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In this thesis, a strongly consistent subspace algorithm for the identifi-

cation of discrete-time, linear time invariant systems from nonuniformly spaced

power spectrum measurements is proposed. A byproduct subspace algorithm

to construct analytic functions from evaluations of their real or imaginary

parts on finite subsets of the unit circle is developed. A connection between

the subspace identification and the Lagrange-Sylvester interpolation problems

is established.

Pointwise constraints and trade-offs on closed-loop frequency responses

are derived for a quarter-car active suspension model. The influence of tire

damping on the design of an active suspension system is analyzed. The rms and

the rms gain constraints for the quarter, half, and full-car suspension models

are studied in the H2-optimal and multi-objective control frameworks. For the

quarter and half-car models, the dependance of closed-loop rms responses on

the tire damping is investigated. The multi-objective suspension control prob-

lem is formulated as a convex mixed H2/H∞ synthesis problem for the quarter,

half, and full-car models and solved by using linear matrix inequalities. Next,

the problem is re-formulated as a non-convex and non-smooth optimization

problem for the quarter and full-car models and is solved by using HIFOO

toolbox. Then, for the quarter and half-car models the assumption that tire
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damping coefficient is exactly known is relaxed and robust controllers to cope

with polytopic tire damping uncertainties are designed. Finally, a prototype

three-degrees-of freedom cabin model for a commercial truck is derived and an

active suspension system is designed by using the linear-quadratic-Gaussian

design methodology.

Keywords: System identification; Active suspension; Tire damping; Multi–

objective control; Linear matrix inequality; Non-convex optimization.
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ÖZET

Doktora Tezi

OTOMOTİV SÜSPANSİYON TASARIMINDA UZLAŞIM

EĞRİLERİ

Semiha TÜRKAY

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Hüseyin AKÇAY

2010, 219 sayfa

Bu tezde, kesikli zaman, doğrusal, zamandan bağımsız sistemlerin

tanıyımı için düzgün aralıklı olmayan spectrum ölçümleri kullanılarak yüksek

tutarlı altuzay algoritması önerilmiştir. Bunun yanında, analitik fonksiyon-

ları, birim çemberin sonlu alt setleri üzerindeki reel ve imajiner ölçümlerinden

elde eden altuzay algoritması geliştirilmiştir. Altuzay tanıyımı ve Lagrange-

Sylvester interpolasyon problemi arasındaki ilişki kurulmuştur.

Çeyrek araç aktif süspansiyon modeli için kapalı döngü frekans yanıtları

üzerindeki noktasal kısıtlamalar ve uzlaşım eğrileri türetilmiştir. Lastik sönüm-

leme katsayısının aktif süspansiyon sistem tasarımı üzerindeki etkisi analiz

edilmiştir. H2-optimal ve çok amaçlı kontrol kapsamında çeyrek, yarım ve

tam araç modelleri için rms ve rms kazanç kısıtlamaları çalışılmıştır. Çok

amaçlı süspansiyon kontrol problemi konveks, karışık H2/H∞ sentez prob-

lemi olarak formüle edilmiştir ve doğrusal matris eşitsizlikleri kullanılarak

çözülmüştür. Çeyrek ve yarım araç modellerinde kapalı döngü rms yanıtlarının

lastik sönümleme katsayısına olan bağlılığı araştırılmıştır. Daha sonra problem

çeyrek ve tam araç modelleri için konveks ve düzgün olmayan optimizasyon

problemi olarak yeniden formüle edilmiştir ve HIFOO araç kutusu kullanılarak

çözülmüştür. Çeyrek ve yarım araç modellerinde lastik sönümleme katsayısının

tam olarak bilinmediği varsayılarak politopik lastik sönümleme katsayısı be-
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lirsizlikleri için gürbüz kontrolcüler tasarlanmıştır. Son olarak, ticari kamyon

için üç serbestlik derecesine sahip kabin modeli türetilmiştir ve doğrusal-kare-

Gaussian (LQG) tasarım yöntemi kullanılarak aktif süspansiyon sistemi tasar-

lanmıştır.

