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ABSTRACT
Ph.D. Dissertation
H> Controller Design for Uncertain Multiple-Time-Delay Systems

Hakk: Ulag UNAL

Anadolu University
Graduate School of Sciences
Electrical and Electronics Engineering Program

Supervisor: Prof. Dr. Altug IFTAR
2010, 160 pages

In this dissertation, H* controller design for systems with multiple
uncertain time-delays is studied. In the H* controller design for these sys-
tems, since the nominal time-delays are taken outside the generalized plant, the
uncertainty block of the overall system may become non-causal. However, the
H> controller is designed by the small-gain theorem, which assumes the causal-
ity of the feedback interconnected subsystems. To alleviate this difficulty, the
sufficient conditions are derived to satisfy the validity of the small-gain theo-
rem for feedback interconnection of non-causal systems. Utilizing these results,
an optimal H* flow controller is designed for data-communication networks.
Stable H> controller design is also studied and different design approaches
are presented. Furthermore, to satisfy one of the time-domain requirements
of the flow controller, sufficient conditions are introduced to choose the free

parameter in the structure of the designed controller.

Keywords: Multiple-time-delay systems, H> controller design, Ro-
bust control, Non-causal systems, Stable H> controller design, Flow control,

Data-communication networks.



OZET
Doktora Tezi

Coklu-Zaman-Gecikmeli Belirsiz Sistemler i(;in ‘H* Denetleyici

Tasarimi

Hakki Ulasg UNAL

Anadolu Universitesi
Fen Bilimleri Enstituisu
Elektrik-Elektronik Miihendisligi Anabilim Dali

Danigsman: Prof. Dr. Altug IFTAR
2010, 160 sayfa

Bu tezde, belirsiz ¢oklu zaman gecikmelerine sahip sistemler i¢in H*°
denetleyici tasarimi tizerine ¢aligilmigtir. Bu sistemler i¢in H™ denetleyici
tasarimi yapilirken nominal zaman gecikmeleri digar1 alindigindan dolay: sis-
temin belirsizlik blogu nedensel olamayabilmektedir. Fakat, H> denetleyici
tasarimi birbirine geri-besleme ile baglh sistemlerin nedensel oldugunu kabul
eden kiiciik-kazang teoremi kullanilarak yapilmaktadir. Bu durumun iiste-
sinden gelmek igin, birbirine geri-besleme ile bagli nedensel olmayan sistem-
lerde kiigiik-kazang teoremini saglamak igin yeterli kosullar tiiretilmistir. Bu
sonuglardan faydalanarak da veri-iletigim aglari i¢in optimal H*> akig denet-
leyicisi tasarlanmigtir. Kararli H> denetleyicisi tizerine de ¢aligilmig ve farkl
tasarim yaklagimlar: sunulmustur. Bunlara ilaveten, tasarlanan denetleyicinin
zaman bolgesi kisitlarini yapisindaki serbest parametre ile saglamasi i¢in, ser-

best parametrenin se¢imi i¢in yeterli kogullar verilmistir.

Anahtar Kelimeler: Coklu-zaman-gecikmeli sistemler, H* denet-
leyici tasarimi, Gilirbiiz denetim, Nedensel olmayan sistemler, Kararli H>

denetleyici tasarimi, Akig denetimi, Veri-iletigim aglari.
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1 INTRODUCTION

1.1 Overview and Motivation

Time-delays appear in the dynamics of most physical systems, be-
cause the reactions of the physical systems to external actions never take place
instantaneously due to the transportation and propagation phenomena. In
data-communication networks, signals that are sent from the sources do not
arrive instantly to the destination. In economic systems or political systems,
the effects of taken decisions happen after a time interval (see [1] for a wide

survey). Therefore, systems with delays abound in the world.

Handling delays in a control system is difficult and a long-standing
problem, since systems with time-delay are a class of infinite-dimensional sys-
tems. It is well known that if the time-delays of the system to be controlled
are “sufficiently” small, then a controller can be designed by neglecting the
delays, and it may satisfy the design requirements. However, under significant
time-delays, the delays can not be neglected. A controller designed by ne-
glecting the time-delays may fail to stabilize the actual system or may exhibit
poor performance. On the other hand, inserted time-delays are used to yield

a stabilizing controller for many systems, e.g. oscillatory systems (see [2]).

One of the most important issues of the feedback control theory is
to overcome the destabilizing effect of the existing uncertainties, which is the
discrepancy between the physical plant and the mathematical model for which
a controller is to be designed. In addition to these uncertainties, unmeasured
noises and disturbances that act on the physical plant may destabilize the
feedback system. In order to design a controller, which stabilizes the physical
plant and meets the design specifications against uncertainties, robust control
tools can be used. H*® control is one of the powerful robust control tools,
since it utilizes the magnitude of the plant uncertainties in a proper way by

the small-gain theorem which verifies the internal stability of the feedback



interconnected stable causal subsystems [3-5].

In the literature, there exists numerous robust controller design ap-
proaches for time-delay systems [1]. These controller design approaches can
be classified as operator-theoretical approaches, state-space methods, and J-
spectral factorization. Toker and Ozbay [6] used the operator theory [7,§]
to formulate an H>-optimal controller design approach for SISO infinite-
dimensional systems. This approach, however, can be used only for SISO
systems. In [9], design of an H> controller is given for SISO general time-delay
systems by the Skew-Toeplitz operator approach [8]. Nagpal and Ravi [10] and
Tadmor [11] used state-space methods to design an H>™ controller for single-
time-delay systems. In [12], J-spectral factorizations are used to solve the
same problem for systems which involve a single delay. The general solution of
the H>-optimal controller design problem for systems which involve multiple
delays is given in [13]. In [13], the problem with multiple time-delays is de-
composed into a nested sequence of simpler problems each with a single delay,

called an adobe problem, then a controller is obtained solving each problem.

In order to design a stabilizing controller for a system with multiple
time-delays by the approach of [13], the known nominal time-delays are taken
outside the generalized plant. Therefore, if there exists uncertainties in the
actual time-delays, then, they appear in the uncertainty block of the gener-
alized framework. However, in this case, the uncertainty block may become
non-causal and the small-gain theorem, which assumes the causality of the
interconnected subsystems in the feedback loop, may not be used. Therefore,
since the H*> controller design is based on the small-gain theorem, the sta-
bilizing H* controller can not be designed unless uncertainty block is made
causal by introducing some constraints on the uncertain part of the actual
time-delays. Non-causal subsystems also appear in multi-dimensional systems
with non-causal spatial dynamics [14]. In the stabilizing controller design for
the multi-dimensional systems with non-causal spatial dynamics, LMI and u-
frameworks are used utilizing the scaled small-gain theorem [14-18]. How-

ever, in these studies, the systems are restricted to be linear time- and space-



invariant discrete-time systems. In this dissertation, sufficient conditions will
be introduced to satisfy the validity of the small-gain theorem, if at least one

of the subsystems in the feedback interconnection is non-causal.

A good example for systems with multiple time-delays which pos-
sess time-varying uncertainties is data-communication networks. In data-
communication networks, flow control mechanisms are used to avoid traffic
congestion and satisfy a QoS level. These mechanisms are rate-based and
window-based feedback mechanisms. In [19], [20], flow controllers were de-
signed using proportional control and Smith’s principle. The proposed con-
troller in [19] ensures the congestion avoidance by keeping the queue length
at the bottleneck in a desired level and high utilization of the network links
whereby ensuring the positiveness of the queue length. In these studies, the ac-
tual time-delays, however, were taken constant. An H> rate-based controller
for high-speed data-communication networks was proposed in [21] using the
controller design method in [6]. Later, the implementation of this controller
was given in [22]. However, in these studies, the uncertain time-delays were
taken constant and the controllers were designed by equalizing all the delays in
the channels to the longest one. This stems from the used controller design ap-
proach proposed in [6], which was for SISO systems with a single time-delay.
Using the same controller approach, a rate-based H* flow controller design
considering the uncertain time-varying time-delays was presented in [23]. In
this study, different than [21,22], separate H*> controllers were designed for
channels with different delays and then the obtained controllers were weighted
and blended to obtain the overall controller. Hence, the designed controllers
in [23] are less conservative compared to the controllers in [21,22], however,
they are sub-optimal in the H*-sense. In [24], flow controllers were designed
using the p synthesis. In that approach, the controller was designed using the
D-K iterations by approximating the time-delay system utilizing the Padé-
approximation. In order to find an optimal solution to this problem, the
approach of [13] was first considered in [25]. In the present dissertation, an op-

timal H> flow controller design for high-speed data-communication networks



is given using the same approach. The performance level and the actual sta-
bility margin of the designed H> flow controllers are presented. Furthermore,
the performance improvement of the designed H> flow controllers utilizing the

non-causal uncertainty blocks compared to the causal ones, are also addressed.

The set of all stabilizing H> controllers is parameterized by a free
stable norm-bounded TFM. Utilizing the free parameter, some of the design
requirements, which are not introduced in the controller design process, can
be achieved by the controller. For instance, in the stable H* controller design,
first the stabilizing H* controllers are found, and then the appropriate free
parameter is sought which stabilizes the controller (e.g., [26-28]). In addition,
some of the design requirements, e.g. time-domain constraints, which are
not introduced in the controller design process, can be met utilizing the free
parameter [29,30]. In this dissertation, we will give the sufficient conditions
to choose the free parameter denoted by )5, which ensures that the designed
stabilizing controller satisfies the desired time-domain constraint, which is not

taken into account in the design process.

The controllers are designed to stabilize the system and, if any, to
achieve some other design requirements. In general, the designed controller
may or may not be stable. If the designed controller is unstable, although it

theoretically stabilizes the overall system, it is undesirable due to two reasons:

e the closed-loop system becomes highly sensitive to sensor/actuator faults,
since such a fault can make the overall system unstable (a stable con-
troller, however, guarantees overall stability under such a fault if the

plant is also stable);

e an unstable controller introduces additional right-half-plane zeros, which
reduce the tracking ability and disturbance rejection of the closed-loop
system and makes it more sensitive to numerical errors and nonlinear
effects [31]. Such effects, may indeed cause an unstable behaviour in a

practical implementation.



Due to above reasons, stable controller design problem, which is also referred
to as the strong stabilization problem, has been considered in the literature
for a long time (e.g., [26,32]). Strong stabilization problem has also been
considered for time-delay systems (e.g., [33-35]). However, these studies have
been limited to SISO time-delay systems. In this dissertation, stable H* con-
troller design algorithms for the flow control problem in data-communication

networks, which is an example of multiple-time-delay systems, are given.

1.2 Dissertation Outline

In Chapter 2, standard background material are brought together to
clarify the definitions, lemmas, theorems and proofs in the dissertation. First,
the chain-scattering representation and its properties are given. Then, the
adobe problem in the optimal H> controller design for multiple-time-delay
systems is defined and the general solution is given. Finally, the flow control

problem in data-communication networks is introduced.

In Chapter 3, validity of the small-gain theorem for feedback inter-
connection of non-causal subsystems is discussed. The sufficient conditions
are proposed to satisfy the validity of the small-gain theorem for non-causal
subsystems. A less conservative result for the validity of the small-gain the-
orem is also given if the interconnected subsystems in the feedback loop are
SIMO and MISO respectively. In this chapter, appearance of non-causal un-
certainty blocks in the robust controller design problem is also given. Instead
of designing a robust controller utilizing the non-causal uncertainty blocks, an
alternative way, which considers the robust controller design of an equivalent
problem with causal uncertainty blocks, is also presented. The results pre-
sented in this chapter, with the exception of those given in Section 3.5, were

published in [36-39].

In Chapter 4, an optimal H> flow controller design for data-com-

munication networks is given utilizing the results in Chapter 3. The perfor-



mance level and actual stability margins of the designed flow controller are
defined. The performance improvement obtained by utilizing the non-causal
uncertainty blocks compared to the causal ones are addressed. In this chap-
ter, the sufficient conditions are also presented to choose an appropriate free
parameter () such that the designed controller meets one of the time-domain
constraints which was not introduced in the design process. Parts of the results

in this chapter were published in [40-46].

In Chapter 5, utilizing the results in Chapter 4, some design algo-
rithms that yield a stable H*> flow controller are given. A number of different
approaches are given. In the first approach, a strong H> stabilization problem
is solved in order to design a stable H> flow controller. In the second approach,
another strong H> stabilization problem is solved to design a stable H> flow
controller. However, the latter problem is more relaxed compared to the one
which is to be solved in the first approach. The third approach tries to ensure
the stability of the controller by stabilizing the finite-dimensional part of the
controller. In the fourth approach, a stable H* flow controller is sought by
increasing the gain of the defined uncertainty weighting TFM in the problem.
In the last approach, a stable H*> flow controller design problem is defined
as a strong stabilization problem for finite dimensional systems utilizing the
rational approximation of the infinite dimensional part of the controller. Parts

of the results in this chapter were published in [47-49].

In Chapter 6, the concluding remarks and possible future studies are

given.



2 BACKGROUND

In this chapter, important background material and definitions to be used
in subsequent chapters are presented. In Section 2.1, the chain-scattering rep-
resentation of systems and its properties are given. In addition, J-lossless
systems, which play an important role in Section 2.2, are introduced. In Sec-
tion 2.2, the adobe problem is defined to obtain the optimal H* controller
design for systems with multiple time-delays. In Section 2.3, the flow control

problem in data-communication networks is introduced.

2.1 Chain-scattering Framework and .J-lossless Systems

The standard H* optimal control problem setup is given in Fig-
ure 2.1a. Here, the vectors z, w, y, u represent, respectively, the regulated
outputs, the exogenous signals, the measured outputs, the control inputs, and
P denotes the TFM containing the plant to be controlled and weighting func-
tions, if any, to satisfy some design criteria, and K is the controller to be

designed. Note that, for the system in Figure 2.1aq,
z = ﬁllw—i—ﬁlgu (21)
y = Puw+ Py, (2.2)
5. o = Py Py
where P is partitioned as P = |
Py Py

inverse, then (2.2) can be written as

Cf ﬁgl is square and has a proper

w = —ﬁzjlﬁggu + 132_11y ) (2.3)

U

U = CHAIN(P)
U W——
K

(a) (b)

e
N

Figure 2.1: a) Generalized framework b) It’s chain-scattering representation



By replacing w in (2.1) by (2.3), we obtain
z = (1312 - ﬁnﬁg_llﬁm)u + ﬁnﬁgfy
w = —ﬁ{llﬁggu + ﬁ{lly .
Therefore, if we define
Py — 1611132_111622 ﬁnﬁz_ll Uy W

U= =: , (2.4)

~

~By'Pn By 2T 2
the system in Figure 2.1a can be represented as in Figure 2.1, where W is called

the chain-scattering representation of P and denoted by W = CHAIN (P) [50].

The H> optimal control problem for the system described in Fig-
ure 2.1a is to design a stabilizing controller K which minimizes the H* norm
of the closed loop TFM from w to z. The closed-loop TFM from w to z in

Figure 2.1a, called T, can be written as;
Tzw :ﬂ(ﬁ,K) :ﬁ11+ﬁ12K(I—ﬁ22K)_1ﬁ21, (25)

where Fj(-,-) is the lower-LFT [5]. If the chain-scattering representation is
considered, the closed-loop TFM in Figure 2.1b, from w to z, can be written
as [50]:

Tow = HM(V,K) = (U1 + VU K)(Uy + Uy K) L. (2.6)

Thus Fy(P,K) = HM(¥,K). If ¥ in (2.4) is invertible, and the closed-loop
TFM Q := HM (¥, K) is known, then K is easily obtained as [50]:

K=HMU Q). (2.7)

The main reason for using the chain scattering representation is for its
simplicity in representing cascade connections. Indeed, the cascade connection
in chain scattering representation corresponds to star-product representation
in the generalized framework. The star product of systems plays a crucial role
in the H* controller design, since all the stabilizing controllers can be param-
eterized as K = Fj(J,Q), where J is obtained from the solutions of two alge-

braic Riccati equations, and ) € H™ is a free parameter such that ||Q||« < 7,

8



(0)

Figure 2.2: a) Star product of systems, b) Cascade connection in chain-

scattering representation

where the stabilizing controller K achieves || F;(P, K)||« < 7 (see [5] for de-

tails). Then the overall system in Figure 2.1b can be described as shown

R . . Jin Ji2
in Figure 2.2a. Suppose that, J is partitioned as J = , Where

J21 J22

Jo1 is invertible. Then, if ¥; and Wy are the corresponding chain-scattering
representation of the systems P and J , then the system in Figure 2.2a can
be represented as in Figure 2.2b. The cascade connection of two chain scat-
tering representations W, and Wy, as shown in Figure 2.2b, is represented as
the product WV, of each chain scattering representations. Furthermore, the

closed-loop TFM in Figure 2.2b, from w to z is obtained as

However, the same closed-loop TFM in Figure 2.2a, from w to z is obtained
as; Fl(]g,Fl(J, ())) which is more complicated compared to (2.8), since its

expansion may not be expressed as the product of two functions, in general.

For the chain-scattering representation of the proper TFM ﬁ, it is
assumed that ]321 is square and invertible, i.e., rank(ﬁ21(3)|5:w) =Ny = Ny.
However, ﬁgl may not be square in general and in this case the chain-scattering
representation of P does not exist. If 1821 is not square but full row rank,

rank(ﬁgl(s)|5:w) = n, < n,, then the plant can be augmented by a fictitious



Z — =
—_ = K
T = CHAIN(P)
ly ¥
w————» Y

Figure 2.3: Chain scattering representation of output augmented system

measured output y’ of dimension n,, — n, given by

y = Pyw + Pyu, (2.9)
-1

~

such that | _ =: [ 13271 ﬁzil } exists, where 1351 is m, X n, and 132# is
Py

Ny X (nyy —ny). Then the augmented plant P can be described by

z P11:P12
=< w D w
y | =P = P21:P22 )
U o~ U
/ / /
Yy 21[P22

and then the chain-scattering representation of the augmented plant P can be

represented as shown in Figure 2.3, where
Py — Py (P, Py + P Pyy)  PuPjy PiPj
~ (P Py + Pyi P}y) P Py

U =

Lossless systems will play an important role in the following sections.
The H> controller design utilizing the chain-scattering approach is also based
on the J-lossless factorization [50]. In order to clarify the lossless systems,

some definitions, a lemma, and a theorem are given below.
Definition 2.1. A TFM G is said to be stable if it is analytic in C,..

Definition 2.2. An invertible TFM G is said to be bistable if both it and its

proper inverse are analytic in C.

Definition 2.3. The transpose of a real rational TFM G(s) with state-space

A|B AT | T
realization G(s) = is denoted by G”(s) =
Cc|D BT | DT

10



Definition 2.4. [50] A TFM G is said to be unitary if it satisfies
G~G=1.
Definition 2.5. [50] A unitary TFM G is said to be lossless if it is stable.

Definition 2.6. [50] A TFM © € RL(;, ., ) is said to be (J.u, Juy)-

X (nu+ny)
unitary, if

0~ O = Jyy. (2.10)

Definition 2.7. [50] A (J,y, Juy)-unitary TFM O(s) is said to be (Juu, Juy)-
lossless, if

0*(8) JwO(8) < Juy, V s € Cy. (2.11)

The interpretation of (J.q, Juy)-lossless or (J.q, Juy)-unitary systems

arises in the chain-scattering framework.

Lemma 2.1. [50] A TFM © is (J,y, Juy,)-unitary (lossless) if and only if it

is a chain-scattering representation of a unitary (lossless) matriz.

Theorem 2.1. [50] Assume that © is a (Jsy, Juy)-unitary TFM. Then, there
exists a TFM @ such that HM(©, Q) is stable and ||HM (0, Q)| < 1 if and
only if © is (J.y, Juy)-lossless. In that case, ||HM(O, Q)| < 1 if and only if
Q is stable and ||Q]|c < 1.

2.2 Adobe Problem in ‘H>* Controller Design for Mul-

tiple-Time-Delay Systems

In this section, an optimal H> controller design for systems with mul-
tiple input/output delays proposed in [13] is reviewed. The controller design
problem for systems with multiple time-delays is solved by decomposing the
problem into a nested sequence of problems, called adobe problems, each of
which involves a single delay. The solution of the problem is then obtained by

tailoring the solutions of subproblem in a proper way.

11



For the sake of clarity, some definitions are introduced. Consider a

real rational TFM G(s) with state-space realization

A|B
C|D

G(s) =

Definition 2.8. The square real matrix A is called Hurwitz if all the eigen-

values of A are in C_.

Definition 2.9. (A, B) is said to be stabilizable if the matrix | A — A\ B
has full row rank for all A € C, and (C, A) is detectable if (AT, CT) is stabi-

lizable.

Lemma 2.2. If D is square and non-singular, then the inverse of G(s) is given

by
A—BD'C ‘ —BD™!

D~C ‘ D!

G (s) =

Definition 2.10. A TFM ( is called contractive, if () belongs to H* and
1@l < 1.

Definition 2.11. For an n x n real matrix A and real symmetric matrices

A R
@) and R, the 2n x 2n matrix H = is called a Hamiltonian

—Q -—-AT
matrix. Furthermore, the algebraic Riccati equation associated with H is

ATX + XA+ XRX +Q =0.

Theorem 2.2. [51] Suppose that Q, M, and R are matrices such that M and

Q are symmetric. Then the following are equivalent:

e Both the matriz inequalities Q > 0 and M — RQ™'RT > 0 hold.

M
° > 0 is satisfied.

RT Q
Definition 2.12. A Hamiltonian matrix H without purely imaginary eigenval-

ues is said to be in the domain of the Riccati operator, denoted as dom(Ric), if

12



there exist square n x n matrices H_ and X such that H =H ,
X X

where H_ is Hurwitz. In this case, the function Ric is defined as: Ric: H — X.

Thus, X=Ric(H).

Definition 2.13. 7, is called the “completion operator” [13], and it is defined

A|B A | B A

as Ty | e P = —ehs , which describes

C|o Ce= "1 0 Clo
an FIR filter of duration h. In addition, the impulse response of this FIR filter,

g(t), is :

CeAt-hp 0<t<h
g(t) = ‘ ) (2.12)
0, otherwise

The H*® controller design setup for a system with multiple time-delays
is depicted in Figure 2.4. Here, it is assumed that the TFM P has a state-space

representation as:

Al B B
P=|Cy|Dy Dy | (2.13)
Co | Da1 Doy
and the following hold:
(i) (A, By) is stabilizable
(ii) (Cq, A) is detectable
A— ij B2 —
(iii) has full column rank Vw € R
B! Dy |
X A— ij Bl —
(iv) has full row rank V w € R.
G Doy |

The assumptions (i)—(iv) are called standard RH>™ assumptions. The delay

blocks in Figure 2.4 are assumed to be diagonal such as

e*h“vqslmq

Auls) = , (2.14)

13



Ka

Figure 2.4: Four-block problem

where 0 < hy1 < ... < lhug, Dt oMi =Ny, and

I

po

—hy,15
e [p1

Ay(s) = , : (2.15)

—hy.rs
€ o Ipr |

with 0 < hyq < -+ < hy, > i opi = ny. The standard H> problem for the
system depicted in Figure 2.4 can be posed as finding a proper stabilizing K
such that K := A, KA, internally stabilizes the system and guarantees that

”Fl(Pa AuKAAy)”oo <7 (2.16)

for a given v > 0.

In the approach of [13], the four-block H> problem with multiple
time-delays is reduced to a one-block H* problem with multiple time-delays.
To do this, firstly, the solution of the delay-free counterpart of the four-block
‘H> problem is obtained. Then, utilizing this solution and properties of chain-
scattering representation, the four-block H*> problem with multiple delays is

posed as a one-block problem with multiple delays.

To obtain the solution for the delay-free counterpart of the four-block

‘H> problem, let us define the followings:
o 7. = |[(I = Dis(D13D12) ' Dy) Dia |2
 Yu = |[Du(l = D31 (D21 D3;) ™ Day) -

14



Let us introduce the following Hamiltonian matrices Hx, Hy

A 0 B, By
Hy = -
—Cfcl —AT —CfDll —C,{Dlg
_ -1
D’{lDll - ’}/21 D’{lDlg D1T101 B?
(2.17)
| DLDu  DLDy, DLCy BY
AT or cr
Hy = -
-B,BI —-A -B, DT, —-B,D,
r -1
DllD{l — ’}/21 Dlngl DHB,{ 01 (2 18)
L D21D?1 D21Dgl DQI-B%1 02

Utilizing the above definitions, there exists a solution for the delay-free version
of the problem depicted in Figure 2.4 if and only if the following conditions
hold

i) max{7., Y} <7

ii) Hx € dom(Ric) and X := Ric(Hx) >0
iii) Hy € dom(Ric) and Y := Ric(Hy) >0
iv) p(XY) <~2

Define the following matrices:

Fl 1 Bf Dflrl
F = = -0, X Ch (2.19)
Ey BT D1,
L= |5 L|=(v|cr o |+B |05 pgl)er, @20
Where @ _ D’{lDll — ’721 DﬂDlg @ _ DllD’{l — ’721 Dlngl
| DLDn DhDi | DaDfi  DuDj
If the solvability conditions given above are satisfied, then the matrix Z :=

(I —~v72Y X)~! is well-defined and the matrices

AF = A+BlF1+BQF2 (221)

AL - A -+ L101 + LQCQ, (222)
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are Hurwitz. Using these definitions, let us introduce

Ar | Bso
Goo(s) = Do , (2.23)
CoZ | I
where
Boo = —(32 + L1Dqo + L2D22) Ly
Fy

Cy =
—C5 + Doy Fy + Doy Fy

and nonsingular D, satisfies

D%, DI Dy, 0
S R B . (2.24)

Do JuyDoo = —* v
0 I Dy —I

It can be shown [50] that

(2.25)

which is stable, hence, G, is bistable.

Using the above definitions, the delay-free version of the problem in
Figure 2.4, i.e. A, =1 and A, = I, is to find a proper stabilizing K which
results in

Q = HM(G, K) (2.26)

is contractive. From (2.7), the stabilizing controllers K can be obtained from
(2.26) as
K=HM(G,Q), (2.27)

where () is a free contractive parameter.

In delay case, the used inversion property above may not be used, since
existing A, and A, in K, K = A, KA, results in non-causal K, in general.
However, to obtain a solution for the four-block H* problem with multiple
time-delays the problem can alternatively be posed as to find a stabilizing
controller Ky which yields contractive ) = HM (Go, Ay KpA,). This problem
can be depicted as in Figure 2.5. Utilizing the properties of the chain-scattering

16
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Figure 2.6: Alternative representation of one block problem

representation, an alternative representation for the problem setup shown in

Figure 2.5 can be obtained as in Figure 2.6, where

1 Ar ‘ Bongol

G(s) = Gw(s)D, = , (2.28)

D..CyZ ‘ 1
and
A = e*hy”sbdiag(/\u,/\yfl)
e_thS[on
_ - , (2.29)
e~Ms[,
I,

where hgyp > -+ > hy > 0. Here, hyy, = hyy+ hy,, where hy; (i =1,...,q)
and hy; (j =1,...,r) are defined in (2.14) and (2.15).

Now, the problem is reduced to the one-block H* problem:
OBP(G, A): Find a proper stabilizing controller K such that

| HM(GA, K)o < 1, (2.30)

where G is bistable with lim, ., G(s) = I, as in (2.28), and A is a diagonal
delay block, as in (2.29) [13].

17



An adobe delay problem is described as OBP(G,,A,) where A,, called

—hgs
e "]
adobe delay, has a special form as: A, := e such that p, <

0 I

Pa
Ny + ny and i, + pg = Ny + ny. In this problem, G, is a bistable TFM

A, | B,, B,
Go=|Cu| L, 0 |, (2.31)
c.| 0 1,

where the partitioning is compatible with that of A, [13]. OBP(G,, A,) is to
find a stabilizing controller K, such that Q, = HM(G,A,, K,) is contractive.
To obtain the solution for OBP(G,, A,), let us define the following as in [13]:

'[Ma
o = [ L, O ] Juy

0

0
Jpa = [ O [pa :| Ju?/

Ipa

Aa - BPaCPa _BPa JPGBZ;
T T T PT
—CT J,,Ch. —AT +CT BT

Yiu(t) Xio(t
() = ult) Znlt) = eHat
Yor(t) Lao(t)
Zall ZGIIQ
and X, = = X(hy).
Ea21 EGAQQ

Theorem 2.3. [13] The solution for OBP(G,, \,) exists if and only if os(t)
is nonsingular for all t € [0, h,] and the controller K, solves OBP(G,, \,) if

and only if
I 0| ~ | =
K,=HM G, Q. , (2.32)
I, I
where
Aa 23;22 Bﬂa + 23;12 Cga Jﬂa Bpa
éa = CHGZJQZ ) (233)
IHa+Pa
Cpa - JpaBZ;EJ;gEam

18



15 finite-dimensional and bistable,

H, B
I, (s) := 7, | e "* ‘ ~Cr I, (2.34)
Cpa JPaBZ; O

1s a FIR filter of duration h,, and éa 1s contractive, but otherwise arbitrary.

