In addition to actual stability margins, the

value of ρ, which is the H∞ norm of the closed-loop TFM from w1 to z1 in

Figure 4.2, for the designed controller for each case is also given. Moreover, in

these tables, the length of the full stability range of the controllers designed

by the both approaches is given. The length of the full stability range of the

controller designed by the non-causal approach and the causal approach are

2δact
i and δact

i , respectively.

As seen in the tables, the value of 1/γopt under non-causal approach is

greater compared to causal approach in each case. This implies that, the con-

troller designed by the non-causal approach has better performance property

compared to the causal one. In addition, in all cases, the value of ρ under non-

causal approach is smaller compared to causal approach in each case. Hence, all

of the actual stability margins are greater under the non-causal approach com-

pared to the causal approach. This implies that the controller designed by the

non-causal approach is more robust than the controller designed by the causal

approach against changes in the time-delays and their derivatives. Moreover,
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Table 4.5: Performance level and stability margins for the causal approach

1

γopt
ρ δact

1 δact
2 βact

1 βact
2 β

f
1

act
β

f
2

act

Case 1 0.5540 1.8034 0.2773 0.2773 0.1165 0.0568 0.0058 0.0057

Case 2 0.4442 2.2501 0.4444 0.4444 0.0946 0.0458 0.0047 0.0046

Case 3 0.2767 3.6059 0.2773 0.2773 0.0601 0.0288 0.0030 0.0029

Case 4 0.3196 3.1249 0.3200 0.4800 0.0690 0.0332 0.0035 0.0033

Case 5 0.2403 4.1527 0.4816 0.3612 0.0524 0.0251 0.0026 0.0025

Table 4.6: Performance level and stability margins for the non-causal approach

1

γopt
ρ 2δact

1 2δact
2 βact

1 βact
2 β

f
1

act
β

f
2

act

Case 1 0.6010 1.6609 0.3010 0.3010 0.1259 0.0615 0.0063 0.0061

Case 2 0.4854 2.0561 0.4864 0.4864 0.1030 0.0500 0.0051 0.0050

Case 3 0.3046 3.2762 0.3052 0.3052 0.0660 0.0317 0.0033 0.0032

Case 4 0.3451 2.8961 0.3453 0.5179 0.0743 0.0357 0.0037 0.0036

Case 5 0.2621 3.8135 0.5250 0.3930 0.0569 0.0272 0.0028 0.0027

in the non-causal approach, the guaranteed stability range for the variations

in the time-delays is centered around the nominal time-delays, since the con-

troller designed by the non-causal approach guarantees stability in the range

τnom
i −δact

i < τi(t) < τnom
i +δact

i , as long as |τ̇i(t)| < βact
i and |τ̇ f

i (t)| < βf
i

act
are

also satisfied. On the other hand, assuming |τ̇i(t)| < βact
i and |τ̇ f

i (t)| < βf
i

act
,

the controller designed by the causal approach guarantees stability in the range

τnom
i − δmax

i < τi(t) < τnom
i − δmax

i + δact
i . The guaranteed stability ranges for

the five cases considered above are shown in Table 4.7 for both approaches.

It is seen that in many cases the guaranteed stability range under the causal

approach does not even include the nominal time-delay.

As seen in the tables given above, and also examined in [45] for dif-

ferent cases, the flow controllers designed by the non-causal approach exhibit

better performance and robustness compared to ones designed by the causal

approach. Now, let us consider the time-domain performance of the designed
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Table 4.7: Time-delay range for guaranteed stability

Channel 1 Channel 2

Causal Non-Causal Causal Non-Causal

Case 1 (0.75, 1.0273) (0.8495, 1.1505) (0.75, 1.0273) (0.8495, 1.1505)

Case 2 (0.5, 0.9444) (0.7568, 1.2432) (0.5, 0.9444) (0.7568, 1.2432)

Case 3 (1.5, 1.7773) (1.8474, 2.1526) (1.5, 1.7773) (1.8474, 2.1526)

Case 4 ( 1.5, 1.82) (1.8274, 2.1727) (0.25, 0.73) (0.7410, 1.2590)

Case 5 (2.0, 2.482) (2.475, 3.525) (0.25, 0.611) (0.607, 1.393)

controllers by both approaches. In order to compare the time-domain per-

formance of the controllers designed by the causal approach to ones designed

by the non-causal approach, a number of simulations will be carried out. We

consider the same example network and the same cases for the nominal time

delays and uncertainty bounds given in Table 4.3. The controller design param-

eters hi and δ+
i are calculated as given in (4.43) and (4.44), for the causal and

non-causal approaches respectively. The other controller design parameters

are given in Table 4.4. The simulations are done using MATLAB/SIMULINK

package, where non-linear effects are also taken into account. The buffer size

(maximum queue length) is taken as 60 packets, the desired queue length, qd,

is taken as 30 packets, the capacity of the outgoing link (which equals to c(t)

when q(t) > 0) is taken as 90 packets/tu, where tu stands for the time-unit,

and the rate limits of the sources are taken as 150 packets/tu in all cases. We

consider a total of 8 different cases, where the actual time-delays (in tu) are

shown in Table 4.8. In this table, Case ka, Case kb, etc. refer to a case where

the controller designed for Case k of Table 4.3 is used (k = 1, 2 . . . , 5). The

minimum and maximum values of τi(t) := τ b
i (t) + τ f

i (t) are also shown in the

last two columns of Table 4.8.

The simulation results are shown in Figures 4.21–4.28. In all figures,

part (a) shows the results obtained for the controller designed using the causal

approach and part (b) shows the results obtained for the controller designed

using the non-causal approach. In all graphs, q is the queue length, q(t) (whose
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Table 4.8: Actual time-delays

i τ b
i (t) τ

f
i (t) τmin

i τmax
i

Case 1a 1 0.48+0.04sin(2π
40 t) 0.48+0.02sin( 2π

100 t) 0.9 1.02

2 0.47+0.04sin(2π
50 t) 0.48+0.02sin( 2π

100 t) 0.89 1.01

Case 1b,2a 1 0.5+0.2sin(2π
40 t) 0.5+0.1sin( 2π

100 t) 0.70 1.3

2 0.6+0.1sin(2π
50 t) 0.5+0.1sin( 2π

100 t) 0.9 1.3

Case 3a 1 1.2+ 0.1sin(2π
40 t) 0.8+0.1sin( 2π

100 t) 1.8 2.2

2 1.1+0.05sin(2π
50 t) 0.9+0.05sin( 2π

100 t) 1.9 2.1

Case 4a 1 0.9+0.08sin(2π
40 t) 0.7+0.01sin( 2π

100 t) 1.51 1.69

2 0.3+0.1sin(2π
50 t) 0.2+0.05sin( 2π

100 t) 0.35 0.65

Case 4b 1 1.1+0.1sin(2π
40 t) 0.9+0.05sin( 2π

100 t) 1.85 2.15

2 0.6+0.1sin(2π
50 t) 0.4+0.1sin( 2π

100 t) 0.8 1.2

Case 4c 1 1.9+0.2sin(2π
40 t) 1.0+0.1sin( 2π

100 t) 2.6 3.2

2 0.8+0.1sin(2π
50 t) 0.6+0.05sin( 2π

100 t) 1.25 1.55

Case 5a 1 2.5+0.1sin(2π
40 t) 1.0+0.05sin( 2π

100 t) 3.35 3.75

2 0.8+0.1sin(2π
50 t) 0.6+0.05sin( 2π

100 t) 1.25 1.55

scale is shown on the right-hand-side of each graph), and rs
i is the actual rate

at which data is send from source i, i = 1, 2, (whose scale is shown on the

left-hand-side of each graph).

Case 1a: In this case, the actual time-delays vary within the guaranteed

stability range of the controllers designed by the causal and non-causal ap-

proaches. As seen in Figure 4.21, both controllers stabilize the actual system

and achieve the tracking (4.5) and the weighted fairness (4.6) requirements. As

seen by comparing Figure 4.21(a) to (b), the response of the controller designed

by the non-causal approach is faster compared to the controller designed by

the causal approach

Case 1b: In this case, we apply the same controller designed for Case 1a,

however, the actual time-delays vary within a wider range compared to the

actual time-delays in Case 1a. In addition, the range in this case is outside
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Figure 4.21: Simulation results for Case 1a
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Figure 4.22: Simulation results for Case 1b

the guaranteed stability range of both controllers. However, both controllers

stabilize the actual system and achieve the design requirements, as seen in

Figure 4.22. The response of the controller designed by the causal approach

has larger overshoots and longer settling time compared to the response of the

controller designed by the non-causal approach. Non-causal approach, on the

other hand, provides a more oscillatory transient response.

Case 2a: In this case, the used controllers provide a wider range of variations

in the actual time-delays compared to Cases 1a and 1b. Similar to Case 1b, the

actual time-delays in this case are outside of the guaranteed stability range of

both controllers, however, they stabilize the actual system and achieve the de-

sign requirements as shown in Figure 4.23. As seen in Figure 4.23, the response
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Figure 4.23: Simulation results for Case 2a

of the controller designed by the non-causal approach is faster compared to the

controller designed by the causal approach. In addition, the queue length in

Figure 4.23(b) settles to the desired queue length with smaller overshoots and

undershoots compared to the queue length in Figure 4.23(a).

Case 3a: In this case, the actual time-delays vary around the nominal time-

delays given in Table 4.3, and within the guaranteed stability range of the

controller designed by the non-causal approach. However, they are outside the

guaranteed stability range of the controller designed by the causal approach.

As seen in Figure 4.24(b), the controller designed by the non-causal approach

stabilizes the actual system and achieves the design requirements. However,

the controller designed by the causal approach can not stabilize the system as

shown in Figure 4.24(a).

Case 4a: In this case, the actual time-delays lie within the guaranteed stabil-

ity range of the controller designed by the causal approach, however, outside

the guaranteed stability range of the controller designed by the non-causal ap-

proach. However, as seen in Figure 4.25(b), the controller designed by the non-

causal approach stabilizes the actual system and achieves the design require-

ments with a small overshoot. As seen in Figure 4.25(a), the controller designed

by the causal approach achieves the design requirements with a smoother re-

sponse compared to the response of the controller designed by the non-causal

approach.
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Figure 4.24: Simulation results for Case 3a
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Figure 4.25: Simulation results for Case 4a

Case 4b: In this case, the actual time-delays lie in the guaranteed stability

range of the controller designed by the non-causal approach, however, out-

side the guaranteed stability range of the controller designed by the causal

approach. As seen in Figure 4.26(a), the controller designed by the causal

approach stabilizes the actual system with larger overshoots and undershoots

compared to the controller designed by the non-causal approach. Moreover,

the settling time of the controller designed by the causal approach is longer

compared to that of the controller designed by the non-causal approach.

Case 4c: In this case, the actual time-delays are outside the guaranteed stabil-

ity range of both controllers. As seen in Figure 4.27(a), the controller designed

by the causal approach does not stabilize the system, however, as shown in
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Figure 4.26: Simulation results for Case 4b
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Figure 4.27: Simulation results for Case 4c

Figure 4.27(b), the controller designed by the non-causal approach stabilizes

the actual system and achieves all the design requirements.

Case 5a: In this case, similar to Case 4c, the actual time delays are outside

the guaranteed range of both controllers. However, the used controllers satisfy

a wider range of variations in the actual time-delays compared to Case 4c.

As seen in Figure 4.28, both controllers stabilize the system, however, the

controller designed by the non-causal approach has a faster response with less

overshoots.

As seen in the simulation results (not only the ones presented here,

but also many others), the non-causal approach in general produces faster

responses with smaller overshoots compared to the causal approach. Further-
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Figure 4.28: Simulation results for Case 5a

more, the controllers designed by the non-causal approach have better stability

robustness, in general (e.g, see Case 3a, Case 4c, Case 5a). Moreover, due to

their faster response, controllers designed by the non-causal approach produce

smaller steady-state oscillations in many cases (e.g., see Case 2a, Case 5a). The

presented simulation results for different cases and actual time-delays in [37,45]

indicate the same results.

4.7 Robust Controller Design for Data-Communication

Networks to Satisfy Fair Capacity Sharing

In order to design a robust flow controller, which achieves the de-

sign objectives introduced in Section 4.2, a controller was designed to sat-

isfy the internal stability of the nominal system in Figure 4.3 (∆ = 0) and

minimize the H∞ norm of the closed-loop TFM from w =
[
wT

1 dT

]T

to

z =
[
zT
1 eT

1 eT
2

]T
, called Tzw, in Figure 4.3. The signals z1, e1, and e2

in Figure 4.3 were introduced, respectively, for the robustness, tracking, and

weighted fairness requirements. An internally stabilizing robust flow controller

can alternatively be designed to minimize the H∞ norm of the closed-loop TFM

from w to ẑ :=
[
zT
1 eT

1

]T
, called Tẑw. The weighted fairness requirement is

not considered in the latter H∞ minimization problem. However, by utilizing

the parametrization of the controller, (4.35), a contractive parameter QΛ can

97



be chosen appropriately, if it is possible, such that the weighted fairness re-

quirement is achieved by the controller. Note that the H∞ norm of the TFM

Tẑw for the controller, which is designed to minimize the H∞ norm of the TFM

Tẑw is less than or equal to the H∞ norm of the TFM Tẑw for the controller,

which is designed to minimize the H∞ norm of the TFM Tzw. Hence, the

controller, which is designed to minimize the H∞ norm of the TFM Tẑw and

achieves the weighted fairness requirement by a chosen appropriate QΛ, if it

exists, may be more robust and have better tracking properties compared to

the controller designed to minimize the H∞ norm of the TFM Tzw.