Anahtar Kelimeler: Sistem tanıyımı; Aktif süspansiyon; Lastik sönümleme

katsayısı; Çok amaçlı kontrol; Doğrusal matris eşitsizlikleri; Konveks olmayan

optimizasyon.
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1 INTRODUCTION

1.1 Motivation and Background

The suspension system is the main tool to achieve ride comfort and

drive safety for a vehicle. Passive suspension systems have been designed to

obtain a good compromise between these objectives, but intrinsic limitations

prevent them from obtaining the best performances for both goals. Lower the

vertical acceleration, the better is the ride comfort. However, structural fea-

tures of a vehicle place a hard limit on the amount of suspension deflection

available to reduce the car body acceleration; and good road holding is im-

portant for vehicle handling, and in general for enhanced safety. Additional

constraints are also imposed by overall system robustness, reliability and cost

requirements. Compared with passive suspension systems, active and semi-

active suspension systems can achieve a better compromise during various

driving conditions.

The use of active and semi-active control on vehicle suspensions has

been considered for many years. A large number of different arrangements from

semi-active to fully active schemes have been investigated. See, for example,

[1–12] and the references therein. The three main performance requirements for

advanced vehicle suspensions are to isolate passengers from vibrations arising

from road roughness, to suppress the vibrations of the wheels in order to

maintain firm and uninterrupted contact of wheels for good road handling,

and to keep suspension strokes within specified limits.

In order to provide a compromise among these conflicting goals various

approaches, i.e, Linear-quadratic Gaussian (LQG), adaptive control, robust

control, and nonlinear control have been proposed and a significant progress

has been made, [1, 3, 5, 11,13–16].

A common point of these approaches is that all control requirements

are weighted and formulated in a single objective function, which is minimized
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to find an optimal controller. Specifying all different requirements in a single

objective function and minimizing it may yield a conservative suspension de-

sign. Moreover, in single objective approach the trade-offs among conflicting

requirements are managed by choosing appropriate, possibly frequency depen-

dent weightings, which is, however, nontrivial [17].

Constraints and trade-offs on achievable suspension performance have

been studied in [18–22]. As put forward in [20], in a study of constraints and

trade-offs from a control systems point of view, one has to properly address:

(i) What can and can not be achieved with general dynamic compensation,

(ii) How much freedom is gained by the selection of measurements for feed-

back purpose?

In [18,22], constraints on achievable frequency responses were derived

from an invariant point perspective. A framework using mechanical multi-port

networks to study the performance capabilities and constraints was developed

in [21]. In [20], for a quarter-car model of an automotive suspension a complete

set of constraints on several transfer functions of interest from the road and the

load disturbances were determined by making use of the factorization approach

to feedback stability and the Youla parameterization of stabilizing controllers.

Roughly speaking, completeness means that from a given set of constraints,

one can identify a quarter-car model within the model class matching the

given constraints. Such an approach reveals the degrees-of-freedom in shaping

the response of the vehicle to disturbances and determines a minimum set of

measurements to exploit this freedom.

In [20], constraints on the frequency responses of the sprung mass

position, the suspension travel, and the tire deflection were derived for various

choices of measurements ranging from the suspension travel to a full set of

state variables. These constraints typically arise in the form of finite and

nonzero invariant frequency points and the growth restrictions on the frequency

responses and their derivatives at zero and infinite frequencies. The quarter-
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car model studied in that work does not include passive suspension elements

spring and damper; and also tire damping is neglected.

Actually in most works, tire damping is set to zero when modeling au-

tomotive active suspension systems. This is due to the facts that tire damping

is typically small and it is difficult to estimate. It is generally accepted that

damping ratio in a vehicle tire ranges between 0.03 and 0.10 depending on tire

size, applied pressure, whether the tire is free or rotating, if it is new or worn,

and also on tire type i.e., whether it is all season or snow [23–25]. In fact,

tire damping by itself has little influence on the wheel-hop vibration since this

mode is mainly damped by the shock absorber.