Utilizing the solution given by (2.32) for the OBP(G,, A, ), the solution
to the OBP(G,A), where A is the joint delay operator that contains ¢ + r
descendantly ordered delay-blocks can be obtained in ¢ + r iterations. The 7*®

iteration involves solving the adobe delay problem OBP(G;, A;), where

—(hi—hi—l)s_[ O i—1

€ )

Ai = H , Pi = Zn] (235)
0 I, J=0

and bistable G;’s are generated by the following sequence:
Gi = Gi—h (236)

e Msp, 0
where G; = G, which is partitioned compatibly with A; = : ,
0 1

p1
similar to G, in (2.31). After obtaining the solutions of OBP(G;, A;), for i =

1,...,q+r, the solution to OBP(G, A) is obtained by the following theorem.

Theorem 2.4. [13] The problem OBP(G,A) is solvable if and only if all
OBP(Gi,N\;) fori = 1,...,q+ r are solvable. In that case, the stabilizing

controller K can be parameterized as

K = HM(II,\G*, Qy), (2.37)

where Ga = Ggyp 18 bistable and finite dimensional and the TFM

q+r
I 0
HAZA*HAi
i | I I

1s bistable. The TFM Qp is contractive but otherwise arbitrary.
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2.3 Flow Control Problem in Data-communication Net-

works

During the past decades, increasing demands on utilization of differ-
ent traffic sources such as data, voice, video, have resulted in a large growth
in the size and diversity of communication networks. However, this growth
has brought problems along with it, thereby, managing and controlling the

networks to satisfy reliable service to the users have become more difficult.

In telephone networks, which are good examples of circuit switching
systems, constant transmission rate is satisfied during connection. However,
the network is underutilized since the communication links are hold by the es-
tablished connections. In modern computer networks, packet-switching tech-
nology is used. This technology improves the link utilization, since, unlike the
circuit-switching, the packet is transmitted over the communication links with-
out reserving any unused bandwidth. On the other hand, this technology does
not assure quality of the real data transmission. The ATM technology merges

the benefits of both circuit-switching and packet-switching technologies.

The network service model defines the characteristics of end-to-end
transport of data between one “edge” of the network and the other. Today’s
internet provides only a single service model, the datagram service [52]. Tt
is known as best-effort-service and provides unreliable QoS. Meanwhile, the
ATM network provides multiple service models: CBR, VBR, UBR, and ABR
services, which satisfy minimum data-transmission and provide feedback for

the congestion notification.

One of the major problems of nowadays’ modern communications is
congestion. Congestion occurs when demand exceeds the network capacity
and causes long queueing delays, packet dropping, and retransmission. Flow
control methodologies are used to avoid congestion by regulating the data
transmission from sources to destinations. Window-based flow control mecha-

nism is used in packet-switching networks, meanwhile, rate-based flow control
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mechanism is used in ATM networks. In the rate-based flow control approach,
the flow control is implemented at the bottleneck node and adjusts the rate of

data that is sent from sources to the bottleneck node to avoid traffic congestion.

In the literature, there exist numerous rate-based flow controller design
approaches. The challenging aspect of the flow controller design is the existence
of time-delays. Since the flow controller is implemented at the bottleneck node,
which is designed to regulate the data rates of the sources, a time-delay occurs
between the time a rate command signal is issued and the actual time this rate
command arrives to the source, called backward time-delay. In addition, the
data packets sent from the source does not arrive the bottleneck node instantly,
hence, there exists a time delay between the time a data packet is sent from
the source and the actual time this packet arrives, called forward time-delay.
The total time-delay is the sum of backward and forward time-delays, called

round trip time-delay. These delays are usually uncertain and time-varying.
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3 SMALL-GAIN THEOREMS

One of the most important results in the control literature is the celebrated
small gain condition introduced in the 1960’s [3,4,53]. This condition lets one
to verify the stability of a feedback interconnection of two stable systems (e.g.,
see [54]). In the 1980’s this condition became a basic part of the robust control
theory (e.g., see [5]). Various results have been obtained based on this condi-
tion. However, all of the results published to date consider interconnection of

causal (in time) systems only.

Although most physical systems satisfy the causality (in time) assump-
tion, the need to consider non-causal systems may arise in some problems. One
of the problems is the robust controller design problem for systems with un-
certain time-delays, which will be considered in the next chapter. Another
problem arises in multidimensional systems, which are not causal in spatial

coordinates [14].

This chapter is organized as follows. In Section 3.1, the motivation
behind the study to show the validity of the small-gain theorem for non-causal
systems is discussed. In Section 3.2, sufficient conditions to satisfy the validity
of the small-gain theorem for interconnection of two stable systems, at least
one of which is non-causal, are given. In Section 3.3, a more relaxed condition
is introduced for the feedback interconnection of two subsystems one of which
is MISO and the other is SIMO. In Section 3.4, the utilization of non-causal
uncertainty blocks in the robust controller design problem for multiple-time-
delay systems is addressed. Considering different uncertainty representations
of the finite-dimensional part of the system, a new strong small-gain condition
is introduced to utilize the non-causal uncertainty blocks in the H* controller
design. In Section 3.5, an alternative approach to robust controller design
for the system in Section 3.4 is given by replacing the non-causal uncertainty
blocks with causal ones. This chapter ends with a summary of the results

derived.
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3.1 Existence of Non-Causal Uncertainty Blocks in the
‘H>* Controller Design for Systems with Multiple
Time-Delays

Consider a plant with input and output delays, represented by the
input-output map G'= A,G¢A,, where A, and A, are diagonal operators with
delay elements on the diagonal. Each input or output delay is assumed to be
in the form 77(t) = h? + 67(t), where t is the time variable, h? is the known
constant nominal delay, 67 (t) is the time-varying unknown delay uncertainty,
and e stands for either u or y, where u refers to input signals and y refers to
output signals. Therefore, 7% corresponds to the delay in the i*" input channel,
and 77 corresponds to the delay in the i output channel. Gy is the finite-
dimensional part of the plant, possibly including time-varying uncertainties.
The nominal part of Gf, however, is assumed to be linear and time-invariant.

The uncertainties in the time-delays are assumed to satisfy either

0 < 82(t) < o0 (3.1)

7

or
|07 ()] < 677 (3.2)

® max
i

be bounded). It is further assumed that 77 (t) > 0 (i.e., 67 (t) > —h?) for all ¢.

for a given positive bound ¢ (in addition, time derivative of 67 (¢) may also

A controller design problem, which guarantees the robust stability and
certain performance conditions may be set-up as shown in Figure 3.1a, where
A is an LTV uncertainty block representing uncertainties in the time-delays
and in the finite-dimensional part of the plant (if any), M is the general-
ized plant representing the nominal plant Gy with input/output delays and
weighting functions, if any, and K is the controller to be designed using an
‘H*>-optimization approach (e.g., [5]). To design an H>-optimal controller for
the problem depicted in Figure 3.1a, the known constant nominal time-delays
are taken outside of the generalized plant as depicted in Figure 3.1b to use

. . . 0 0 .
the approach given in Section 2.2. Here, A; and A}, respectively, denote the
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(a) (b)

Figure 3.1: Robust control problem; a) Generalized plant includes time-delays;

b) Time delays are taken outside the generalized plant [36]

nominal parts of A, and A,, My is a finite-dimensional generalized plant, A
again represents the uncertainties, which is different than the one shown in

Figure 3.1a.

When this approach is undertaken, however, the uncertainty block,
A, turns out to be non-causal, if uncertainties in the delays are assumed to be
bounded as in (3.2) (see Chapter 4). In this case, a difficulty arises in the H>
controller design, since it uses the small-gain theorem [3-5], which assumes the
causality of the systems. To overcome this difficulty, it may be assumed that
the uncertainties are bounded as in (3.1). Therefore, A turns out to be causal,
and the H* optimal controller can be designed. However, this assumption,

requires taking h!’s as the minimum delays, rather than nominal, which are

o max
i

most probable, and taking the bound ¢ larger (twice as much) compared
to the case in (3.2). This, in turn, introduces conservativeness in the robust
controller design and the performance is optimized not for the actual nominal
plant, but for the plant which has minimum delays. By using the results
presented in the following sections, it may be possible to let A be non-causal
and thus use (3.2) rather than (3.1). This should reduce the conservatism and

improve performance.
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3.2 A Small-Gain Theorem for Feedback Systems with

Non-Causal Subsystems

In this section, the sufficient conditions are given to satisfy the internal
stability of a feedback interconnection of two stable systems, at least one of
which is non-causal. The results presented in this section have been published
in [36]. For the sake of completeness, some definitions and a lemma, borrowed

from [55], are first introduced .

T

Definition 3.1. Given p € [1,00),a = | a; --- a, ] € R™, and a positive
T

integer n, the set L7[a,00) consists of all n-tuples f = [ fi o fa ] , with

fi € Lyla;,00) for i = 1,...,n. The norm on L}[a,00) is defined as || f[|, :=

" 1/2
ZHfiIIf»] .
=1

Remark 3.1. The initial time a is assumed to be same for each component of

a vector function in an Ly space, in many references, including [55]. There-
fore, the usual notation for an L} space is Ly [a,00), where a € R. How-
ever, throughout the dissertation, to represent non-causal systems with differ-
ent time-advances in each channel, each component of a should be different.

Therefore, the notation is generalized as above.

T
Definition 3.2. Suppose f = | f; --- f, } , where f; : [a;,00) — R
T
1 = 1,...,n. Then, for each finite T, fr := [ (fr)1 -+ (fr)n | , called
the truncation of f, where (fr); : [a;,00) — R (i = 1,...,n) is defined as
O, Vtzal-, 1fT<CLZ
(fr)i(t) = fi(t),  a;<t<T
0, t>1T > a;
T
Definition 3.3. The set Ly [a, 00), where a = [ a, --- a, | ,consistsofall
T
f= [ fi o fa ] , where f; : [a;,00) = R (i = 1,...,n), with the property

that fr € Ljla,o00) for all finite T', and is called the extension of Ly or the

extended Ly -space.

Lemma 3.1. For each real p € [1,00) and f € L} [a,00),
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U €1 %

+ G

Y2 Gy €2 y+ U2

Figure 3.2: Feedback system [36]

(1) || frlly is a non-decreasing function of T,

(i) f € Lyla,00) if and only if there exists a finite constant m such that

| frll, < m, for all finite T'; in which case, || f]l, = imr_o || f7 |-

Proof. See [55]. O

Definition 3.4. A mapping A : L}![a;,00) — L)2[ag, 00), where a; € R™
and ay € R"™, is said to be L,-stable with finite gain (L,-sfg) if there exist
non-negative finite constants 7, called the gain of A, and b, called the bias of

A, such that, ||Az[|, <[z, + b, for all € L}[a;, 00).

Definition 3.5. A mapping A : Lp![a;,00) — Ly2[ay, 00) is said to be causal

if (Af)r = (Afr)r, for all finite T', Vf € Lyl[a1, 00).

We consider the feedback configuration shown in Figure 3.2, where
uy € Ly'[ay,00), e1,y2 € Lptfar,00), uy € Ly?[az, 00), and ey, y1 € Ly2[ag, 00).
We assume that G; : Ljl[a;,00) — L72[az,00) and Gy : L;2[ap,00) —
Lptlay, 00) are L,-sfg, respectively with gain 71 and 7, and bias b; and by;
ie.,
1Greall, < mlleallp + 01, Vey € Lytlay, o0) (3.3)
and
|Gaeallp, < olleall, + 2 Ves € Ly*[az, 00) (3.4)

When G; and G satisfy (3.3) and (3.4) and are both causal, the small gain
condition [3,55], v172 < 1, proves the stability of the closed-loop system shown
in Figure 3.2. This result, however, does not directly extend to the case when

at least one of the blocks is non-causal, as shown by the following example.
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Example 3.1. [36] Consider the feedback configuration shown in Figure 3.2.
Let, for some a € R and h > 0, Gy : Lycja,00) — Lyc[a — h,00) and G5 :
L,cla — h,00) — Lyc[a,00) be defined as yi(t) = yie1(t + h), Vt > a — h, and
y2(t) = 7aea(t), Vt > a (the input of Go at times a —h < t < a does not
have any effect on its output), respectively, where v, and 7y, are positive finite
constants. It can easily be shown that, for i = 1,2, G; is L,-sfg with gain ;

and bias zero. Note that

n(t) =mnu(t+h) =7 (wlt+h)+ult+h), t=a-h
This gives
1
yl(t+h):——y1(t)+v1(t), tZa—h
Y172

where vy (t) := %ul(t—l—h)—m(t—l—h), t > a—h, is an external signal. Similarly,

1
Yot +h) = ———p(t) +0u(t),  t>a
Y172

where vo(t) = uy(t +h) + %Ug(t), t > a. These show that the closed-loop map

Uy 1 €1 .
from u = toy = (thus also the map from u to e = ) is

Uz Y2 €2
L,-sfg if and only if y1v2 > 1. Interestingly, this implies that this closed-loop

system 1s stable only if the small gain condition, y17v2 < 1, is not satisfied. O

Now, we assume that at least one of the blocks in Figure 3.2 is non-
causal, but the two cascade connections of these blocks (i.e., the two systems
obtained by breaking the loop in Figure 3.2 (i) at e;, (ii) at e) are both casual;
i.e., G; and G5 satisfy

(Gngeg)T = ((Gng) (62)T)T , Veg - L;g [ag, OO) (35)

and

(GaGher)r = ((G2Gh) (e1) 1)y Ver € Lyzlar, 00) (3.6)

for all T'. This condition is satisfied, for example, when (G is such that, for
some h > 0, its output at time ¢ depends on its input up to time ¢ + h, i.e.,

G satisfies (Ghe1), = (G1 (el)T+h)T, VT, Ve, € Lytlar, o0), and Gy involves a
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pure delay which is not less than h, i.e., Gy satisfies (Gae2) 7., = (G2 (e2)1)
VT, Vey € L}2[as, 00).

T+h?

We also assume that G| and G satisfy

H(G (er £6)),ll, < (G (e))oll, + (G (eD)ll, . B

Vei, ef € Lytay, 00) and

1(G2 (e2 £ e2) ]|, < [1(G2 (e2)) [l + 1[G (), - (38)

Vey, €5 € Li2[ay, 00), for all T. We note that the class of systems which satisfy
relations (3.7) and (3.8) are fairly large. In particular, these relations are satis-
fied by any linear G; and Gy, since in this case (G (e] £ €3)), = (G1 (e7)), £
(G (€2))y and (Ga (6h & B))y = (Ga (A + (Ga (D)), Vel € € L[, o),
Vey, €5 € Li2[ay, 00), and for all T' (desired result then follows by the triangular

inequality for || - ||,).

Theorem 3.1. [36] Consider the feedback configuration shown in Figure 3.2.
Let G1 and Gy satisfy (3.3)-(3.8). Suppose v1y2 < 1. Then the closed-loop

. Uy Y1 €1 .
system, i.e., the map from u = toy = (or to e = ), is
Uz Y2 €2
L,-sfg.
Proof. From Figure 3.2 we have
Iw)zlle = [[(Gred)q llp < [[(Grua)g llp + [ (G1Gaea) 1 |l
< Gy + [ (G1G2) (e2)7 [l
< mllullp + b+ el (e2)7 [lp + 7102 + by

< mllully + melluell, + 7192l W)z lp +
where ¢; := y1by + 2b; and we used Lemma 3.1, (3.3)—(3.5), (3.7), and the

triangular inequality [55] for || - ||,. Since y172 < 1, this implies that

Y172 C1

sy + — 3.9
T L U g (3.9)

T
< —uqll, +
@)l < 72—l

Since the right-hand-side of the above inequality is independent of T', by

Lemma 3.1, y; € L7*[az, 00) and, given |u;[|, and |[uzl|,, the right-hand-side
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of (3.9) is an upper bound for ||y ||,. Similarly, by using (3.6) instead of (3.5),
and (3.8) instead of (3.7), we can also obtain

Yo
< _'_
H(y2)THp — 1 7172”u2Hp 1

= (3.10)
where ¢y := ~9b; + 2by. This in turn implies that yy € L;“ la1,00). Con-
sequently, since e; = uy — yo and ey = uy + Y1, e1 € Lj'[ay,00) and ey €
Ly?lay, 00). Furthermore, the right-hand-side of (3.10) is an upper bound for

|y2||p- Moreover, (3.9) and (3.10) also imply that

1
(w2 + lly=l12)

||y||p

IN

T~ (Y1(1 + y2) Jua|lp + 2L + 1) [Juzll, + 1 + c2)
— 7172

< Allull, +0b

which implies that the closed-loop map from u to y is L,-sfg with gain

~v := V2 max (71(1 +72) 72l + 71))

L =77 Tl — 7172

and bias b := M Similarly, it can also be shown that, under the hy-

— 172
pothesis, the closed-loop map from u to e is also L,-sfg with gain

1 1
’y::\/imax( +n +’72)

I =77 ’ I =77

and bias b. O

3.3 A Small-Gain Theorem for Feedback Connection of
a SIMO System with a MISO System

In the previous section, the sufficient conditions to satisfy the inter-
nal stability of the feedback interconnection of two stable subsystems, at least
one of which is non-causal, were presented. The main result, Theorem 3.1, was
based on the assumption of the causality of cascade connections of subsystems.
However, this condition may not be satisfied in the flow controller design prob-
lem, considered in the next chapter. The flow control problem considered there

is for a network with a single bottleneck node fed by n sources. Thus, to show
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the validity of the small-gain theorem for this problem, the feedback system in
Figure 3.2 should be arranged as a feedback interconnection of a SIMO system
with a MISO system. Hence, a less conservative result can be found in com-
parison to the result derived in Section 3.2, since the systems in the feedback

connection have known structure. The results presented in this section have

been published in [37]

Let us consider the feedback system in Figure 3.2, where it is assumed
that Gy : L} [a,00) — Lye[a, 00) and Gy : Lye[a, 00) — Ly [a,00) are L,-sfg
and linear. Furthermore, the causality assumption (3.5) is also assumed to be
satisfied. The other causality assumption, (3.6), however, is not necessarily
satisfied. In the following theorem, instead of (3.6), a more relaxed condition
is introduced. It is shown that this condition is also sufficient for stability in

the present case.

Theorem 3.2. [37] Consider the feedback configuration shown in Figure 3.2,
where u; € L7[a,00), e1,y2 € Lj [a,00), uy € Ly[a,00), ez, y1 € Lye[a, o0),
where a € R™ and a € R. Let Gy : Ly [a,00) — Lya,00) and Gy :
Lpcla,00) — L7 [a,00). Assume that both Gy and Gy are linear (thus (3.7)
and (3.8) are satisfied) and L,-sfg with gain v, and 72 respectively and bias
zero (thus (3.3) and (3.4) are satisfied with by = by = 0). Fori =1,...,n,
let Gy @ Lpelai, 00) — Lpe[a, o0) denote the map from the i'™ input of Gy to its
output and Ga; : Lpe[a,00) — Lycla;, 00) denote the map from the input of Go
to its i output (i.e., G1 = [ Gy - G } and Gy = [ Gy -+ Gop ]T)
Suppose that G1Gy is causal (i.e., (3.5) is satisfied). Also suppose that Go;Gy;

18 causal, i.e.,
(GZiGlielz’)T = ((G2iG1i) (eli)T)T ) Vey; € Lpe[a’ia OO) ) (3-11)

VT, for allt = 1,...,n. Moreover, suppose that v17v2 < 1. Then the closed-

T T
loop system, i.e., the map from u = [ ul ul } toy = [ yl oyl ] (or to

T
e = [ €1T eg } ), is Ly,-sfg.
Proof. As in the proof of Theorem 3.1, taking u; € Lj[a,00) and uy €
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Figure 3.3: Feedback system with the loop broken at ey; [37]

L,la, 00), using (3.3)—(3.5) (with by = by = 0) and the linearity of Gy, it

can be shown that

a! Y172
< —Ju + —|u . 3.12
w)rll < =Tl + 12l (312

Since the right-hand-side of this inequality is independent of T', y; € L,[a, 00)
and, given ||u;||, and ||lual|,, the right-hand-side of (3.12) is an upper bound

for {|yy],-

To obtain a similar result for s, instead of breaking the loop at ey, as
in the proof of Theorem 3.1, we will break the loop at each individual channel
of e;. Note that, when the loop is broken at the i channel of e;, the system
shown in Figure 3.3 is obtained, where Gy;, Gg;, and ug; respectively denote

G4, G, and u, with their i*" element removed.

Let v;; denote the gain of Gy; (thus v; = />°7 7)) for j =1,...,n,

i = 1,2. Note that, by Schwarz inequality (by viewing ~; as the 2-norm of
T

[%‘1 0 Yin ,i:1,2),

Z%ﬂgj <M - (3.13)

j=1
From Figure 3.3,
1 n
€y = (Uz + Z Gljulj + Gueu) . (314)

1"— Z GleQj J=15#1

=1,
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Note that the feedback loop from the output of Gy; to the input of Go; in
Figure 3.3 is well-posed, since, by (3.13) and the assumption vy, < 1, its loop

gainis )7, ;715725 < 1. Furthermore, by (3.11), themap 77 ., G1;Gy; is
1

= is causal. More-
1+ Zj:l,gl';éi GG

causal. Therefore, the system with map

over, an upper bound on its gain is p; := =5 B
T Zuj=1,5#i 115725

Now, using (3.3) and (3.4) (with by = by = 0), the linearity of G; and
Gy, the fact that uy; € Ly[a;j,00),us € Lyla, c0), and (3.11), from Figure 3.3,

we obtain

| (vai)llp = [l (Gaiez) |l

<pi | 1(Gaua)p llp + D 1(GaiGrjuny)y Il + I (GoiGhieri)y ||p>

=1

< pi | [Gaiually + Y 1G2Ghjuglly + [ (GiGri) (exi) ||p>

=1

< pi | v2illually + o Z%j”uljﬂp + 72i71z‘||(y2z‘)T||p> ; (3.15)
j=1

where e1; = uy; — yo; is also used in the last step. Using 7172 < 1, from (3.13)
Y1iY2i

. <1
L= i V1372

we obtain yiyer < 1 — Y0, i Y15%2) OF pieinii =
Therefore, from (3.15) we obtain

V2i -
[(y2i)7llp < =5 <||U2||p + Z%j”uuﬂp) - (3.16)
j=1

=1 1572j

Since the right-hand-side of this inequality is independent of T', yo; € Ly[a;, 00)
and, given ||uyllp, 7 =1,...,n, and ||us||p, the right-hand-side of (3.16) is an
upper bound for ||ys;||,. Repeating this for each i = 1,...,n, it is concluded
that y € L;[a, o0). Consequently, since e; = u; — yo and ey = us + ¥y,
e1 € Lyla,00) and ey € Ly[a, 00). Furthermore, from (3.12) and (3.16), we

also obtain

1
n 2
lylly = (HylHi +> HzmHi) < llullp (3.17)
i=1

where

_ V72 (e 71+ 3e) + max (2, 13)
1 =y

vl
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This implies that the closed-loop map from u to y is L,-sfg. Similarly, it can
also be shown that the closed-loop map from u to e is also L,-sfg. Thus, the

desired result follows. O

3.4 Utilization of Non-Causal Uncertainty Blocks in the
Robust Controller Design Problem for Systems with
Multiple Time-Delays

In the previous two sections, the sufficient conditions were given for
the validity of the small-gain theorem for feedback interconnected non-causal
subsystems. As stated in Section 3.1, non-causal uncertainty blocks may arise if
the approach of [13] is used in the robust controller design problem for multiple-
time-delay systems. In this section, it is shown how the non-causal uncertainty
blocks arise in the H* controller design problem for systems with multiple
time-delays. In addition, utilization of non-causal uncertainty blocks in the
robust controller design is given under different uncertainty representations
of the finite dimensional part of the actual plant. To show the appearance of
non-causal uncertainty blocks in the problem setup, firstly, the structure of the
uncertainty blocks is derived in Subsection 3.4.1. Then, in Subsections 3.4.2—
3.4.5, a number of different representations for the uncertainties in the finite-
dimensional part of the actual plant are given. In Subsection 3.4.6, it is shown
that the design of an H>-optimal controller for a plant whose uncertainties
may be represented in one of these forms is possible utilizing the special time-
advance form of the resulting uncertainty blocks with the introduced strong

small-gain condition. Results presented in this section have been published

in [38] and [39].
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3.4.1 Appearance of non-causal uncertainty blocks in robust con-

troller design

In this subsection, appearance of non-causal uncertainty blocks in the
robust controller design for systems with multiple time-delays by the approach
of [13] is given.

Definition 3.6. For a time function (including a constant) 7 : [tg, 00) — R,

we let D, denote the delay operator by 7; i.e., if r = D,s, then

s(t—7(t), t—1(t) >t

r(t) = L t> 1.
0, t—7(t) < to
T
If r = [ m -+ 7, | ,then D, :=diag(D,,..., D, ); ie., if r = D,s, then
Sz‘t—TZ‘t s t—TZt Zt
ri(t) = (t = n(®) (t) O >ty i=1,....n.
0, t—7(t) < to

Note that, if 7 = h + 0, with A > 0, §(tg) = 0, and |5(t)| < 1, Vt > tg, then,
for t > th DT = DhD5 = D(gDh.

Let us consider the robust controller design problem for a MIMO linear
plant, whose each input and each output is subject to an uncertain time-
varying time-delay. To design a stabilizing controller by the approach of [13],
the problem should be stated in the generalized H>-framework as depicted
in Figure 3.4. Here, A is a linear (but possibly time-varying) norm-bounded
block which represents uncertainties, K is the controller to be designed, A,

and A, respectively represent the nominal input and output time-delays, as in
Al By B
(2.14) and (2.15), G = | O, | Dy; Dj, | is the generalized plant from

C12 D21 D22

z
to , which is LTI, finite dimensional, and satisfies the standard RH

Y
assumptions ((i)—(iv) given in Section 2.2).

In this set-up, if K stabilizes the nominal system (i.e., the system in

Figure 3.4 with A = 0) and makes the Ls-induced norm of the TFM from w
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Figure 3.4: Generalized plant [38]

to z less than or equal to some 7, then assuming that A is causal, the small
gain theorem implies that the actual system is robustly stable for all A whose
Ls-induced norm is less than 1/4. However, by the approach of [13], A may
become non-causal if uncertain part of the actual time-delay is assumed to
be negative. If A is non-causal, then robustly stabilizing controller K can be
designed if the sufficient conditions given in the previous sections are satisfied.

However, as shown in [38], these conditions may not always be satisfied.

To show the appearance of non-causal uncertainty blocks in the H*°
framework, consider a linear plant, €2, with n, inputs and n, outputs. We
assume that the i input is subject to a time-varying time-delay of 7%(t) =
hi 4+ 6(t), where A} is the known time-invariant nominal part and 0¥ (¢) is the
unknown time-varying uncertain part. Similarly, the i*® output is subject to
a time-varying time-delay of 7/(t) = hY + 6/(t), where hY is the known time-
invariant nominal part and 67 (¢) is the unknown time-varying uncertain part.

It is assumed that

max{—0;(t)} <o <h?, i=1,...,n, (3.18)

t>to
for some 67 > 0, where o represents either u or y. Furthermore it is assumed
that

83 < 87, [87(D] < 87, VE=to, and & (o) =0, (3.19)
for some bounds 5; >0and 0 < ) <1,7=1,...,n,. We also assume that,
apart from these delays, the plant is time-invariant and finite-dimensional.

Then, the actual plant can be represented as 2 = D,yPD,., where 7° :=
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Figure 3.5: Representation of IT [38]

T
[ T e T ] and P is LTI and finite-dimensional. By defining II :=

T
Dgsy PDgu, where 0° := [ &y - on, } , the plant can also be represented as
T
Q = A,TTA,, where A, := Dy, where h* := [ oo b

Te
To model the uncertain part of €2 considering the bounds and varia-

tions of the uncertain time-varying time-delays, one possible way is to intro-
a;s+1
s+ b
where af, b} > 0 are design parameters, to represent Il as in Figure 3.5. The

1771

duce the weighting matrices W, = diag(w?, ..., ws_ ), where W} (s) =

I Ne

transfer function w(s) in Figure 3.5, ¢ = 1,...,n,, can be represented in

state-space form as follows:

zi(t) = =biw(t) + (1 = aibi)ki(t), (3.20)

where x%(t) is the state variable and k; and [; are the i*" element of k and [,
respectively. Fori = 1,...,n,, the i'® element of p in Figure 3.5 can be written
as:

pilt) = lLi(t = 6;(1)) = @ (t = 67 (1)) + aiki(t — 6;'(1))- (3.21)

If the solution of x¥(t) is substituted in p;(t), (3.21) can be written as;

t62 (1) t62 ()
pilt) = / ki(0)dv — b / L(0)dv + aks(t — 6(¢))
0 0

t—0%(t) t t
_ / ki (0)dv — / ki (0)dv + / ks (v)dv
0 0 0
t—%(t) t t
—b;-‘/ li(v)dv—kb?/ li(v)dv—bf/ l;(v)dv
0 0 0
aki(t — 5V(8))

_ /t e (v)du + /0 e (v)dv + ak(t — 52(1)), (3.22)

—au(t)
where e (t) := ki(t) — bl (t) and without loss of generality we assume t, = 0.