In this section, we give the sufficient conditions to choose the free

parameter QΛ in the structure of the controller (see Section 4.3), which min-

imizes the H∞ norm of the TFM Tẑw to satisfy the robustness and tracking

requirement (4.5), also meets the weighted fairness requirement (4.6). There-

fore, to design such a flow controller a new mixed sensitivity minimization

problem is defined as depicted in Figure 4.29. In this problem, there does not

exist a weighting function to achieve the weighted fairness requirement by the

controller compared to the mixed sensitivity minimization problem defined in

Section 4.3, i.e., e2 in Figure 4.3 does not exist in Figure 4.29. Using the

H∞ controller design procedure given in Section 4.3, an optimal H∞ flow con-

troller can be designed for the system depicted in Figure 4.29. In the sequel,

the sufficient conditions are given to choose an appropriate QΛ such that the

designed controller for the mixed sensitivity minimization problem depicted in

Figure 4.29 meets the weighted fairness requirement. The results presented in

this section have been published in [46]. However, the example cases considered

here are different than those in [46].

From the structure of the designed flow controller in Section 4.3, the

designed controller K in Figure 4.7 can be written in the Laplace domain as:

K(s) = R(s)H(s) [1 +D(s)H(s)]−1 κ
s+ ǫ

s
, (4.45)

where

H(s) = HM(G−1
Λ , QΛ) (4.46)
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Figure 4.29: Mixed sensitivity minimization problem [46]

R(s) =




Il1 0 0 · · · 0

ΠN
11 Il2

. . .
. . .

...

ΠN−1
11 e−(h̄1−h̄2)sIl1

+ΠN−1
12 ΠN

11 + ΠN
21

ΠN−1
12 Il3

. . . 0

. . .
. . .

. . .
...

Π2
1(N−1) IlN




(4.47)

D(s) =
[

Π1
11e

−(h̄1−h̄N )sIl1 + · · · + ΠN
N1 · · · Π1

1N

]
.

Let Kj be the jth element of the designed controller K, given in (4.45).

Then, from Figure 4.2, since qd(t) = qd, a constant (hence qd(s) = 1
s
qd), the

jth element of r(s), rj(s), can be written as:

rj(s) = Kj(s) (1 + Po(s)Λu(s)K(s))−1 1

s
(qd + c(s)) , (4.48)

where it is assumed that ∆ = 0. Similar to Section 4.2, it was assumed

that lim
t→∞

c(t) = c∞. The weighted fairness requirement, (4.6), implies that

lim
t→∞

n∑

j=1

rj(t) = c∞. Utilizing this fact and the final value theorem [64], i.e.,

lim
t→∞

rj(t) = lim
s→0

srj(s), an equivalent expression to the weighted fairness re-

quirement can be written as

lim
s→0

Kj(s)

K1(s) + · · ·+Kn(s)
= αj , j = 1, . . . , n, (4.49)

where
∑n

j=1 αj = 1.
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To write (4.49) in terms of QΛ, let us partition the TFM G−1
Λ compati-

bly with QΛ such thatG−1
Λ (s) =:


 G11 G12

G21 G22


, where G11 is n×n dimensional

and G22 is 1 × 1 dimensional. Let us define

Hn(s) := G11(s)QΛ(s) +G12(s) (4.50)

and Hd(s) := G21(s)QΛ(s) + G22(s). Then, H(s) in (4.46) can be written as

H(s) = Hn(s)H−1
d (s). Now, if Rj(s) denotes the jth row of R(s) in (4.47), the

jth element of the controller K(s), Kj(s), can be written as,

Kj(s) = Rj(s)Hn(s)
κ(s+ ǫ)

s (Hd(s) +D(s)Hn(s))
. (4.51)

If Kj(s) in (4.51) is substituted in (4.49), then it is obtained that

R(0)Hn(0) = α1nR(0)Hn(0), (4.52)

where α := [α1 · · · αn]T . Let us define Z := R(0)−α1nR(0). Therefore, (4.52)

implies that ZHn(0) = 0. However, since R(0) is nonsingular and 1nα = 1,

there exists a nonzero x such that Zx = 0, i.e. Z is singular. In addition, the

rank of Z is n− 1. Hence, x is unique up to a multiplication by a scalar.

Now, using the above definitions, we can derive the sufficient con-

ditions to choose the appropriate QΛ. Let x be a nonzero vector such that

Zx = 0. Therefore, there exists a scalar parameter ψ such that Hn(0) = ψx.

From (4.50), if QΛ is chosen to satisfy

G11(0)QΛ(0) = ψx−G12(0), (4.53)

or

QΛ(0) = G−1
11 (0) (ψx−G12(0)) , (4.54)

if G11(0) is nonsingular, then the designed stabilizing controller K for the

mixed sensitivity minimization problem depicted in Figure 4.29 also satisfies

the weighted fairness condition. However, the free parameter QΛ in the con-

troller structure should be contractive. Since ‖QΛ‖∞ ≥ σ (QΛ(0)), QΛ(0)

should also satisfy that σ (QΛ(0)) < 1. Therefore, for an arbitrary ψ, if there
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exists any contractive QΛ such that QΛ(0) satisfies (4.53) or (4.54), then the

designed flow controller for the problem depicted in Figure 4.29 satisfies the

weighted fairness requirement. Hence, if there exists a contractive QΛ(0) which

satisfies (4.53) or (4.54), one can chooseQΛ(s) = QΛ(0), i.e., a constant matrix.

However, there may not exist any ψ such that σ (QΛ(0)) < 1. In this

case, there may not exist any QΛ which satisfies the weighted fairness condition

for the given γ and α values. In this case, either new αi values may be chosen

to find appropriate QΛ or the sensitivity level may be increased and ψ is sought

for the new designed controller.

To illustrate the performance of the controllers designed by the ap-

proach proposed in this section, a network with two sources, as depicted in

Figure 4.8, is considered. The nominal time-delays are assumed to be h1 = 3

tu and h2 = 1 tu, where tu stands for the time unit. Other design parameters

are taken as δ+
1 = 0.5, δ+

2 = 1.0, β1 = 0.2, β2 = 0.3, βf
1 = 0.2, βf

2 = 0.1,

σ1 = 0.25. To evaluate the performance of the designed controllers by the ap-

proach proposed in this section, the optimal flow controllers are also designed

by the approach of Section 4.3 for the same design parameters with σ2 = 0.25.

The simulations are done using MATLAB/SIMULINK package, where the de-

sired queue length, qd, is taken as 30 packets and the buffer size (maximum

queue length) is taken as 60 packets. Moreover, the capacity of the outgoing

link is taken as 90 packets/tu and the rate limits for the sources are taken

as 150 packets/tu. The uncertain part of the actual time-delays used in the

simulations are given in Table 4.9. In all cases, hb
i = hf

i = 1
2
hi, i = 1, 2. The

simulation results for both controllers designed by the approach in Section 4.3

and in this section are given in Figures 4.30–4.31. In both figures, (a) rep-

resents the response of the controller designed by the approach presented in

this section and (b) represents the response of the controller designed by the

approach of Section 4.3. In addition, in all figures, q (whose scale is on the

right) is the queue length and rs
i (whose scale is on the left) is the actual flow

rate at source i, for i = 1, 2.
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Table 4.9: Uncertain part of the actual time-delays

i δb
i (t) δf

i (t)

1 0.5+0.7sin(2π
50
t) 0.1+0.1sin( 2π

100
t)

2 0.6+0.9sin(2π
40
t) 0.1+0.2sin(2π

80
t)

Case 1: In this case, the controllers are designed for α1 = 2
3
, α2 = 1

3
. Utiliz-

ing the approach proposed in this section, the optimal H∞ flow controller is

obtained for the optimal sensitivity level γnopt

, where γnopt

= 3.530. In order

to achieve the weighted fairness requirement by the controller designed here,

the contractive QΛ is obtained by (4.54), where ψ varies between −10 and

10. The ψ value achieving the minimum σ(QΛ(0)), which is also less than 1,

is chosen and QΛ is obtained as QΛ = [0.297 0.954]T for ψ = 0.3. By the

approach of Section 4.3, the optimal H∞ flow controller is obtained for γopt1 ,

where γopt1 = 3.920. In the optimal controller, QΛ is taken as QΛ = 0. As seen

in Table 4.10, the controller designed by the approach proposed here yields

greater
1

ρ
compared to the controller designed by the approach of Section 4.3,

where ρ is the H∞ norm of the closed-loop TFM from w1 to z1 in Figure 4.2.

Therefore, by (4.40) and (4.41), the actual stability margins of the controller

designed by the approach proposed here are larger compared to the ones de-

signed by the approach of Section 4.3. Hence, the controller designed by the

approach proposed here has better robustness property compared to the one

which is designed by the approach of Section 4.3.

The response of the designed controllers by both approaches are pre-

sented in Figure 4.30. As seen in this figure, both controllers robustly stabilize

the actual system and achieve the tracking (4.5) and the weighted fairness

(4.6) requirements. The controller designed by the approach proposed here

achieves the weighted fairness requirement at the steady-state. However, by

the approach of Section 4.3, since the weighted fairness requirement was in-

cluded in the H∞ minimization problem, the controller tries to achieve the
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Table 4.10: Upper bound on the L2 induced norm of ∆ and H∞ norm of the

TFM Tẑw

Case The controller is designed by the
1

ρ
‖Tẑw‖∞

1 approach proposed in this section 0.289 3.530

approach of Section 4.3 0.259 3.867

2 approach proposed in this section 0.288 3.530

approach of Section 4.3 0.273 3.680
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Figure 4.30: Time-domain response of the controllers designed for Case 1

weighted fairness requirement while achieving the robustness and the tracking

requirements. Hence, as seen by comparing Figure 4.30(a) to (b), the flow

rates in Figure 4.30(a) settle later than the flow rates in Figure 4.30(b). The

flow rate at source 2 in Figure 4.30(a) rises faster compared to the flow rate

at source 1 in Figure 4.30(a) to achieve the tracking requirement, due to the

smaller nominal time-delay in channel 2 compared to the one in channel 1. As

seen in Table 4.10, the H∞ norm of the TFM Tẑw, for the controller designed

here is less than the H∞ norm of the TFM Tẑw, for the controller designed by

the approach of Section 4.3, which is an expected result. Therefore, the robust

controller designed by the approach proposed here may have a faster queue

response compared to the one designed by the approach of Section 4.3. Thus,

as seen by comparing Figure 4.30(a) to (b) , the queue length in Figure 4.30(a)
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leaves 0 before the queue length in Figure 4.30(b).

Case 2: In this case, the controllers are designed for α1 = 1
3
, α2 = 2

3
. The

designed stabilizing optimal controller by the approach proposed here is ob-

tained for the same γnopt

value, where γnopt

= 3.530. To achieve the weighted

fairness requirement by the controller designed here, the contractive QΛ is

obtained by the same procedure as in Case 1. Hence, QΛ is obtained as

QΛ = [0.323 0.943]T , where ψ in (4.54) is obtained as ψ = 0.77. The sta-

bilizing optimal controller designed by the approach of Section 4.3 is obtained

at γopt2 , where γopt2 = 3.730, and QΛ is taken as QΛ = 0. Similar to Case 1,

as seen in Table 4.10, the controller designed by the approach proposed here

stabilizes the actual system for a wider uncertainty set and yields smaller H∞

norm for the TFM Tẑw compared to that of the controller designed by the

approach of Section 4.3.

The response of the designed controllers by both approaches is pre-

sented in Figure 4.31. As seen in Figure 4.31, similar to Case 1, the flow

rates in Figure 4.31(b) settle before the flow rates in Figure 4.31(a), and the

queue length in Figure 4.31(a) leaves from 0 before the queue length in Fig-

ure 4.31(b). In this case, different than Case 1, source 2, which is subject to a

smaller nominal time-delay compared to source 1 (and hence responds faster

than source 1, as explained in Case 1), shares more of the network capacity

at the steady-state. Therefore, the flow rates at sources in Figure 4.31 settle

before the flow rates at sources in Figure 4.30.

As shown by the presented simulations above, the controllers designed

by the approach proposed here stabilize the actual system and achieve the

tracking and the weighted fairness requirements. In addition, the controllers

designed here have better robustness properties and a faster queue response

compared to the controllers designed by the approach of Section 4.3. However,

since the controller designed here achieves the weighted fairness requirement

at the steady-state, flow rates of data for the controller designed here settle

later than the ones for the controller designed by the approach of Section 4.3.
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Figure 4.31: Time-domain response of the controllers designed for Case 2

4.8 Summary

In this chapter, a stabilizing optimal H∞ flow controller design for

data-communication networks with multiple time-delays was considered by

utilizing non-causal uncertainty blocks. A stabilizing controller was designed

by solving an H∞ optimization problem using the method of [13]. Unlike [23],

where only a suboptimal solution could be found, the present approach allows

designing an optimal controller. In order to illustrate the time-domain perfor-

mance of the designed flow controllers by the approach presented in Section 4.3,

simulations were done in Section 4.4. In these simulations, a discrete model

was used rather than the fluid-flow model which was used in the controller

design. As shown in the presented simulations, the designed flow controllers

drive the queue length at the bottleneck node to the desired level as required

by (4.5) against the presence of uncertain time-varying time-delays and sat-

isfy that the network capacity is shared fairly among the sources, according

to (4.6). Moreover, to show the performance improvement of the flow con-

trollers designed by the approach presented in Section 4.3, the designed flow

controllers were compared to the controllers designed by the approach of [23].