The ignorance of damping in tire models compelled misleading con-

clusions that at the wheel-hop frequency, no matter what forces are exerted

between sprung and unsprung masses, their motion are uncoupled, and the

vertical acceleration of the sprung mass will be unaffected [18, 20, 22]. It is

pointed out in [26] that by taking tire damping to be small but nonzero, the

motions of the sprung and unsprung masses are coupled at all frequencies, and

control forces can be used to reduce the sprung mass vertical acceleration at

the wheel-hop frequency. The results in this thesis show that tire damping

can have a significant influence on the closed-loop performance of an active

suspension system.

The study of the constraints on the achievable performance has re-

mained largely restricted to pointwise constraints in the frequency domain

while ride comfort and safety criteria are mostly expressed in terms of the

root-mean square (rms) values of the sprung mass vertical acceleration, the

suspension travel, and the tire deflection. The performance requirements on

rms values or rms gains of response variables can easily be described by using

linear matrix inequalities (LMIs). It is straightforward to express closed-loop

pole placement constraints and robustness requirements arising from various

uncertainties such as unmodelled tire unbalance and nonlinearities, and para-

metric uncertainties as LMIs. The resulting multi-objective control problems
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can efficiently be solved by using convex optimization techniques [27].

Multi-objective control of vehicle suspensions by using LMIs has

emerged as a powerful design technique for a variety of linear control problems

such as mixed H2/H∞ synthesis. In [2], a constrained H∞ control scheme with

output and control constraints were studied. In [28], problems with H2 or H∞

cost under positive realness constraint on controller structures based on matrix

inequalities were considered. The control objective similar to that in [28] was

studied in [29]. In [30] where two separate Lyapunov functions were considered

for the H2 performance and the positive real constraint, an iterative LMI pro-

cedure was proposed. Robust multi-objective controllers were also synthesized

to cope with parameter uncertainties in system matrices characterized by a

given polytope [31, 32]. Application of non-convex and non-smooth optimiza-

tion algorithms [33] to suspension control problems was reported in the recent

work [34]. In [35], static output feedback H∞ controller and non-fragile static

output feedback H∞ controller design procedures via LMIs and genetic algo-

rithm were presented. The H∞ control problem for active vehicle suspension

systems with actuator time delay was studied in [36] and a delay-dependent

memoryless state feedback H∞ controller was designed using LMIs.

A problem in vehicle active suspension control is to insulate the vehicle

body from both road and load disturbances. It is well known that these are

conflicting requirements when passive suspensions are used, but the conflict

can be removed when active control is employed with appropriate hardware

structure, e.g, choice of sensor location, number, and type [20,37,38]. When the

active control is employed with appropriate hardware structure the design for

each disturbance path can be carried out successively, which provides sufficient

freedom to adjust the responses independently. In [37, 38], the disturbance

response decoupling problems were studied for half and full-car models as

well. In [21, 39], some simplifying assumptions were used to perform energy-

preserving transformations of the external disturbance variables to achieve

decoupling. It was noted in [37] that under certain conditions the half-car

model by possibly violating the energy-preserving property can be decoupled
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into bounce and rotation quarter-car models in order to exploit the simplified

structure of the latter. The details can be found in [37]. Further decoupling

examples were given in [14, 38, 40]. For example in [38], a full-car motion was

decomposed into the heave, the pitch, and the roll components for the vehicle

body and additionally a warp component for the wheels which are in contact

with the road.