1 — b
w, then ef(s) = wi(s)k¥(s). Therefore,

Let us define wi(s) := T
S i
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Figure 3.6: Mapping from k; to p; [38]

utilizing (3.22), the mapping from the i*" element of k to the i*" element of p
can be depicted as in Figure 3.6. To find a bound on the uncertainty block
Ay, let us define

= [ [

~53(1) ~52(1)

Let r¥(t) := |e¥(t)], i = 1,-- -, ny, then, from the assumption in (3.19)

0
, (3.23)
0

t t+8y

where 0;(t) := / - ri(v)dv, and T;(t) = / ri(v)dv. Taking Laplace
t—du t

transformations of v;(t) and v;(t),

63;%3 -1

0;(s) = ri(s) (3.24)
e*gys -1

vi(s) = Tﬁu(s) (3.25)

From (3.24) and (3.25), both [|0;(¢)||2 and ||v;(t)||2 are less than or equal

OU||re(t)||g, i = 1,---,m,. Therefore, from (3.23), |[vi(t)]l2 < 6¥{r(t)]l2 =
Stlet @l since [ lrPae = [ (et Pde = [ jer(oPdr for i =
0 0 0

L,...,ny. Hence, |Af s <6f,i=1,... 1.
To find a norm bound on A,, as in [23], let us define fori = 1,...,n.,,
A =0 — 67 (v) = f(v). (3.26)
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The relation in (3.26) implies that

XS dos(v)
L=1——"2:=1—0g7(\}). 3.27
dU dU gl( Z) ( )
Since by (3.19), '61(5:17(’0) < 1, therefore, df:i(v) > (0. The latter inequality

v v
dé?
implies that v = f£~*(\?). From (3.26), g?(\) = # . Therefore,
Yo e=prmtow)

if d(t) :==c(t —6%(t)), i =1,...,n,, then,

[ apa = [T aera = [ leonp=tns
1

c(AY)[2dNy, 3.28
o [ levonray (3.28)

hence, ||AY,|l2 < As shown in Figure 3.6, A¥, and AY, are non-

1
causal, since A}, becomes a non-causal integral block and Aj, becomes a
time-advance block for 6(t) < 0. The maximum time-advance in both A},
and AY, is max;>o{ —0(¢)} > 0. However, by (3.18), it is bounded by 0% <
hi. Let us define A} := [ 1 Ay AL ], which is norm-bounded, and

1 — qb 1 — ab e 1"
a; Vi _S( aiby) a¥ 5+ , which is stable. Now,
al's +1 al's +1 aj's +1

defining A, := bdiag(AY,..., A} ) and W, := bdiag(w{,...,w) ), the map-

wi(s) =

ping from @ to p in Figure 3.5 can be obtained as A,W,,.

Using the similar procedure, the mapping from ¢ to y can be obtained
as follows. The transfer function E?(s) in Figure 3.5, j = 1,...,n,, can be

represented in state-space form:

Bt = —bal(t) + (1 — a2b)my(t), (3.29)

777

nt) = a(t) + almy(0),

where z%(t) is the state variable and m; and n; are the §™ element of m and
n, respectively. In Figure 3.5, m;(t) = ¢;(t — 07(t)). Therefore, the solution of

zi(t) in (3.29) can be written as below;

xé’(t) = _b?/o x]y(v)dv—k (1 _a?b?)/o g;(v —5;-’(U))dv
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Figure 3.7: Mapping from ¢; to n; [38]

t t
= —b?/o i (v)dv + (1 — ajby) [/0 qj(v — 0% (v))dv—
t=6%(t) t=6%(t) t
/ q;(A])dN! +/ g;(v)dv + / gj(v)dv
0 0 0

- [ o). (330

t—5% (t) t
From (3.26), since / q;(AJ)dA] = / (1 =g (v—67(v)))g;(v —d7(v))dv,
0 0

(3.30) can be written as;

xjy(t) = —b?/o xjy(v)dv—l—(l—a?b?)/o(gquj)(v—%’(v))dv
(1 at) /H?(t) g;(W)dv + (1 — a't?) /O ¢ (0)dv
- /O 2 (0)dv + (1 — ) (Tq) (), (3.31)

t

where (Ta;)() = [ / D lgta) (v - / g BN / 0 <v>dv] If the

Laplace transform of both sides in (3.31) are taken, then
s(1 —a’dY)

(s = S e )
Let defi ~y( )._ S(l_a?b?) d & o , Yy _
et us define wj(s) := W and ¢} (s) := L{(Tq;)(t)}. Then, z}(s) =

w!(s)qy(s). Since n;(t) = x¥(t) + m;(t) = x¥(t) + alq;(t — 6%(t)), the map-
ping from the j** element of ¢ to the j'™ element of n can be depicted as in

Figure 3.7, where M, represents multiplication with 5;’ Using the relation
J
Y

in (3.26) and (3.27) , [|AY ]2 < ﬁij (see also [23]), [|Aj2ll2 < ;5\;’ and

=
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1
[AY 5]l < ——=—=,7=1,...,n,. Here, all A?l, [ =1,2,3, are non-causal for
; . y )

J
67(t) <0, since AY, becomes a time-advance block, A7, becomes a non-causal
integral block, and A;g becomes a time-advance block. The maximum time-
advance in all AY; [ = 1,2,3, is max;>o{—0;(t)} > 0, in general and, by (3.18),
is bounded by ¢¢ < hY. Defining A, := bdiag(A7,.. -, Ay ), where AY =

A :

[ LAY AY, AY } is norm-bounded, and W, := bdiag(wy,... ;Wi ),

1—ajb? 1—ajb]  s(1—aibj) s+

where w](s) [ a]ys—l—l a?s—l—l a]ys—i—l aja?s—l—l is stable,

the mapping from ¢ to ¥ in Figure 3.5 can be obtained as W,A,. Therefore,

II can be written as:

= W,A,PAW, . (3.32)

In the following subsections, the robust controller design for the actual
plant 2, whose finite-dimensional part is shown in one of the four different

uncertainty representations, is presented.

3.4.2 Additive uncertainty representation

Let
P =P’ + W, AW,, (3.33)

where PY is the nominal plant (apart from the time-delays), W, and W, are
the stable uncertainty weights, and A is the stable uncertainty block. Then,

(3.32) can be written as
I = W,A, P°A W, + W, A, Wi AW, A, W,, .
Let us assume that P° has a left co-prime factorization,
P’=M"'N (3.34)
in H>, where M is diagonal. Since W,A, and M~! are both diagonal (hence
they commute), I can be written as

M = P°+W,AW,AW,A, W,
M7*N 0 AW,

+| WA, I, i
0o MN|| L,
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Figure 3.8: Feedback Configuration with left co-prime factorization [39]

= P+ MOW,AW, =P+ M AL (3.35)
where Zi = bdiag(AyNAu,AyMVVlﬁWgAu,N), W, = w, W, -I, ],
and W, = [ w! Ww! I,, ]T. Since Wy,Wu, and Zla are norm-bounded,
Al = WyZLWU is also norm-bounded and its norm is bounded by the norms
of W, (which depends on design parameters a and b3), M, Wy, W5, N, and
by the norm bounds of A and A, (which depends on 6* and 3°). Then, the
feedback configuration to control the actual plant can be represented as shown

in Figure 3.8, where Al = Al. Note that Figure 3.8 is equivalent to Figure 3.4

with A = Al and
0 I,

G = e po | (3.36)
which satisfies the standard RH*> assumptions ((i)—(iv) given in Section 2.2)
as long as the actual realization of PY is stabilizable and detectable. Moreover,
Figure 3.8 is also equivalent to Figure 3.2, where G; = Ala and Go = A K (I +
Ay PONK) TN M = A K(M+ A/NA,K)'A,. Gy and G are both linear
and, since Al is stable and K is designed to stabilize the nominal plant, G,
and (G5 are also both stable. Note that, the maximum time-advance from the
™ input of Gy = AL = W,A (N + MW, AW,)A, W, — N to its j* output
is bounded by J* + 5;’, since Wy, Wa, ﬁ, M, and N are causal. On the other
hand, note that, due to A, and A, G = A, K (M + A,NA,K) A, involves a

pure delay of h + h¥ from its 7™ input to its i output.

Alternatively, if P° does not have a left-coprime factorization (3.34)

where M is diagonal, but has a right-coprime factorization,
P’ = NM™' (3.37)
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Figure 3.9: Feedback configuration with right co-prime factorization [39]

in H* where M is diagonal, then

M = P+ W,AW,AW,A,W,

NM' 0 AW,
+ [ wa, -1, | o
| 0 NM! L,
= P + W, AW, M =P +AM", (3.38)

where A7 := W,A W,, where A, := bdiag(AyﬁAu, AyW1£W2MAu, N).
Furthermore, A! is norm-bounded and its bound can be calculated in terms of
the norms of W,, M, Wh, Wa, N, and the norm bound of A, and A. Then the
feedback configuration to control the actual plant can be represented as shown
in Figure 3.9, where A" = Al. Furthermore, this feedback configuration is

equivalent to the one given in Figure 3.4 with A = A" and
G = : (3.39)

which satisfies the standard RH™ assumptions ((i)—(iv) given in Section 2.2)
as long as the actual realization of PV is stabilizable and detectable. Figure 3.9
is also equivalent to Figure 3.2, where G; = A] and G, = ]f\\/[/*lAuKAy(I +
POALKA,) ™Y = A,M 'K (I + AyP°A,K)~'A,. In this feedback configura-
tion, G; and G5 are both linear and, since A] is stable and K is designed
to stabilize the nominal plant, G; and G5 are both stable. Furthermore,
the maximum time-advance from the i input of G; = A! = WyAy(]v +
Wlﬁwgﬂ)AuWu — N to its 4™ output is bounded by & + 5?, since Wi,
W, E, ]T/[/, and N are causal. On the other hand, due to A, and A, Gy =
AUMAK(I + A, P°A,K)tA, involves a pure delay of hl + hi from its 5th

input to its i*" output.
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3.4.3 Multiplicative input uncertainty representation
Let
P = P°(I,, + Wi AW,), (3.40)

where W7 and W, are stable uncertainty weights and A is the stable uncertainty

block. Then
T = W,A, P°A W, + W, A, PPW AW, AW, .

Let us assume that, P° has a factorization in H* as given in (3.34) where M

is diagonal. Then

M = P°+W,A,P'W,AW,A,W,

M7*N 0 AW,
+| WA, I,
| 0 MN I,
— P+ M'W,A, W, =P’ + M AL (3.41)
where Zmi = bdiag(AyNAu,AyNwlgngu,N), Wy and W, are same as

in Subsection 3.4.2, and Al = Wnyqu. Note that, Al is norm-bounded
(norm bound depends on the norms of W,, Wy, Wy, N, and the norm bounds of
A,, ﬁ) Furthermore, representation of IT in (3.41) for the perturbed plant in
(3.40) is the same as in (3.35). Therefore, the feedback configuration to control
the actual plant which is represented by multiplicative input perturbation, can

be represented as in Figure 3.8, where Al = Aﬁni.

Since the structure of IT in (3.41) is same as in (3.35), the generalized
plant in the H>-framework in this case is same as in (3.36). Furthermore, the
feedback configuration for this set up (Figure 3.8 with Al = Al ) can also be
shown as in Figure 3.2, where Gy = Al and Gy = A K(M + A/ NA,K) A,
Note that, G; and G4 are both linear and, since Aﬁni is stable and K stabilizes
the nominal plant, G; and Gy are also stable. Since (I, + Wlﬁwg) and N
are causal, the maximum time-advance from the ™" input of G; = Al =
Wy,AyN(L,, + WiAW,) AW, — N to its j* output is bounded by §* + 07
Furthermore, as above, Gy = A, K (M + A,NA,K) A, involves a pure delay

of hi + hf from its 5™ input to its i*" output.
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3.4.4 Multiplicative output uncertainty representation

Let
P = (I,, + Wi AW,) P°, (3.42)

where W, and W, are stable uncertainty weights and A is the stable uncertainty

block. Then
T = W,A, P° AW, + W, A, W, AW, PPA,W, .

Let us assume that, P? has a factorization in H* as given in (3.37) where M

is diagonal. Then

M = P°+W,A,W,AW,P°A,W,

NM~ 0 AW,
- [ W,A, —I, o
0 NM! I,
- P +W,A, WM™ =P+ A M, (3.43)

where Z:% = bdiag(AyﬁAu,AyW1£W2NAu,N), Wy and W, are same as
in Subsection 3.4.2, and A} == WyZ:noWu. Note that, A} is also norm-
bounded and the feedback configuration to control the actual plant can be

represented as in Figure 3.9, where A™ = A] .

Since II in (3.43) has the same structure as in (3.38), then the gen-
eralized plant to design a robust controller for this plant is the same as in
(3.39). Furthermore, this configuration is also equivalent to the one shown in
Figure 3.2 with Gy = A, and G, = AUM”K(I—{— A, P°A,K)~tA,, which are
both linear and stable. Furthermore, the maximum time-advance from the ¢*"
input of G to its j™ output is bounded by 6% + 5;’ and (G5 involves a pure
delay of hy + h¥ from its j* input to its i output.

3.4.5 Multiplicative input/output uncertainty representation
Let

P = (I, + W, AYW,,)P°(I,,, + W,, A"W,,,), (3.44)
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where A® are stable uncertainty blocks and W, are stable uncertainty weights

(e represents either u or y and k = 1,2). Let us assume that either

(a) WylﬁyWyQ is diagonal and P has a factorization in H> as given in (3.34)

where M is diagonal or

(b) W, A"W,, is diagonal and P° has a factorization in H* as given in

(3.37) where M is diagonal.

In case (a) we have

M = W,A,P°AW, +W,A,P'W, A"W,,A,W,
+W,A,W,, AYW,, P°A, W, + P° — P°
+W, A W, AYW,,, PPW,,, A“W,,, A, W,

= PP+ M7'AL (3.45)
where Al = vayﬁlmeu In Al the weighting matrices is of the form
W, == [ w, W, W, W, —I, ],Wu = [ weow owe w1, | and
the uncertainty block is, Eﬁno := bdiag (AyN A, , ANW,, AW, A, |

AWy AW NA, Ay, N), where Ay i= AW, AWy, NW,u A", A,
Since A,, Z', W,, N, and W,, are norm-bounded, Aﬁnio is norm-bounded.

Since II in (3.45) is in additive form as in (3.35), the feedback configuration
in Figure 3.8 with A’ = Al can be used to control the actual plant. Fur-
thermore, the generalized plant in the H>-framework is the same as in (3.36).
Moreover, this configuration is equivalent to the one given in Figure 3.2 with
Gy = Al and Gy = A, K(M+A,NA,K) 'A,. In this feedback configuration,
G and GGy are linear and since Aﬁnio is stable and K stabilizes the nominal
plant, Gy and G5 are also stable. Moreover, the maximum time-advance from
the ™" input of G to its ' output is bounded by 0 + 5;’ and G5 involves a

pure delay of h + h¥ from its 7™ input to its ™ output.

On the other hand, in case (b) we have

=P +A, MY (3.46)
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where A7 is same as Aﬁnio with N replaced by N. Thus, A7, is also norm-
bounded. Since II in (3.46) is in additive form as in (3.38), the feedback
configuration in Figure 3.9 with A” = A7~ can be used to control the actual
plant. Furthermore, the generalized plant in the H*-framework is same as in
(3.39). Moreover, this configuration is equivalent to the one given in Figure 3.2
with G; = A}, and G, = AuﬁflK(I—i—AyPOAuK)*lAy, which are both linear
and stable. Moreover, the maximum time-advance from the i input of G to
its j*" output is bounded by 0 + 5;-’ and G involves a pure delay of hj + hY

from its j* input to its i** output.

From the results of this subsection, it is also evident that in the case of
multiplicative input uncertainty representation (presented in Subsection 3.4.3),
a right co-prime factorization, rather than a left co-prime factorization, can be
used if Wi AW, in (3.40) is diagonal. Similarly, in the case of multiplicative
output uncertainty representation (presented in Subsection 3.4.4), a left co-

prime factorization, rather than a right co-prime factorization, can be used if

W1£W2 in (3.42) is diagonal.

3.4.6 Utilization of the non-causal uncertainty blocks

So far, for a number of different uncertainty representations, we have
shown that the feedback configuration to design a stabilizing optimal H>-
controller can be represented as in Figure 3.2, where GG; and G, are both
linear (thus (3.7) and (3.8) are satisfied) and stable (thus (3.3) and (3.4) are
satisfied for some v; and 75 and b; = by = 0). Furthermore, in each case,
(G4, which in general is non-causal, has the property that the maximum time-
advance from its i input to its j*" output is bounded by * + 5;’ and G5 has
the property that it involves a pure delay of A} + hj'y from its 7 input to its
ith output. This implies that the maximum time-advance from the ;™ input
of G1G5 to its i*" output is

ax {0V +06; —hi —hY} <oV —hY, (3.47)

k=1,...n
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where the inequality follows from the fact that, by (3.18), 6¢ < hY, for k =
1,...,n,. Note that, (3.47) may be positive, unless 5 < hy for all 4,j. This
means that (3.5) may not be satisfied in general. The above properties of Gy
and Gy also implies that the maximum time-advance from the ;% input of
GG to its it output is

max {65 40} — hi — hi'} <0 — b, (3.48)

k=1,...,ny

where the inequality follows from the fact that, by (3.18), 87 < hY, for k =
1,...,n,. Note that, (3.48) may also be positive, unless 5}*‘ < h} for all i, .
This implies that (3.6) may also not be satisfied in general. Although (3.5)
and (3.6) may not be satisfied, if the strong small-gain conditions, given in
the following theorem, are satisfied then the internal stability of the feedback

system in Figure 3.2 is guaranteed.

Theorem 3.3. [39] Consider the feedback configuration shown in Figure 3.2.
Let Gy : Lpt[a;,00) — Li2[ay,00) and Gy : L}2[as, 00) — Lit[a;,00) be both
linear and L,-sfg with gain v1 and 7, respectively, where ny = n,, and ny = n,,.
Denote the j** column of Gy (k = 1,2) by G}, (7 = 1,...,m) and its i*"
row by GY, (i = 1,...,n5, k =k — (=1)%). Let v, denote the gain of Gf,.
Suppose that the mazimum time-advance from the ;™ input of 'y := G1G> to
its ™ output is bounded by (3.47) and the mazimum time-advance from the
G input of Ty := GyGy to its i output is bounded by (3.48), where 6! < hY,
1=1,...,n9, and 5;% < hj, j=1,...,nm. Moreover, suppose that the strong

small-gain conditions for G1Gy and G2G1,

n9 n2 ni ni
Z ()? Z (74)° <1 and Z (V%) Z (7)* <1 (3.49)
i=1 i=1 i=1 i=1
U
are both satisfied. Then the closed-loop system, i.e., the map from u = '
Uz

toy = v in Figure 3.2, is Ly-sfg.
Y2
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Proof. Let uy € Lj'[a1,00) and uy € L7?[ag,00). From Schwarz inequality,
(3.49) implies that

ng n2 n2
ZVleﬂgz‘ < \ Z (’71yz)2\ Z (7%)2 <1 (3.50)
i=1 i=1 i=1
Z’Y%ﬂgz' < Z (’Yzyz)Q\ Z (7)? <1 (3.51)
i=1 i=1 i=1

Let y;; denote the i*® element of y, (k = 1,2, i = 1,...,n;). Then,
from Figure 3.2

yiu =vn — GGy — ... — GYL,GS, Y,
: (3.52)
Yiny = Viny — Gg{ng Gglyll - Glng nggyan
where vy; is the i*" element of v; := Giu; — G1Gaus. Note that, since u; €

Lptlay, 00), ug € Ly?[az, 00), and both Gy and Gy are Ly-sfg, v1 € Lj?[ag, 00).
Also note that, GY,,G%,. is the n," diagonal element of I'y. Therefore, the
maximum time-advance in GY is bounded by 5y —h¥, <0, which means

that GY

Ing 2n2

G, is causal. Furthermore, by (3.50), its gain is 77, 75, < L.

1nsg

Therefore, from the last expression in (3.52), we obtain

-1
Ying = (1 + G1n2 gm) [vln? o G?{m Gy — Ggllm Gu(nzfl)yl(m—l)] (3.53)
where ( + GY,., 5712)71 is causal and an upper bound on its gain is L

17717127;112 ’
By substituting (3.53) into the (ny — 1) expression in (3.52), we obtain

u -1 ~
Yi(na—1) = Vi(ng—1) — G?f(m_l) s (1 + Glm Qm) Vin, — G111

— ... — Gngflyl(ng—l) y (354)

where G, = Gl(ng G — Ggf(m 1) Gang (1+G1n2 2 ) Gy

2n9o

1,...,no—1. Consider Gn2 1. Note that Gl(n Gg(nrl) is the (ny —1)% diag-

10, G530 for 1 =

onal element of I';, and hence (by the same argument given above for the n,™®

and GY

diagonal element) is causal. Furthermore, Ggl’( 1G5 ns

u
By G2(n2_1) are

respectively the maps from the ny™ input to the (ng—l) output and from (ny—

1)** input to the no™ output of I'y. Therefore, since (1 + GY,,G% )71 is causal,

Ing ~ 2n9
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the maximum time-advance in GY, G} (1+GY Ggm)‘l Gy Gy 1y 18

2n9o Ing 1no
bounded by 6%, — hY_ + 0% — hi

no—1

< 0. Consequently, G,,_1 is causal.
Furthermore, its gain is bounded by

Ning—1) V2 Vns Vong—1)  N(na—1) V2(ma—1) -

1
L — Yy Vo, L — Y0V,

Y

'Yiy(nrlﬂg(ng—l) +

where the last inequality follows from the fact that, by (3.50),

fygl;(’ngfl)’y;(ngfl) _'_ ’ylyng ,Y;LTLQ < 1 .

This implies that 4, 1) can be solved from (3.54). Then, it can be substituted
into the third equation from the bottom in (3.52). Continuing in this way, it
is arrived at

Y11 = GUl — éyll s (355)
~ ~\—1 _
where G is causal and has gain less than 1. Therefore, y;; = (1 + G) Gy,

~\ 1 _ u
where (1 + G) G is Ly-sfg. Furthermore, since the map from u = '

Uz
to vy is also L,-sfg, this implies that the map from u to y1; is L,-sfg. By

changing the order of substitutions above, it can also be shown that the maps

from u to y1;, © = 2,...,n9, are also L,-sfg. Consequently, the map from u to
T
Yy = [ Yir o Ying } is L,-sfg. Similarly, it can be shown that, the map
T
from u to y, = [ Yo1 0 Yom, ] is L,-sfg. This implies that the map from
utoy = u is L,-sfg. O
Y2

Now, utilizing the strong small-gain condition, an optimal H* con-
troller can be designed to stabilize the actual plant {2 against all uncertain
time-varying time-delays. For example, let us consider the controller design
for the feedback system depicted in Figure 3.8. Let 47, be the upper bound on
yit, for i = 1,...,n; and 4, be the upper bound on ~{;, where i = 1,...,ng,
where ~}; and 7}, are defined as in Theorem 3.3. Both 4}, and 4}; can be calcu-
lated from the uncertainty representations. Furthermore, note that, v, < s,

t=1,...,n1, and 73, < 79, ¢ = 1,...,ng, where v, is the H* norm of the
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closed-loop TFM from w to z in Figure 3.8. Therefore, the designed controller,
K, which stabilizes the nominal system in Figure 3.8 for A! = 0 also robustly

stabilizes the actual plant, if K is chosen such that v, satisfies

1
m{ 2 S (AR S mz-)z}

Yo <

A similar approach can also be taken for the system shown in Fig-

ure 3.9.

3.5 Removing Non-Causal Uncertainty Blocks in Ro-
bust Controller Design Setup

In this section, we discuss how to replace the non-causal uncertainty
blocks, which appear as shown in the previous section, by causal blocks in
the robust controller design setup. This approach gives an alternative way to

directly using non-causal blocks.

The mapping from @ to p in Figure 3.5 is A, W, (see Subsection 3.4.1),
where A, = bdiag(AY,..., A"

w ), where A} = [ 1 A% AY, | is non-causal
for all i = 1,...,n,. In this mapping, W, = bdiag(wY,...,w ), where
L—apbt s(L—athy) s b
als+1 ats+1 “ats+1
the structure of A¥ and w!, the mapping from the i*" element of % to the i‘h

T
] (¢ =1,...,n,). Utilizing

~ AN U___
element of p, can be expressed as w; + A, W', where

uhu

Wy =
’ as+1

U

A, = [ A AY, ]

. s(1—aft) . s+br 1"
wi(s)—{ ais+1 aia$s+1] ’

for i = 1,...,n,. Now, let us define A, := bdiag (qu,--- ,Zzu), W, =
bdiag (@ﬁ‘, e ,wgu), and /Wu = diag (@%, o ,@}{u), then the mapping from u

—

to p is AWV, + W,.
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Similarly, let us consider the mapping from ¢ to ¢ in Figure 3.5, which

is W,A, (see Subsection 3.4.1). In the mapping, W, = bdiag(wy,... Wi ),
V() = { L—ajb] 1—ajbj  s(1—ajb}) s+ bj

— Y dA, =
ajy.s—i—l a?s—l—l a?s—i—l ajajy.s—l—l]’an Y

where w ;

T
bdiag(AY, ..., A} ), where AY = [ 1 AY, A%, AY, } is non-causal for all
j =1,...,n,. Using the structure of A, and W,, the mapping from the j™

element of g to the 7" element of i can be obtained as EJ'U.Z? + f&;’, where

ZZJ = [ A]y‘,l A]y‘z A]y‘,g }T

1 —a%t? s(1 — a’b s+ b7
= [ L) o) oot
ajs—l—l aj3+1 ajs—l—l
and
YLy
, _ L—ajb;

Wi ajs+1’
for j = 1,...,n,. Now, let us define Zy = bdiag (Zg,...,ﬁiy), Wy =
bdiag <E?f, . ,U%U) and /Wy = diag (f&i’, o ,@%y). Then, the mapping from
q to iy can be written as /Wy + Wyzy.

Therefore, II in (3.32), assuming that the finite dimensional part of
the plant does not involve any uncertainties, i.e., P = P% can be written

alternatively as below;
= W,A, +W,)P' (AW, +W,). (3.56)

The feedback configuration for the actual plant €2 can be depicted as in Fig-
ure 3.10. In this configuration, A,(s) = diag(e "%, -+ e ") and A,(s) =
diag(e‘h?fs, e ,e’hzys). To design a robust stabilizing controller for the ac-
tual plant Q by the approach of [13], the feedback configuration depicted in

Figure 3.10 can be represented as in the generalized framework (Figure 3.4),

<1 w1
where z = , W=

zZ2 W2

A, 0
A= , (3.57)
0 A,
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Figure 3.10: Feedback configuration for the actual plant 2
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Figure 3.11: Equivalent system

which is non-causal, and

0 0 W,
G=| P 0o PW, |. (3.58)
w,P* W, W,P'WH
Now, by using algebraic manipulations, an equivalent of the feedback system
in Figure 3.10 can be obtained as depicted in Figure 3.11. Here, Ku(s) =
bdiag(e "¢l,, ... e~ "mus],) and Ky(s) = bdiag(e "*1I5,..., e "*I3). In this
case Ay = ZUKU and A, = KyZy are causal. The input-output relation of

the feedback configuration in Figure 3.11 can be expressed as follows:

5 0 0o W, i, i,
Hl=] P 01 P, i | =Gy | s | L(3.59)
y AW, P* W, 1 A,W,PW,A,

In this case, the approach of [13] can not be applied to design an H>-
optimal controller for the system G, since A, does not appear in the mapping

from u to 2; and A, does not appear in the mapping from w, to y. That is,
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Figure 3.12: Generalized plant for G,

the delay blocks in (3.59) can not be removed from the generalized plant G,

to set-up the generalized framework as shown in Figure 2.4.

Now, let us define the augmented plant G, instead of G; as shown

below:
0 0 WAy,
Gy = PO 0 PW,A, :
AW,PY AW, AW, POW,A,
where,
[ 2 i
Z | =G| wy (3.60)
U u
Therefore, the generalized H>-framework for G5 can be set-up as shown in
0 0 W, N
Figure 3.12, where Gy == PO 0 PO/WU , 2 = il LW =
)

WP W, W,PW,

, and A = bdiag(A1, As), which is causal. Now, an H*>-optimal con-

W

troller can be designed for the generalized plant 6’2 by the approach of [13],

where G satisfies the standard RH™ assumptions ((i)—(iv) given in Sec-

tion 2.2) as long as the actual realization of /WyPO/Wu is stabilizable and de-

tectable.