As shown by the simulations, the response of the controller designed by the

approach of [23] is slower compared to the response of the controller designed

by the approach in Section 4.3. In addition, the controller designed by the

approach of [23] can produce an unstable response for certain relatively large
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uncertainties in the time-delays while the controller designed by the approach

presented in Section 4.3 can stabilize the system. This shows that the con-

troller designed by the approach proposed in Section 4.3 has better robustness

properties than the controller of [23]. These results are also obtained in [43]

considering a number of simulations. One of the important differences between

the approach presented in Section 4.3 and the approach of [23] is the existence

of design parameters σ1 and σ2, which bring flexibility in the controller design.

The performance level and stability margins of the optimal H∞ flow

controllers were examined in Section 4.5. As discussed in Section 4.5, also in

[44], to improve the robustness of the flow controllers designed by the approach

proposed in Section 4.3, the design parameters βi, β
f
i , and δ+

i should be chosen

large enough, except that βi should not be chosen close to 1. However, these

design parameters must be kept small in order to improve the performance of

the flow controllers.

As shown in Section 4.6, the controllers obtained by the non-causal

approach presented in Section 4.3 have better performance and robustness

properties compared to the controllers obtained by the causal approach of [40–

42]. A number of simulations were done using MATLAB/SIMULINK package,

where nonlinearities of the model were also taken into account. Similar to

the results in [37], [45], the controllers designed by the non-causal approach

produced faster responses with smaller overshoots compared to the controllers

designed by the causal approach in all cases. In addition, it was shown that the

controller designed by the causal approach can produce an unstable response

while the controller designed by the non-causal approach stabilizes the system.

Therefore, the controllers designed by the non-causal approach have better

robustness properties, in general.

In Section 4.7, the sufficient conditions were presented to choose an

appropriate QΛ to yield a controller, which was designed to achieve only the

robustness and the tracking requirements, also achieves the weighted fairness

requirement. By the approach proposed in Section 4.7, the flow controllers
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were designed to satisfy less number of objectives compared to the controllers

designed by the approach of Section 4.3, since the remaining objective was

met by choosing the appropriate contractive parameter QΛ. This yields that

the controller designed by the approach of Section 4.7 has greater actual sta-

bility margins than the actual stability margins of the controller designed by

the approach of Section 4.3. In addition, the approach of Section 4.7 pro-

duces a controller with a faster tracking response compared to the controller

obtained by the approach of Section 4.3. Hence, the controllers designed by

the approach of Section 4.7 have better robustness and tracking properties

compared to the controllers designed by the approach of Section 4.3. To illus-

trate the performance of the controllers designed by the approach proposed in

Section 4.7, simulation studies were performed using MATLAB/SIMULINK

package. As seen in the simulation results, the controllers designed by the

approach proposed in Section 4.7 stabilize the actual system and achieve the

tracking and the weighted fairness requirements.
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5 STABLE H∞ FLOW CONTROLLER

DESIGN

In controller design, the first requirement is to guarantee the inter-

nal stability of the closed-loop system. Therefore, resulting stabilizing con-

trollers may be unstable. However, unstable controllers introduce additional

right half-plane zeros to the closed loop system, which degenerate the track-

ing and disturbance rejection abilities of the closed-loop system, and result

unpredictable response in presence of sensor faults and non-linear effects. In

addition, since the designed optimal/suboptimal controllers for infinite dimen-

sional systems are irrational in general (see [6, 65, 66] also Section 4.3), their

rational approximation may not be obtained easily, if the designed irrational

stabilizing controller is unstable [65]. Therefore, stable controllers are often

desired, if it is possible. In addition, the stable controller design has also strong

connections with the simultaneous stabilization problem [31].

The necessary and sufficient condition for the existence of a stable

controller for a given plant is whether the plant satisfies the parity interlacing

property, (p.i.p) [31]. A plant is said to satisfy the p.i.p if the number of its

poles between any pair of its real right half-plane blocking zeros is even [31].

Stable H∞ controller design is more difficult compared to the stable

controller design, since the designed controller should also achieve some H∞

norm constraints. In the literature, there exist numerous stable and stable H∞

controller design approaches for finite dimensional systems (e.g. [26], [28] and

references therein). However, if time-delay systems are considered, there exists

only a few papers. The sufficient and necessary conditions for the existence of

a stable controller for SISO systems with a single time-delay were presented

in [33]. In [34], stable controller design approach was presented for a SISO

system with a single time-delay by using the interpolation approach. Stable

H∞ controller design for a general SISO system with multiple-time-delays was
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Figure 5.1: Structure of the controller K [47]

presented recently in [9, 35].

In this chapter, a number of different stable H∞ flow controller de-

sign algorithms are presented. In Section 5.1, the stable H∞ flow controller

design problem is posed. In Section 5.2, a stable H∞ flow controller design

is proposed which is based on the small-gain theorem [3–5]. In Section 5.3, a

less conservative methodology compared to the one in Section 5.2 is presented.

In Section 5.4, two algorithms based on stabilization of the finite-dimensional

part of the controller are proposed. In Section 5.5, the proposed algorithm

is based on seeking a stable H∞ flow controller by increasing the gain of the

uncertainty weight in the robust control problem setup. In Section 5.6, firstly,

two different rational approximations of an FIR filter are summarized, then,

three different stable H∞ flow controller design methodologies are presented,

each of which is based on solving the strong stabilization problem by utilizing

a rational approximation of the existing FIR block in the controller structure.

5.1 Stable H∞ Flow Controller Design for Systems with

Multiple Time-Delays

In this section, stable H∞ flow controller design problem is stated. In

order to pose the problem clearly, let us consider the structure of the controller

depicted in Figure 5.1, which is the simplified representation of Figure 4.7.

Here, F1 and F2 are stable blocks which consist of delays and FIR filters.

Any controller K, including Kopt, obtained by the approach proposed
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in Chapter 4, is unstable due to the integral term (see Figure 5.1), which is re-

quired to ensure the tracking requirement. However, the rest of the controller,

i.e., the part from ȳ to r in Figure 5.1 may or may not be stable. When this

part is unstable, due to nonlinearities in the system (i.e., the hard constraints),

an unstable behaviour may be observed, at least for certain actual time-delays

and/or initial conditions (see [42] and Section 5.3 for example cases). In order

to avoid such undesirable behaviour, stable H∞ flow controllers may be de-

signed, since stable controllers are less sensitive to the unmodelled dynamics.

In the following sections, design methodologies are proposed which ensure that

the TFM from ȳ to r in Figure 5.1 is stable. For brevity, in the sequel, stable

H∞ flow controller means that the TFM from ȳ to r in Figure 5.1 is stable.

5.2 Stable H∞ Flow Controller Design Methodology by

Utilizing the Small-Gain Theorem

In this section, a design methodology to obtain a stable H∞ flow con-

troller to solve the problem presented in the previous section is proposed. The

stable controller is obtained by utilizing the contractive free parameter QΛ,

which is to be designed to stabilize the TFM from ȳ to r in Figure 5.1 while

keeping its contractiveness. Such QΛ may or may not exist for a given sensitiv-

ity level γ. Therefore, the proposed approach is based on seeking a contractive

QΛ, which stabilizes the TFM from ȳ to r in Figure 5.1, by increasing the

sensitivity level γ, starting from the optimal sensitivity level, γopt. The results

presented in this section have been published in [47].

In Figure 5.1, since F1 and F2 blocks consist of time-delays and FIR

filters, both F1 and F2 are stable. Therefore, γF2 := ‖F2‖∞ is finite. Since F1 is

bistable, the mapping from ȳ to r is stable if and only if the mapping from ȳ to

r̄ is stable. Hence, by the small-gain theorem (e.g., see [5]), the mapping from

ȳ to r̄ is stable if HM(G−1
Λ , QΛ) is stable and ‖HM(G−1

Λ , QΛ)‖∞ < 1/γF2. Fur-

thermore, for the robust stability of the overall system, QΛ must be contractive
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(see Section 4.3). Therefore, to solve our problem, we state the problem as to

find a QΛ such that

HM(G−1
Λ , QΛ) ∈ RH∞ (5.1)

‖ρHM(G−1
Λ , QΛ)‖∞ < 1, (5.2)

where ρ := γF2, and

‖QΛ‖∞ < 1 , (5.3)

which is called as a strong H∞ stabilization problem.

In order to find a solution to the problem defined above, let us partition

G−1
Λ as G−1

Λ =:


 Ĝ11 Ĝ12

Ĝ21 Ĝ22


, where Ĝ11 is n × n and Ĝ22 is 1 × 1. Then,

HM(G−1
Λ , QΛ) = (Ĝ11QΛ + Ĝ12)(Ĝ21QΛ + Ĝ22)

−1. Thus, by defining

G−1
Λρ

:=


 In 0

0 ρ−1


G−1

Λ =


 Ĝ11 Ĝ12

ρ−1Ĝ21 ρ−1Ĝ22


 , (5.4)

(5.2) is equivalent to that

S := HM(G−1
Λρ
, QΛ) (5.5)

is contractive.

In order to find a condition that guarantees contractiveness of QΛ, let

us also partition GΛρ as GΛρ =


 G11 G12

G21 G22


, where G11 is n× n and G22 is

1 × 1. Then, using (5.5) and (2.7), we obtain

QΛ = HM(GΛρ , S) = (G11S +G12)(G21S +G22)
−1. (5.6)

It follows from [67] that we can introduce a nonzero tuning parameter λ, which

does not affect the controller but may reduce the conservativeness in the design,

so that

QΛ = (λG11S + λG12)(λG21S + λG22)
−1 . (5.7)

Let us also define U := λ(G11S + G12), V := 1 − λ(G21S + G22), and Γ :=

√
2


 U

V


. Then

QΛ = U(1 − V )−1 = HM(GΓ,Γ) , (5.8)
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where GΓ :=



[
In 0

]
0

[
0 −1

] √
2


 and it satisfies GT

ΓJn,1GΓ ≤ J(n+1),1. This

property of GΓ can be used to present a sufficient condition for the contractive-

ness of QΛ. Let us define zΓ, wΓ, uΓ and yΓ such that


 zΓ

wΓ


 = GΓ


 uΓ

yΓ




and uΓ = ΓyΓ. Then, by (5.8), zΓ = QΛwΓ. Since GT
ΓJn,1GΓ ≤ J(n+1),1, then


 zΓ

wΓ




T

Jn,1


 zΓ

wΓ


 =


 uΓ

yΓ




T

GT
ΓJn,1GΓ


 uΓ

yΓ




≤


 uΓ

yΓ




T

J(n+1),1


 uΓ

yΓ




which gives zT
Γ zΓ − wT

ΓwΓ ≤ uT
ΓuΓ − yT

Γ yΓ, which implies

‖zΓ‖2
2 − ‖wΓ‖2

2 ≤ ‖uΓ‖2
2 − ‖yΓ‖2

2 . (5.9)

Since uΓ = ΓyΓ, if Γ is contractive, ‖uΓ‖2 < ‖yΓ‖2. Then, from (5.9),

‖zΓ‖2 < ‖wΓ‖2. However, since zΓ = QΛwΓ, this implies contractiveness of

QΛ. Therefore, QΛ is contractive if Γ is contractive. Furthermore, recall that

S must also be contractive. These two conditions are simultaneously satisfied

if

∥∥∥∥∥∥


 Γ

S



∥∥∥∥∥∥
∞

< 1, where


 Γ

S


 =




√
2λG11

√
2λG12

−
√

2λG21

√
2 −

√
2λG22

I 0





 S

1


 . (5.10)

The structure of


 Γ

S


 given in (5.10), can easily be represented using

homographic transformation. For this, let us define

GG :=




√
2λG11

√
2λG12

−
√

2λG21

√
2(1 − λG22)

In 0

0 1



. (5.11)
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Then, HM(GG, S) =


 Γ

S


. Therefore, the condition

∥∥∥∥∥∥


 Γ

S



∥∥∥∥∥∥
∞

< 1 is

satisfied if and only if HM(GG, S) is contractive. As a result, the problem

of finding QΛ which satisfies (5.1)–(5.3) is solved if there exists λ > 0 and

S such that HM(GG, S) is stable and ‖HM(GG, S)‖∞ < 1. The problem

of finding S and λ such that HM(GG, S) is stable and ‖HM(GG, S)‖∞ < 1

can be solved by using (J̄ , Ĵ)-lossless factorization of GG as in [50], where

J̄ := J(n+1+n),1 and Ĵ := Jn,1. Utilization of (J̄ , Ĵ)-lossless factorization of GG

in the problem solving is enabled by the cascade connection property of HM,

(2.8), and Theorem 2.1. Let GG = ΘGΦG be a (J̄ , Ĵ)-lossless factorization of

GG, where J̄ := J(n+1+n),1, Ĵ := Jn,1, ΘG is (J̄ , Ĵ)-lossless and ΦG is bistable

[50]. Therefore, by (2.8), HM(GG, S) = HM(ΘG, HM(ΦG, S)). In addition,

since ΘG is (J̄ , Ĵ)-lossless, by Theorem 2.1, ‖HM(GG, S)‖∞ < 1 if and only

if ‖HM(ΦG, S)‖∞ < 1. Therefore, if a contractive, but otherwise arbitrary,

QG := HM(ΦG, S) is chosen, then, using (2.7), contractive S is obtained as

S = HM(Φ−1
G , QG) . (5.12)

Then, a QΛ which satisfies (5.1)–(5.3) is obtained by (5.6).