In [41], an active suspension system for seven-degrees-of-freedom ve-

hicle model was designed as a full-state, optimal, LQG regulator. In [42],

feedback control of a full-vehicle suspension system featuring magnetorheolog-

ical dampers was investigated. Sliding mode control of active suspensions for a

full-car model was studied in [43] and neural network based robust control was

designed in [44] to control the vibration of vehicle’s suspensions. In contrast to

motion decoupling strategies in [37], the seven-degrees-of-freedom ride model

considered in [41–44] allows simultaneous investigation of the heave, the pitch,

and the roll motions of a full vehicle model, which are in fact strongly coupled.

It is necessary that a high performing suspension system takes all possible

couplings into account. In this thesis it is demonstrated by a case study that

multi-objective control methods in [11,45,46] can be applied to large-scale ac-

tive suspension design problems without resorting to such motion decoupling

procedures.

In this thesis, we also consider active suspension design problem for

a mid-size commercial truck cabin. Heavy road vehicles are typically used for

transportation and they have dynamic behavior which is significantly different

than that of cars, and thus require distinct suspension design approaches. The

issue of ride comfort for vehicle operations has generated considerable interest

recently, especially in heavy vehicle systems since long-distance drivers are

more likely to experience high levels of vibration. Vibration-related health

problems and ride comfort assessment criteria and methods are discussed in

the survey paper [47].

Cabin and seat suspension (secondary suspension) provides the driver
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with a comfortable ride without requiring soft primary suspension and con-

sequent problems with vehicle handling, stability, and static deflection. Re-

cent activity [48–51] in the area of cabin and suspension design has focused

on the use of controllable suspension elements which provide ride benefits of

active/semi-active primary suspension. Although there are many control algo-

rithms available, in this thesis the LQG method is chosen to design an active

cabin suspension because it is intuitive and easy to implement.

It is generally agreed that typical road surfaces may be considered as

realizations of homogeneous and isotropic two-dimensional Gaussian random

processes and these assumptions make it possible to completely describe a

road profile by a single power spectral density evaluated from any longitidunal

track [52, 53]. Then, the spectral description of the road together with a

knowledge of traversal velocity and of the dynamic properties of the vehicle

provide an analysis which will describe the response of the vehicle expressed

in terms of displacement, acceleration, or stress.

Identification of multi-input/multi-output systems from a measured

power spectrum is a problem arising in certain applications; for example, the

design of linear shaping filters for noise processes. A practical application is

the modeling of stochastic road disturbances experienced by a vehicle mov-

ing forward. The goal here is to model road spectrum by a rational transfer

function of reasonably low order and to use this approximation for a design

of a linear shaping filter with a white noise input. Once such an approxima-

tion is made, the vehicle control problem can be formulated in standard form.

Applications to the modeling of acoustic power spectra and the modeling of

passenger sensitivity for car accelerations were presented in [54].

A quarter-car active suspension system can be made to have all the

three response variables satisfactory as shown in Section 4.4 when tire damp-

ing coefficient is large enough. Conversely, by specifying closed-loop responses

one might ask if there exists a feedback controller which produces the speci-

fied closed-loop responses when connected with the given passive suspension
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system but small tire damping coefficient. This is an interpolation problem

with interpolation conditions specified at a set of finite and/or infinite fre-

quencies involving functional and derivative values. In the literature, it is the

so-called problem of finding Q-parameter of a stabilizing controller arising, for

example, in robust controller synthesis [55, 56]. The problem of finding a Q-

parameter of a stabilizing controller also arises in active suspension designs as

discussed extensively in Chapter 4, which motivated us to undertake a study

of the well-known tangential Lagrange–Sylvester rational interpolation problem

in Chapter 3.

1.2 The Scope of the Work

The contents of this thesis and our contributions are as follows:

In Chapter 2, a subspace-based algorithm to identify multi–input/multi–

output systems from corrupted power spectrum samples measured at non uni-

formly spaced frequencies is presented. The objective is to remove the re-

striction on the frequencies and show that this algorithm is not only strongly

consistent but also recovers finite-dimensional rational spectra, given a finite

number of noise-free data. The proposed algorithm is illustrated by means

of two examples. In the first example, a system that has a power spectrum

with sharp peaks is simulated. In the second example, a stochastic road mod-

eling problem is studied to illustrate the practical relevance of the problem.