In the sequel, it will be shown that the designed controller, which
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internally stabilizes the nominal system in Figure 3.12 (with A = 0) and
achieves ||F (G, —Aul?Ay)||OO < 1/||A|l2, also stabilizes the feedback system

in Figure 3.11, which is equivalent to the actual system, and achieves that the

w Z
norm of the closed-loop TFM from @ := Y tozi= " lin Figure 3.11
W2 Z9

is less than ————.
|All2

Let us assume that the designed controller K internally stabilizes the
system in Figure 3.12 and achieves that ||F(G., —AUI?Ay)HOO < 1/||3||2 In
Figure 3.12, A is causal and has the same Lo-induced norm with the non-causal

uncertainty block A given in (3.57) since

1All2 = =
0 AA, 0 A, 0 A, 0 I

2 2

A, O
- 0 A = ||A||2
Y 2

From Figure 3.12 and (3.60),

§= 1+ AW, PWAK) | AW,P0 AT, | @

Therefore,
- 0 0| _ Wuly | _
z = w + - U
PY 0 PW, A,
O 0 ~ WuAu T~
= w — _ Ky
P> 0 P°W, A,
0 0] _ WAy | ~
= W — . K
P> 0 PW, A,

(1 + AW, PN | A,TT,P0 AT, |)@
— F(Gy, —AKA,)w.
Let us define S := (I + AyWyPOWuAu[?)_l, then

~ WA KSA,W,P° ~W. A KSAW,

E(é% _Au[?Ay) = — ~ — — ~ .
PY(I — W, A KSA,W,P%) —PW,A,KSA,TV,

. (3.61)
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Now, to show that the designed stabilizing controller K also stabilizes
the actual system, or its equivalent depicted in Figure 3.11, let us replace K

in Figure 3.11 with K. Then,

4 = W (3.62)
2, = Pwy+ POW,Auu (3.63)

y = AW, Py + Wiy + AW, P'W,Au

where u = —K y. Therefore,

y = (I+AW,P'TW,AK)™ [ A, PO W, | (3.64)
w = =K+ AWPWAK)™ | AW,P T, |

Using (3.62)—(3.64), the closed-loop TFM from @ to Zz in Figure 3.11

can be obtained as:

0 0 W, _
5 = W — | ALKAY
P° 0 POW,,
0 0 W, _
— W — | ALKA,
P° 0 PW,

(I +W,P'W,A KA | W,P° 77, D W

~W K S\, W,P° ~W,KSW, .
= . o o o w
P° — PYW A, KSA,W,P° —PW A, KSW,
= T, (3.65)

From (3.61) and (3.65),

Tew (3.66)

~ )

A,
0 A

~ 0 I 0
E(G% AuKAy) -

I 0 A,
where KuWu = W,A, and WyKy = AyWy. Therefore, E(ég, —Auf( Ay) is
stable if and only if T,,, in (3.65) is stable [56]. In addition, since A, and Ky

are inner functions, || F}(Ga, Auf(/\y)Hoo = || 7% ] 0o-

As a summary, in this section, to avoid utilization of non-causal un-

certainty blocks in the robust controller design, an equivalent problem with
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causal blocks is solved by using algebraic manipulations. As shown above,
the designed controller which stabilizes the augmented plant also stabilizes
the equivalent of the actual plant. In addition, the closed-loop H*° norm

constraints are also satisfied.

3.6 Summary

In this chapter, the sufficient conditions to satisfy the validity of the
small-gain theorem for interconnected subsystems, at least one of which is non-
causal, were given. Using these results, non-causal uncertainty blocks can be

used in the H> controller design for systems with multiple time-delays

It was shown that, even though all the physical systems are causal,
the uncertainty representation of the multiple-time-delay systems in the ro-
bust controller design set-up may be non-causal. To show the appearance of
non-causal uncertainty blocks in the robust controller design, an uncertainty
model for systems with multiple uncertain time-delays was derived. However,
it should be noted that the uncertainty structure of the systems with multiple
time-delays derived in Subsection 3.4.1, is not unique. Different structures
may be obtained using different manipulations. As shown in Subsection 3.4.6,
the presented sufficient conditions in Sections 3.2 and 3.3 to satisfy the validity
of the small-gain theorem may not be satisfied in general. To overcome this
situation, the strong small-gain condition was defined which allows the use of
non-causal uncertainty blocks to represent the uncertainties in the time-delays
and design robust controllers for multiple-time-delay systems. Hence, to design
an H>-optimal controller using the approach of [13] for a multiple-time-delay
system, where its finite dimensional part is subject to uncertainties, it is suffi-
cient to show that the designed controller, which stabilizes the nominal system,
makes the H> norm of the resulting closed-loop TFM in Figure 3.4 such that

the strong small-gain conditions for p = 2 are satisfied.

In Section 3.5, an alternative approach was presented in the robust
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controller design by replacing non-causal uncertainty blocks with the causal
ones. To achieve this, an equivalent problem, which had causal uncertainty
blocks, to the actual problem, which had non-causal uncertainty blocks, was
defined by using algebraic manipulations. Then, to design a robust stabilizing
controller by the approach of [13] for the equivalent problem, an augmented
problem was defined. As a result, by [56], it was shown that the designed
stabilizing controller for the augmented plant also stabilizes the actual plant.

Furthermore, it satisfies the closed-loop H> norm constraint.
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4 ROBUST FLOW CONTROLLER DESIGN

An arising problem in today’s data-communication networks is traffic
congestion. Congestion occurs at a node of the network when the sources send
data packets to that node at a rate more than the capacity of the outgoing
link. In this case, this node is called a bottleneck node. If congestion occurs
at the bottleneck node of the network, long queueing delays and overflow of
buffer can happen which result in loss of data. To overcome these problems,
rate of data packets sent from the sources to the bottleneck node should be

controlled.

One of the available mechanisms to control the rate of data that is sent
from the sources to the bottleneck node to avoid congestion occurrence is flow
control. In general, there are two flow control methods: rate-based [57-59] and
window-based [60,61]. Although window-based control is widely used for end
to end congestion control in TCP /TP networks, rate-based control is preferred

for edge to edge control in newer generation networks [62,63].

In the rate-based flow control method, the controller is implemented
at the bottleneck node and calculates a rate command for each source to adjust
the rate of data that is sent from the sources to the bottleneck node in order to
regulate the queue length for congestion avoidance. The challenge in the flow
controller design is the existence of uncertain time-varying time-delays. Both
the control signal issued by the flow controller to adjust the rate of data pack-
ets that will be sent from the sources and the data packets that will be sent
from sources to the bottleneck node are subject to these delays. Moreover, in
general, existence of more than one source feeding a bottleneck results in mul-
tiple time-delays. To design a flow controller to achieve congestion avoidance
despite the presence of uncertain time-varying time-delays, one of the robust

control tools, H*> control can be used.

In this chapter, an optimal H* flow controller design for data-commu-

nication networks with multiple uncertain time-delays is given. In Section 4.1,
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the derivation of the mathematical model of the network is given. In Sec-
tion 4.2, the flow control problem is defined. The optimal H*> flow controller
design is given in Section 4.3. To illustrate the performance of the controller
designed by the approach proposed in Section 4.3, simulation studies are given
in Section 4.4. In Section 4.5, the performance and stability margins of the
designed flow controller are examined. In Section 4.6, the benefits of utilizing
non-causal uncertainty blocks compared to causal ones are presented. In Sec-
tion 4.7, sufficient conditions are derived to choose the free parameter of the
controller to meet one of the time-domain constraints. In the last section, a

summary of the results is presented.

4.1 Network Model

In this section, the flow control problem in a data-communication
network with n sources feeding a single bottleneck node is considered. For the
model of the network, we will use a continuous flow model, which is called the
fluid-flow model. The network model presented in this section and the control
problem defined in the next section, as well as its solution given in Section 4.3,

have been published in [43].

The dynamics of the queue length are given as [23]:

q(t) = Z r(t) = e(t) (4.1)

where,

q(t) is the queue length at the bottleneck node at time ¢,

rb(t) is the rate of data received by the bottleneck node at time ¢ from the 7"

source, 1 = 1,...,n,

c(t) is the outgoing rate of data from the bottleneck node at time ¢, which
equals to the capacity of the outgoing link when ¢(t) is positive. When
q(t) = 0, c(t) is the outgoing link capacity if ., r?(¢) is greater than
or equal to the outgoing link capacity, otherwise, c(t) = Y1 72(t).

i
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The total amount of data received at the bottleneck node from the "

source, i = 1,...,n, by time ¢ is given as [23]:
t t—’fif(t) 7"8( . f
fp)dp, t—7/(t)>0
/ ri(p)de = *° . : (4.2)
0 0, t—7/(t) <0

where
r$(t) is the rate of data sent from the i*" source at time t.

Let us define

r¢

¢(t) == ri(t — 72(t)) as the rate command received by the i*" source at time

t, where

7;(t) is the rate command for the i*! source issued by the controller, which is

to be implemented at the bottleneck node, at time t.

By taking the derivative of both sides of (4.2) and using ri(t) = ri(t) =

ri(t —72(t)), the rate of data received by the bottleneck node, r2(t), is given in

(
terms of the rate command issued by the controller at time ¢, r;(¢), as follows:

SN — 7 _
(1) = (L =067 @)ri(t = 7(t), t—7/(t) =20 . (4.3)
0, t—7/(t) <0

Here, 7;(t) = 72(t) + 7/ (t) is the round-trip time-delay, where
72(t) = hY + 6%(t) is the backward time-delay at time ¢, which is the time
required for the rate command to reach the i*" source. Here, h? is the
nominal time-invariant known backward time-delay, and §°(¢) is the time-

varying backward time-delay uncertainty,

I (t) = bl +6/(t) is the forward time-delay at time ¢, which is the time
required for the data sent from the i*" source to reach the bottleneck
node. Here, hlf is the nominal time-invariant known forward time-delay,

and 6/ (t) is the time-varying forward time-delay uncertainty.
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The nominal round-trip time-delay for the i*" channel of the system
is h; = h + hlf , and the time-varying round-trip time-delay uncertainty is
6;(t) = 0b(t) + 6/(t). It is assumed that the uncertainties are bounded as
follows:

G0 < &5, 150 < B 18] (@0)] < 8! (4.4)

for some bounds §;” > 0 and 0 < Bzf < fB; < 1. It is further assumed that, 6;(¢)
is such that 7;(¢) > 0 at all times. In a real application, there also exist some
hard constraints, such as non-negativity constraints and upper bounds on the
queue length and data rates. In this work, we assume that these constraints

are always satisfied for the purpose of controller design.

Remark 4.1. The term 67 in (4.3) arises from differentiation of (4.2). It is the

gitter effect and a characteristic of networks with a time-varying delay.

4.2 Control Problem

In any defined control problem, firstly, the design requirements should
be posed. In the flow control problem, the aim is to design a controller, for the
above described system, to regulate the queue length ¢(t) at the bottleneck
node against the presence of uncertain time-varying time-delays. Hence, the
controller to be designed should robustly stabilize the system against all exist-
ing time-varying uncertainties in the time-delays which satisfy (4.4). Besides
robustness, assuming that lim; .., ¢(f) = ¢ exists, the controller should also
achieve the tracking requirement:

lim ¢(t) = qa , (4.5)

t—o00

and the weighted fairness [23] requirement:

tlim ri(t) = icoo 1=1,...,n. (4.6)
Here, ¢4 is the desired queue length and «; > 0,7 = 1,...,n, are the fairness

weights [23], which satisfy Y ", o; = 1.
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To state the robust flow control problem, let us consider the mathe-
matical model of the plant to be controlled. The uncertainty part of the plant
can be modelled as follows. From (4.1) and (4.3), ¢(¢) can be written as:

)= | [Za =Sl = 70) — )| dv +q(0) . (4T)
Let us define the nominal queue length as:
(1) 3:/0 [Z ri(v —hy) —c(v)| dv +4q(0). (4.8)

Therefore, the uncertainty in the queue length can be defined as 0,(t) := q(t) —
qo(t). Then,

0 = / = Ot - 7o) it~ 1) v

= 3 [ [0 -t -aw) - o) . (19

where r(t) := r;i(t — h;).

i

Similar to Section 3.4, let us define \; := v — §;(v) =: f;(v). Then

d\; do;
) (110
where
do;
gi(A) == - :
V:fi_l()‘)
Since the uncertain part of the actual time-delay has the property 5Z(t) < 1,
dfi
by (4.10), fd(V) > 0. Thus, v = f; '()\) exists.
v
d\;
Let us assume that §;(0) = 0. From (4.10), dv = (W therefore,
— GilAi

the uncertainty in the queue length, (4.9), can be rewritten as:

n

0 = 3 [ [ a=s0pte-swna - [ o)

i=1

- Z [a-dente-swya- [ twa

t—8(t) t—8,(t)
+ / i (v) dv — / () d
0 0
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Figure 4.1: Uncertainty model [42]

n

- 3| [a- st - s /jw (0 d

B / = ) [ — g — 5,0) 2

n

-y [ / o = 8:0) = 810)] 2 — i)

i=1

t
- / rh(v) du} :
t—3; (t)

We now have 04(t) = Y1, 05(t), where §;(t) is the output of the
system shown in Figure 4.1. In Figure 4.1, A;; and A, are possibly non-

causal uncertain LTV blocks, since it is assumed that:

5,(1)] < 5. (4.11)

To find a bound on the uncertainty blocks, let us consider (3.28),
which implies that the Ly-induced norms of the delay blocks §;(t) are less than

1 ) . ﬁH—ﬂZf 1 :
. Thus, the Lo-induced norm of A, ; is less than ( == ) ——, since we

V1—0; V1B ) Bix’
/ f ; Bi + ﬁzf
have |gZ| < ﬁz a’nd |5Z | < ﬁl . Then, deﬁnlng sz‘,l = \/5

V10
norm of the LTV block A;; is less than %

the Ly-induced

To find a bound on the norm of A5, let us consider the relation in

(3.23), which implies that the Lo-induced norm of A;, is less than or equal
6+

)

@i 2

. Thus, choosing ¢; s = \/§5Z-+, the Li-induced norm of A, becomes less
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i1

Az’2

)

than or equal % Then, the Lg-induced norm of A; := is less than

In Figure 4.1, the uncertainty blocks are non-causal in general. In
fact, the delay blocks in Figure 4.1 are time-advance blocks and the integral
is a non-causal integral when 6;(t) < 0. In [40-42] robust flow controllers were
designed using the small-gain theorem in [5]. However, the controller design
was achieved by assuming that the uncertain part of the time-delays are always
non-negative:

0<6(t) <6 (4.12)

for some positive bound 6;. By this assumption, the time-delay in the 4"
channel becomes the minimum possible time-delay, rather than the nominal
time-delay. In this case, the optimization problem is defined not for the actual
nominal plant, but for the plant with minimum possible time-delays. Further-
more, this also requires taking the bounds §; larger, robustness range must
be larger which results in conservativeness in the robust controller design.
Therefore, assumption (4.12) brings two drawbacks. In order to overcome
these drawbacks, bounds (4.11), rather than (4.12) should be used and ei-
ther the problem can be converted to an equivalent problem without using
non-causalities (see Section 3.5) or the problem can directly be considered
by using non-causal uncertainty blocks by utilizing Theorem 3.2 to design an

‘H>-optimal flow controller. Here, we will take the latter approach.

To define the overall problem, without loss of generality, let us assume
that hy > he > ... > h, > 0. Let N be the number of distinct h;’s and let us
rename the nominal time-delays as hy > hy > ...> hy > 0so that all h;’s are
distinct. For this, let hy = hq, hy = h;,, where 75 is the smallest index such
that h,, < hq, hs = hi,, where i3 is the smallest index such that h;, < h,,,
and so on. Also let [; (¢ =1,...,N) be the number of channels with nominal

round trip time-delay h;. Then, le\il l; =n.

Now, we can describe the overall system as shown in Figure 4.2,
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N b KOt

Figure 4.2: Overall system [43]

where P,(s) = 11, is the nominal plant, K is the controller to be designed,
A, (s) = bdiag (eiﬁlslll,...,e*BNSIlN) represents the nominal time-delays,
which are taken outside the plant in order to apply the approach of [13],
Wi(s) = [Wi(s)---Wy(s)], where Wi(s) =[5 ¢;5], and

A = bdiag A1 e Bt
AV Apo

represents the uncertainties in the system. By using Theorem 3.2, we can apply
the small-gain theorem as long as 7;(t) := h; + d;(t) > 0, Vt > 0, Vi, which
is naturally satisfied since round-trip time-delays can not actually be time-
advances. By Theorem 3.2, if we choose K to stabilize the system with A =0

and make the Lo-induced norm of the system from w; to z; in Figure 4.2 less

than 1, then the overall system is robustly stable for all uncertainties satisfying

(4.4).

To show the utilization of Theorem 3.2 in the robust flow controller
design, as it was published in [37], let us define W (s) := SLHW}(S), for some
€ > 0. Then, as it was shown in [37], by suppressing external signals (which do
not have any effect on closed-loop stability), the system shown in Figure 4.2
can be represented as in Figure 3.2, where G| = WlA and Gy = A, T, where
Ti= K(1+PAK) 20

is the closed-loop TFM from w; := Wyw; to —r.

Now, we can consider the system in Figure 3.2 for G; and G5 defined
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above. Since W, and A are stable, (3.3) is satisfied. Furthermore, since K is
chosen to stabilize the closed-loop nominal system (system shown in Figure 4.2
with A = 0), the transfer function from w; to r is stable. Thus, in particular,
—-K(1+ PAK )_1 %, which is the transfer function from the first entry of
wy to r and is strictly proper, is stable (the pole at zero is canceled by the pole
of P,). This implies that 7" is also stable. Therefore, since A, is stable, G5 is
also stable, and hence (3.4) is also satisfied. (3.7) and (3.8) are satisfied since
G and G5 are both linear.

In order to show that (3.5) is satisfied, let us consider the cascade
connection of GG; with G5. Note that GGy = WlAAuT, where AA, =
bdiag (A, ..., Au\,), where \i(s) := e " is the i*® diagonal element of
A, (s). Also note that (see Figure 4.1), the maximum time-advance in A; is
max;>o{—0;(t)}, which is not greater than h;, since the actual time-delays can
not be time-advance, i.e. 7;(t) := h; + 9;(t) > 0, Vt > 0, Vi. Thus, since J; is
a pure delay of h;, for i = 1,...,n, each element of AA,, hence AA, itself, is
causal. Since W, and T are also causal, this implies that G;Gs is causal, and

hence (3.5) is satisfied.

To show that (3.11) is satisfied, note that Gy; = VT/MAM + VTQQAM,

where W (s) := Pil and Wia(s) := *Pi2 1t was indicated above that the
’ s+e€ ’ s+e

maximum time-advance in A;; and A,; 5 is not greater than h,. Since W;; and

W, 9 are causal, the maximum time-advance in Gy; is not greater than h;. On
the other hand, Gy = \;t;, where ¢; is the i*" element of 7', which is causal.
Therefore, since \; is a pure delay of h;, Go;G1; is causal foralli = 1,... n, and
hence (3.11) is satisfied. Therefore, by Theorem 3.2, the small gain theorem

can be applied to our system.

In the above, it is assumed that the controller K is chosen to stabilize
the system with A = 0 and make the Lo-induced norm of the system from w;
to z1 in Figure 4.2 less than 1. However, if K stabilizes the system with A =0
and make the Lo-induced norm of the system from w; to z; in Figure 4.2 less

than some v > 0, then the overall system is robustly stable for all A with
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Figure 4.3: System for the mixed sensitivity minimization problem [25]

Ls-induced norm less than % The uncertainty block A would have Lo-induced
norm less than % if, for example, |0;(¢)] < %, 10;(t)| < 3, and |5Zf(t)| < G,
B+ Bzf _ Bi + @f

S VIR

1=1,...,n, Where()<5~l-f Sﬁi < 1 are such that

4.3 Optimal H* Controller Design

To solve the control problem defined in the previous section, we con-
sider a mixed sensitivity minimization problem for the system shown in Fig-

ure 4.3. Here, Wa(s) = 1, Wa(s) = 2, and

@ ] g 0

L0 -1 0
W4(S) = % “ . )

w90 1

where o7 > 0 and 05 > 0 are design parameters. Furthermore, d := ¢; — ¢, €;
is the integral of the error, y := g4 — ¢, and is introduced to achieve tracking

(4.5), and ey is introduced to achieve the weighted fairness requirement (4.6).

Here, the weighting matrix W;, which was introduced in the previous
section, is used to normalize the uncertainty block. Weights W5 and W3 are
introduced to reject disturbances (in the variations of ¢4 and ¢) and achieve the
tracking requirement (4.5). The weighting matrix Wj is introduced to achieve

the weighted fairness requirement (4.6). Design parameters oy and oy, which
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Figure 4.4: Equivalent system for the mixed sensitivity minimization problem

[42]

appear respectively in W3 and Wy, can be used to assign relative importance

to tracking and weighted fairness respectively.

Note that, the nominal plant, P,, has a pole at the origin. Further-
more, the integral terms in the weights W5, W3, and W, force K to have integral
action, [5]. Therefore, the sensitivity function of the closed-loop system in Fig-
ure 4.3 has a double zero at the origin, which causes uncontrollable pole-zero

cancelations to occur between the weights and the sensitivity. To avoid this

problem, we let P,(s) = ]f\\/fil(s)]’\vf(s), where N(s) = S%Leln and M(s) =

_Ss
s+e’
where € > 0 is arbitrary. By using this factorization and making some simple

block diagram manipulations, the system in Figure 4.3 is transformed to the

system in Figure 4.4, where M (s) = (SJSF;)Q, /Wl(s) = M(s)Wi(s), /Wg(s) =,
/Wg(S) = 2=, and
~ s
K(s) = K(s) . 4.13
(5) = k() (4.13

Therefore, the problem is now transformed into the general four block

problem of Figure 4.5, where the general plant is described as

% 0 0o ' I
— — — — | — ~ wl
z €1 —Wngl WgMWQ I —WgMN J
R p— = I
J e 0 oW -
I Y —~ T T T T T~ ~ u
j ~MW, MW, \ —-MN
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Figure 4.5: General four-block problem [42]

(4.14)

s 8

Now, the problem can be posed as to design a stabilizing controller
K which achieves that ||Fl(1/D\, AK Moo < 7, for minimum possible v, where

Fl(ﬁ, Au[?) is the closed-loop TFM from w to z in Figure 4.5. Let us define

~ -7 0] -~ P, P
the normalized plant P, = K P = e , so that the

0 I P, P

Y21 Y22
stabilizing controller K must satisfy HFl(ﬁW,Au[A( Moo < 1.

As it was done in [13], the above defined 4-block problem can be
reduced to a 1-block problem by using chain scattering representations. It

can be shown that P.

o (jw) has full column rank and P, (jw) has full row

rank for all w € R, which guarantees existence of a solution in the delay-free
case (i.e., when A, = I) for sufficiently large v. Since P, (jw) has full row
rank, using output augmentation, as pointed in Section 2.1, we can obtain

the chain-scattering representation of the augmented plant. To do this, let

us introduce an output augmentation by defining ¥ := P.,,w + P.,,u, where
P o P’Yll P’YIQ
_721 is invertible. Then, the augmented plant, 187 = | P, P, |
Poy B B

721 Y22

has a chain-scattering representation ¥V := CHAIN (ﬁy), which in turn has a

(J o0y Juw )-lossless factorization
U =00, (4.15)

as shown in Figure 4.6, where O is (J,,, Jyuuw)-lossless and € is unimodular [50].
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Figure 4.6: New problem definition under chain-scattering representation [42]

Q 0
Furthermore, Q is decomposed as 2 = H , where Q7 is (n, +ny) X

Q1 Qoo
(n, + ny) dimensional and bistable.
In Figure 4.6, the closed-loop TFM from w to z is HM <@, @), where
@ =HM (Q, A, [ K 0 D Since O is (J,w, Juw)-lossless, from Theorem 2.1,
HM(©, @) is contractive if and only if @ is contractive. Therefore, the prob-
lem of finding a stabilizing controller K such that Fl(ﬁv, A,K) is contractive
is equivalent to finding a stabilizing controller K such that C/Q\ is contractive,
since FZ(I%,AUI?) = HM(@,@). Furthermore, we can write Q = [ Q 0 ],
where Q := HM (Qn,Au[/(\' ). Therefore, the problem of finding a stabiliz-
ing controller K for the system in Figure 4.5 is reduced to finding a sta-
bilizing controller K such that Q = HM (QH,AUI? ) is contractive. Since
HM(QH,Au[?) = HM (1A, [A(), where A = bdiag(A,, 1), the problem is re-
duced to finding a stabilizing controller K such that Q =HM (QHA,[? ) is
contractive. This problem is defined as a one block problem (OBP) (see Sec-
tion 2.2). Following [13], to obtain a causal stabilizing controller, we can write
Q= HM(QuA, K) = HM(Q,,Q7L A, K,), where Q= lim, ., Q11 (s) and
K, := HM(A Q1 A, K). In our case, we can choose €2 in (4.15) such that
I, 0
Q1 = Slirilo Q1(s) = 0 ., , (4.16)

where Doy := limg_oo Py, (s). Then, A71Qy; A = Qy;_, and thus we would

have

Ky = HM(A'Qy A K) = HM(Qy, K) . (4.17)
Defining G := 91191_11007 the problem can be written as:
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OBP(G, A): Find a stabilizing controller K, satistying || HM (GA, K.,)|l« < 1.

The solution to this problem is found by a sequence of iterations pre-
sented in Section 2.2, which is based on the approach given in [13]. In each
iteration, a problem which is called an adobe delay problem is solved. Utilizing
the procedure in Section 2.2, the solution to OBP(G,A) can be obtained as

shown in the sequel.

The problem OBP(G, A), is solved in N steps assuming that hy > 0.
However, if hy = 0, then it is solved in N — 1 steps.

Step 1: Assuming hy > 0 (if hy = 0, we directly start with step 2, using Ay =

~ ~ e_BNslm 0
A and Gy = G), let A =: AjAy, where Ay(s) = , where
0 I,

=N l;=nand p, =n+1—pu = 1. Then, using (2.8), HM(GA, K,) =
HM <GA1, HM(A,, K7)>. Letting

Ki:=HM (Kl, K;) , (4.18)

the problem becomes determining a stabilizing controller K; which results
in ||HM(GAy, Ky)|loo < 1, which is the problem discussed in Section 2.2.
Therefore, by (2.32), its solution is

I 0|~ ~
Ky =HM GO, (4.19)
m, I

where II; and 6’1 are respectively determined as éa and II, in (2.33) and

(2.34), respectively, and él must be contractive. Using (2.7),

- - I 0
Q1=HM | G, K (4.20)
11, I

where K is given by (4.18). Hence, by (2.8) and using (4.18), Q; in (4.20)

can be written as:

O, = HM (éJ\l, f(l> , (4.21)
where
- - I 0|~
Ky :=HM [ A]? ALK (4.22)
—I0, I
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Therefore, using (4.21), the remaining problem is to determine a stabilizing

controller l~(1 such that HHM (élKl,E)

) < 1, which is considered in the
next step.

~ _ e~ (hvoa-hn)sp
Step 2: Let A; =: AyAy, where Ay(s) = , where
0 1o,

H2 = Zfi;l li=n—Iyand pp =n+1—ps =1+ Iy. Then, using (2.8),
HM <61K1,k1> =HM <61A2,HM <K2,k1>). Lettlng

Ky = HM (7\2, f(l) , (4.23)

the problem becomes determining a stabilizing controller Ky which yields
|HM (G1 Az, K3)||se < 1, which is the problem discussed in Section 2.2. There-
fore, by (2.32), its solution is

I 0|~ , ~
Ky=HM Gyh Qs |, (4.24)
I, I

where II, and G, are respectively determined as G, and I, in (2.33) and

(2.34), respectively, and ég must be contractive. Using (2.7),

~ ~ I 0
QQ == HM G2 ,KQ 5 (425)
=1y I

where K, is given by (4.23). Hence, by (2.8) and using (4.23), Q, in (4.25)

can be written as:

Q2= HM <52/~\2, f~(2> ; (4.26)
where
~ ~ I 0|~ =~
K2 =HM A;l AQ, Kl . (427)
—1I, I

Therefore, using (4.26), the remaining problem is to determine a stabilizing

controller l~(2 such that HHM (égKg,[?g)

< 1, which is considered in the

.

next step.
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e—(hl—hg)s[w

0

Step N: Let KN—l =: ANKN, where Ay (s) := , where

0 I

PN

pn =S I =l and py = n+1—py = 1+3°~ , ;. Note that, Ay = I. Then,
using (2.8), HM (éN,lKN,l,f(N,l) — HM (éN,lAN,HM (KN,I?N,1>).
Letting

Ky:=HM (KN, I?N,1> , (4.28)
the problem becomes determining a stabilizing controller K which results in
|HM(Gyn-1An, Kn)|lse < 1, which is the problem discussed in Section 2.2.
Therefore, by (2.32), its solution is

I 0|~ ~
Ky =HM GyLOn | . (4.29)
My I

where IIy and G ~ are respectively determined as éa and II, in (2.33) and
(2.34), respectively, and é ~ must be contractive, but otherwise arbitrary. Note
that, since /~\N =1, (4.28) gives Ky = I?N_l.
Now, using (2.7), from (4.22) we obtain
S I A
K,=HM [ A A, Ky ] (4.30)
I, I
Similarly, from (4.27) we obtain
~ ~,1 I 0]+ =
Ki=HM | A, Ay, Ko | . (4.31)
Iy, I
Substituting (4.31) into (4.30) and using (2.8) we obtain

~ T 0~~~ | T 0]~ =~
K,=HM | A} A A Aoy Ko | . (4.32)
Hl 1 H2 I
Proceeding like this, through the first N — 1 steps and using the fact that

Ky_1 = Ky, which is given by (4.29), we obtain

~ I 0]~ - I 0
K, = HM | A]! Ay A
Im, I My, I
~ I 0|~ ~
An_ Gyh0On | . (4.33)
My I
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On noting that Kfl = A1A, K1/~\51 = Ng, ..., KN,QT\X}A = Ay_1, and

An_1 = Ay, as in (2.37), we can rewrite (4.33) as

K, =HM(I,G',Qn) , (4.34)
Tl o .
where I := A~! HAZ' is a system which involves delays and FIR
i=1 I I

filters (note that time-advances introduced by A~! are all cancelled by A;’s;
i.e., I, is causal), G5 := G ~ is a finite-dimensional and bistable system, and

Qa := Qy is such that [|Qa]le < 1, but otherwise arbitrary.