In order to find the state-space solution of a (J̄ , Ĵ)-lossless factoriza-

tion of GG, let a minimal realization of G−1
Λ be given as

G−1
Λ =




Â B̂1 B̂2

Ĉ1 In 0

Ĉ2 0 1


 , (5.13)

where lims→∞G−1
Λ (s) = In+1 (see Section 4.3). Then a minimal realization of

G−1
Λρ

is given as

G−1
Λρ

=




Â B̂1 B̂2

Ĉ1 In 0

ρ−1Ĉ2 0 ρ−1


 . (5.14)
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Thus, a minimal realization of GΛρ is given as

GΛρ =




Â− B̂1Ĉ1 − B̂2Ĉ2 B̂1 ρB̂2

−Ĉ1 In 0

−Ĉ2 0 ρ


 . (5.15)

Therefore, a minimal realization of GG can be obtained as

GG =


 AG BG

CG DG


 , (5.16)

where AG := Â − B̂1Ĉ1 − B̂2Ĉ2, BG :=
[
B̂1 ρB̂2

]
, CG :=




−
√

2λĈ1
√

2λĈ2

0

0




,

and

DG :=




√
2λIn 0

0
√

2(1 − λρ)

In 0

0 1



. (5.17)

Since GΛ is bistable, from (5.13), both Â and Â − B̂1Ĉ1 − B̂2Ĉ2 = AG are

Hurwitz. Thus, GG is stable.

The state-space solution of (J̄ , Ĵ)-lossless factorization of GG is given

in the following theorem.

Theorem 5.1. [50] Consider the stable system GG and its minimal realization

given in (5.16). GG has a (J̄ , Ĵ)-lossless factorization, GG = ΘGΦG, if and

only if there exists a nonsingular matrix EG, such that

DT
GJ̄DG = ET

GĴEG , (5.18)

and a solution XG ≥ 0 to the following Riccati equation

XGAG + AT
GXG − Y T

G (DT
GJ̄DG)−1YG + CT

GJ̄CG = 0 (5.19)
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such that Aπ := AG + BGFG is Hurwitz, where FG := −(DT
GJ̄DG)−1YG and

YG := DT
GJ̄CG +BT

GXG. In that case, ΘG =


 Aπ BG

CG +DGFG DG


E−1

G and

ΦG = EG


 AG −BG

FG In+1


 . (5.20)

In order to show the existence condition of non-singular EG, which sat-

isfies (5.18), for DG in (5.17), let us pursue the following process. DT
GJ̄DG =

 (2λ2 + 1)In 0

0 −d


, where d := 4λρ − 2λ2ρ2 − 1. Suppose EG is non-

singular and let V := E−1
G . Then, from (5.18), V TDT

GJ̄DGV = Ĵ . Let

y := V x, where x :=
[

0 · · · 0 1
]T

. Then, yTDT
GJ̄DGy = xT Ĵx = −1,

which implies that DT
GJ̄DG must have at least one negative eigenvalue. How-

ever, since DT
GJ̄DG =


 (2λ2 + 1)In 0

0 −d


, and 2λ2 + 1 > 0, we must

have −d < 0 if EG is nonsingular. Equivalently, EG is nonsingular only if

d > 0. On the other hand, if d > 0, a nonsingular EG can be obtained as

EG =




√
2λ2 + 1In 0

0
√
d


. Therefore, a nonsingular EG satisfying (5.18)

exists if and only if d > 0. However, note that, d > 0 if and only if λ is chosen

in the interval
(√

2−1√
2ρ
,
√

2+1√
2ρ

)
.

Therefore, a controller which solves the problem of Section 4.3 and

which is stable apart from the integral action can be obtained by the following

algorithm.

Algorithm 5.1.

1. Find the optimal sensitivity level γopt, given by (4.36), and let γ = γopt.

2. Find F1, F2, and GΛ (see Section 4.3) for the current sensitivity level γ.

Also compute γF2 := ‖F2‖∞. Let ρ = γF2. Choose a sufficiently large l

and equally spaced values λ1, λ2, . . ., λl within the interval
(√

2−1√
2ρ
,
√

2+1√
2ρ

)
.

Let i = 1.
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3. For λ = λi, if there exists a solution XG ≥ 0 to the Riccati equation

(5.19), go to step 6. Otherwise, continue with step 4.

4. If i = l, go to step 5. Otherwise, set i = i+ 1 and go to step 3.

5. Increase γ by a small amount and go to step 2.

6. Let QΛ = HM(GΛρ , S), where, by (5.4), GΛρ = GΛ


 In 0

0 ρ


 and, by

(5.12), S = HM(Φ−1
G , QG), where ΦG is given by (5.20) and QG is con-

tractive but otherwise arbitrary. The desired controller is then given by

(see Figure 5.1)

K(s) = F1(s)H(s)
κ(s+ ǫ)

s(1 + F2(s)H(s))
, (5.21)

where H := HM(G−1
Λ , QΛ) and κ := γ√

2
∑n

i=1(δ+
i )

2 .

To design a stable H∞ flow controller is not an easy task due to the

infinite dimensionality of the controller. However, stability of the infinite di-

mensional block F2 resulted to utilize the small-gain theorem in Algorithm 5.1

to design a stable H∞ flow controller. Since the small-gain theorem provides

only a sufficient condition for the stability of the feedback system, stable H∞

flow controllers designed by Algorithm 5.1, may be conservative, when they

exist. In addition, there is no guarantee that the proposed algorithm termi-

nates for any sensitivity level, since Algorithm 5.1 is based on the sufficient

conditions. However, the stable H∞ flow controllers designed by Algorithm 5.1

are obtained for some sensitivity levels, which are not less than two or three

folds of γopt, in general. However, less conservative controllers can be designed

by relaxing the small-gain condition in (5.2) as given in the following section.

5.3 Stable H∞ Flow Controller Design Methodology by

Solving Modified Strong H∞ Stabilization Problem

The stable H∞ flow controllers designed by Algorithm 5.1 are con-

servative due to the use of the small-gain theorem. In order to design a less
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conservative controller compared to the controller designed by Algorithm 5.1,

let us replace (5.2) by

‖ρHM(G−1
Λ , QΛ)‖∞ < 1, ρ ≤ γF2. (5.22)

Now, to design a stable H∞ flow controller, a contractive QΛ, which stabilizes

HM(G−1
Λ , QΛ) and satisfies (5.22) for some ρ ≤ γF2, is sought. The sensitivity

level γ is increased if a stable controller (apart from the integral term) can not

be obtained for any ρ ∈ [ρmin, γF2], where ρmin < γF2 is a chosen lower limit.

Note that the contractive QΛ found by this procedure, given as Algorithm 5.2

below, may not satisfy the small-gain condition, however, it may stabilize the

overall controller, except the integral term.

Algorithm 5.2.

1. Find the optimal sensitivity level γopt, given by (4.36), and let γ = γopt.

2. Find F1, F2, and GΛ for the current sensitivity level γ. Also compute

γF2 = ‖F2‖∞ and choose a ρmin ∈ (0, γF2). Let ρ = γF2.

3. Choose a sufficiently large l and equally spaced values λ1, λ2, . . ., λl

within the interval
(√

2−1√
2ρ
,
√

2+1√
2ρ

)
. Let i = 1.

4. For λ = λi, if there exists a solution XG ≥ 0 to the Riccati equation

(5.19), go to step 8. Otherwise, continue with step 5.

5. If i = l, go to step 6. Otherwise, set i = i+ 1 and go to step 4.

6. Decrease ρ by a small amount. If ρ ≥ ρmin go to step 3, otherwise go to

step 7.

7. Increase γ by a small amount and go to step 2.

8. Let QΛ = HM(GΛρ , S), where, by (5.4), GΛρ = GΛ


 In 0

0 ρ


 and, by

(5.12), S = HM(Φ−1
G , QG), where ΦG is given by (5.20) and QG is con-

tractive but otherwise arbitrary. If (1 + F2H)−1 is stable (this is true if
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ρ = γF2; otherwise, stability can be tested by using the Nyquist criterion),

where H = HM(G−1
Λ , QΛ), go to step 9. Otherwise, go to step 5.

9. The desired controller is given by (see Figure 5.1)

K(s) = F1(s)H(s)
κ(s+ ǫ)

s(1 + F2(s)H(s))
, (5.23)

where κ := γ√
2
∑n

i=1(δ+
i )

2 .

To illustrate the performance of the stable H∞ flow controllers de-

signed by Algorithm 5.2, a network with two sources is considered. The con-

trollers are designed for the given parameters in Table 5.1 and ρmin in step 2

of Algorithm 5.2 is chosen as γF2/10. The H∞-optimal central flow controllers

are also designed considering the same design parameters. The time-domain

performance of both controllers are presented by simulations done using MAT-

LAB/SIMULINK package, where the nonlinear effects (hard constraints) are

also taken into account. In these simulations, the desired queue length, qd,

is taken 30 packets, the buffer size (maximum queue length) is taken as 60

packets, and the capacity of the outgoing link is taken as 90 packets/tu, where

tu stands for the time unit. Moreover, the rate limits for the sources are taken

as 150 packets/tu. The uncertain part of the actual time-delays used in the

simulations are given in Table 5.2. In this table, Case ka, Case kb, refer to a

case where the controller designed for Case k of Table 5.1 is used (k = 1, 2).

The simulation results are shown in Figures 5.2–5.4, where (a) represents the

response of the H∞-optimal central flow controller and (b) represents the re-

sponse of the stable H∞ flow controller designed by Algorithm 5.2. In addition,

in Figures 5.2–5.4, q (whose scale is on the right) is the queue length q(t), and

rs
i (whose scale is on the left) is the actual flow rate at source i, for i = 1, 2.

The H∞-optimal central flow controller designed by the approach of

Section 4.3 for Case 1 is unstable and the optimal sensitivity level is γopt =

2.817. As shown in Figure 5.2(a), the response of the optimal controller for

Case 1a does not stabilize the actual plant, flow rates at sources and queue

length at the bottleneck saturate. The unstable response of the designed sta-

bilizing optimal controller may be due to the fact that the unstable controllers
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Table 5.1: Controller design parameters

Case h1 (tu) h2 (tu) β1 β2 β
f
1 β

f
2 δ+

1 δ+

2 α1 α2 σ1 = σ2

Case 1 4 2 0.1 0.2 0.01 0.05 1/4 1/2 2/3 1/3 0.25

Case 2 4 2 0.2 0.3 0.05 0.1 1/4 3/4 2/3 1/3 0.25

Table 5.2: Uncertain part of the actual time-delays

i δb
i (t) δf

i (t)

Case 1a 1 0.10+0.25sin(2π
50
t) 0.05+0.05sin( 2π

100
t)

2 0.15+0.30sin(2π
50
t) 0.10+0.05sin( 2π

100
t)

Case 1b,2a 1 0.10+0.50sin(2π
20
t) 0.10+0.15sin(2π

80
t)

2 0.15 + 0.50sin(2π
45
t) 0.10+0.10sin( 2π

100
t)

are highly sensitive to the unmodelled nonlinear dynamics, which are not con-

sidered in the controller design, however, taken into account in the simula-

tions. By Algorithm 5.2, a stable H∞ flow controller for Case 1 is obtained

for γ = 3.590. As shown in Figure 5.2(b), the response of the stable H∞ flow

controller for Case 1a robustly stabilizes the actual plant and achieves all the

design requirements despite the presence of uncertain time-varying time-delays.