Once the stabilizing controller K., is found as in (4.34), using (2.8) and
(2.7), the stabilizing controller K is found by inverting (4.17) and the desired

stabilizing controller K is found from (4.13) as

K(s) = 2 j CHM (O T1A(5)G7 (), Qa(s)) - (4.35)

By decomposing II;’s as
I, =: [Hh M, - Ty ] ’

where H%j is 1 x [; dimensional,

I, — H% H%2 H%(Nfl)
2 —- )
2 2 2
H21 H22 HQ(Nfl)
where H%j is Iy x [; and H%j is 1 x [; dimensional, ..., and
I
HN
Iy = . )
10
where T} is [j;0 x Iy (j = 1,...,N — 1) and IIY, is 1 x /; dimensional, the

stabilizing controller K can be implemented as shown in Figure 4.7. Here,

RSTJFE is a proportional-integral term, where

2 v

K= =
NN

?
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Figure 4.7: The implementation of the controller K [43]

HM(G}',Qy) is a finite-dimensional system parameterized by Q,, which is
assumed to be finite-dimensional and must be contractive, and each Hfj is an

FIR filter. Furthermore,

! T+1 TSN+

/rll rl1 +ls Tn

In the above, we assumed that v > 0 is such that there exists a solution
to the adobe delay problem at each step. In order to find minimum such ~
and the corresponding stabilizing controller, i.e., to determine the optimal

controller K, (s) = %“l?gpt(s), where stabilizing I?Opt solves
inf || F(P, AuK)||oo =2 7, (4.36)
K

we first find the minimum -, call it 7Y, for which there exists a (J.u, Juw)-

lossless factorization (4.15). If step 1 also has a solution for this -, we let
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vt = 4% Otherwise, we increase v and determine the minimum =, call it 7!,
for which there exists a solution to the adobe delay problem of step 1. After
solving step k (k = 1,..., N — 1), and thus determining ~*, if step k + 1 also
has a solution for this v, we let v**1 = 4% Otherwise, we increase v and

k+1 for which there exists a solution to the

determine the minimum ~, call it ~
adobe delay problem of step k + 1 (of course, we resolve all the previous steps
for this new 7). In this way, 7°P! in (4.36) is determined as vV at the end of
step N. The stabilizing controller given by (4.35) for v = v°?* is the stabilizing

optimal controller.

Examining Figure 4.7, the controller to be implemented involves a
proportional-integral term (the right-most block in Figure 4.7), which can sim-

ply be realized as

i(t) = re(qa(t) — q(t))

e(t) = x(t) + r(qa(t) — q(t))

where z is the scalar state variable. This block is followed by an LTI block
with TFM HM(G',Qa) put in a feedback loop with N FIR filters. FIR
filters are also connected from the k™ output of this block to (k + 1)™, ...,
N output (k = 1,..., N — 1). The state-space dimension of the LTI block
with TFM HM (G,', Q) is equal to ng1 + ng,, where ng and ng, are
the state-space dimension of Gy' and Q,, respectively. It can be shown by
tracking back the design steps given above, the state-space dimension of le
is the same as the state-space dimension of G := ;€] . In addition, since
Ql_lloo is a constant matrix, the state-space dimension of GG, hence le, is the
same as the state-space dimension of €2;;. The state-space dimension of 27
equals to the state-space dimension of the general plant in (4.14), since y; is
obtained as G in (2.28), which is obtained by solving (2.17) and (2.18) for the
corresponding generalized plant. Since the second and fourth row blocks of
the generalized system in (4.14) can be realized as a second order system and
n — 1 states are needed to realize the third block, the state-space dimension

of the generalized plant, hence, 211, is n + 1. Therefore, for a constant Q),,
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the state-space dimension of the LTI block with TFM HM (G ', Qa) equals
to n + 1. If the central controller is considered, i.e., Qx = 0, a state-space

realization of HM(G',Q,) can be written as

i(t) = (A, — XL

a22

B, Cr ot — 50 ,CF Ju, Cu Xt (t) + By,e(t)

a2 ai2 a22

F(t) - _Cﬂagggzx(t)’

where 7 := [ R N o ]T, x(t) is the n + 1 dimensional state
vector, and the appearing matrices are as defined in Section 2.2, corresponding
to Step N. Furthermore, each FIR filter, whose impulse response is in the form
of (2.12), can easily be realized in discrete-time using é delay elements, where
h is the length of the impulse response and 7 is the sampling period. Therefore,

the implementation of the overall controller is relatively simple.

4.4 Time Domain Performance of the Designed Flow

Controller

In this section, we consider the time-domain performance of the con-
trollers designed by the approach proposed in the previous section. In ad-
dition, the designed controllers are compared to the controllers designed by
the approach of [23]. Simulations are carried out as in [43], but the cases
considered here are different than those in [43]. Simulations are done using
MATLAB/SIMULINK package, where non-linear effects (hard constraints) are
also taken into account. Although the controller was designed using a fluid-
flow model, a more realistic discrete model is used for the simulations. In the
simulations, all the links are assumed to have 100 Mbits/second physical ca-
pacity. Data flow is assumed to consist of discrete data packets of size 1 Mbits
and each packet is modeled as a pulse with 10 milliseconds width. Control
packets, which carry rate information from the bottleneck node to the sources,
on the other hand, have much smaller sizes. It is assumed that the designed
controller, which is implemented at the bottleneck, sends a control packet to

each source at every 5 milliseconds. FEach source updates its data sending
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Figure 4.8: Topology of the example network [43]

rate when it receives a new control packet. However, control packets may not
be received at equal intervals due to the presence of time-varying backward
time-delays. This causes that data sending rates may not be updated at equal

intervals. In all simulations, simulation step size is taken as 1 millisecond.

We consider a network with two sources as shown in Figure 4.8. The
nominal time-delays (in seconds), controller design parameters, and the result-
ing optimal sensitivity level, v°P!, for each case are shown in Table 4.1. In all
cases, we take Yy = 0 and hlf = h! = %hi, 1 =1,2. In all cases, the buffer size
(maximum queue length) is taken as 60 packets and the desired queue length,
a4, is taken as half of this value, 30 packets. The rate limits of the sources are
taken as 150 packets/second in all cases except Case 5. The capacity of the
outgoing link is taken as 90 packets/second in all cases. The uncertain part
of the actual time-delays (in seconds) are shown in Table 4.2. The simulation
results of the controllers designed by the approach of Section 4.3 are shown
in Figures 4.9-4.16. In all figures, q is the queue length, ¢(¢) (whose scale is
shown on the right-hand-side of each graph), and 1%, for ¢ = 1,2, is the ac-
tual rate, r7(t) := min (max (r{(¢),0),d;), of data sent from source i at time
t, where d; is the rate limit of source i and r&(t) = r;(t — 72(¢)) is the rate

command received at source ¢ at time ¢.
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Table 4.1: Controller design parameters and P

Case | hy | he | 6f |05 | B1 | e ﬁ{ ﬁ{ ar |az | o1 | og | P
125(3 |1 |1/2| 1 [06[04]02]01] 2 | £ |0.25]|0.25|5.126
3 13|12 |1/06[04[02/01| 2] % ]025]025]|7.061
4 |11 |1/2]1]06[04]02[01| 2 | 3| 1 |0.25]3.792

Table 4.2: The uncertain part of the actual time-delays

Case | i 8 (t) 57 ()

2 0.140.1sin(351)

1,4,5| 1| 0.24+0.3sin(2¢

/\
SR
~—

2| 0.640.3 sin(25¢) | 0.1+0.1sin(3x%t)
2,3 | 1] 1.540.8sin(35¢) | 0.15+0.15sin(3x¢)
2 | 0.6+0.3sin(25t) | 0.1+0.1sin(2%t)

Case 1: This is the central case, which will be used to compare all other
simulation results. In Figure 4.9, the queue length remains almost zero up to
around 18 seconds, which is the time required for the incoming rates to reach
the capacity of the outgoing link. Then, queue length settles around 40 seconds
following an overshoot. The high-frequency oscillations in the queue length are
due to discrete arrival/departure of packets (those oscillations would not be
seen if a fluid-flow model was used, see simulation results in Sections 4.6, 4.7).
Moreover, existence of time-varying forward time-delays also cause oscillations.
As shown in Figure 4.9, at steady-state, the queue length oscillates around its
desired value, gq, and the flow rates oscillate around the values given by (4.6).
In addition, the controller is more conservative on rate 1, than it is on rate 2.
The reason for this is that the nominal delay of channel 1 is higher than that

of channel 2.

Case 2: In this case, we have the same controller as in Case 1, however, the

actual delay in channel 1 is increased. As shown in Figure 4.10, this results in
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an increase on the settling time and the overshoot.

Case 3: We increased the value of the design parameter §; four times as
shown in Table 4.1. This makes the resulting controller more robust, but more
conservative. As shown in Figure 4.11, when we apply the same actual delays
as in Case 2, the queue length settles later than the settling time of the queue

length in Figure 4.10 with a smaller overshoot.

Case 4: We take equal nominal delays in the channels. By comparing Figure
4.12 to 4.9, the response of the controller in Figure 4.12 is faster compared to
the one in Figure 4.9. The reason of the faster response is that the nominal
time-delay in the 1st channel is less than the one in the 1st channel of Case 1.
In addition, apart from the ratio a;/as, the rate response of the controller is

the same in both channels.

Case 5: The rate limits of the sources are decreased to 50 packets/second.
This causes the rate of the first source to saturate as shown in Figure 4.13.
However, the controller increases the rate of the second source to compensate.
Due to this extra compensation, however, the response here is slower compared

to the central case.

To compare our controller to the controller proposed in [23], we de-
signed controllers using the approach of [23] using the design parameters (ex-
cept o1 and o9, which are not used in the approach of [23], where tracking and

robustness are achieved by solving a two-block problem and fairness is achieved
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by including the fairness weights in the controller derivation) shown in Table
4.1. The response of the controllers designed by the approach of [23] is given
in Figures 4.14-4.16 for cases 1-3 above. As seen by comparing Figure 4.14
to Figure 4.9, the response of the controller designed by the approach of [23]
is slower and has less overshoot compared to one designed by the approach
presented in the previous section. This difference indicates that the controller
designed by the approach of [23] is conservative compared to one designed by

the approach of Section 4.3.

As seen in Figure 4.15, the controller designed by the approach of [23]
can not stabilize the actual system if the uncertain part of the actual time-
delays in Case 1 are increased as in Case 2 given in Table 4.2. However, as seen
in Figure 4.10, the controller designed by the approach proposed in Section 4.3

stabilizes the actual system and achieves the performance requirements. In

81



"
a o
g &

a

5 B

8 &
2
g

5
&
T

5 g
a8

Queue length in packets
Queue Iength in packets

2 g
& 3

9
8

Flow rates at sources in packets/second
o o
Flow rates at sources in packets/second

,_.
&5
—
1

o

o

40 50 60 70 80
Time in Seconds Time in Seconds

Figure 4.15: Results of [23] for Case 2 Figure 4.16: Results of [23] for Case 3

Figure 4.16, the response of the controller, which is designed by the approach
of [23] for larger d;" compared to previous one, is shown. However, the designed
controller still can not stabilize the actual system. On the other hand, as shown
in Figure 4.11, the controller designed by the approach proposed in Section 4.3
stabilizes the actual system and achieves the design requirements. Hence, the
controllers designed by the approach of Section 4.3 exhibit better robustness
properties compared to the ones designed by the approach of [23].

4.5 Performance Level and Stability Margins of the De-

signed Flow Controller

In this section, performance level and actual stability margins of the
flow controller designed by the approach of Section 4.3 are presented. Analysis
carried out in this section have been published in [44], but the example network

considered here is different than the one in [44].

The stabilizing H> flow controller K designed by the approach pro-
posed in Section 4.3 internally stabilizes the nominal system in Figure 4.3,
where A = 0, and makes the H* norm of the closed-loop TFM from w to z in
Figure 4.3, called T,,, less than a given v > 0. By defining S := (1+P,A,K) ™!
the closed-loop TFM T, in Figure 4.3 can be written as given below;
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—N, K SW, A K SW,
Tow = —WsSW; W3SW, | - (4.37)
—WyAKSWy WA, KSW,
Therefore, the designed stabilizing controller K should satisty;

A, KSW; A K SW,
WgSWl WgSWQ <7, (438)
WA, KSWy WA, KSW,

[e.e]

for a given v > 0.

Since the optimal controller (besides stabilization) is designed to a-
chieve the minimum sensitivity level, y°, its reciprocal, %, is defined as the
performance level of the designed optimal controller K Optv. Therefore, the per-
formance level indicates how much the performance requirements are satisfied

with the designed robustly stabilizing optimal controller.

The designed flow controller should robustly stabilize (internally) the
feedback system in Figure 4.2 for all possible A. By the small-gain theo-
rem, Theorem 3.2, since the non-causal uncertainty block A is norm-bounded,
|Alla < 1, the controller K robustly stabilizes the actual system if it stabi-
lizes the nominal feedback system (the system in Figure 4.2 with A = 0) and
satisfies ||A,K (1 + P,A,K) 'Wi|» < 1. Furthermore, since A, is an inner

function, the latter condition is equivalent to

1K (14 PoAK) ™ Wl < 1. (4.39)

Therefore, the designed controller robustly stabilizes the actual system
against all uncertain time-varying time-delays satisfying (4.4) if the stabilizing
optimal controller K" satisfies (4.39). Since K°P' satisfies ||T.y|lcc = Y,
from (4.37), [|AKSWi|leo = | KSWi|leo =: p < 4°P'. Therefore, the designed
controller robustly stabilizes the overall feedback system for [|A]ls < l Note
that ||Ally < 1 when the stability margins on &;(t), & (t), and 6/ (£) are respec-
tively 67, B; and 3/ (see Section 4.2). Therefore, ||Afly < % is satisfied if the
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actual stability margins on &;(t), &;(¢), and 8/ (t) are respectively changed to

t
gact - gact and 37 *" where
1

52t = ~¢;F (4.40)
p
and et
g+ 8" it (4.41)
are satisfied for 1 = 1,--- ,n. Note that there are infinitely many solutions for

Bect and B/ " in (4.41). The system is robustly stable for any one of these

solutions. To obtain unique solutions, we introduce the additional constraint

fact f
CA— (4.42)

TR

In order to show the performance level and the actual stability margins

of the designed optimal H> flow controllers while design parameters 6;", 3;,
ﬁif (1 = 1,2) change in given intervals, we consider a network with two sources
as depicted in Figure 4.8. In the controller design, the nominal time-delays
are assumed to be h; = 3 tu and hy = 1 tu, where tu stands for the time
unit. The flow controllers are designed for 3; = 3, which varies in the interval
[0,0.99], while 6 = 65 varies in the interval [0.01,1] and three cases for 3/,
Blf =0, Blf = (3;/2, and Blf = [, (i = 1,2) are considered. Fairness weights
are chosen as a3 = 2/3, and as = 1/3 and other design parameters are chosen

as 01 = 09 — 0.25.

The performance level of the designed optimal H> controller is given
in Figure 4.17. As shown in Figure 4.17, increasing any one of the design
parameters, ([3;, ﬁlf , or &;, decreases the performance level of the designed
controller. This stems from the fact that increasing these design parameters
implies that the assumed uncertainty range is enlarged. Therefore, as expected,
as the uncertainty range is enlarged the controller gives more priority to ro-
bustness and trades this off from performance. In addition, as (3; approaches
to 1, which implies that 5Z(t) may become close to 1, the performance level of
the designed controller decreases to 0. In fact, if d;(t) = 1, the rate commands
calculated at time ¢ do not have any effect on the queue length at any time.

Therefore, in this case, the controller may be said to have no performance.
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(c) 6] = B

Figure 4.17: Performance levels of the designed optimal H*> flow controllers

The actual stability margin on ;(t), peet of the designed H*> con-
trollers is given in Figure 4.18. As seen in the figure, as [3; increases, (3%
increases without seriously being affected by d;". Moreover, 3¢ value for any

corresponding 3; and §; values in Figure 4.18 decreases as Blf increases.

The actual stability margin on 6;(¢), 6%, of the designed H> con-
trollers is given in Figure 4.19. As seen in the figure, as ;" increases, §2¢
increases almost independently from [; for small 3; values. However, as (;
approaches to 1, 62 approaches to 0. As stated above, since the controller

looses its effect as 3; approaches to 1, its robustness properties vanishes.

Finally, the actual stability margin on 5Zf (1), ﬁzf ad, of the designed

controller is given in Figure 4.20, as ;" and ﬁlf are changed, for two cases
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Figure 4.18: Actual stability margin on &;(¢) for the designed optimal H> flow

controllers

of 6;, B; = Bif and 3; = 2@-f. It should be noted that, in the latter case,
since 3; < 1, @f is changed up to 0.495, so that 3; < 0.99. As shown in

Figure 4.20, ﬁlf “! increases as Bzf increases without seriously being affected by

t
§;". Furthermore, for a fixed Bzf , increasing [3; decreases ﬁif “

To summarize, as the values of the design parameters (;, ﬁlf , and §;"
are increased, stability margins of the designed controller increase, meanwhile
its performance level decreases, in general. However, for 3; values, which are
close to 1, performance and actual stability margin on §;(¢) of the controller

decreases drastically.
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4.6 Performance and Robustness of Flow Controllers

Designed Using Non-Causal Uncertainty Blocks

To present the benefits of utilizing non-causal uncertainty blocks in
the stabilizing robust flow controller design, (i.e., using (4.11) instead of (4.12)
and allowing non-causal uncertainty blocks) performance levels and stability
margins of the stabilizing controllers designed by the approach given in Sec-
tion 4.3 can be compared to the stabilizing controllers designed by the approach
of [40-42]. For brevity, throughout this section, the controller design using the
approach proposed in [40-42], is called the causal approach and the controller

design using the approach proposed in Section 4.3 is called the non-causal ap-
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controllers

proach. In both approaches, the designed controller, K°P', internally stabilizes
the system and satisfies p ir[l(fopt | T |loe =: Y (for a different v°P* for each
approach), where T, is given in (4.37). Analysis carried out in this section is
the same as in [45], however, the cases considered here are different than those

considered in [45].

To compare the performance level, the stability margins, and time-
domain performance of the flow controllers designed by the two approaches,
a network with two sources, as depicted in Figure 4.8, is considered. For a
satisfactory comparison, five different cases for the possible time delays in each
channel are considered. The nominal time-delays and the uncertainty bounds
for each channel in each case are given in Table 4.3. In each case, the actual
time-delay in channel ¢ is assumed to vary from 7™ — §;"* to 7,°°™ 4 0;"%*.

Therefore, for the causal approach we take

hi = 7MW — g and  0F = 20M% . i=1,2, (4.43)

(2

and for the non-causal approach we take

hy=7m  and  &F =6 i=1,2. (4.44)

The other controller design parameters are given in Table 4.4.
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Table 4.3: Nominal time-delays and uncertainty bounds

nom

71
Case1| 1.0 | 1.0 | 0.25 ] 0.25
Case2| 1.0 | 1.0 | 0.5 | 0.5
Case3| 2.0 | 20 | 0.5 | 0.5
Case4 | 2.0 | 1.0 | 0.5 | 0.75
Case5| 3.0 | 1.0 | 1.0 | 0.75

nom max max
T oy 03

Table 4.4: Controller design parameters for all cases

B B2 5{ ﬁ{ aq (&%) 01 02

0.2]0.1]0.01]0.01|2/3[1/3]05]0.5

The performance level and actual stability margins of the controller
designed by the causal and non-causal approach for each case are given in
Tables 4.5 and 4.6, respectively. In addition to actual stability margins, the
value of p, which is the H* norm of the closed-loop TFM from w; to 2; in
Figure 4.2, for the designed controller for each case is also given. Moreover, in
these tables, the length of the full stability range of the controllers designed
by the both approaches is given. The length of the full stability range of the
controller designed by the non-causal approach and the causal approach are

262t and 02, respectively.

As seen in the tables, the value of 1/v°P* under non-causal approach is
greater compared to causal approach in each case. This implies that, the con-
troller designed by the non-causal approach has better performance property
compared to the causal one. In addition, in all cases, the value of p under non-
causal approach is smaller compared to causal approach in each case. Hence, all
of the actual stability margins are greater under the non-causal approach com-
pared to the causal approach. This implies that the controller designed by the
non-causal approach is more robust than the controller designed by the causal

approach against changes in the time-delays and their derivatives. Moreover,
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Table 4.5: Performance level and stability margins for the causal approach

1
,yopt

Case 1 | 0.5540 | 1.8034 | 0.2773 | 0.2773 | 0.1165 | 0.0568 | 0.0058 | 0.0057

act act act act f act f act
p of 05 1 2 1 2

Case 2 | 0.4442 | 2.2501 | 0.4444 | 0.4444 | 0.0946 | 0.0458 | 0.0047 | 0.0046

Case 3 | 0.2767 | 3.6059 | 0.2773 | 0.2773 | 0.0601 | 0.0288 | 0.0030 | 0.0029

Case 4 | 0.3196 | 3.1249 | 0.3200 | 0.4800 | 0.0690 | 0.0332 | 0.0035 | 0.0033

Case 5 | 0.2403 | 4.1527 | 0.4816 | 0.3612 | 0.0524 | 0.0251 | 0.0026 | 0.0025

Table 4.6: Performance level and stability margins for the non-causal approach

1
,yopt

Case 1 | 0.6010 | 1.6609 | 0.3010 | 0.3010 | 0.1259 | 0.0615 | 0.0063 | 0.0061

act act act act f act f act
P 267 205 1 65 1 2

Case 2 | 0.4854 | 2.0561 | 0.4864 | 0.4864 | 0.1030 | 0.0500 | 0.0051 | 0.0050

Case 3 | 0.3046 | 3.2762 | 0.3052 | 0.3052 | 0.0660 | 0.0317 | 0.0033 | 0.0032

Case 4 | 0.3451 | 2.8961 | 0.3453 | 0.5179 | 0.0743 | 0.0357 | 0.0037 | 0.0036

Case 5 | 0.2621 | 3.8135 | 0.5250 | 0.3930 | 0.0569 | 0.0272 | 0.0028 | 0.0027

in the non-causal approach, the guaranteed stability range for the variations
in the time-delays is centered around the nominal time-delays, since the con-
troller designed by the non-causal approach guarantees stability in the range
Thom _ gact () < phom L §act aq long as |7;(t)] < 42 and |77 (¢)] < @fact are
also satisfied. On the other hand, assuming |7;(t)] < 82 and |7/ ()| < 5/ aCt,
the controller designed by the causal approach guarantees stability in the range
TROM — X g (f) < TP — §aX 4 §2¢t . The guaranteed stability ranges for
the five cases considered above are shown in Table 4.7 for both approaches.

It is seen that in many cases the guaranteed stability range under the causal

approach does not even include the nominal time-delay.

As seen in the tables given above, and also examined in [45] for dif-
ferent cases, the flow controllers designed by the non-causal approach exhibit
better performance and robustness compared to ones designed by the causal

approach. Now, let us consider the time-domain performance of the designed
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Table 4.7: Time-delay range for guaranteed stability

Channel 1 Channel 2

Causal Non-Causal Causal Non-Causal

Case 1 || (0.75, 1.0273) | (0.8495, 1.1505) || (0.75, 1.0273) | (0.8495, 1.1505

Case 2 || (0.5, 0.9444) 0.7568, 1.2432

( ) ( )
( ) | (0.5, 0.9444) | (0.7568, 1.2432)
Case 3 || (1.5, 1.7773) | (1.8474, 2.1526) || (1.5, 1.7773) | (1.8474, 2.1526)
( )| (025, 0.73) | ¢ )

Case 5 | (2.0,2.482) | (2.475,3.525) | (0.25,0.611) | (0.607, 1.393)

Case 4 (1.5, 1.82) 1.8274, 2.1727 0.7410, 1.2590

controllers by both approaches. In order to compare the time-domain per-
formance of the controllers designed by the causal approach to ones designed
by the non-causal approach, a number of simulations will be carried out. We
consider the same example network and the same cases for the nominal time
delays and uncertainty bounds given in Table 4.3. The controller design param-
eters h; and §; are calculated as given in (4.43) and (4.44), for the causal and
non-causal approaches respectively. The other controller design parameters
are given in Table 4.4. The simulations are done using MATLAB/SIMULINK
package, where non-linear effects are also taken into account. The buffer size
(maximum queue length) is taken as 60 packets, the desired queue length, qq4,
is taken as 30 packets, the capacity of the outgoing link (which equals to ¢(t)
when ¢(t) > 0) is taken as 90 packets/tu, where tu stands for the time-unit,
and the rate limits of the sources are taken as 150 packets/tu in all cases. We
consider a total of 8 different cases, where the actual time-delays (in tu) are
shown in Table 4.8. In this table, Case ka, Case kb, etc. refer to a case where
the controller designed for Case k of Table 4.3 is used (k = 1,2...,5). The
minimum and maximum values of 7;() := 72(t) + 77 (¢) are also shown in the

last two columns of Table 4.8.

The simulation results are shown in Figures 4.21-4.28. In all figures,
part (a) shows the results obtained for the controller designed using the causal
approach and part (b) shows the results obtained for the controller designed
using the non-causal approach. In all graphs, q is the queue length, ¢(t) (whose
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Table 4.8: Actual time-delays

(1) /() i | e

Case la 0.48+0.04sin(2%¢) || 0.48+0.02sin(75t) || 0.9 | 1.02
0.4740.04sin(%5t) || 0.4840.02sin(35¢) || 0.89 | 1.01

Case 1b,2a 0.5+0.2sin(25¢) 0.5+0.1sin(£5¢) || 0.70 | 1.3
0.6+0.1sin(25¢) 0.54+0.1sin(&5¢) || 0.9 | 1.3

Case 3a 1.24 0.1sin(2%¢) || 0.8+0.1sin(£5t) 1.8 | 2.2
1.1+0.05sin(25¢) || 0.9+0.05sin(25¢) || 1.9 | 2.1

Case 4a 0.9+0.08sin(2%¢) || 0.7+0.01sin(2%¢) || 1.51 | 1.69
0.3+0.1sin(2%¢) || 0.240.05sin(2%¢) | 0.35 | 0.65

Case 4b 1.140.1sin(25¢) || 0.940.05sin(25t) || 1.85 | 2.15
0.6+0.1sin(25¢) 0.4+0.1sin(&5t) || 0.8 | 1.2

Case 4c 1.9+0.2sin(2%¢) 1.04+0.1sin(Z5t) || 2.6 | 3.2
0.8+0.1sin(2%¢) || 0.640.05sin(2%¢) | 1.25 | 1.55

Case 5a 1|[ 2.5+0.1sin(25¢) || 1.040.05sin(Z5t) | 3.35 | 3.75
2| 0.8+0.1sin($5t) || 0.6+0.05sin(25¢) || 1.25 | 1.55

scale is shown on the right-hand-side of each graph), and rf is the actual rate
at which data is send from source i, i = 1,2, (whose scale is shown on the

left-hand-side of each graph).

Case la: In this case, the actual time-delays vary within the guaranteed
stability range of the controllers designed by the causal and non-causal ap-
proaches. As seen in Figure 4.21, both controllers stabilize the actual system
and achieve the tracking (4.5) and the weighted fairness (4.6) requirements. As
seen by comparing Figure 4.21(a) to (b), the response of the controller designed

by the non-causal approach is faster compared to the controller designed by

the causal approach

Case 1b: In this case, we apply the same controller designed for Case 1la,
however, the actual time-delays vary within a wider range compared to the

actual time-delays in Case la. In addition, the range in this case is outside
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Figure 4.21: Simulation results for Case la
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Figure 4.22: Simulation results for Case 1b

the guaranteed stability range of both controllers. However, both controllers
stabilize the actual system and achieve the design requirements, as seen in
Figure 4.22. The response of the controller designed by the causal approach
has larger overshoots and longer settling time compared to the response of the
controller designed by the non-causal approach. Non-causal approach, on the

other hand, provides a more oscillatory transient response.