The uncertain part of the actual time-delays in Case 1b vary faster

within a wider range compared to the uncertain part of the actual time-delays

in Case 1a. As shown in Figure 5.3(a), the optimal controller, which is un-

stable, does not stabilize the actual system for Case 1b. However, since the

stable controllers have better robustness abilities compared to the unstable

controllers, as seen in Figure 5.3(b), the stable controller stabilizes the actual

system and achieves the tracking (4.5) and fairness (4.6) requirements also for

Case 1b. Note that the steady-state oscillations of the queue length in Fig-

ure 5.3(b) are greater than the ones in Figure 5.2(b), this is due to the increase

in the variation of the uncertain part of the forward time-delays.
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Figure 5.2: Simulation results for Case 1a

0 50 100 150 200 250 300 350 400
0

30

60

90

120

150

180

210

F
lo

w
 r

at
es

 a
t s

ou
rc

es
 in

 p
ac

ke
ts

/tu

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70
Q

ue
ue

 le
ng

th
 in

 p
ac

ke
ts

Time in tu

rs
1

rs
2

q

0 50 100 150 200 250 300 350 400
0

15

30

45

60

75

90

105

F
lo

w
 r

at
es

 a
t s

ou
rc

es
 in

 p
ac

ke
ts

/tu

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

Time in tu

rs
1

rs
2

q

(a) (b)

Figure 5.3: Simulation results for Case 1b

In order to design a controller to provide the actual time-delays vary-

ing faster in a wider range compared to the controller designed for Case 1, the

controller design parameters β1, β2, β
f
1 , βf

2 , and δ+
2 in Case 1 are increased

as in Case 2. The H∞-optimal central flow controller for Case 2 is obtained

at γopt = 3.433, however, it is still unstable. The optimal controller designed

for Case 2 has better stability margins compared to the optimal controller

designed for Case 1, because of the increase in the controller design parame-

ters (see Section 4.5). However, similar to the optimal controller designed for

Case 1, the optimal controller designed for Case 2 can not stabilize the actual

system for Case 2a as seen in Figure 5.4(a). The stable controller designed by

Algorithm 5.2 for Case 2 is obtained at γ = 4.600. As shown in Figure 5.4(b),
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Figure 5.4: Simulation results for Case 2a

the stable controller stabilizes the actual plant for Case 2a and satisfies both

the tracking and the weighted fairness requirements,

As shown in Figures 5.2(b)– 5.4(b), the stable H∞ flow controllers de-

signed by Algorithm 5.2 stabilize the actual system and achieve the design

requirements despite the presence of uncertain time-varying time-delays. Al-

gorithm 5.2 is based on less stringent conditions compared to Algorithm 5.1.

However, there also exists conservativeness in the approach proposed in this

section, because there may exist a contractive QΛ, which does not satisfy (5.22)

for any ρ in the given interval, but results in a stable H∞ flow controller. There-

fore, it is not guaranteed that Algorithm 5.2 yields a stable H∞ flow controller.

However, Algorithm 5.2 produces a stable H∞ flow controller, in most cases.

5.4 Stable H∞ Flow Controller Design Methodology by

Utilizing the Stability of the Finite-Dimensional

Part of the Controller

In Algorithms 5.1 and 5.2, a contractive QΛ is sought to stabilize

HM(G−1
Λ , QΛ) and satisfy ‖HM(G−1

Λ , QΛ)‖∞ < 1/ρ, for a given ρ > 0, by

increasing the sensitivity level γ. In Algorithm 5.1, ρ is taken as γF2, where

γF2 = ‖F2‖∞. However, the controllers designed by Algorithm 5.1 are conser-
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vative, in general. In order to design a less conservative stable controller, ρ is

taken less than or equal γF2 in Algorithm 5.2. Note that, both algorithms try

to produce a contractive QΛ satisfying two conditions given above. However,

a contractive QΛ which stabilizes HM(G−1, QΛ) always makes the H∞ norm

of HM(G−1, QΛ) less than for some value. To introduce an upper bound on

the H∞ norm of HM(G−1, QΛ) may produce a conservative stable controller,

since a contractive QΛ, which stabilizes HM(G−1, QΛ), may not achieve the

given H∞ norm bound, however, may stabilize the actual controller, except

the integral term.

In this section, an alternative approach is presented and the stable

H∞ flow controller design is based on the stabilization of the finite-dimensional

part of the controller. A contractive QΛ is sought to satisfy the stability of

both HM(G−1
Λ , QΛ) and the closed-loop TFM from ȳ to r in Figure 5.1, by

increasing the sensitivity level γ.

The controller depicted in Figure 5.1 can be shown as in Figure 5.5,

where

Σ :=


 Σ11 Σ12

Σ21 Σ22


 :=




A−B2C2 B2 B1

C1 0 In

−C2 1 0


 , (5.24)

where




A B1 B2

C1 In 0

C2 0 1


 :=


 G11 G12

G21 G22


 := G−1

Λ .

Now, let us consider the closed-loop TFM from ỹ to r̄ in Figure 5.5.

A contractive QΛ stabilizes the closed-loop TFM from ỹ to r̄ in Figure 5.5 if

and only if it stabilizes the plant Σ22 =


 A− B2C2 B1

−C2 0


 =:


 AΣ BΣ

CΣ 0


.

Let us assume that Σ22 satisfies the following conditions:

a) (AΣ, BΣ) is stabilizable and (CΣ, AΣ) is detectable

b) AΣ has no jω axis eigenvalues.

The existence of a stabilizing output feedback controller for Σ is guaranteed
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Figure 5.5: Representation of the controller

by (a). Let X ≥ 0 be the stabilizing solution of

AT
ΣX +XAΣ −XBΣB

T
ΣX = 0, (5.25)

where FΣ := −BT
ΣX and AX = AΣ + BΣF is stable. Since it is assumed that

(AΣ, BΣ) is stabilizable andAΣ has no jω axis eigenvalues, there exists a unique

solutionX ≥ 0 for (5.25). Therefore, Σ22 has a right-coprime factorization such

as Σ22 = NΣM
−1
Σ [5]:


 MΣ

NΣ


 :=




AX BΣ

FΣ I

CΣ 0


 , (5.26)

where NΣ, MΣ are in RH∞. Now, a contractive QΛ stabilizes Σ22 if and only

if (MΣ − QΛNΣ)−1 ∈ RH∞. Following [68], let us define RΣ := MΣ − I.

Therefore, MΣ −QΛNΣ can be written in terms of RΣ as follows:

MΣ −QΛNΣ = I +RΣ −QΛNΣ. (5.27)

By the small-gain theorem [5], if there exists a contractive QΛ such that ‖RΣ−
QΛNΣ‖∞ < 1, from (5.27), QΛ stabilizes Σ22. To find such a contractive QΛ,

a two block problem is defined in [68]:

∥∥∥
[
RΣ 0

]
− ε−1

r QΛ

[
εrNΣ I

]∥∥∥
∞
< 1, (5.28)

where εr < 1. Let us define Q̂Λ := ε−1
r QΛ and N̂Σ := εrNΣ. Then utilizing

LFT, [
RΣ 0

]
− Q̂Λ

[
N̂Σ I

]
= Fl(GΣ,−Q̂Λ), (5.29)
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where

GΣ :=



[
RΣ 0

]
I

[
N̂Σ I

]
0


 :=




AX

[
BΣ 0

]
0

FΣ

[
0 0

]
I

εrCΣ

[
0 I

]
0


 . (5.30)

Now, the problem in (5.28) can be solved by solving only one algebraic

Riccati equation as given in the following theorem.

Theorem 5.2. [26] There exits a contractive QΛ, which stabilizes Σ, if there

exists Y ≥ 0 and a εr ∈ (0, 1), such that

AXY + Y AT
X − Y (ε2

rC
T
ΣCΣ −XBΣB

T
ΣX)Y +BΣB

T
Σ = 0. (5.31)

Under this condition, the realization of the contractive QΛ can be written as:

QΛ =


 AK −L

F 0


 , (5.32)

where AK = AΣ +BΣF + LCΣ, and L = −ε2
rY C

T
Σ .

Theorem 5.2 is based on the right-coprime factorization over RH∞

of Σ22. A stabilizing contractive QΛ can also be designed by utilizing the

left-coprime factorization of Σ22 over RH∞.

Since it is assumed that (CΣ, AΣ) is detectable and AΣ has no jω axis

eigenvalues, there exist a unique Ỹ ≥ 0 such that

AΣỸ + Ỹ AT
Σ − Ỹ CT

ΣCΣỸ = 0, (5.33)

where L̃ := −Ỹ CT
Σ and ÃY := AΣ + L̃CΣ is stable. Now, Σ22 has a left coprime

factorization over RH∞ such as Σ22 = M̃−1
Σ ÑΣ.

Theorem 5.3. [26] There exits a contractive QΛ, which stabilizes Σ, if there

exists X̃ ≥ 0 and a εl ∈ (0, 1) such that

AT
Y X̃ + X̃AY + X̃(Ỹ CT

ΣCΣỸ − ε2
lBΣB

T
Σ)X̃ + CT

ΣCΣ = 0. (5.34)
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Under this condition, the realization of the contractive QΛ can be written as:

QΛ =


 ÃK −L̃

F̃ 0


 , (5.35)

where ÃK = AΣ + L̃CΣ +BΣF̃ , and F̃ = −ε2
lB

T
ΣX̃.

Now, utilizing the above theorems, two algorithms are given below to

design a contractive QΛ to obtain a stable H∞ flow controller.

Algorithm 5.3.

1. Find the optimal sensitivity level γopt, given by (4.36), and let γ = γopt.

Choose a sufficiently large l and equally spaced values ε1, . . . , εl within

the interval (0, 1).

2. Find F1, F2, and GΛ (see Section 4.3) for the current sensitivity level γ.

Let i = 1.

3. If there exists X ≥ 0, which solves (5.25), go to step 4. Otherwise, go to

step 6.

4. For εr = εi, if there exists Y ≥ 0, which solves (5.31), go to step 7.

Otherwise, go to step 5.

5. If i = l, go to step 6. Otherwise, set i = i+ 1 and go to step 4.

6. Increase γ by a small amount and go to step 2.

7. If (1 + F2H)−1 is unstable (can be checked by the Nyquist criterion),

where H = HM(G−1
Λ , QΛ) and QΛ is obtained from (5.32), then go to

step 5. If (1 + F2H)−1 is stable, the desired controller is then given by

(see Figure 5.1)

K(s) = F1(s)H(s)
κ(s+ ǫ)

s(1 + F2(s)H(s))
, (5.36)

where κ := γ√
2
∑n

i=1(δ+
i )

2 .
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Algorithm 5.3 is based on the right-coprime factorization of Σ22. If the

left-coprime factorization of Σ22 is considered, the algorithm can alternatively

be written as:

Algorithm 5.4.

1., 2. Same as in Algorithm 5.3.

3. If there exists Ỹ ≥ 0, which solves (5.33), go to step 4. Otherwise, go to

step 6.

4. For εl = εi, if there exists X̃ ≥ 0, which solves (5.34), go to step 7.

Otherwise, go to step 5.

5., 6. Same as in Algorithm 5.3.

7. If (1 + F2H)−1 is unstable (can be checked by the Nyquist criterion),

where H = HM(G−1
Λ , QΛ) and QΛ is obtained from (5.35), then go to

step 5. If (1 + F2H)−1 is stable, the desired controller is then given by

(5.36).

Note that, each algorithm proposed in this section solves a different

problem to design a stable H∞ flow controller. Therefore, Algorithms 5.3 and

5.4 may result in different controllers. In order to obtain a stable controller

with a good performance, stable H∞ flow controller design may be done uti-

lizing both Algorithms 5.3 and 5.4, and the resulting stable controller having

the better performance may be chosen. It should be noted that there is no

guarantee for either of the algorithm to produce a desired controller.

To evaluate the performance of the controller designed by the algo-

rithms proposed here, the network introduced in Section 5.3 is considered. A

simulation is done using MATLAB/SIMULINK package, where the nonlinear

effects (hard constraints) are also taken into account. The controller design is

done using the parameters given in Table 5.1. In the simulation, the desired

queue length, qd, the buffer size, the capacity of the outgoing link, and the
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Figure 5.6: Simulation result of the controller designed by Algorithm 5.3 for

Case 1a

rate limits for the sources are taken as in Section 5.3. The simulation result

of the stable controller designed by Algorithm 5.3 is shown in Figure 5.6. In

Figure 5.6, q (whose scale is on the right) is the queue length q(t), and rs
i

(whose scale is on the left) is the actual flow rate at source i, for i = 1, 2.

A stable H∞ flow controller for Case 1, given in Section 5.3, is obtained

at γ = 3.260, by utilizing Algorithm 5.3. It should be noted that Algorithm 5.4

produces the same stable H∞ flow controller, because AΣ is stable in this case

and (CΣ, AΣ, BΣ) triple satisfies stabilizable and delectable assumptions, a pos-

itive definite solution of (5.34), X̃, exists for all γ [5]. Therefore, the resulting

QΛ is zero, and the resulting stable controller is the central controller. As

shown in Figure 5.6, the response of the designed stable H∞ flow controller ro-

bustly stabilizes the actual plant and achieves the design requirements despite

the presence of uncertain time-varying time-delays. In addition, by comparing

Figure 5.2(b) to Figure 5.6, the queue response of the controller designed by

Algorithm 5.3 is faster compared to the queue response of the controller de-

signed by Algorithm 5.2. In addition, the queue response in Figure 5.6 makes

smaller overshoot compared to the one in Figure 5.2(b).

Algorithms 5.3 and 5.4 are based on the stability of the finite-dimen-

sional part of the mapping from y to r in Figure 5.1, which is HM(G−1
Λ , QΛ),

by a contractive QΛ. By comparing Algorithms 5.3 and 5.4 to Algorithms 5.1
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and 5.2, a contractive QΛ is designed by Algorithms 5.3 and 5.4 to satisfy

only (5.1). However, any contractive QΛ satisfying (5.1) also yields that

‖HM(G−1
Λ , QΛ)‖∞ is bounded. However, to introduce an upper bound on

the H∞ norm of HM(G−1
Λ , QΛ) as in (5.2) and (5.22), respectively, in Algo-

rithms 5.1 and 5.2, challenges to design a contractive QΛ compared to design

a contractive QΛ satisfying only (5.1). Therefore, the approach of seeking a

contractive QΛ, which stabilizes HM(G−1
Λ , QΛ) and the closed-loop TFM from

ȳ to r̄ in Figure 5.1, by increasing the sensitivity level may be less conservative

compared to the approaches of Sections 5.2 and 5.3.