Case 2a: In this case, the used controllers provide a wider range of variations
in the actual time-delays compared to Cases 1a and 1b. Similar to Case 1b, the
actual time-delays in this case are outside of the guaranteed stability range of
both controllers, however, they stabilize the actual system and achieve the de-

sign requirements as shown in Figure 4.23. As seen in Figure 4.23, the response
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Figure 4.23: Simulation results for Case 2a

of the controller designed by the non-causal approach is faster compared to the
controller designed by the causal approach. In addition, the queue length in
Figure 4.23(b) settles to the desired queue length with smaller overshoots and
undershoots compared to the queue length in Figure 4.23(a).

Case 3a: In this case, the actual time-delays vary around the nominal time-
delays given in Table 4.3, and within the guaranteed stability range of the
controller designed by the non-causal approach. However, they are outside the
guaranteed stability range of the controller designed by the causal approach.
As seen in Figure 4.24(b), the controller designed by the non-causal approach
stabilizes the actual system and achieves the design requirements. However,
the controller designed by the causal approach can not stabilize the system as

shown in Figure 4.24(a).

Case 4a: In this case, the actual time-delays lie within the guaranteed stabil-
ity range of the controller designed by the causal approach, however, outside
the guaranteed stability range of the controller designed by the non-causal ap-
proach. However, as seen in Figure 4.25(b), the controller designed by the non-
causal approach stabilizes the actual system and achieves the design require-
ments with a small overshoot. As seen in Figure 4.25(a), the controller designed
by the causal approach achieves the design requirements with a smoother re-
sponse compared to the response of the controller designed by the non-causal

approach.
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Figure 4.24: Simulation results for Case 3a
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Figure 4.25: Simulation results for Case 4a

Case 4b: In this case, the actual time-delays lie in the guaranteed stability
range of the controller designed by the non-causal approach, however, out-
side the guaranteed stability range of the controller designed by the causal
approach. As seen in Figure 4.26(a), the controller designed by the causal
approach stabilizes the actual system with larger overshoots and undershoots
compared to the controller designed by the non-causal approach. Moreover,
the settling time of the controller designed by the causal approach is longer

compared to that of the controller designed by the non-causal approach.

Case 4c: In this case, the actual time-delays are outside the guaranteed stabil-
ity range of both controllers. As seen in Figure 4.27(a), the controller designed

by the causal approach does not stabilize the system, however, as shown in
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Figure 4.26: Simulation results for Case 4b
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Figure 4.27: Simulation results for Case 4c

Figure 4.27(b), the controller designed by the non-causal approach stabilizes

the actual system and achieves all the design requirements.

Case 5a: In this case, similar to Case 4c, the actual time delays are outside
the guaranteed range of both controllers. However, the used controllers satisfy
a wider range of variations in the actual time-delays compared to Case 4c.
As seen in Figure 4.28, both controllers stabilize the system, however, the
controller designed by the non-causal approach has a faster response with less

overshoots.

As seen in the simulation results (not only the ones presented here,
but also many others), the non-causal approach in general produces faster

responses with smaller overshoots compared to the causal approach. Further-
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Figure 4.28: Simulation results for Case 5a

more, the controllers designed by the non-causal approach have better stability
robustness, in general (e.g, see Case 3a, Case 4c, Case ba). Moreover, due to
their faster response, controllers designed by the non-causal approach produce
smaller steady-state oscillations in many cases (e.g., see Case 2a, Case 5a). The
presented simulation results for different cases and actual time-delays in [37,45]

indicate the same results.

4.7 Robust Controller Design for Data-Communication

Networks to Satisfy Fair Capacity Sharing

In order to design a robust flow controller, which achieves the de-
sign objectives introduced in Section 4.2, a controller was designed to sat-
isfy the internal stability of the nominal system in Figure 4.3 (A = 0) and

T
minimize the H* norm of the closed-loop TFM from w = [ wl dT ] to

z = le elT 62T T, called T,,, in Figure 4.3. The signals z1, ey, and ey
in Figure 4.3 were introduced, respectively, for the robustness, tracking, and
weighted fairness requirements. An internally stabilizing robust flow controller
can alternatively be designed to minimize the H> norm of the closed-loop TFM
from w to 2 := [ 2 el }T, called T%,. The weighted fairness requirement is
not considered in the latter H* minimization problem. However, by utilizing

the parametrization of the controller, (4.35), a contractive parameter (), can
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be chosen appropriately, if it is possible, such that the weighted fairness re-
quirement is achieved by the controller. Note that the H* norm of the TFM
T, for the controller, which is designed to minimize the H* norm of the TFM
T:, is less than or equal to the H* norm of the TFM T, for the controller,
which is designed to minimize the H* norm of the TFM T,,. Hence, the
controller, which is designed to minimize the H* norm of the TFM T%, and
achieves the weighted fairness requirement by a chosen appropriate @4, if it
exists, may be more robust and have better tracking properties compared to

the controller designed to minimize the H* norm of the TFM T7,,.

In this section, we give the sufficient conditions to choose the free
parameter ()5 in the structure of the controller (see Section 4.3), which min-
imizes the H* norm of the TFM T, to satisfy the robustness and tracking
requirement (4.5), also meets the weighted fairness requirement (4.6). There-
fore, to design such a flow controller a new mixed sensitivity minimization
problem is defined as depicted in Figure 4.29. In this problem, there does not
exist a weighting function to achieve the weighted fairness requirement by the
controller compared to the mixed sensitivity minimization problem defined in
Section 4.3, i.e., e; in Figure 4.3 does not exist in Figure 4.29. Using the
H> controller design procedure given in Section 4.3, an optimal H* flow con-
troller can be designed for the system depicted in Figure 4.29. In the sequel,
the sufficient conditions are given to choose an appropriate Q5 such that the
designed controller for the mixed sensitivity minimization problem depicted in
Figure 4.29 meets the weighted fairness requirement. The results presented in
this section have been published in [46]. However, the example cases considered

here are different than those in [46].

From the structure of the designed flow controller in Section 4.3, the

designed controller K in Figure 4.7 can be written in the Laplace domain as:

K(s) = R(s)H(s) [ + D(s) H(s)] " 52, (4.45)

S

where

H(s) = HM(G;, Q») (4.46)
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D(S) = Hhe_(ﬁl_ﬁl\')slll 4+t H%l e H%N

Let K; be the j™ element of the designed controller K, given in (4.45).

Then, from Figure 4.2, since g4(t) = g4, a constant (hence gy(s) = 1¢q,), the

S

j™ element of r(s), r;(s), can be written as:

1
S

rj(s) = K(s) (1 + Po(s)Au(s)K(s)) "~ (qa +¢(s)) (4.48)

where it is assumed that A = 0. Similar to Section 4.2, it was assumed

that tlim c(t) = coo. The weighted fairness requirement, (4.6), implies that

t—00 &

n
lim er(t) = (. Utilizing this fact and the final value theorem [64], i.e.,
j=1
tlim ri(t) = lin% srj(s), an equivalent expression to the weighted fairness re-
—00 s—
quirement can be written as

lim K(s)
s—0 Kl(s) 4+ 4 Kn(S)

= q; i=1,...,m, (4.49)
where > 7 a; = 1.
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To write (4.49) in terms of Q,, let us partition the TFM G, compati-

, . Gu Gz , , ,
bly with @ such that G (s) =: , where G17 is nxn dimensional

G21 G22

and Gy is 1 X 1 dimensional. Let us define
Hn(S) = Gll(S)QA(S) + G12(8) (450)

and Hy(s) := Ga1(5)Qa(S) + Gaa(s). Then, H(s) in (4.46) can be written as
H(s) = H,(s)H;'(s). Now, if R;(s) denotes the j*" row of R(s) in (4.47), the

j™ element of the controller K (s), K;(s), can be written as,

(S = Ro(s . k(s +¢€)
If K;(s) in (4.51) is substituted in (4.49), then it is obtained that
R(0)H,(0) = o1, R(0)H,(0), (4.52)

where o := [0y -+ )" Let us define Z := R(0)—a1, R(0). Therefore, (4.52)
implies that ZH, (0) = 0. However, since R(0) is nonsingular and 1,a = 1,
there exists a nonzero x such that Zz =0, i.e. Z is singular. In addition, the

rank of Z is n — 1. Hence, x is unique up to a multiplication by a scalar.

Now, using the above definitions, we can derive the sufficient con-
ditions to choose the appropriate (J5. Let x be a nonzero vector such that
Zx = 0. Therefore, there exists a scalar parameter ¢ such that H,(0) = ¢z.
From (4.50), if Q4 is chosen to satisfy

G11(0)Q4(0) = v — G1(0), (4.53)

Qa(0) = Gl_ll(o) (Y — G12(0)), (4.54)

if G11(0) is nonsingular, then the designed stabilizing controller K for the
mixed sensitivity minimization problem depicted in Figure 4.29 also satisfies
the weighted fairness condition. However, the free parameter (), in the con-
troller structure should be contractive. Since [[Qallec > T (Qa(0)), QA(0)
should also satisfy that @ (Qa(0)) < 1. Therefore, for an arbitrary 1, if there
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exists any contractive @, such that QA (0) satisfies (4.53) or (4.54), then the
designed flow controller for the problem depicted in Figure 4.29 satisfies the
weighted fairness requirement. Hence, if there exists a contractive (4 (0) which

satisfies (4.53) or (4.54), one can choose Qa(s) = Qa(0), i.e., a constant matrix.

However, there may not exist any ¢ such that @ (Qx(0)) < 1. In this
case, there may not exist any (), which satisfies the weighted fairness condition
for the given v and « values. In this case, either new «; values may be chosen
to find appropriate ()5 or the sensitivity level may be increased and 1 is sought

for the new designed controller.

To illustrate the performance of the controllers designed by the ap-
proach proposed in this section, a network with two sources, as depicted in
Figure 4.8, is considered. The nominal time-delays are assumed to be hy = 3
tu and hy = 1 tu, where tu stands for the time unit. Other design parameters
are taken as 67 = 0.5, 65 = 1.0, B, = 0.2, B, = 0.3, 8/ = 0.2, 8] = 0.1,
o1 = 0.25. To evaluate the performance of the designed controllers by the ap-
proach proposed in this section, the optimal flow controllers are also designed
by the approach of Section 4.3 for the same design parameters with o5 = 0.25.
The simulations are done using MATLAB/SIMULINK package, where the de-
sired queue length, g4, is taken as 30 packets and the buffer size (maximum
queue length) is taken as 60 packets. Moreover, the capacity of the outgoing
link is taken as 90 packets/tu and the rate limits for the sources are taken
as 150 packets/tu. The uncertain part of the actual time-delays used in the
simulations are given in Table 4.9. In all cases, h? = hlf = %hi, 1 =1,2. The
simulation results for both controllers designed by the approach in Section 4.3
and in this section are given in Figures 4.30-4.31. In both figures, (a) rep-
resents the response of the controller designed by the approach presented in
this section and (b) represents the response of the controller designed by the
approach of Section 4.3. In addition, in all figures, q (whose scale is on the
right) is the queue length and r§ (whose scale is on the left) is the actual flow

rate at source i, for i = 1, 2.
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Table 4.9: Uncertain part of the actual time-delays

i 07 (t) 5/ (¢)
1| 0.540.7sin(25¢) | 0.140.1sin(35t)
2 | 0.64-0.9sin(35¢) | 0.140.2sin(25¢)

Case 1: In this case, the controllers are designed for a; = %, gy = % Utiliz-
ing the approach proposed in this section, the optimal H* flow controller is
obtained for the optimal sensitivity level 4, where 4" = 3.530. In order
to achieve the weighted fairness requirement by the controller designed here,
the contractive ), is obtained by (4.54), where 1 varies between —10 and
10. The ¢ value achieving the minimum @ (Q4(0)), which is also less than 1,
is chosen and Q, is obtained as Q) = [0.297 0.954]" for ¢ = 0.3. By the
approach of Section 4.3, the optimal H* flow controller is obtained for P!t
where 7Pt = 3.920. In the optimal controller, Q4 is taken as Q5 = 0. As seen
in Table 4.10, the controller designed by the approach proposed here yields
greater E compared to the controller designed by the approach of Section 4.3,
where ,opis the H*> norm of the closed-loop TFM from w; to z; in Figure 4.2.
Therefore, by (4.40) and (4.41), the actual stability margins of the controller
designed by the approach proposed here are larger compared to the ones de-
signed by the approach of Section 4.3. Hence, the controller designed by the
approach proposed here has better robustness property compared to the one

which is designed by the approach of Section 4.3.

The response of the designed controllers by both approaches are pre-
sented in Figure 4.30. As seen in this figure, both controllers robustly stabilize
the actual system and achieve the tracking (4.5) and the weighted fairness
(4.6) requirements. The controller designed by the approach proposed here
achieves the weighted fairness requirement at the steady-state. However, by
the approach of Section 4.3, since the weighted fairness requirement was in-

cluded in the H* minimization problem, the controller tries to achieve the
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Table 4.10: Upper bound on the Ly induced norm of A and H* norm of the
TFM T%,,

1
Case | The controller is designed by the - 1 T2 o
p
1 approach proposed in this section | 0.289 | 3.530
approach of Section 4.3 0.259 | 3.867

2 approach proposed in this section | 0.288 | 3.530

approach of Section 4.3 0.273 | 3.680

&
2
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Figure 4.30: Time-domain response of the controllers designed for Case 1

weighted fairness requirement while achieving the robustness and the tracking
requirements. Hence, as seen by comparing Figure 4.30(a) to (b), the flow
rates in Figure 4.30(a) settle later than the flow rates in Figure 4.30(b). The
flow rate at source 2 in Figure 4.30(a) rises faster compared to the flow rate
at source 1 in Figure 4.30(a) to achieve the tracking requirement, due to the
smaller nominal time-delay in channel 2 compared to the one in channel 1. As
seen in Table 4.10, the H* norm of the TFM T}, for the controller designed
here is less than the H* norm of the TFM Ty, for the controller designed by
the approach of Section 4.3, which is an expected result. Therefore, the robust
controller designed by the approach proposed here may have a faster queue
response compared to the one designed by the approach of Section 4.3. Thus,
as seen by comparing Figure 4.30(a) to (b) , the queue length in Figure 4.30(a)
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leaves 0 before the queue length in Figure 4.30(b).

Case 2: In this case, the controllers are designed for a; = %, gy = % The
designed stabilizing optimal controller by the approach proposed here is ob-

= 3.530. To achieve the weighted

. opt opt
tained for the same 4™ value, where "

fairness requirement by the controller designed here, the contractive Q) is
obtained by the same procedure as in Case 1. Hence, Q)5 is obtained as
Qx = [0.323 0.943]", where 1 in (4.54) is obtained as 1) = 0.77. The sta-
bilizing optimal controller designed by the approach of Section 4.3 is obtained
at v°P*2 where v°P'2 = 3.730, and Q, is taken as Q5 = 0. Similar to Case 1,
as seen in Table 4.10, the controller designed by the approach proposed here
stabilizes the actual system for a wider uncertainty set and yields smaller H*°
norm for the TFM T}, compared to that of the controller designed by the
approach of Section 4.3.

The response of the designed controllers by both approaches is pre-
sented in Figure 4.31. As seen in Figure 4.31, similar to Case 1, the flow
rates in Figure 4.31(b) settle before the flow rates in Figure 4.31(a), and the
queue length in Figure 4.31(a) leaves from 0 before the queue length in Fig-
ure 4.31(b). In this case, different than Case 1, source 2, which is subject to a
smaller nominal time-delay compared to source 1 (and hence responds faster
than source 1, as explained in Case 1), shares more of the network capacity
at the steady-state. Therefore, the flow rates at sources in Figure 4.31 settle

before the flow rates at sources in Figure 4.30.

As shown by the presented simulations above, the controllers designed
by the approach proposed here stabilize the actual system and achieve the
tracking and the weighted fairness requirements. In addition, the controllers
designed here have better robustness properties and a faster queue response
compared to the controllers designed by the approach of Section 4.3. However,
since the controller designed here achieves the weighted fairness requirement
at the steady-state, flow rates of data for the controller designed here settle

later than the ones for the controller designed by the approach of Section 4.3.
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Figure 4.31: Time-domain response of the controllers designed for Case 2

4.8 Summary

In this chapter, a stabilizing optimal H> flow controller design for
data-communication networks with multiple time-delays was considered by
utilizing non-causal uncertainty blocks. A stabilizing controller was designed
by solving an H> optimization problem using the method of [13]. Unlike [23],
where only a suboptimal solution could be found, the present approach allows
designing an optimal controller. In order to illustrate the time-domain perfor-
mance of the designed flow controllers by the approach presented in Section 4.3,
simulations were done in Section 4.4. In these simulations, a discrete model
was used rather than the fluid-flow model which was used in the controller
design. As shown in the presented simulations, the designed flow controllers
drive the queue length at the bottleneck node to the desired level as required
by (4.5) against the presence of uncertain time-varying time-delays and sat-
isfy that the network capacity is shared fairly among the sources, according
to (4.6). Moreover, to show the performance improvement of the flow con-
trollers designed by the approach presented in Section 4.3, the designed flow
controllers were compared to the controllers designed by the approach of [23].
As shown by the simulations, the response of the controller designed by the
approach of [23] is slower compared to the response of the controller designed
by the approach in Section 4.3. In addition, the controller designed by the

approach of [23] can produce an unstable response for certain relatively large
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uncertainties in the time-delays while the controller designed by the approach
presented in Section 4.3 can stabilize the system. This shows that the con-
troller designed by the approach proposed in Section 4.3 has better robustness
properties than the controller of [23]. These results are also obtained in [43]
considering a number of simulations. One of the important differences between
the approach presented in Section 4.3 and the approach of [23] is the existence

of design parameters oy and o», which bring flexibility in the controller design.

The performance level and stability margins of the optimal H*> flow
controllers were examined in Section 4.5. As discussed in Section 4.5, also in
[44], to improve the robustness of the flow controllers designed by the approach
proposed in Section 4.3, the design parameters [3;, ﬁlf , and ;" should be chosen
large enough, except that (3; should not be chosen close to 1. However, these
design parameters must be kept small in order to improve the performance of

the flow controllers.

As shown in Section 4.6, the controllers obtained by the non-causal
approach presented in Section 4.3 have better performance and robustness
properties compared to the controllers obtained by the causal approach of [40—
42]. A number of simulations were done using MATLAB/SIMULINK package,
where nonlinearities of the model were also taken into account. Similar to
the results in [37], [45], the controllers designed by the non-causal approach
produced faster responses with smaller overshoots compared to the controllers
designed by the causal approach in all cases. In addition, it was shown that the
controller designed by the causal approach can produce an unstable response
while the controller designed by the non-causal approach stabilizes the system.
Therefore, the controllers designed by the non-causal approach have better

robustness properties, in general.

In Section 4.7, the sufficient conditions were presented to choose an
appropriate Qo to yield a controller, which was designed to achieve only the
robustness and the tracking requirements, also achieves the weighted fairness

requirement. By the approach proposed in Section 4.7, the flow controllers
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were designed to satisfy less number of objectives compared to the controllers
designed by the approach of Section 4.3, since the remaining objective was
met by choosing the appropriate contractive parameter Q5. This yields that
the controller designed by the approach of Section 4.7 has greater actual sta-
bility margins than the actual stability margins of the controller designed by
the approach of Section 4.3. In addition, the approach of Section 4.7 pro-
duces a controller with a faster tracking response compared to the controller
obtained by the approach of Section 4.3. Hence, the controllers designed by
the approach of Section 4.7 have better robustness and tracking properties
compared to the controllers designed by the approach of Section 4.3. To illus-
trate the performance of the controllers designed by the approach proposed in
Section 4.7, simulation studies were performed using MATLAB/SIMULINK
package. As seen in the simulation results, the controllers designed by the
approach proposed in Section 4.7 stabilize the actual system and achieve the

tracking and the weighted fairness requirements.
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5 STABLE H* FLOW CONTROLLER
DESIGN

In controller design, the first requirement is to guarantee the inter-
nal stability of the closed-loop system. Therefore, resulting stabilizing con-
trollers may be unstable. However, unstable controllers introduce additional
right half-plane zeros to the closed loop system, which degenerate the track-
ing and disturbance rejection abilities of the closed-loop system, and result
unpredictable response in presence of sensor faults and non-linear effects. In
addition, since the designed optimal/suboptimal controllers for infinite dimen-
sional systems are irrational in general (see [6,65,66] also Section 4.3), their
rational approximation may not be obtained easily, if the designed irrational
stabilizing controller is unstable [65]. Therefore, stable controllers are often
desired, if it is possible. In addition, the stable controller design has also strong

connections with the simultaneous stabilization problem [31].

The necessary and sufficient condition for the existence of a stable
controller for a given plant is whether the plant satisfies the parity interlacing
property, (p.i.p) [31]. A plant is said to satisfy the p.i.p if the number of its

poles between any pair of its real right half-plane blocking zeros is even [31].

Stable H* controller design is more difficult compared to the stable
controller design, since the designed controller should also achieve some H*
norm constraints. In the literature, there exist numerous stable and stable H>
controller design approaches for finite dimensional systems (e.g. [26], [28] and
references therein). However, if time-delay systems are considered, there exists
only a few papers. The sufficient and necessary conditions for the existence of
a stable controller for SISO systems with a single time-delay were presented
in [33]. In [34], stable controller design approach was presented for a SISO
system with a single time-delay by using the interpolation approach. Stable

H> controller design for a general SISO system with multiple-time-delays was
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Figure 5.1: Structure of the controller K [47]

presented recently in [9, 35].

In this chapter, a number of different stable H* flow controller de-
sign algorithms are presented. In Section 5.1, the stable H> flow controller
design problem is posed. In Section 5.2, a stable H* flow controller design
is proposed which is based on the small-gain theorem [3-5]. In Section 5.3, a
less conservative methodology compared to the one in Section 5.2 is presented.
In Section 5.4, two algorithms based on stabilization of the finite-dimensional
part of the controller are proposed. In Section 5.5, the proposed algorithm
is based on seeking a stable H> flow controller by increasing the gain of the
uncertainty weight in the robust control problem setup. In Section 5.6, firstly,
two different rational approximations of an FIR filter are summarized, then,
three different stable H> flow controller design methodologies are presented,
each of which is based on solving the strong stabilization problem by utilizing

a rational approximation of the existing FIR block in the controller structure.

5.1 Stable H* Flow Controller Design for Systems with

Multiple Time-Delays

In this section, stable H*® flow controller design problem is stated. In
order to pose the problem clearly, let us consider the structure of the controller
depicted in Figure 5.1, which is the simplified representation of Figure 4.7.
Here, F| and F; are stable blocks which consist of delays and FIR filters.

Any controller K, including K°P, obtained by the approach proposed

109



in Chapter 4, is unstable due to the integral term (see Figure 5.1), which is re-
quired to ensure the tracking requirement. However, the rest of the controller,
i.e., the part from ¢ to r in Figure 5.1 may or may not be stable. When this
part is unstable, due to nonlinearities in the system (i.e., the hard constraints),
an unstable behaviour may be observed, at least for certain actual time-delays
and/or initial conditions (see [42] and Section 5.3 for example cases). In order
to avoid such undesirable behaviour, stable H*> flow controllers may be de-
signed, since stable controllers are less sensitive to the unmodelled dynamics.
In the following sections, design methodologies are proposed which ensure that
the TFM from ¢ to r in Figure 5.1 is stable. For brevity, in the sequel, stable
‘H*> flow controller means that the TFM from g to r in Figure 5.1 is stable.

5.2 Stable H>* Flow Controller Design Methodology by

Utilizing the Small-Gain Theorem

In this section, a design methodology to obtain a stable H> flow con-
troller to solve the problem presented in the previous section is proposed. The
stable controller is obtained by utilizing the contractive free parameter Q,,
which is to be designed to stabilize the TFM from ¢ to r in Figure 5.1 while
keeping its contractiveness. Such ()5 may or may not exist for a given sensitiv-
ity level 7. Therefore, the proposed approach is based on seeking a contractive
Qx, which stabilizes the TFM from g to r in Figure 5.1, by increasing the
sensitivity level ~, starting from the optimal sensitivity level, v°P*. The results

presented in this section have been published in [47].

In Figure 5.1, since F} and F5 blocks consist of time-delays and FIR
filters, both Fy and F} are stable. Therefore, vp, := || F3||« is finite. Since Fj is
bistable, the mapping from ¢ to r is stable if and only if the mapping from 3 to
T is stable. Hence, by the small-gain theorem (e.g., see [5]), the mapping from
g to 7 is stable if HM(G', Q,) is stable and | HM (G, Qp) s < 1/7r,. Fur-

thermore, for the robust stability of the overall system, ()4 must be contractive

110



(see Section 4.3). Therefore, to solve our problem, we state the problem as to

find a @ such that

HM(GL', Qn) € RH™ (5.1)
IPHM(GEY, Qn)le < 1. 52)

where p := vp,, and
[Qallc <1, (5.3)

which is called as a strong H> stabilization problem.

In order to find a solution to the problem defined above, let us partition
G G

GXl as GXl = R R , where @11 isn x n and @22 is 1 x 1. Then,
G G
HM(GL', Qn) = (G11Qna + G12)(G21Qa + Goz)~L. Thus, by defining
I, 0 G G
Gyl = ail=| U Zo (5.4)
0 p! p 1 Ga p G
(5.2) is equivalent to that
S = HM(G3!, Qu) (5.5)

1S contractive.

In order to find a condition that guarantees contractiveness of @y, let
Gu Gho

us also partition G, as G, = , where G171 is n X n and Gas is

G G
1 x 1. Then, using (5.5) and (2.7), we obtain

Qr=HM(Gy,,S) = (G11S + G12)(Ga1 S + Ga) 7. (5.6)

It follows from [67] that we can introduce a nonzero tuning parameter A, which
does not affect the controller but may reduce the conservativeness in the design,
so that

Qr = (AG11S + AG12)(AGa1S + \Gao) 7t (5.7)

Let us also define U 1= A(G11S + G12), V := 1 — A(G21S + Ga), and ' :=

U
V2 . Then
V

Qr=U1-V)'=HM(Gp,T), (5.8)
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o] o
[0 —1} V2

property of G can be used to present a sufficient condition for the contractive-

where Gr = and it satisfies G J,1Gr < Jins1),1. This

Zr ur
ness of Q5. Let us define zp, wr, ur and yr such that = Gr

wr Yr
and ur = Pyp. Then, by (5.8), zr = Qwr. Since GLJ, 1Gr < Jn+1),1, then

T - AT
N ey ur T ur
In1 = GrJn1Gr
wr wr Yr yr
- AT
ur ur
< Jnt1),1
Yr yr

which gives ZIT 2r — w% wr < u%ur - ylz yr, which implies

lzrll3 = llwrll3 < lluells = lyell3 - (5.9)

Since ur = Tyr, if T' is contractive, |urlls < |lyrll2. Then, from (5.9),
|lzr|l2 < ||wr|l2. However, since zr = Qawr, this implies contractiveness of
Q. Therefore, ()5 is contractive if I' is contractive. Furthermore, recall that

S must also be contractive. These two conditions are simultaneously satisfied

r
if < 1, where
S
V2AG1y V2XGia g
r _ _
g = | =V2XAGa1 V2 —V2)\Gx : (5.10)
1
I 0
The structure of given in (5.10), can easily be represented using
S

homographic transformation. For this, let us define

[ V2AGL VNG
—V2\G 2(1 — \G
Go = VG V2 2) | (5.11)
I 0

0 1
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r r
Then, HM (G, S) = . Therefore, the condition < 1is
S S

satisfied if and only if HM(Gg,S) is contractive. As a result, the problem
of finding @, which satisfies (5.1)—(5.3) is solved if there exists A > 0 and
S such that HM(Gg,S) is stable and |[HM(Gg,S)|l.c < 1. The problem
of finding S and A such that HM(Gg,S) is stable and ||HM (Gg, S)||e < 1
can be solved by using (J, j)—lossless factorization of G¢ as in [50], where
J = Jnt14m),1 and J = Jn1. Utilization of (J, j)—lossless factorization of G¢
in the problem solving is enabled by the cascade connection property of HM,
(2.8), and Theorem 2.1. Let Gg = Og®¢ be a (J, J)-lossless factorization of
G¢, where J = Jnt14n),15 J = Jn1, O is (J, j)—lossless and P is bistable
[50]. Therefore, by (2.8), HM(Gg,S) = HM(Og, HM (P, S)). In addition,
since O is (J, J)-lossless, by Theorem 2.1, ||[HM(Ge, S)|le < 1 if and only
if |HM(®g,S)||lo < 1. Therefore, if a contractive, but otherwise arbitrary,
Qc = HM(®g, S) is chosen, then, using (2.7), contractive S is obtained as

S =HM(®;', Qq) . (5.12)

Then, a @ which satisfies (5.1)—(5.3) is obtained by (5.6).