5.5 Stable H∞ Flow Controller Design by Utilizing the

Uncertainty Weighting Function

In this section, an alternative H∞ flow controller design algorithm,

which is inspired by [65], is given. The algorithm seeks a stable H∞ flow

controller by changing the gain of the uncertainty weight W1 in the flow control

problem (see Section 4.2). To do this, the uncertainty weight is defined as

Ŵ1 := kW1 for k > 0 and the H∞ controller is designed for Ŵ1 while increasing

k, starting from k = 1, up to finding a stable H∞ flow controller. However,

it should be noted that instead of increasing the k, alternatively, a stable

H∞ flow controller can be sought by decreasing k. Therefore, a stable H∞

flow controller, which stabilizes the closed-loop system and achieves the design

requirements can be obtained by the following algorithm.

Algorithm 5.5.

1. Let k = 1.

2. Let Ŵ1 := kW1 (see Section 4.2 for W1).

3. Find the optimal sensitivity level γopt, given by (4.36), by using Ŵ1 in-

stead of W1.

4. Find F1, F2, and GΛ (see Section 4.3) for the current sensitivity level γ.
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5. If (1 + F2H)−1 is unstable (can be checked by the Nyquist criterion),

where H = HM(G−1
Λ , QΛ) and QΛ is chosen as QΛ = 0, go to step 6.

Otherwise go to step 7.

6. Increase k by a small amount and go to step 2.

7. The stable H∞ flow controller is obtained by (see Figure 5.1)

K(s) = F1(s)H(s)
κ(s+ ǫ)

s(1 + F2(s)H(s))
, (5.37)

where κ := γ√
2
∑n

i=1(δ+
i )

2 .

To illustrate the performance of the stable H∞ flow controller designed

by Algorithm 5.5, the network introduced in Section 5.3 is considered. The

controller is designed for the given parameters in Table 5.1. The time-domain

performance of the controller is presented by a simulation done using MAT-

LAB/SIMULINK package, where the nonlinear effects (hard constraints) are

also taken into account. In the simulation, the desired queue length, qd, the

buffer size, the capacity of the outgoing link, and the rate limits for the sources

are taken as in Section 5.3. The uncertain part of the actual time-delays used

in the simulation is as in Case 1a, which is given in Table 5.2. The simulation

result is shown in Figure 5.7. In Figure 5.7, q (whose scale is on the right) is

the queue length q(t), and rs
i (whose scale is on the left) is the actual flow rate

at source i, for i = 1, 2.

A stable H∞ flow controller for Case 1, given in Section 5.3, is ob-

tained for γ = 4.470 and k = 2.5, by Algorithm 5.5. The response of the

designed controller is depicted in Figure 5.7. As seen in Figure 5.7, the con-

troller designed by Algorithm 5.5 robustly stabilizes the actual system and

achieves the design requirements. The queue length at the bottleneck node

is kept at the desired level, and the network capacity is shared fairly among

the sources according to (4.6) despite the presence of uncertain time-varying

time-delays. As shown by comparing Figure 5.7 to 5.6, the response of the con-

troller designed by Algorithm 5.3 is faster compared to the controller designed

by Algorithm 5.5.
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Figure 5.7: Simulation result of the controller designed by Algorithm 5.5 for

Case 1a

Algorithm 5.5 seeks an optimal stable H∞-central controller, by in-

creasing the gain of the uncertainty weight, starting from 1. Namely, if the

optimal central controller is unstable for the given uncertainty weight, apart

from the integral term, another optimal central controller is designed by in-

creasing the gain of the uncertainty weight. This process continues up to

finding a stable central controller. However, instability of the optimal central

controller does not imply that the optimal controller, except the integral term,

is unstable for all contractive QΛ, since there may be a nonzero contractive QΛ,

which stabilizes the actual controller, apart from the integral term. Therefore,

the proposed approach has a conservative aspect. In addition, the proposed

approach does not guarantee to yield a stable H∞ flow controller.

5.6 Stable H∞ Flow Controller Design by Using Ap-

proximation Techniques

Up to this section, five different stable H∞ flow controller design al-

gorithms were proposed. None of these algorithms utilize the dynamics of F2,

which is infinite-dimensional, directly. In order to consider the dynamics of

F2 in the stable controller design, different rational approximations of F2 are

considered in this section. Utilizing the rational approximation of F2, three
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different stable H∞ flow controller design approaches are proposed. In these

approaches, first, a rational approximation of F2 is obtained and then a strong

stabilization problem for the finite-dimensional system is defined and solved.

Then, in order to obtain a stable H∞ flow controller, it is tested whether QΛ,

which is obtained from the solution of the strong stabilization problem, sta-

bilizes the actual infinite-dimensional controller. Two different approximation

methods will be considered, one of them is inspired by the δ-operator and the

other one is based on the bilinear transformation [69]. For brevity, the rational

approximation method inspired by the δ-operator is called the δ-approximation

method and the method based on the bilinear-transformation is called the bi-

linear approximation method. As proved in [69], both of the methods ensure

that the rational approximation of the FIR filter

• keeps the low-pass property of the FIR filter

• is stable

• does not contain any unstable pole-zero cancellations

• has the same DC gain with the FIR filter (i.e. ‖F2(0)‖ = ‖F2app(0)‖,
where F2app denotes the TFM of the approximation).

In addition, the error between the FIR filter and its rational approximation

can be made as small as desired by any one of these methods.

Parts of the results presented in this section have been published in

[48], [49]. However, example cases considered here are different than those

in [48], [49].

In the following subsection, the two rational approximation methods

to be used are presented.

5.6.1 Approximation methods

Let us consider the following FIR filter described by the TFM

Z(s) = (I − e−(sI−Az)hz)(sI −Az)
−1Bz . (5.38)
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In order to obtain the rational approximation of Z(s) by the δ-approximation

method, let us define as in [69]

Φδ
N :=

(∫ hz
N

0

e−Azζdζ

)−1

, (5.39)

where N is the number of approximation steps. Then, let us define

Γδ
N(s) := (e

hz
N

(sI−Az) − I)Φδ
N , (5.40)

where Γδ
N satisfies limN→∞ Γδ

N(s) = sI −Az, which is called the limiting prop-

erty. Utilizing (5.39) and (5.40), e−(sI−Az)hz can be written as

e−(sI−Az)hz = ((Φδ
N)

−1
Γδ

N + I)−N . (5.41)

Therefore, by (5.41), Z in (5.38) can be written as

Z(s) = (I − ((Φδ
N )−1Γδ

N + I)−N(sI − Az)
−1Bz .

Utilizing the limiting property of Γδ
N , Γδ

N(s) ≈ (sI − Az), Z can be approxi-

mated by Zδ
N as given below:

Z(s) ≈ Zδ
N(s) = (I − ((Φδ

N)−1(sI − Az) + I)−N(sI −Az)
−1Bz

=
N∑

k=1

(Πδ
N)

k
(s)(Φδ

N )−1Bz , (5.42)

where Πδ
N(s) := (sI − Az + Φδ

N)−1Φδ
N .

In order to obtain the rational approximation of Z(s) by the bilinear

approximation method, let us define as in [69]

Φb
N :=

(∫ hz
N

0

e−Azζdζ

)−1 (
e−Az

hz
N + I

)
. (5.43)

Then, let us define

Γb
N(s) := (e

hz
N

(sI−Az) − I)(e
hz
N

(sI−Az) + I)−1Φb
N . (5.44)

Similar to Γδ
N , Γb

N has also the limiting property, limN→∞ Γb
N(s) = sI − Az.

Utilizing (5.43) and (5.44), e−(sI−Az)hz can be written as

e−(sI−Az)hz = (Φb
N − Γb

N (s))N(Φb
N + Γb

N (s))−N .
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Therefore, Z in (5.38) can be written as

Z(s) = (I − (Φb
N − Γb

N (s))N(Φb
N + Γb

N (s))−N)(sI − Az)
−1Bz .

By the limiting property of Γb
N , Γb

N(s) ≈ (sI − Az), Z can be approximated

to Zb
N given below

Z(s) ≈ Zb
N(s) = (I − (Φb

N − sI + Az)
N(sI − Az + Φb

N)−N)

×(sI − Az)
−1Bz

=

N−1∑

k=0

(Πb
N )k(s)Ξb

N(s)Bz , (5.45)

where Πb
N (s) := (Φb

N−sI+Az)(sI−Az+Φb
N)−1 and Ξb

N (s) = 2(sI−Az+Φb
N )−1.

Let us define the approximation error as EN := Z − ZN , where ZN

is either Zδ
N or Zb

N . As shown in [69], both of the approximations guarantee

that limN→∞ ‖EN‖∞ = 0. The stability of the rational approximation of Z(s)

depends on N . Using numerical calculations, the lower bound for N to satisfy

the stability of rational approximation of Z(s) is given in [69] by the following

theorem.

Theorem 5.4. [69] Both Zδ
N given in (5.42) and Zb

N given in (5.45) are stable

for any N > Ñ with

Ñ =

⌈
hz

2.8
· max

i
|λi(Az)|

⌉
,

where λi(Az) denotes the ith eigenvalue of a given matrix Az.

In each of the following three subsections, a different suboptimal stable

H∞ flow controller design approach is presented. It should be noted that any

one of the approximation methods introduced above can be used for each of

these approaches.

5.6.2 Stable H∞ flow controller design by using coprime factoriza-

tions of the plant

Let F2app :=


 ÃF2 B̃F2

C̃F2 0


 be a rational approximation of F2 in Fig-

ure 5.1. In here, F2app can be obtained either by the δ-approximation method
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Figure 5.8: Representation with rational approximation of F2 [48]

or by the bilinear approximation method. Then, replacing F2 by F2app , the

system from ȳ to r̄ can be represented as shown in Figure 5.8, where

Σ :=


 Σ11 Σ12

Σ21 Σ22


 :=




A−B2C2 B2 B1

C1 0 In

−C2 1 0


 , (5.46)

where




A B1 B2

C1 In 0

C2 0 1


 :=


 G11 G12

G21 G22


 := G−1

Λ .

The system in Figure 5.8 can equivalently be represented as in Fig-

ure 5.9, where

Gp := Fu(Σ, F2app) =:


 Gp11 Gp12

Gp21 Gp22


 :=




Ap Bp1 Bp2

Cp1 Dp11 Dp12

Cp2 Dp21 Dp22




:=




A− B2C2 −B2C̃F2 B2 B1

B̃F2C1 ÃF2 0 B̃F2

C1 0 0 In

−C2 −C̃F2 1 0



. (5.47)

Now, let us consider the closed-loop TFM from ȳ to r̄ in Figure 5.9. A

contractive QΛ stabilizes the closed-loop TFM from ȳ to r̄ in Figure 5.9 if and

only if it stabilizes the plant Gp22 =


 Ap Bp2

Cp2 0


 [5]. Similar to the approach
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Figure 5.9: Equivalent representation with rational approximation of F2 [48]

proposed in Section 5.4, to design a stabilizing contractive QΛ, let us assume

that Gp22 satisfies the following conditions:

a) (Ap, Bp2) is stabilizable and (Cp2, Ap) is detectable

b) Ap has no jω axis eigenvalues.

Let Xr ≥ 0 be the stabilizing solution of

AT
pXr +XrAp −XrBp2B

T
p2
Xr = 0, (5.48)

where Fr := −BT
p2
Xr and AXr = Ap + Bp2Fr is stable. Now, the problem of

designing a contractive QΛ, which stabilizes Gp22 , can be solved by solving only

one algebraic Riccati equation as given in the following theorem.

Theorem 5.5. [26] There exits a contractive QΛ, which stabilizes Gp, if there

exists Yr ≥ 0 and a εr ∈ (0, 1) such that

AXrYr + YrA
T
Xr

− Yr(ε
2
rC

T
p2
Cp2 −XrBp2B

T
p2
Xr)Yr +Bp2B

T
p2

= 0. (5.49)

Under this condition, the realization of the contractive QΛ can be written as:

QΛ =


 AKr −Lr

Fr 0


 , (5.50)

where AKr = AXr + LrCp2, and Lr = −ε2
rYrC

T
p2

.

Alternatively, by using a left-coprime factorizations rather than a right

coprime factorization (see Section 5.4), let Yl ≥ 0 be a stabilizing solution of

ApYl + YlA
T
p − YlC

T
p2
Cp2Yl = 0, (5.51)
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where Ll := −YlC
T
p2

and AYl
:= Ap + LlCp2 is stable. Then a solution can be

obtained by using the following theorem.

Theorem 5.6. [26] There exits a contractive QΛ, which stabilizes Gp, if there

exists Xl ≥ 0 and a εl ∈ (0, 1) such that

AT
Yl
Xl +XlAYl

+Xl(YlC
T
p2
Cp2Yl − ε2

lBp2B
T
p2

)Xl + CT
p2
Cp2 = 0. (5.52)

Under this condition, the realization of the contractive QΛ can be written as:

QΛ =


 AKl

−Ll

Fl 0


 , (5.53)

where AKl
= AYl

+Bp2Fl, and Fl = −ε2
lB

T
p2
Xl.

Therefore, the following algorithms can be devised to obtain a stable

H∞ flow controller.

Algorithm 5.6.

1. Find the optimal sensitivity level γopt, given by (4.36), and let γ = γopt.

Choose a sufficiently large l and equally spaced values ε1, · · · , εl within

the interval (0, 1).

2. Find F1, F2, and GΛ (see Section 4.3) for the current sensitivity level γ.

3. Compute Ñ from Theorem 5.4, choose an upper bound Nmax > Ñ , and

let N = Ñ .

4. Let N = N + 1.

5. Find F2app for the current N . Let i = 1.

6. If there exists Xr ≥ 0, which solves (5.48), go to step 7. Otherwise, if

N < Nmax go to step 4 else go to step 10.

7. For εr = εi, if there exists a solution Yr ≥ 0 to the Riccati equation

(5.49) go to step 11. Otherwise, go to step 8.
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8. If i = l go to step 9. Otherwise, set i = i+ 1 and go to step 7.

9. If N < Nmax go to step 4 else continue with step 10.

10. Increase γ by a small amount and go to step 2.

11. If (1 + F2H)−1 is unstable (can be checked by the Nyquist criterion),

where H = HM(G−1
Λ , QΛ) and QΛ is obtained from (5.50), then go to

step 8. If (1 + F2H)−1 is stable, the desired controller is then given by

(see Figure 5.1)

K(s) = F1(s)H(s)
κ(s+ ǫ)

s(1 + F2(s)H(s))
, (5.54)

where κ = γ√
2
∑n

i=1(δ+
i )

2 .

Algorithm 5.6 is based on the right-coprime factorization of Gp22 .

Based on the left-coprime factorization, the algorithm can alternatively be

written if steps 6 and 7 are replaced by:

6. If there exists Yl ≥ 0, which solves (5.51), go to step 7. Otherwise, if

N < Nmax go to step 4 else go to step 10.

7. For εl = εi, if there exists a solution Xl ≥ 0 to the Riccati equation

(5.52) go to step 11. Otherwise, go to step 8.

and “(5.50)” in step 11 is replaced by “(5.53)”.

5.6.3 Stable H∞ flow controller design by using LMI methods

Different from the above approach, to design a stable H∞ flow con-

troller, the approach of [70] can be utilized. To design a contractive QΛ, which

stabilizes Gp, let us consider the following theorem.

Theorem 5.7. [70] Let us assume that Gp22 in (5.47) satisfies the conditions

(a-b) given following (5.47). Then Gp is stabilizable by a contractive QΛ if
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there exists V > 0, X̂ ≥ 0, Ŷ > 0, a scalar ξ > 0 and a square matrix T ,

satisfying

AT
p X̂ + X̂Ap − X̂Bp2B

T
p2
X̂ = 0 (5.55)

ApŶ + Ŷ AT
p − 2Ŷ CT

p2
Cp2Ŷ < 0 (5.56)




Υ11 Υ12 Υ13 Υ14

ΥT
12 Υ22 ξΥ13 0

ΥT
13 ξΥT

13 −I 0

ΥT
14 0 0 −I




< 0, (5.57)

where X̂ is the stabilizing solution of (5.55) such that AX̂ := Ap − Bp2B
T
p2
X̂

is stable and Υ11 := AT
X̂
Ŷ −1T T + T Ŷ −1AX̂ − CT

p2
Cp2T

T − TCT
p2
Cp2, Υ12 :=

V − T Ŷ −1 + ξAT
X̂
Ŷ −1T T − ξCT

p2
Cp2T

T , Υ13 := TCT
p2

, Υ14 := −X̂Bp2, Υ22 :=

−ξT Ŷ −1 − ξŶ −1T T .

Then stabilizing contractive QΛ can be constructed as:

QΛ =


 AX̂ − Ŷ CT

p2
Cp2 Ŷ CT

p2

−BT
p2
X̂ 0


 . (5.58)

The algebraic Riccati equation (5.55) has a unique stabilizing solution,

because Gp22 satisfies assumptions (a-b) given following (5.47). The matrix

inequality (5.56) can be converted to an LMI by pre-post multiplying (5.56)

by Ŷ −1 and using Theorem 2.2. The matrix inequality (5.57), however, is not

an LMI, since Υ11, Υ12, and Υ22 consist of summations of product of variables

Ŷ , T , and ξ. In order to solve (5.55)–(5.57), one of the approaches is as follows:

first the algebraic Riccati equation (5.55) is solved for X̂. Once the solution

of (5.55) is found, (5.56) can be solved for Ŷ as a feasibility problem by using

LMI Toolbox in MATLAB [71]. After substituting the solutions of (5.55) and

(5.56) into (5.57), the variables X̂ and Ŷ in (5.57) are eliminated. Now, (5.57)

involves only three variables V , T , and ξ to be solved. However, Υ12, ξΥ13,

and Υ22 consist of the summations of product of ξ and T . To eliminate one of

the variables of Υ12, ξΥ13, and Υ22, let us choose a positive number such as

ξmax. Now, replacing ξ in (5.57) by a chosen ξ̄ in the interval (0, ξmax), (5.57)
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becomes an LMI in V and T and it can be solved as a feasibility problem. The

following algorithm, realizes this approach.

Algorithm 5.7.

1. Find the optimal sensitivity level γopt, given by (4.36), and let γ = γopt.

Choose an upper bound ξmax. Choose a sufficiently large l and equally

spaced values ξ1, . . . , ξl within the interval (0, ξmax).

2. Find F1, F2, and GΛ (see Section 4.3) for the current sensitivity level γ.

3. Compute Ñ from Theorem 5.4, choose an upper bound Nmax > Ñ , and

let N = Ñ .

4. Let N = N + 1.

5. Find F2app for the current N . Let i = 1.

6. If there exists X̂ ≥ 0, which solves (5.55), go to step 7. Otherwise, if

N < Nmax go to step 4 else go to step 11.

7. Solve the feasibility problem (5.56) for Ŷ . If there exists a solution Ŷ ≥ 0

go to step 8. Otherwise, if N < Nmax go to step 4 else go to step 11.

8. For ξ = ξi, solve the feasibility problem (5.57) for V and T . If there

exists a solution V > 0 and a T go to step 12, otherwise, continue with

step 9.

9. If i = l go to step 10 else set i = i+ 1 and go to step 8.

10. If N < Nmax go to step 4 else continue with step 11.

11. Increase γ by a small amount and go to step 2.

12. If (1 + F2H)−1 is unstable (can be checked by the Nyquist criterion),

where H = HM(G−1
Λ , QΛ) and QΛ is obtained from (5.58), then go to

139



G∆ = CHAIN(Gp)
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Figure 5.10: Chain-scattering representation [48]

step 9. If (1 + F2H)−1 is stable, the desired controller is then given by

(see Figure 5.1)

K(s) = F1(s)H(s)
κ(s+ ǫ)

s(1 + F2(s)H(s))
, (5.59)

where κ = γ√
2
∑n

i=1(δ+
i )

2 .

5.6.4 Stable controller design using chain-scattering approach

In this subsection, chain-scattering representation is utilized in order

to design a stable H∞ flow controller. In (5.47), since Dp21 = 1 is invertible,

Gp has a chain-scattering representation, G∆ = CHAIN(Gp). Therefore, the

system shown in Figure 5.9 can be represented as in Figure 5.10, where

G∆ =:


 G∆11 G∆12

G∆21 G∆22


 =:




Â B̂1 B̂2

Ĉ1 In 0

Ĉ2 0 1




:=




Ap −Bp1Cp2 Bp2 Bp1

Cp1 Dp11 0

−Cp2 0 Dp21


 , (5.60)

which can be shown to be bistable. The problem can now be defined as to find

a contractive QΛ such that the closed-loop TFM from ȳ to r̄ in Figure 5.10,

which is S := HM(G∆, QΛ), is stable. From (5.60), S can be written as

S = λ(G∆11QΛ + G∆12)(λG∆21QΛ + λG∆22)
−1, for any λ > 0, which does not

affect the stability, however might reduce the conservativeness in the controller

design [67]. For any contractive QΛ, λ(G∆11QΛ +G∆12) is stable. Furthermore,

(λG∆21QΛ +λG∆22)
−1 (and thus S) is stable if ‖λ(G∆21QΛ +G∆22)−1‖∞ < 1.
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The problem of finding a contractive QΛ which satisfies ‖λ(G∆21QΛ +G∆22)−
1‖∞ < 1 can be defined as a two block problem as shown in [28]:

‖HM(T,QΛ)‖∞ < 1 , (5.61)

where

T =





 λG∆21

In




 λG∆22 − 1

0




0 1


 =




Â B̂1 B̂2

λĈ2 0 λ− 1

0 In 0

0 0 1




=:


 AT BT

CT DT


 . (5.62)

Finding a contractive QΛ which satisfies (5.61) can be solved via a (J̄ , Ĵ)-

lossless factorization of T , where J̄ := J(n+1),1 and Ĵ := Jn,1. Similar to the

problem solution in Section 5.2, the necessary condition for the (J̄ , Ĵ)-lossless

factorization of T is the existence of a nonsingular ET such that DT
T J̄DT =

ET
T ĴET =


 In 0

0 λ(λ− 2)


. This is satisfied for 0 < λ < 2. Moreover, in this

case, the nonsingular ET can be selected as ET =


 In 0

0
√
λ(2 − λ)


.

Theorem 5.8. [50] For a given realization of T in (5.62), the two block

problem given in (5.61) can be solved if there exists a solution X ≥ 0 for

0 < λ < 2 satisfying

XAT + AT
TX −R(DT

T J̄DT )−1RT + CT
T J̄CT = 0 , (5.63)

where R := CT
T J̄DT + XBT , such that AFT

:= AT + BTFT is stable, where

FT := −(DT
T J̄DT )−1RT . In that case, the contractive QΛ can be written as

QΛ = HM(Φ−1
T , Γ̂) , (5.64)

where Γ̂ is any contractive parameter and

Φ−1
T =


 AT +BTFT BTE

−1
T

FT E−1
T


 .
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Now, using Theorem 5.8, a stable H∞ flow controller, which stabilizes

the closed-loop system and achieves the design requirements can be obtained

by the following algorithm.

Algorithm 5.8.

1. Find the optimal sensitivity level γopt, given in (4.36), and let γ = γopt.

Choose a sufficiently large l and equally spaced values λ1, λ2, . . ., λl

within the interval (0, 2).

2. Find F1, F2, and GΛ (see Section 4.3) for the current sensitivity level γ.

3. Compute Ñ from Theorem 5.4, choose an upper bound Nmax > Ñ , and

let N = Ñ .

4. Let N = N + 1.

5. Find F2app for the current N . Let i = 1.

6. For λ = λi, if there exists a solution X ≥ 0 to the Riccati equation (5.63)

go to step 10, otherwise continue with step 7.

7. If i = l go to step 8. Otherwise, set i = i+ 1 and go to step 6.

8. If N < Nmax go to step 4 else continue with step 9

9. Increase γ by a small amount and go to step 2.

10. If (1 + F2H)−1 is unstable (can be checked by the Nyquist criterion),

where H = HM(G−1
Λ , QΛ) and QΛ is obtained from (5.64), then go to

step 7. If (1 + F2H)−1 is stable, the desired controller is then given by

(see Figure 5.1)

K(s) = F1(s)H(s)
κ(s+ ǫ)

s(1 + F2(s)H(s))
, (5.65)

where κ = γ√
2
∑n

i=1(δ+
i )

2 .
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5.6.5 Performance of the designed controllers

In this subsection, the performance of the stable controllers designed

by Algorithms 5.6, 5.7, and 5.8 are compared. In order to illustrate and

compare the performance of the stable H∞ flow controllers designed by Al-

gorithms 5.6–5.8, the network introduced in Section 5.3 is considered. The

controllers are designed for Case 1, given in Table 5.1. The upper bound ξmax

in step 1 of Algorithm 5.7 is taken as ξmax = 1000. The free parameter Γ̂ of

the stable H∞ flow controller, which is designed by Algorithm 5.8, is taken

as Γ̂ = 0. The stable H∞ flow controllers designed by Algorithms 5.6–5.8 are

obtained for N = 2, where Ñ = 1. The γ value, which yields a stable H∞

flow controller for each algorithm, is presented in Table 5.3. In Table 5.3,

γopt represents the optimal sensitivity level of the corresponding optimal con-

troller, γ5.6 represents the γ value, which yields a stable H∞ flow controller

by Algorithm 5.6, γ5.7 represents the γ value, which yields a stable H∞ flow

controller by Algorithm 5.7, and γ5.8 represents the γ value which yields a

stable H∞ flow controller by Algorithm 5.8. As seen in Table 5.3, the sta-

ble H∞ flow controllers designed by Algorithms 5.6 and 5.7 produce smaller

sensitivity levels compared to Algorithm 5.8. In addition, the stable H∞ flow

controllers designed by Algorithms 5.6 and 5.7 are obtained for the same sensi-

tivity level no matter which approximation method is used. In addition, since

Gp in (5.47) is stable for Case 1, Xr = 0 and X̂ = 0 solve (5.48) and (5.55),

respectively. Hence, Algorithms 5.6 and 5.7 result in a stable central controller

for Case 1. However, the stable controller designed by Algorithm 5.8 is not

a central controller. In addition, as shown in Table 5.3, the stable H∞ flow

controller designed by Algorithm 5.8 using the δ-approximation method is ob-

tained for a smaller sensitivity level compared to the one which yields a stable

controller by Algorithm 5.8 using the bilinear approximation method.