In order to find the state-space solution of a (J, J )-lossless factoriza-

tion of G, let a minimal realization of G;! be given as

Gyl = (5.13)
where lim, o, G'(s) = I,;1 (see Section 4.3). Then a minimal realization of
prl is given as

A |B B
Go=1| & |L, 0 |- (5.14)
piCy| 0 p!
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Thus, a minimal realization of G, is given as
121\ - Elal - EQ@Q El p§2
Gy, = ~C, I, 0 |- (5.15)
—62 0 P

Therefore, a minimal realization of G can be obtained as

As | B
Go= | —S129 1 (5.16)
Cqo | Do
—V2AC,
o . V20\C.
where AG = A — 3101 — BQCQ, BG = |: Bl pB2 ]7 C’G - ? ;
0
0
and - _ i ]
V21, 0
0 V2(1 =\
Dg = =2 (5.17)
I, 0
0 1

Since G is bistable, from (5.13), both Aand A — E@l — Egé’g = Aqg are
Hurwitz. Thus, G¢ is stable.

The state-space solution of (.J, J )-lossless factorization of G is given

in the following theorem.

Theorem 5.1. [50] Consider the stable system G and its minimal realization
given in (5.16). Gg has a (J, j)—lossless factorization, Gg = OqPq, if and

only if there exists a nonsingular matriz Eq, such that
DLJDg = ELJEq (5.18)
and a solution Xg > 0 to the following Riccati equation

XgAg + AL Xq — Y2 (DEIDG) Yo + CLICs =0 (5.19)
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such that A, = Ag + BaFg is Hurwitz, where Fg := —(DLJDg) " 'Yg and
4, | B

Yo = D(T;J_CG + BgX(;. In that case, ©g = Eél and
Cq+ DgFg ‘ D¢
Aq | —B
bo =B | ——4 | (5.20)
FG [nJrl

In order to show the existence condition of non-singular E¢, which sat-

isfies (5.18), for D¢ in (5.17), let us pursue the following process. DLJDg =

2N+ 1)1, 0 ‘
, where d := 4\p — 2)\?p?> — 1. Suppose Eg is non-

0 —d
singular and let V' := EZ'. Then, from (5.18), VI DLJDgV = J. Let
T _ .
y := Vx, where x := [ 0 --- 0 1| . Then, y"DLJIDgy = 2" Jz = —1,

which implies that DLJDg must have at least one negative eigenvalue. How-

, ron | @D 0 )
ever, since DgJDg = , and 2\ + 1 > 0, we must
0 —d

have —d < 0 if Eg is nonsingular. Equivalently, F¢ is nonsingular only if

d > 0. On the other hand, if d > 0, a nonsingular E; can be obtained as

V2 X2 +11, 0

Eq = . Therefore, a nonsingular Eg satisfying (5.18)
0 Vd

exists if and only if d > 0. However, note that, d > 0 if and only if A is chosen

: ; V2-1 /241
in the interval < NIRRT )

Therefore, a controller which solves the problem of Section 4.3 and
which is stable apart from the integral action can be obtained by the following

algorithm.

Algorithm 5.1.

1. Find the optimal sensitivity level v°P*, given by (4.36), and let v = ~°P*.

2. Find Fy, F5, and Gy (see Section 4.3) for the current sensitivity level .
Also compute vg, = ||Fylloc. Let p = vr,. Choose a sufficiently large |

and equally spaced values Ay, s, ..., \j within the interval <*/\/§§_p1, \/\/5%;1)
Let i =1.
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3. For A\ = X\, if there exists a solution Xg > 0 to the Riccati equation

(5.19), go to step 6. Otherwise, continue with step 4.
4. If 1 =1, go to step 5. Otherwise, seti =1+ 1 and go to step 3.
5. Increase v by a small amount and go to step 2.

n

0

6. Let Qn = HM(Gy,,S), where, by (5.4), Gy, = Gy and, by
0 p

(5.12), S = HM(®;', Qc), where ®¢ is given by (5.20) and Qg is con-

tractive but otherwise arbitrary. The desired controller is then given by

(see Figure 5.1)

K(9) = R(&H() 5 f(;zz;%(s)) , (5.21)
where H :== HM(G,*,Q,) and k = 1

Varia (o)

To design a stable H> flow controller is not an easy task due to the
infinite dimensionality of the controller. However, stability of the infinite di-
mensional block Fy resulted to utilize the small-gain theorem in Algorithm 5.1
to design a stable H*> flow controller. Since the small-gain theorem provides
only a sufficient condition for the stability of the feedback system, stable H>
flow controllers designed by Algorithm 5.1, may be conservative, when they
exist. In addition, there is no guarantee that the proposed algorithm termi-
nates for any sensitivity level, since Algorithm 5.1 is based on the sufficient
conditions. However, the stable H* flow controllers designed by Algorithm 5.1
are obtained for some sensitivity levels, which are not less than two or three
folds of 4°P!, in general. However, less conservative controllers can be designed

by relaxing the small-gain condition in (5.2) as given in the following section.

5.3 Stable H* Flow Controller Design Methodology by
Solving Modified Strong H*> Stabilization Problem

The stable H*™ flow controllers designed by Algorithm 5.1 are con-

servative due to the use of the small-gain theorem. In order to design a less
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conservative controller compared to the controller designed by Algorithm 5.1,

let us replace (5.2) by

lpHM (G QM) < 1, p <, (5.22)

Now, to design a stable H> flow controller, a contractive (), which stabilizes
HM (G}, Q) and satisfies (5.22) for some p < 7yp,, is sought. The sensitivity
level 7 is increased if a stable controller (apart from the integral term) can not
be obtained for any p € [pmin, V&, Where ppin < Yr, is a chosen lower limit.
Note that the contractive Q5 found by this procedure, given as Algorithm 5.2
below, may not satisfy the small-gain condition, however, it may stabilize the

overall controller, except the integral term.

Algorithm 5.2.

1. Find the optimal sensitivity level v°P*, given by (4.36), and let v = ~°PL.

2. Find Fy, Fs, and G, for the current sensitivity level ~. Also compute
TR, = ||F2||OO and choose a Pmin € (O>7F2)' Let P = Vrs-

3. Choose a sufficiently large | and equally spaced values A1, Ao, ..., N
e ~ V21 V2+1 L
within the interval ( NIRRT ) Let 1 = 1.

4. For A = \;, if there exists a solution Xg > 0 to the Riccali equation

(5.19), go to step 8. Otherwise, continue with step 5.
5. If i =1, go to step 6. Otherwise, set t =i+ 1 and go to step 4.

6. Decrease p by a small amount. If p > puin go to step 3, otherwise go to

step 7.

7. Increase v by a small amount and go to step 2.

n

0

8. Let Qn = HM(Gn,,S), where, by (5.4), Gx, = Ga and, by
0 p

(5.12), S = HM(®;', Qg), where ®g is given by (5.20) and Qg is con-

tractive but otherwise arbitrary. If (1 + FyH)™' is stable (this is true if
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p = Yr,; otherwise, stability can be tested by using the Nyquist criterion),

where H = HM(G}',Q4), go to step 9. Otherwise, go to step 5.

9. The desired controller is given by (see Figure 5.1)
k(s + €)
s(1+ Fy(s)H(s))

K(s) = Fi(s)H(s) (5.23)

where kK 1= i

T’

To illustrate the performance of the stable H* flow controllers de-
signed by Algorithm 5.2, a network with two sources is considered. The con-
trollers are designed for the given parameters in Table 5.1 and p,,;, in step 2
of Algorithm 5.2 is chosen as vg,/10. The H*-optimal central flow controllers
are also designed considering the same design parameters. The time-domain
performance of both controllers are presented by simulations done using MAT-
LAB/SIMULINK package, where the nonlinear effects (hard constraints) are
also taken into account. In these simulations, the desired queue length, ¢,
is taken 30 packets, the buffer size (maximum queue length) is taken as 60
packets, and the capacity of the outgoing link is taken as 90 packets/tu, where
tu stands for the time unit. Moreover, the rate limits for the sources are taken
as 150 packets/tu. The uncertain part of the actual time-delays used in the
simulations are given in Table 5.2. In this table, Case ka, Case kb, refer to a
case where the controller designed for Case k of Table 5.1 is used (k = 1,2).
The simulation results are shown in Figures 5.2-5.4, where (a) represents the
response of the H*-optimal central flow controller and (b) represents the re-
sponse of the stable H* flow controller designed by Algorithm 5.2. In addition,
in Figures 5.2-5.4, q (whose scale is on the right) is the queue length ¢(¢), and

T

® (whose scale is on the left) is the actual flow rate at source i, for i = 1, 2.

The H>-optimal central flow controller designed by the approach of
Section 4.3 for Case 1 is unstable and the optimal sensitivity level is vt =
2.817. As shown in Figure 5.2(a), the response of the optimal controller for
Case la does not stabilize the actual plant, flow rates at sources and queue
length at the bottleneck saturate. The unstable response of the designed sta-

bilizing optimal controller may be due to the fact that the unstable controllers
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Table 5.1: Controller design parameters

Case h1 (tu) h,2 (tu) 51 52 6{ 65 5fr 5; a1 (%) 01 = 02
Case 1 4 2 0.1]02|001]005]|1/4]|1/2]2/3]|1/3| 025
Case2 | 4 2 102]03[005| 01 |1/4|3/4|2/3]1/3| 025
Table 5.2: Uncertain part of the actual time-delays
&; (t) o/ (¢)

Case la 0.10+0.25sin(£7t) | 0.0540.05sin(2xt)

2| 0.154+0.30sin(22t) | 0.10+0.05sin(25t)

Case 1b,2a | 1| 0.1040.50sin(35¢) | 0.104-0.15sin(25¢)

2| 0.15 + 0.50sin(3Z¢) | 0.10+0.10sin(25t)

are highly sensitive to the unmodelled nonlinear dynamics, which are not con-
sidered in the controller design, however, taken into account in the simula-
tions. By Algorithm 5.2, a stable H*> flow controller for Case 1 is obtained
for v = 3.590. As shown in Figure 5.2(b), the response of the stable H*> flow
controller for Case la robustly stabilizes the actual plant and achieves all the

design requirements despite the presence of uncertain time-varying time-delays.

The uncertain part of the actual time-delays in Case 1b vary faster
within a wider range compared to the uncertain part of the actual time-delays
in Case la. As shown in Figure 5.3(a), the optimal controller, which is un-
stable, does not stabilize the actual system for Case 1b. However, since the
stable controllers have better robustness abilities compared to the unstable
controllers, as seen in Figure 5.3(b), the stable controller stabilizes the actual
system and achieves the tracking (4.5) and fairness (4.6) requirements also for
Case 1b. Note that the steady-state oscillations of the queue length in Fig-
ure 5.3(b) are greater than the ones in Figure 5.2(b), this is due to the increase

in the variation of the uncertain part of the forward time-delays.
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In order to design a controller to provide the actual time-delays vary-
ing faster in a wider range compared to the controller designed for Case 1, the
controller design parameters 31, (s, B{ , B{ , and 65 in Case 1 are increased
as in Case 2. The H*-optimal central flow controller for Case 2 is obtained
at v°P! = 3.433, however, it is still unstable. The optimal controller designed
for Case 2 has better stability margins compared to the optimal controller
designed for Case 1, because of the increase in the controller design parame-
ters (see Section 4.5). However, similar to the optimal controller designed for
Case 1, the optimal controller designed for Case 2 can not stabilize the actual
system for Case 2a as seen in Figure 5.4(a). The stable controller designed by

Algorithm 5.2 for Case 2 is obtained at 7 = 4.600. As shown in Figure 5.4(b),
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the stable controller stabilizes the actual plant for Case 2a and satisfies both

the tracking and the weighted fairness requirements,

As shown in Figures 5.2(b)— 5.4(b), the stable H> flow controllers de-
signed by Algorithm 5.2 stabilize the actual system and achieve the design
requirements despite the presence of uncertain time-varying time-delays. Al-
gorithm 5.2 is based on less stringent conditions compared to Algorithm 5.1.
However, there also exists conservativeness in the approach proposed in this
section, because there may exist a contractive @, which does not satisfy (5.22)
for any p in the given interval, but results in a stable H* flow controller. There-
fore, it is not guaranteed that Algorithm 5.2 yields a stable H* flow controller.

However, Algorithm 5.2 produces a stable H* flow controller, in most cases.

5.4 Stable H* Flow Controller Design Methodology by
Utilizing the Stability of the Finite-Dimensional
Part of the Controller

In Algorithms 5.1 and 5.2, a contractive Q5 is sought to stabilize
HM (G, Q) and satisfy ||HM (G, Qa)|lse < 1/p, for a given p > 0, by
increasing the sensitivity level . In Algorithm 5.1, p is taken as yg,, where

Ve, = || F3||. However, the controllers designed by Algorithm 5.1 are conser-
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vative, in general. In order to design a less conservative stable controller, p is
taken less than or equal yg, in Algorithm 5.2. Note that, both algorithms try
to produce a contractive ()5 satisfying two conditions given above. However,
a contractive Q5 which stabilizes HM(G™!,Q,) always makes the H> norm
of HM(G™',Qy) less than for some value. To introduce an upper bound on
the H> norm of HM (G, Q,) may produce a conservative stable controller,
since a contractive 5, which stabilizes HM(G™1,Q,), may not achieve the
given ‘H* norm bound, however, may stabilize the actual controller, except

the integral term.

In this section, an alternative approach is presented and the stable
H> flow controller design is based on the stabilization of the finite-dimensional
part of the controller. A contractive ()5 is sought to satisfy the stability of
both HM(G}',Q,) and the closed-loop TFM from ¢ to r in Figure 5.1, by

increasing the sensitivity level ~.

The controller depicted in Figure 5.1 can be shown as in Figure 5.5,

where

A—BQCQ BQ Bl

Y1 X2

Y= = Cy 0o I, |, (5.24)

o1 oo

—CYy 1 0
_ G G :G/_\l
Ga Go

Now, let us consider the closed-loop TFM from ¢ to 7 in Figure 5.5.

A contractive Q5 stabilizes the closed-loop TFM from ¢ to 7 in Figure 5.5 if
A- By | B, Ay | By

and only if it stabilizes the plant Yoy =

¢, |0 s | o
Let us assume that Y satisfies the following conditions:

a) (As, By) is stabilizable and (Cy, Ax) is detectable

b) Ay has no jw axis eigenvalues.

The existence of a stabilizing output feedback controller for ¥ is guaranteed
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by (a). Let X > 0 be the stabilizing solution of
ALX + XAy — XBsBEX =0, (5.25)

where Fy := —BLX and Ax = As, + BgF is stable. Since it is assumed that
(As, By) is stabilizable and Ay, has no jw axis eigenvalues, there exists a unique

solution X > 0 for (5.25). Therefore, Y99 has a right-coprime factorization such

as 222 = NZM{:l [5]

AX BE
Ms;
= F| I |, (5.26)
Ny
Cy| O

where Ny, My, are in RH*. Now, a contractive (5 stabilizes Yoo if and only
if (Mg —QxNs)™' € RH*®. Following [68], let us define Ry := My — I.

Therefore, My, — QA Nx. can be written in terms of Ry, as follows:
My, — QaNs, = I + Ry, — Q5 Nx.. (5.27)

By the small-gain theorem [5], if there exists a contractive Q5 such that || Ry —
QaNs |l < 1, from (5.27), Q4 stabilizes 3gs. To find such a contractive Q4,
a two block problem is defined in [68]:

H[ Ry 0 } — &, 'Qa [ &Ny I ]HOO <1, (5.28)

where ¢, < 1. Let us define QA = ¢.1Qx and Ng := €,Nx. Then utilizing
LFT,
[ Re 0] =0a| Ny I]=Fi(Gs,—Qn). (5.29)

123



where

Ry 0] 1 AXHBE o] o
Gy = [N ]] . = | Fx [0 o] I|. (5.30)
. &:.Cy [0 1} 0

Now, the problem in (5.28) can be solved by solving only one algebraic

Riccati equation as given in the following theorem.

Theorem 5.2. [26] There exits a contractive Qn, which stabilizes %, if there
exists Y > 0 and a e, € (0,1), such that

AxY +YAL — Y (£2CLC0x — XBsBLX)Y + By BE = 0. (5.31)

Under this condition, the realization of the contractive Qx can be written as:

Ag | —L
Qn = : (5.32)
F o0

where A = As + BsF + LCyx, and L = —2Y CL.
Theorem 5.2 is based on the right-coprime factorization over RH>

of Ygy. A stabilizing contractive Q5 can also be designed by utilizing the

left-coprime factorization of 9y over RH™>.

Since it is assumed that (Cy, Ay) is detectable and Ay has no jw axis

eigenvalues, there exist a unique Y > 0 such that
AsY + Y AL —vCeIowy =o, (5.33)

where L := —)70% and Ey = As —i—ng is stable. Now, Y99 has a left coprime

factorization over RH™ such as gy = Mg 1N2.

Theorem 5.3. [26] There exits a contractive Qy, which stabilizes %, if there
ezists X >0 and a g, € (0,1) such that

ATX + XAy + X(YCLCsY — 2By BE)X 4+ CLCs = 0. (5.34)
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Under this condition, the realization of the contractive Qx can be written as:

: (5.35)

where EK = Ay + EC'E + Bzﬁ, and F = —5%3%)?.

Now, utilizing the above theorems, two algorithms are given below to

design a contractive (5 to obtain a stable H* flow controller.

Algorithm 5.3.

1. Find the optimal sensitivity level v°P*, given by (4.36), and let v = ~°P".
Choose a sufficiently large | and equally spaced values €1, .. .,e; within

the interval (0, 1).

2. Find Fy, F5, and Gy (see Section 4.3) for the current sensitivity level .
Let 1= 1.

3. If there exists X > 0, which solves (5.25), go to step 4. Otherwise, go to
step 6.

4. For e, = g, if there exists Y > 0, which solves (5.81), go to step 7.

Otherwise, go to step 5.
5. Ifi=1, go to step 6. Otherwise, seti =1+ 1 and go to step 4.
6. Increase v by a small amount and go to step 2.

7. If (1 + FoH)™! is unstable (can be checked by the Nyquist criterion),
where H = HM(G,', Q) and Qy is obtained from (5.32), then go to
step 5. If (1 + FoH)™! is stable, the desired controller is then given by
(see Figure 5.1)

(5.36)
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Algorithm 5.3 is based on the right-coprime factorization of ¥os. If the
left-coprime factorization of 99 is considered, the algorithm can alternatively

be written as:

Algorithm 5.4.

1., 2. Same as in Algorithm 5.5.

3. If there exists Y > 0, which solves (5.33), go to step 4. Otherwise, go to

step 6.

4. For e, = &;, if there exists X > 0, which solves (5.34), go to step 7.
Otherwise, go to step 5.

5., 6. Same as in Algorithm 5.5.

7. If (1 + FoH)™! is unstable (can be checked by the Nyquist criterion),
where H = HM (G, Q) and Qy is obtained from (5.35), then go to
step 5. If (1 + FoH)™! is stable, the desired controller is then given by
(5.96).

Note that, each algorithm proposed in this section solves a different
problem to design a stable H* flow controller. Therefore, Algorithms 5.3 and
5.4 may result in different controllers. In order to obtain a stable controller
with a good performance, stable H* flow controller design may be done uti-
lizing both Algorithms 5.3 and 5.4, and the resulting stable controller having
the better performance may be chosen. It should be noted that there is no

guarantee for either of the algorithm to produce a desired controller.

To evaluate the performance of the controller designed by the algo-
rithms proposed here, the network introduced in Section 5.3 is considered. A
simulation is done using MATLAB/SIMULINK package, where the nonlinear
effects (hard constraints) are also taken into account. The controller design is
done using the parameters given in Table 5.1. In the simulation, the desired

queue length, qg, the buffer size, the capacity of the outgoing link, and the
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Figure 5.6: Simulation result of the controller designed by Algorithm 5.3 for

Case la

rate limits for the sources are taken as in Section 5.3. The simulation result
of the stable controller designed by Algorithm 5.3 is shown in Figure 5.6. In
Figure 5.6, q (whose scale is on the right) is the queue length ¢(¢), and 13

(whose scale is on the left) is the actual flow rate at source 4, for i = 1, 2.

A stable H> flow controller for Case 1, given in Section 5.3, is obtained
at v = 3.260, by utilizing Algorithm 5.3. It should be noted that Algorithm 5.4
produces the same stable H* flow controller, because Ay, is stable in this case
and (Cy, Ay, Byy) triple satisfies stabilizable and delectable assumptions, a pos-
itive definite solution of (5.34), X, exists for all v [5]. Therefore, the resulting
Qx is zero, and the resulting stable controller is the central controller. As
shown in Figure 5.6, the response of the designed stable H* flow controller ro-
bustly stabilizes the actual plant and achieves the design requirements despite
the presence of uncertain time-varying time-delays. In addition, by comparing
Figure 5.2(b) to Figure 5.6, the queue response of the controller designed by
Algorithm 5.3 is faster compared to the queue response of the controller de-
signed by Algorithm 5.2. In addition, the queue response in Figure 5.6 makes

smaller overshoot compared to the one in Figure 5.2(b).

Algorithms 5.3 and 5.4 are based on the stability of the finite-dimen-
sional part of the mapping from ¥ to 7 in Figure 5.1, which is HM (G, Q4),
by a contractive Q5. By comparing Algorithms 5.3 and 5.4 to Algorithms 5.1
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and 5.2, a contractive )5 is designed by Algorithms 5.3 and 5.4 to satisfy
only (5.1). However, any contractive @5 satisfying (5.1) also yields that
|HM (G, Q) |lso is bounded. However, to introduce an upper bound on
the H> norm of HM (G, Q) as in (5.2) and (5.22), respectively, in Algo-
rithms 5.1 and 5.2, challenges to design a contractive ()4 compared to design
a contractive @), satisfying only (5.1). Therefore, the approach of seeking a
contractive @, which stabilizes HM (G, Q) and the closed-loop TFM from
7 to 7 in Figure 5.1, by increasing the sensitivity level may be less conservative

compared to the approaches of Sections 5.2 and 5.3.

5.5 Stable H* Flow Controller Design by Utilizing the

Uncertainty Weighting Function

In this section, an alternative H*> flow controller design algorithm,
which is inspired by [65], is given. The algorithm seeks a stable H*™ flow
controller by changing the gain of the uncertainty weight Wi in the flow control
problem (see Section 4.2). To do this, the uncertainty weight is defined as
/Wl := kW, for k > 0 and the H*® controller is designed for /Wl while increasing
k, starting from k£ = 1, up to finding a stable H* flow controller. However,
it should be noted that instead of increasing the k, alternatively, a stable
H*> flow controller can be sought by decreasing k. Therefore, a stable H>
flow controller, which stabilizes the closed-loop system and achieves the design

requirements can be obtained by the following algorithm.

Algorithm 5.5.

1. Let k=1.
2. Let /Wl = kW, (see Section 4.2 for W1 ).

3. Find the optimal sensitivity level v°P*, given by (4.36), by using /Wl in-
stead of W7.

4. Find Fy, F,, and G (see Section 4.3) for the current sensitivity level .
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5. If (1 + FyH)™! is unstable (can be checked by the Nyquist criterion),
where H = HM (G, Q4) and Q, is chosen as Qxy = 0, go to step 6.
Otherwise go to step 7.

6. Increase k by a small amount and go to step 2.

7. The stable H* flow controller is obtained by (see Figure 5.1)

k(s + €)

K(s) = F(S)H(s) Sy pesarrss

(5.37)

where k1= —L—.
V2si (o)

To illustrate the performance of the stable H*> flow controller designed
by Algorithm 5.5, the network introduced in Section 5.3 is considered. The
controller is designed for the given parameters in Table 5.1. The time-domain
performance of the controller is presented by a simulation done using MAT-
LAB/SIMULINK package, where the nonlinear effects (hard constraints) are
also taken into account. In the simulation, the desired queue length, g4, the
buffer size, the capacity of the outgoing link, and the rate limits for the sources
are taken as in Section 5.3. The uncertain part of the actual time-delays used
in the simulation is as in Case la, which is given in Table 5.2. The simulation
result is shown in Figure 5.7. In Figure 5.7, q (whose scale is on the right) is
the queue length ¢(t), and r (whose scale is on the left) is the actual flow rate

at source 7, for i =1, 2.

A stable ‘H*> flow controller for Case 1, given in Section 5.3, is ob-
tained for v = 4.470 and k& = 2.5, by Algorithm 5.5. The response of the
designed controller is depicted in Figure 5.7. As seen in Figure 5.7, the con-
troller designed by Algorithm 5.5 robustly stabilizes the actual system and
achieves the design requirements. The queue length at the bottleneck node
is kept at the desired level, and the network capacity is shared fairly among
the sources according to (4.6) despite the presence of uncertain time-varying
time-delays. As shown by comparing Figure 5.7 to 5.6, the response of the con-
troller designed by Algorithm 5.3 is faster compared to the controller designed
by Algorithm 5.5.
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Figure 5.7: Simulation result of the controller designed by Algorithm 5.5 for

Case la

Algorithm 5.5 seeks an optimal stable H*-central controller, by in-
creasing the gain of the uncertainty weight, starting from 1. Namely, if the
optimal central controller is unstable for the given uncertainty weight, apart
from the integral term, another optimal central controller is designed by in-
creasing the gain of the uncertainty weight. This process continues up to
finding a stable central controller. However, instability of the optimal central
controller does not imply that the optimal controller, except the integral term,
is unstable for all contractive ()5, since there may be a nonzero contractive Qx,
which stabilizes the actual controller, apart from the integral term. Therefore,
the proposed approach has a conservative aspect. In addition, the proposed

approach does not guarantee to yield a stable H* flow controller.

5.6 Stable H* Flow Controller Design by Using Ap-

proximation Techniques

Up to this section, five different stable H> flow controller design al-
gorithms were proposed. None of these algorithms utilize the dynamics of F,
which is infinite-dimensional, directly. In order to consider the dynamics of
F5 in the stable controller design, different rational approximations of F3 are

considered in this section. Utilizing the rational approximation of F3, three
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different stable H> flow controller design approaches are proposed. In these
approaches, first, a rational approximation of F5 is obtained and then a strong
stabilization problem for the finite-dimensional system is defined and solved.
Then, in order to obtain a stable H* flow controller, it is tested whether Qx,
which is obtained from the solution of the strong stabilization problem, sta-
bilizes the actual infinite-dimensional controller. Two different approximation
methods will be considered, one of them is inspired by the d-operator and the
other one is based on the bilinear transformation [69]. For brevity, the rational
approximation method inspired by the d-operator is called the d-approzimation
method and the method based on the bilinear-transformation is called the bi-
linear approzimation method. As proved in [69], both of the methods ensure

that the rational approximation of the FIR filter

e keeps the low-pass property of the FIR filter
e is stable
e does not contain any unstable pole-zero cancellations

e has the same DC gain with the FIR filter (i.e. [|F%(0)| = [|Fb,,,(0)],
where F5, denotes the TEM of the approximation).

In addition, the error between the FIR filter and its rational approximation

can be made as small as desired by any one of these methods.

Parts of the results presented in this section have been published in
48], [49]. However, example cases considered here are different than those

in [48], [49].

In the following subsection, the two rational approximation methods

to be used are presented.

5.6.1 Approximation methods
Let us consider the following FIR filter described by the TFM
Z(s) = (I — e CI=Ah=) (5T — A)7'B, . (5.38)
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In order to obtain the rational approximation of Z(s) by the d-approximation

method, let us define as in [69]

e -1
ol = ( / ’ e—Az<d<> , (5.39)
0

where N is the number of approximation steps. Then, let us define
9 (s) 1= (e X174 _ @S, | (5.40)

where '), satisfies limy_, ' (s) = sI — A,, which is called the limiting prop-

erty. Utilizing (5.39) and (5.40), e~(/=42)%= can be written as
e~ GI=A9h: = ((@%) "I + 1)V (5.41)
Therefore, by (5.41), Z in (5.38) can be written as
Z(s) = (- ((®%) T+ 1)(sT - A)B.

Utilizing the limiting property of I');, T'%(s) ~ (sI — A.), Z can be approxi-

mated by Z% as given below:
Z(s) = Zy(s) = (I —((®N)(s] = A) +1)N(sI = A.)"'B,
= D) ()(@%) 'B. | (5.42)

where I (s) := (s — A, + ®%)"1®%.

In order to obtain the rational approximation of Z(s) by the bilinear
approximation method, let us define as in [69]

e ~1
by = ( / " eAZCdg> (e*Az%z +1) . (5.43)
0
Then, let us define

T8, (s) 1= (e X 1=A) _ [)(e'¥ (1=4) 4 1)~1ph (5.44)

Similar to I'Y;, T'% has also the limiting property, limy o I'%(s) = s — A..

Utilizing (5.43) and (5.44), e~(*/=42)"= can be written as
AN (@8 — T () (@ + T ()7
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Therefore, Z in (5.38) can be written as
Z(s) = (I— (@} —Ti(s)™ (P +Tx(s)")(s] — A.)7'B. .

By the limiting property of T4, T'%(s) ~ (sI — A.), Z can be approximated

to Z% given below
Z(s) = Z%(s) = (I — (D% —sI+ AN (sl — A, + %))

x(sI —A,)'B,

N-1

= > (I3)*(s)Ex(s)B. , (5.45)

k=0
where I1%,(s) := (®% —sI+A,)(sI—A,+®% )~ and 24 (s) = 2(s[— A, +D%,) L.
Let us define the approximation error as Ey := Z — Zy, where Zy
is either Z%, or Z%. As shown in [69], both of the approximations guarantee
that imy_ || En||cc = 0. The stability of the rational approximation of Z(s)
depends on V. Using numerical calculations, the lower bound for N to satisfy
the stability of rational approximation of Z(s) is given in [69] by the following

theorem.

Theorem 5.4. [69] Both Z3, given in (5.42) and Z%, given in (5.45) are stable
for any N > N with
3 h.
N = | — -max |\ (A4,)]| ,
28

where \;(A.) denotes the i eigenvalue of a given matriz A,.

In each of the following three subsections, a different suboptimal stable
H> flow controller design approach is presented. It should be noted that any
one of the approximation methods introduced above can be used for each of

these approaches.

5.6.2 Stable H> flow controller design by using coprime factoriza-

tions of the plant

Let Fy,,, = be a rational approximation of F3 in Fig-

ure 5.1. In here, I, , can be obtained either by the d-approximation method
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Figure 5.8: Representation with rational approximation of Fy [48]

or by the bilinear approximation method. Then, replacing F5 by Fp, , the

system from ¥ to 7 can be represented as shown in Figure 5.8, where

A—BQOQ Bg Bl

Y Y
XY= = Cl 0 [n ) (546)
Yo1 Yo
—CY 1 0
Al B B
Gn G
where | C, | I, O = H 2 ::le.

G Ga

The system in Figure 5.8 can equivalently be represented as in Fig-

ure 5.9, where

A, | B,, B,
Gpn Gpm 2 2 2
G, = F,(X%, F,,,) = =1|C, |D, D
p1 P11 P12
GP21 szz
CPQ Dp21 Dpzz

A—ByCy, —ByCp, | By B
| PG An |0 Br (5.47)
C 0 0 I,

—Cy —Cp, |1 0

Now, let us consider the closed-loop TFM from ¢ to 7 in Figure 5.9. A

contractive ()5 stabilizes the closed-loop TFM from ¢ to 7 in Figure 5.9 if and

ap . .1. Ap Bp2 ..
only if it stabilizes the plant G,,, = [5]. Similar to the approach
Cp,| O
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Figure 5.9: Equivalent representation with rational approximation of Fy [48]

proposed in Section 5.4, to design a stabilizing contractive ()5, let us assume

that G),, satisfies the following conditions:

a) (Ap, Bp,) is stabilizable and (C,,, 4,) is detectable

b) A, has no jw axis eigenvalues.

Let X, > 0 be the stabilizing solution of

AlX, + X, A, — X, B,,B] X, =0, (5.48)

P2 pa T

where F, = —BZ;XT and Ay, = A, + B,,F, is stable. Now, the problem of

designing a contractive ), which stabilizes G,,,, can be solved by solving only

229

one algebraic Riccati equation as given in the following theorem.

Theorem 5.5. [26] There exits a contractive Qn, which stabilizes Gy, if there

exists Y, > 0 and a g, € (0,1) such that
AxY, + Y, AL - Y, (E2CLC,, — X, By, BL X,)Y, + B,,B.. =0.  (5.49)

T p2 P2""p2 P2""p2

Under this condition, the realization of the contractive Qx can be written as:

, (5.50)

where Ak, = Ax, + L,C,,, and L, = —?KC’;;.

Alternatively, by using a left-coprime factorizations rather than a right

coprime factorization (see Section 5.4), let Y; > 0 be a stabilizing solution of
ALY + VAL —Y,CLCY =0, (5.51)
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where L; := —=Y;C[ and Ay, := A, 4+ L,C,, is stable. Then a solution can be

obtained by using the following theorem.

Theorem 5.6. [26] There exits a contractive Qn, which stabilizes Gy, if there
exists X; > 0 and a g, € (0,1) such that

AL X+ XAy, + X\(MCLC,,Y — 8By, Bl ) X, + CL G, = 0. (5.52)

Under this condition, the realization of the contractive Qp can be written as:

, (5.53)

where Ak, = Ay, + By, Fi, and F; = —EZQBZQXZ.

Therefore, the following algorithms can be devised to obtain a stable

H>® flow controller.

Algorithm 5.6.

1. Find the optimal sensitivity level v°P*, given by (4.36), and let v = ~°P".
Choose a sufficiently large | and equally spaced values €1, --- &, within

the interval (0, 1).
2. Find Fy, Fy, and G (see Section 4.3) for the current sensitivity level .

3. Compute N from Theorem 5.4, choose an upper bound N,q. > N, and
let N = N.

4. Let N =N +1.
5. Find Fy,,, for the current N. Let i = 1.

6. If there exists X, > 0, which solves (5.48), go to step 7. Otherwise, if

N < Nz go to step 4 else go to step 10.

7. For g, = &;, if there exists a solution Y, > 0 to the Riccati equation

(5.49) go to step 11. Otherwise, go to step 8.

136



8. Ifi =1 go to step 9. Otherwise, seti =1+ 1 and go to step 7.
9. If N < Nyae go to step 4 else continue with step 10.
10. Increase v by a small amount and go to step 2.

11. If (1 + FyH)™' is unstable (can be checked by the Nyquist criterion),
where H = HM(G,*,Qa) and Q4 is obtained from (5.50), then go to
step 8. If (1 + FoH)™! is stable, the desired controller is then given by
(see Figure 5.1)

(5.54)

v

Vasima(6r)”

Algorithm 5.6 is based on the right-coprime factorization of G

where Kk =

p22-

Based on the left-coprime factorization, the algorithm can alternatively be

written if steps 6 and 7 are replaced by:

6. If there exists Y; > 0, which solves (5.51), go to step 7. Otherwise, if

N < Nz go to step 4 else go to step 10.

7. For g, = &;, if there exists a solution X; > 0 to the Riccati equation

(5.52) go to step 11. Otherwise, go to step 8.

and “(5.50)” in step 11 is replaced by “(5.53)”.

5.6.3 Stable H*> flow controller design by using LMI methods

Different from the above approach, to design a stable H*> flow con-
troller, the approach of [70] can be utilized. To design a contractive (), which

stabilizes G, let us consider the following theorem.

Theorem 5.7. [70] Let us assume that G, in (5.47) satisfies the conditions
(a-b) given following (5.47). Then G, is stabilizable by a contractive Qy if
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there exists V> 0, X > 0, Y > 0, a scalar & > 0 and a square matriz T,

satisfying
ATX + XA, - XB,BLX = 0 (5.55)
AY + YA —2vClC,Y < 0 (5.56)

Tll T12 T13 T14
T{Q T22 €T13 0
T4 &Yl -1 0
Y4, 0 0o -1

< 0, (5.57)

where X is the stabilizing solution of (5.55) such that Ag = A, — BmBg;)A(
is stable and Y1y = ALY 'TT + TY1Ag — CL.C,,TT — TCLC,,, Tip =
V - Ti}_l + £A§?_1TT - gOg;CPQTT, T13 = TCT T14 = —)/(\VBp27 T22 =

p2’
—ETY L — ¢y 177,

Then stabilizing contractive Qx can be constructed as:

Ag —YCre, |YOL

Qn = >
-BLX | 0

(5.58)

The algebraic Riccati equation (5.55) has a unique stabilizing solution,
because G),, satisfies assumptions (a-b) given following (5.47). The matrix
inequality (5.56) can be converted to an LMI by pre-post multiplying (5.56)
by Y1 and using Theorem 2.2. The matrix inequality (5.57), however, is not
an LMI, since Y11, T2, and Y9 consist of summations of product of variables
Y, T, and £. In order to solve (5.55)—(5.57), one of the approaches is as follows:
first the algebraic Riccati equation (5.55) is solved for X. Once the solution
of (5.55) is found, (5.56) can be solved for Y as a feasibility problem by using
LMI Toolbox in MATLAB [71]. After substituting the solutions of (5.55) and
(5.56) into (5.57), the variables X and Y in (5.57) are eliminated. Now, (5.57)
involves only three variables V', T', and £ to be solved. However, Y15, {113,
and Ygs consist of the summations of product of £ and T'. To eliminate one of
the variables of Ti9, €13, and T, let us choose a positive number such as

maz- Now, replacing ¢ in (5.57) by a chosen ¢ in the interval (0, &4z), (5.57)
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becomes an LMI in V and 7" and it can be solved as a feasibility problem. The

following algorithm, realizes this approach.

Algorithm 5.7.

10.

11.

12.

Find the optimal sensitivity level v°P*, given by (4.36), and let v = ~°PL.
Choose an upper bound &a.- Choose a sufficiently large | and equally

spaced values &y, . . ., & within the interval (0,&maz)-
Find Fy, F5, and Gy (see Section 4.3) for the current sensitivity level .

Compute N from Theorem 5.4, choose an upper bound N,.. > N, and
let N =N.

Let N =N + 1.
Find Fy,,, for the current N. Let 1= 1.

If there exists X > 0, which solves (5.55), go to step 7. Otherwise, if

N < Nz go to step 4 else go to step 11.

Solve the feasibility problem (5.56) for Y. If there exists a solution Y >0

go to step 8. Otherwise, if N < Nyqe go to step 4 else go to step 11.

For & = &;, solve the feasibility problem (5.57) for V- and T. If there
exists a solution V> 0 and a T go to step 12, otherwise, continue with

step 9.

If i =1 go to step 10 else set i =i+ 1 and go to step 8.
If N < Ny go to step 4 else continue with step 11.
Increase v by a small amount and go to step 2.

If (1 + F,H) ' is unstable (can be checked by the Nyquist criterion),
where H = HM(G,',Qx) and Qy is obtained from (5.58), then go to
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Ga = CHAIN(G,) Qa
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Figure 5.10: Chain-scattering representation [48]

step 9. If (1 + FoH)™! is stable, the desired controller is then given by
(see Figure 5.1)

(5.59)

where kK = —L—.
)

5.6.4 Stable controller design using chain-scattering approach

In this subsection, chain-scattering representation is utilized in order
to design a stable H*> flow controller. In (5.47), since D,,, = 1 is invertible,
G) has a chain-scattering representation, Go = CHAIN(G,). Therefore, the

system shown in Figure 5.9 can be represented as in Figure 5.10, where

- - A|B, B,
GA _ GAM GA12 _ I 0
GAQl GAQQ
- - 02 0 1
Ap - BPICPQ Bm Bp1
= Cpl Dpu 0 ) (560)
_sz 0 Dp21

which can be shown to be bistable. The problem can now be defined as to find
a contractive ()5 such that the closed-loop TFM from ¢ to 7 in Figure 5.10,
which is S = HM(Ga,Q4), is stable. From (5.60), S can be written as
S = AMGa,Qr + Ga)(AGa,, Qa + AGa,,)7 L, for any A > 0, which does not
affect the stability, however might reduce the conservativeness in the controller
design [67]. For any contractive Qa, A(Ga,,@Qr+Ga,,) is stable. Furthermore,
(AGa,, Qa +AGa,,) ! (and thus S) is stable if | AN(Gay, Qa +Gay,) — 1o < 1.
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The problem of finding a contractive @4 which satisfies ||A(Ga,, Qr + Ga,,) —

1]]oo < 1 can be defined as a two block problem as shown in [28]:

[HM(T,Qp)|loc <1, (5.61)
where
- A|B B
AG A, AGp,, — 1 —
Ay 0 A—1
T = I, 0 —
0 |1, 0
0 1
B 0 0 1
A | B
= | = (5.62)
Cr | Dy

Finding a contractive @, which satisfies (5.61) can be solved via a (.J,J)-
lossless factorization of T', where J := Jn41), and J = Jp,1. Similar to the
problem solution in Section 5.2, the necessary condition for the (J, J )-lossless

factorization of T is the existence of a nonsingular Er such that D%j Dy =

. I, 0
EXJEr = . This is satisfied for 0 < A < 2. Moreover, in this
0 AMA—2)
I, 0
case, the nonsingular Er can be selected as Epr =
0 A2 =)

Theorem 5.8. [50] For a given realization of T in (5.62), the two block
problem given in (5.61) can be solved if there exists a solution X > 0 for

0 < X\ < 2 satisfying
XAr+ ALX — R(DYJDp)'RY +-CLJCr =0, (5.63)

where R = C%jDT + X Br, such that Ap, = Ar + BrFr is stable, where

Fr:=—(DXJD7r)"*RT. In that case, the contractive Qx can be written as
Qr = HM(9;',T) (5.64)

where I' s any contractive parameter and

Ar + BrFr ‘ BrE;!
Fr ‘ Bt

o =
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Now, using Theorem 5.8, a stable H* flow controller, which stabilizes

the closed-loop system and achieves the design requirements can be obtained

by the following algorithm.

Algorithm 5.8.

10.

Find the optimal sensitivity level v°P*, given in (4.36), and let v = ~°P".
Choose a sufficiently large | and equally spaced values Ay, Aa, ..., N
within the interval (0,2).

Find Fy, Fy, and G (see Section 4.3) for the current sensitivity level .

Compute N from Theorem 5.4, choose an upper bound N,.. > N, and
let N =N.

Let N =N +1.
Find F5,,, for the current N. Let i = 1.

For \ = \;, if there exists a solution X > 0 to the Riccati equation (5.63)

go to step 10, otherwise continue with step 7.

If 1 =1 go to step 8. Otherwise, seti =1+ 1 and go to step 6.
If N < Ny go to step 4 else continue with step 9

Increase v by a small amount and go to step 2.

If (1 4+ FyH)™' is unstable (can be checked by the Nyquist criterion),
where H = HM(G,',Qx) and Qy is obtained from (5.64), then go to
step 7. If (1 + FoH)™! is stable, the desired controller is then given by
(see Figure 5.1)

(5.65)
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5.6.5 Performance of the designed controllers

In this subsection, the performance of the stable controllers designed
by Algorithms 5.6, 5.7, and 5.8 are compared. In order to illustrate and
compare the performance of the stable H* flow controllers designed by Al-
gorithms 5.6-5.8, the network introduced in Section 5.3 is considered. The
controllers are designed for Case 1, given in Table 5.1. The upper bound &,,,.
in step 1 of Algorithm 5.7 is taken as &4, = 1000. The free parameter T of
the stable H> flow controller, which is designed by Algorithm 5.8, is taken
as [ = 0. The stable H> flow controllers designed by Algorithms 5.6-5.8 are
obtained for N = 2, where N = 1. The ~ value, which yields a stable H*
flow controller for each algorithm, is presented in Table 5.3. In Table 5.3,
~°P! represents the optimal sensitivity level of the corresponding optimal con-
troller, v>¢ represents the ~ value, which yields a stable H* flow controller
by Algorithm 5.6, v*7 represents the v value, which yields a stable H> flow
controller by Algorithm 5.7, and 78 represents the v value which yields a
stable H* flow controller by Algorithm 5.8. As seen in Table 5.3, the sta-
ble H> flow controllers designed by Algorithms 5.6 and 5.7 produce smaller
sensitivity levels compared to Algorithm 5.8. In addition, the stable H*> flow
controllers designed by Algorithms 5.6 and 5.7 are obtained for the same sensi-
tivity level no matter which approximation method is used. In addition, since
G)p in (5.47) is stable for Case 1, X, = 0 and X = 0 solve (5.48) and (5.55),
respectively. Hence, Algorithms 5.6 and 5.7 result in a stable central controller
for Case 1. However, the stable controller designed by Algorithm 5.8 is not
a central controller. In addition, as shown in Table 5.3, the stable H* flow
controller designed by Algorithm 5.8 using the J-approximation method is ob-
tained for a smaller sensitivity level compared to the one which yields a stable

controller by Algorithm 5.8 using the bilinear approximation method.

For the time-domain performance comparison of the designed con-
trollers, the simulations are done using MATLAB/SIMULINK package, where

the nonlinear effects (hard constraints) are also taken into account. For all
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Table 5.3: Sensitivity level of the designed stable H> flow controllers

Case | ~oPt Approximation method A6 | AT | A8

Case 1 | 2.817 d-approximation method 3.260 | 3.260 | 4.297

bilinear approximation method | 3.260 | 3.260 | 4.528

cases, as in the previous sections, the desired queue length, ¢4, is taken 30
packets, the buffer size (maximum queue length) is taken as 60 packets, and
the capacity of the outgoing link is taken as 90 packets/tu, where tu stands
for time unit. Moreover, the rate limits for the sources are taken as 150 pack-
ets/tu. The uncertain part of the actual time-delays used in the simulations
are as in Case la, which is given in Table 5.2. The response of the designed
stable H> flow controllers are presented in Figures 5.11-5.12. As stated above,
since Algorithms 5.6 and 5.7 yield the same stable H* flow controller, the
performance of the controller designed by Algorithm 5.6 is compared to the
one designed by Algorithm 5.8. In Figure 5.11, (a) represents the response of
the controller designed by Algorithm 5.6, and (b) represents the response of the
controller designed by Algorithm 5.8 using the d-approximation method. In
order to compare the performance of the obtained stable controllers using the
d-approximation method with the ones obtained using the bilinear approxima-
tion method, the response of the stable H*> flow controller, which is designed
for Case 1 by Algorithm 5.8 using the bilinear approximation method, is pre-
sented in Figure 5.12. In Figures 5.11-5.12, q (whose scale is on the right) is
the queue length ¢(t), and 1 (whose scale is on the left) is the actual flow rate

at source i, for i =1, 2.

As seen in Figures 5.11-5.12, all the stable controllers designed by
the proposed algorithms here, whether using the § or the bilinear rational
approximation method, stabilize the actual system and achieve the design re-
quirements despite the presence of uncertain time-varying time-delays. The

oscillations in the queue length in Figures 5.11-5.12 are due to the variations
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Figure 5.11: Simulation results of the designed stable controllers for Case 1a
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Figure 5.12: Simulation result of the stable controller designed by using the

bilinear approximation for Case la

of the uncertain part of the forward time-delay. As shown by comparing Fig-
ure 5.11(a) to 5.11(b), the stable H> flow controller designed by Algorithm 5.6

(or 5.7) has faster response compared to the one designed by Algorithm 5.8.

As seen by comparing Figure 5.11(b) to 5.12, the response of the con-
troller designed by Algorithm 5.8 using the d-approximation method is faster
compared to the one designed by Algorithm 5.8 using the bilinear approxima-
tion method. This observation was also stated in [49]. Therefore, as seen in
Table 5.3, the controllers designed by Algorithm 5.8 using the d-approximation
method results in a less conservative controller compared to the controller de-

signed by using the bilinear approximation method, in general.
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In the previous sections, F» was used either in the controller design to
satisfy a bound on the H> norm of HM (G ", Q,) or to determine the stability
of the controller by the obtained HM (G*,Q,). However, Algorithms 5.6, 5.7,
and 5.8 consider the dynamics of the approximated FIR filter F, to design a
stable ‘H> controller. In general, Algorithms 5.6, 5.7 and 5.8 yield stable
controllers. However, similar to the previous algorithms, these algorithms do

not guarantee to yield a stable controller.

5.7 Summary

In this chapter, a number of different stable H* flow controller design
approaches were presented. The first approach uses the small-gain theorem,
since finite-dimensional part of the controller is fed back by the stable infinite-
dimensional block. In the first approach, since the algorithm produces a con-
servative controller, due to the use of the small-gain theorem, in Section 5.3,
a less conservative approach was presented. The third approach, which was
presented in Section 5.4, is based on the stabilization of the finite-dimensional
part of the flow controller. In the fourth approach, presented in Section 5.5,
stable controller design was based on seeking a stable H> flow controller by
increasing the gain of the uncertainty weight. Each of the last three stable H*°
flow controller design approaches, all presented in Section 5.6, were based on a
different approach to the stable controller design problem for finite-dimensional

systems, where a rational approximation of F5 is used.

In order to show the performance of the designed controllers by the
approaches proposed in Sections 5.3-5.6, simulation studies were carried out
using MATLAB/SIMULINK package, where the nonlinearities of the model
were taken into account (see Section 4.1). As shown by the simulation results,
the actual plant was robustly stabilized and the performance objectives, de-
spite the presence of uncertain time-varying time-delays, were achieved by the
suboptimal stable H> flow controllers, which were designed by Algorithms 5.2—
5.8.
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As a summary, even though only the sufficient conditions are used to
design a stable H> flow controller, Algorithms 5.1-5.8 produce a stable con-
troller, in many cases. However, it should be noted that none of the proposed

algorithms guarantee to produce a stable H*> flow controller.
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6 CONCLUSION

In this dissertation, an optimal H*> flow controller design problem for
data-communication networks was considered. The controller was designed
utilizing the non-causal uncertainty blocks instead of causal blocks to improve
the performance of the controller. The H* flow controllers were designed
neglecting the existing nonlinearities. However, since unstable controllers are
highly sensitive to unmodelled nonlinear dynamics, the neglected nonlinearities
may worsen the performance of the resulting controller, if it is unstable. In
order to overcome this problem, stable H* flow controller design problem was

also considered.

In Chapter 3, validity of the small-gain theorem for feedback intercon-
nection of non-causal subsystems was considered. In Section 3.2, the sufficient
conditions to satisfy the internal stability of the feedback interconnection of
two stable subsystems, at least one of which is non-causal, were given. In order
to utilize the small-gain theorem in the robust flow controller design, the re-
sult in Section 3.2 was extended and a less conservative result was presented in
Section 3.3. Utilization of the non-causal uncertainty blocks in the robust con-
troller design for systems with multiple uncertain time-delays was presented in
Section 3.4. In Section 3.4, under different uncertainty representations of the
finite-dimensional part of the plant, it was shown that the uncertainty block
of the generalized system has a special structure for each representation. It
was shown in Section 3.4 that the proposed conditions in Sections 3.2 and 3.3
for the validity of the small-gain theorem under non-causal subsystems may
not be sufficient to design a robust controller by the approach of [13]. In order
to utilize the non-causal uncertainty blocks in the robust controller design, a
new small-gain condition, called strong small-gain condition, was introduced
in Section 3.4. In Section 3.5, an alternative robust controller design approach
was proposed by replacing the non-causal uncertainty blocks with the causal

ones.

In Chapter 3, in order to utilize the non-causal uncertainty blocks to
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design a robust controller for multiple time-delay systems by the approach of
[13], it was assumed that the nominal plant has a coprime-factorization, where
the denominator matrix is diagonal. This assumption brings a conservatism.
This assumption was made to factor out the uncertainty part and state the
problem in a generalized framework. Another restriction in this study arises in
the case of multiplicative input/output uncertainty representation, since either

the input or the output uncertainty block must also be diagonal.

In Chapter 4, robust flow control problem for data-communication
networks was considered. The network model was given in Section 4.1 and
the mathematical model of the overall system was given in Section 4.2. In
Section 4.2, the uncertainty block of the overall system was allowed to be non-
causal. However, utilizing the results in Section 3.3, these non-causal blocks
could be handled. A mixed sensitivity minimization problem was defined in
Section 4.3 to design a robust flow controller which keeps the queue length at
the bottleneck node at a desired level and allocates the different ratios of the
network capacity to different sources. The time-domain performance of the
controllers designed by the approach proposed in Section 4.3 was illustrated
by simulations using MATLAB/SIMULINK package in Section 4.4. The sim-
ulations were done using a discrete model, where the controllers were designed
by using a fluid-flow model. In addition, the performance improvements of the
controllers designed by the approach of Section 4.3 compared to the controllers
designed by the approach of [23] were shown in Section 4.4. In Section 4.5, the
performance level and actual stability margins were derived for the designed
optimal H> flow controllers. The advantages of using non-causal uncertainty
blocks in the robust flow controller design problem were addressed in Sec-
tion 4.6. In Section 4.7, sufficient conditions to choose the free parameter (),
were derived such that the controller achieving the robustness and the track-

ing requirements also achieves the weighted fairness requirement by the chosen
Q.

In Chapter 4, a robust optimal flow controller was designed for data-

communication networks with a single bottleneck-node. In this case, since the
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network has a single bottleneck-node, which is fed by n sources, the nominal
time-delays at the channels were factored out and the approach of [13] was used
to design a robust flow controller. To design a robust flow controller for multi-
bottleneck networks is not trivial. In this case, there exists n bottleneck nodes,
each of which is fed by multiple sources. In addition, each bottleneck node can
also send data to other bottleneck nodes. Therefore, the dynamics of the queue
length at a bottleneck node depends on the rate of data that is received from
the sources, the other bottleneck nodes, and the rate of data that is sent to
the other bottleneck nodes from the current bottleneck node [72]. It should be
noted that both the rate of data that is received from the sources and the other
bottleneck nodes and the rate commands that are sent from any bottleneck
node are subject to time-delays. Besides the existence of the time-delays,
which are usually uncertain and time-varying, one of the arising problems in
the design is: What should be the type of the controller: “centralized” or
“decentralized”? If a centralized controller is to be designed, then another
question arises: Where it should be implemented? Since there are multiple
bottleneck-nodes and the information send from each bottleneck node, except
the bottleneck node, where the centralized controller is implemented (if the
controller is implemented at a bottleneck node), to the centralized controller
is subject to time-delays, different network topologies may require different
locations for the implementation of the centralized controller. If a decentralized
controller is to be designed, following the lines of [73], the nominal time-delays
can be factored out and the approach of [13] may be used to design a robust flow
controller. For a future study, using the approach proposed in this dissertation,
a decentralized robust flow controller can be designed for data-communication

networks with multiple bottleneck nodes following the lines of [73].

In Chapter 5, the stable H> flow controller design problem was con-
sidered. This problem is difficult and stable H> controller design problem for
systems with time-delays up to date have been limited to SISO systems. A
number of approaches were given to design a stable H*> flow controller. In

all approaches, except the approach of Section 5.5, stable H*> flow controller
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design approaches were based on designing a contractive ()5 to stabilize the
overall controller, apart from the integral term. In Algorithm 5.1, a strong
H* stabilization problem is solved to design a stable ‘H* flow controller. In
Algorithm 5.2, another strong H> stabilization problem is solved to design
a stable H* flow controller. However, the problem, which is to be solved in
Algorithm 5.2, is more relaxed compared to that one in Algorithm 5.1. In
Algorithms 5.3 and 5.4, the stable H> flow controller design was based on the
stabilization of the finite-dimensional part of the controller. In Algorithm 5.5,
the stable H*> flow controller design was based on seeking a stable stabilizing
H> flow controller by increasing the gain of the defined uncertainty weight.
Algorithms 5.6-5.8 were based on solving the strong stabilization problem by
utilizing a rational approximation of the FIR block in the feedback loop of
the controller structure. Once a rational approximation of the FIR block is
found, the contractive free parameter, (), is designed to stabilize the approxi-
mation of the controller. It is then checked whether this (5 also stabilizes the
actual controller. If it does, the desired controller is obtained. If not, a new

contractive ) is sought.

The presented approaches in Chapter 5 are conservative, since these
approaches were based on sufficient conditions and may increase the sensitivity
level 7, unnecessarily. In addition, since the finite-dimensional term of the
controller, except the integral term, is fed back by an infinite-dimensional
block, instead of considering the dynamics of the infinite-dimensional block,
the dynamics of a rational approximation of this block was considered to design
a stable H*> flow controller. Moreover, since all the proposed algorithms were
based on sufficient conditions, these algorithms do not guarantee to result in a
stable H> flow controller. However, stable H* flow controllers were obtained
by the proposed algorithms, in general. For a future study, stable H* flow
controller design can be considered by taking into account the dynamics of the

infinite-dimensional part of the controller directly.

In summary, robust flow controller design for data communication

networks with multiple time-delays utilizing the non-causal uncertainty blocks
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was presented in this dissertation. As shown by a number simulations, the
performance of the robust flow controllers designed by utilizing the non-causal
uncertainty blocks is in general better than the performance of the controllers
designed utilizing the causal blocks. In addition, it is indicated by a number of
cases that the controllers designed utilizing the non-causal uncertainty blocks
have better robustness margins and performance levels compared to the con-
trollers designed by utilizing the causal uncertainty blocks. Since the controller
design approach proposed here may result in unstable controllers, which may
fail to produce a stable response due to their sensitivity to unmodelled dynam-
ics, stable H*® flow controller design was presented using different approaches.
As shown by a number of simulations, while the designed optimal controllers
can not produce a stable response, stable H* controllers, which were obtained
by the proposed algorithms, stabilize the actual system and produce a desired

response.
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