For the time-domain performance comparison of the designed con-

trollers, the simulations are done using MATLAB/SIMULINK package, where

the nonlinear effects (hard constraints) are also taken into account. For all
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Table 5.3: Sensitivity level of the designed stable H∞ flow controllers

Case γopt Approximation method γ5.6 γ5.7 γ5.8

Case 1 2.817 δ-approximation method 3.260 3.260 4.297

bilinear approximation method 3.260 3.260 4.528

cases, as in the previous sections, the desired queue length, qd, is taken 30

packets, the buffer size (maximum queue length) is taken as 60 packets, and

the capacity of the outgoing link is taken as 90 packets/tu, where tu stands

for time unit. Moreover, the rate limits for the sources are taken as 150 pack-

ets/tu. The uncertain part of the actual time-delays used in the simulations

are as in Case 1a, which is given in Table 5.2. The response of the designed

stable H∞ flow controllers are presented in Figures 5.11–5.12. As stated above,

since Algorithms 5.6 and 5.7 yield the same stable H∞ flow controller, the

performance of the controller designed by Algorithm 5.6 is compared to the

one designed by Algorithm 5.8. In Figure 5.11, (a) represents the response of

the controller designed by Algorithm 5.6, and (b) represents the response of the

controller designed by Algorithm 5.8 using the δ-approximation method. In

order to compare the performance of the obtained stable controllers using the

δ-approximation method with the ones obtained using the bilinear approxima-

tion method, the response of the stable H∞ flow controller, which is designed

for Case 1 by Algorithm 5.8 using the bilinear approximation method, is pre-

sented in Figure 5.12. In Figures 5.11–5.12, q (whose scale is on the right) is

the queue length q(t), and rs
i (whose scale is on the left) is the actual flow rate

at source i, for i = 1, 2.

As seen in Figures 5.11–5.12, all the stable controllers designed by

the proposed algorithms here, whether using the δ or the bilinear rational

approximation method, stabilize the actual system and achieve the design re-

quirements despite the presence of uncertain time-varying time-delays. The

oscillations in the queue length in Figures 5.11–5.12 are due to the variations
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Figure 5.11: Simulation results of the designed stable controllers for Case 1a
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Figure 5.12: Simulation result of the stable controller designed by using the

bilinear approximation for Case 1a

of the uncertain part of the forward time-delay. As shown by comparing Fig-

ure 5.11(a) to 5.11(b), the stable H∞ flow controller designed by Algorithm 5.6

(or 5.7) has faster response compared to the one designed by Algorithm 5.8.

As seen by comparing Figure 5.11(b) to 5.12, the response of the con-

troller designed by Algorithm 5.8 using the δ-approximation method is faster

compared to the one designed by Algorithm 5.8 using the bilinear approxima-

tion method. This observation was also stated in [49]. Therefore, as seen in

Table 5.3, the controllers designed by Algorithm 5.8 using the δ-approximation

method results in a less conservative controller compared to the controller de-

signed by using the bilinear approximation method, in general.
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In the previous sections, F2 was used either in the controller design to

satisfy a bound on the H∞ norm of HM(G−1
Λ , QΛ) or to determine the stability

of the controller by the obtained HM(G−1
Λ , QΛ). However, Algorithms 5.6, 5.7,

and 5.8 consider the dynamics of the approximated FIR filter F2 to design a

stable H∞ controller. In general, Algorithms 5.6, 5.7 and 5.8 yield stable

controllers. However, similar to the previous algorithms, these algorithms do

not guarantee to yield a stable controller.

5.7 Summary

In this chapter, a number of different stable H∞ flow controller design

approaches were presented. The first approach uses the small-gain theorem,

since finite-dimensional part of the controller is fed back by the stable infinite-

dimensional block. In the first approach, since the algorithm produces a con-

servative controller, due to the use of the small-gain theorem, in Section 5.3,

a less conservative approach was presented. The third approach, which was

presented in Section 5.4, is based on the stabilization of the finite-dimensional

part of the flow controller. In the fourth approach, presented in Section 5.5,

stable controller design was based on seeking a stable H∞ flow controller by

increasing the gain of the uncertainty weight. Each of the last three stable H∞

flow controller design approaches, all presented in Section 5.6, were based on a

different approach to the stable controller design problem for finite-dimensional

systems, where a rational approximation of F2 is used.

In order to show the performance of the designed controllers by the

approaches proposed in Sections 5.3–5.6, simulation studies were carried out

using MATLAB/SIMULINK package, where the nonlinearities of the model

were taken into account (see Section 4.1). As shown by the simulation results,

the actual plant was robustly stabilized and the performance objectives, de-

spite the presence of uncertain time-varying time-delays, were achieved by the

suboptimal stable H∞ flow controllers, which were designed by Algorithms 5.2–

5.8.
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As a summary, even though only the sufficient conditions are used to

design a stable H∞ flow controller, Algorithms 5.1–5.8 produce a stable con-

troller, in many cases. However, it should be noted that none of the proposed

algorithms guarantee to produce a stable H∞ flow controller.
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6 CONCLUSION

In this dissertation, an optimal H∞ flow controller design problem for

data-communication networks was considered. The controller was designed

utilizing the non-causal uncertainty blocks instead of causal blocks to improve

the performance of the controller. The H∞ flow controllers were designed

neglecting the existing nonlinearities. However, since unstable controllers are

highly sensitive to unmodelled nonlinear dynamics, the neglected nonlinearities

may worsen the performance of the resulting controller, if it is unstable. In

order to overcome this problem, stable H∞ flow controller design problem was

also considered.

In Chapter 3, validity of the small-gain theorem for feedback intercon-

nection of non-causal subsystems was considered. In Section 3.2, the sufficient

conditions to satisfy the internal stability of the feedback interconnection of

two stable subsystems, at least one of which is non-causal, were given. In order

to utilize the small-gain theorem in the robust flow controller design, the re-

sult in Section 3.2 was extended and a less conservative result was presented in

Section 3.3. Utilization of the non-causal uncertainty blocks in the robust con-

troller design for systems with multiple uncertain time-delays was presented in

Section 3.4. In Section 3.4, under different uncertainty representations of the

finite-dimensional part of the plant, it was shown that the uncertainty block

of the generalized system has a special structure for each representation. It

was shown in Section 3.4 that the proposed conditions in Sections 3.2 and 3.3

for the validity of the small-gain theorem under non-causal subsystems may

not be sufficient to design a robust controller by the approach of [13]. In order

to utilize the non-causal uncertainty blocks in the robust controller design, a

new small-gain condition, called strong small-gain condition, was introduced

in Section 3.4. In Section 3.5, an alternative robust controller design approach

was proposed by replacing the non-causal uncertainty blocks with the causal

ones.

In Chapter 3, in order to utilize the non-causal uncertainty blocks to
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design a robust controller for multiple time-delay systems by the approach of

[13], it was assumed that the nominal plant has a coprime-factorization, where

the denominator matrix is diagonal. This assumption brings a conservatism.

This assumption was made to factor out the uncertainty part and state the

problem in a generalized framework. Another restriction in this study arises in

the case of multiplicative input/output uncertainty representation, since either

the input or the output uncertainty block must also be diagonal.

In Chapter 4, robust flow control problem for data-communication

networks was considered. The network model was given in Section 4.1 and

the mathematical model of the overall system was given in Section 4.2. In

Section 4.2, the uncertainty block of the overall system was allowed to be non-

causal. However, utilizing the results in Section 3.3, these non-causal blocks

could be handled. A mixed sensitivity minimization problem was defined in

Section 4.3 to design a robust flow controller which keeps the queue length at

the bottleneck node at a desired level and allocates the different ratios of the

network capacity to different sources. The time-domain performance of the

controllers designed by the approach proposed in Section 4.3 was illustrated

by simulations using MATLAB/SIMULINK package in Section 4.4. The sim-

ulations were done using a discrete model, where the controllers were designed

by using a fluid-flow model. In addition, the performance improvements of the

controllers designed by the approach of Section 4.3 compared to the controllers

designed by the approach of [23] were shown in Section 4.4. In Section 4.5, the

performance level and actual stability margins were derived for the designed

optimal H∞ flow controllers. The advantages of using non-causal uncertainty

blocks in the robust flow controller design problem were addressed in Sec-

tion 4.6. In Section 4.7, sufficient conditions to choose the free parameter QΛ

were derived such that the controller achieving the robustness and the track-

ing requirements also achieves the weighted fairness requirement by the chosen

QΛ.

In Chapter 4, a robust optimal flow controller was designed for data-

communication networks with a single bottleneck-node. In this case, since the
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network has a single bottleneck-node, which is fed by n sources, the nominal

time-delays at the channels were factored out and the approach of [13] was used

to design a robust flow controller. To design a robust flow controller for multi-

bottleneck networks is not trivial. In this case, there exists n bottleneck nodes,

each of which is fed by multiple sources. In addition, each bottleneck node can

also send data to other bottleneck nodes. Therefore, the dynamics of the queue

length at a bottleneck node depends on the rate of data that is received from

the sources, the other bottleneck nodes, and the rate of data that is sent to

the other bottleneck nodes from the current bottleneck node [72]. It should be

noted that both the rate of data that is received from the sources and the other

bottleneck nodes and the rate commands that are sent from any bottleneck

node are subject to time-delays. Besides the existence of the time-delays,

which are usually uncertain and time-varying, one of the arising problems in

the design is: What should be the type of the controller: “centralized” or

“decentralized”? If a centralized controller is to be designed, then another

question arises: Where it should be implemented? Since there are multiple

bottleneck-nodes and the information send from each bottleneck node, except

the bottleneck node, where the centralized controller is implemented (if the

controller is implemented at a bottleneck node), to the centralized controller

is subject to time-delays, different network topologies may require different

locations for the implementation of the centralized controller. If a decentralized

controller is to be designed, following the lines of [73], the nominal time-delays

can be factored out and the approach of [13] may be used to design a robust flow

controller. For a future study, using the approach proposed in this dissertation,

a decentralized robust flow controller can be designed for data-communication

networks with multiple bottleneck nodes following the lines of [73].

In Chapter 5, the stable H∞ flow controller design problem was con-

sidered. This problem is difficult and stable H∞ controller design problem for

systems with time-delays up to date have been limited to SISO systems. A

number of approaches were given to design a stable H∞ flow controller. In

all approaches, except the approach of Section 5.5, stable H∞ flow controller
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design approaches were based on designing a contractive QΛ to stabilize the

overall controller, apart from the integral term. In Algorithm 5.1, a strong

H∞ stabilization problem is solved to design a stable H∞ flow controller. In

Algorithm 5.2, another strong H∞ stabilization problem is solved to design

a stable H∞ flow controller. However, the problem, which is to be solved in

Algorithm 5.2, is more relaxed compared to that one in Algorithm 5.1. In

Algorithms 5.3 and 5.4, the stable H∞ flow controller design was based on the

stabilization of the finite-dimensional part of the controller. In Algorithm 5.5,

the stable H∞ flow controller design was based on seeking a stable stabilizing

H∞ flow controller by increasing the gain of the defined uncertainty weight.

Algorithms 5.6–5.8 were based on solving the strong stabilization problem by

utilizing a rational approximation of the FIR block in the feedback loop of

the controller structure. Once a rational approximation of the FIR block is

found, the contractive free parameter, QΛ, is designed to stabilize the approxi-

mation of the controller. It is then checked whether this QΛ also stabilizes the

actual controller. If it does, the desired controller is obtained. If not, a new

contractive QΛ is sought.

The presented approaches in Chapter 5 are conservative, since these

approaches were based on sufficient conditions and may increase the sensitivity

level γ, unnecessarily. In addition, since the finite-dimensional term of the

controller, except the integral term, is fed back by an infinite-dimensional

block, instead of considering the dynamics of the infinite-dimensional block,

the dynamics of a rational approximation of this block was considered to design

a stable H∞ flow controller. Moreover, since all the proposed algorithms were

based on sufficient conditions, these algorithms do not guarantee to result in a

stable H∞ flow controller. However, stable H∞ flow controllers were obtained

by the proposed algorithms, in general. For a future study, stable H∞ flow

controller design can be considered by taking into account the dynamics of the

infinite-dimensional part of the controller directly.

In summary, robust flow controller design for data communication

networks with multiple time-delays utilizing the non-causal uncertainty blocks
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was presented in this dissertation. As shown by a number simulations, the

performance of the robust flow controllers designed by utilizing the non-causal

uncertainty blocks is in general better than the performance of the controllers

designed utilizing the causal blocks. In addition, it is indicated by a number of

cases that the controllers designed utilizing the non-causal uncertainty blocks

have better robustness margins and performance levels compared to the con-

trollers designed by utilizing the causal uncertainty blocks. Since the controller

design approach proposed here may result in unstable controllers, which may

fail to produce a stable response due to their sensitivity to unmodelled dynam-

ics, stable H∞ flow controller design was presented using different approaches.

As shown by a number of simulations, while the designed optimal controllers

can not produce a stable response, stable H∞ controllers, which were obtained

by the proposed algorithms, stabilize the actual system and produce a desired

response.
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trol in high speed networks: Design of an H∞ based flow controller for

single bottleneck. In Proceedings of the American Control Conference,

pages 2376–2380, Philadelphia, PA, U.S.A, June 1998.
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