A byproduct subspace algorithm to construct analytic functions from evalu-

ations of their real or imaginary parts on finite subsets of the unit circle is

developed. This algorithm exactly retrieves finite-dimensional systems from

noise-free data. Its consistency properties are also studied. The results of this

chapter have been published in [57–61].

In Chapter 3, the Lagrange-Sylvester interpolation of rational matrix

functions which are analytic at infinity is studied and an interpolation algo-

rithm related to the subspace based identification algorithm in [62] is proposed.
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The solvability conditions of this interpolation problem are particularly sim-

ple and depend only on the total multiplicity of the interpolation nodes. The

purpose of this contribution is to pinpoint the kinship between the frequency

domain subspace based identification of stable linear systems and the minimal

rational interpolation of stable systems. The results of this chapter have been

published in [63–65].

In Chapter 4, a quarter-car model is used to study the constraints on

the achievable frequency responses for a wide range of suspension parameters.

The constraints derived complement existing results in the literature on vehi-

cle dynamics and control. Next, the effect of tire damping on the achievable

vehicle performance is investigated. By using the factorization approach to

feedback stability it is shown that tire damping couples the motions of the

sprung and unsprung masses, and control forces can be used to reduce the

sprung mass vertical acceleration at the wheel-hop frequency without sacri-

ficing road holding. The influence of tire damping on the design of an active

suspension system for a quarter-car model is also illustrated by a mixture of

the LQG methodology and the interpolation approach. Despite its simplicity

the quarter-car model is the most widely used suspension model. A significant

insight into the suspension design problem can be gained using this simple

model. Besides, with the current trend of using four independent suspension

systems on a single vehicle, the linear quarter-car model offers quite a rea-

sonable representation of the actual suspension system. In the automotive

industry, starting with simple quarter-car models, optimal control theory was

used to establish the potential benefits of active suspension systems. The

results of this chapter have been published in [66–69].

In Chapter 5, the work initiated in Chapter 4 is continued and the

H2-optimal and the mixed H2/H∞ syntheses of the quarter-car suspension

systems excited by random road disturbances are studied. First, assuming

that tire damping is known, a multi-objective suspension control problem is

formulated and solved by using LMIs. The influence of tire damping on the so-

lution of this optimization is studied. Later, the assumption that tire damping
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coefficient is known is dropped and a multi-objective control problem with tire

damping coefficient confined to a prescribed interval is formulated. By using

LMIs a controller with guaranteed performance over all suspension models in

the uncertainty set is obtained. The closed-loop performance of this robust

controller is studied. Next, the multi-objective control is re-formulated as a

non-convex and non-smooth optimization problem with controller order less

than or equal to the quarter-car model order. For a range of controller or-

ders, controllers are synthesized by using the HIFOO toolbox. A parametric

study is performed to assess the dependence of the closed-loop response on tire

damping. Parts of this chapter have been published in [70,71] and some parts

have been submitted for publication [72].

In Chapter 6, all achievable rms responses of a four–degrees–of–freedom

half-car model subjected to random road excitations are studied. An optimiza-

tion problem that aims to minimize weighted sums of the rms values of the

response variables with respect to the class of all stabilizing controllers is for-

mulated. The solution of this optimization problem is obtained for a range of

tire damping ratios and the vehicle forward velocities. Next, assuming that

tire damping is precisely known, a multi-objective suspension control problem

is formulated and solved by using LMIs. The control objective is to obtain

a compromise between ride comfort and road holding. The influence of tire

damping on road holding is noteworthy while the other responses are insensi-

tive to changes in tire damping coefficient for the range considered. Later, the

assumption that tire damping coefficients are known is dropped and a robust

controller is synthesized for a suspension system with polytopic tire uncertain-

ties. It is found that this robust controller does not offer any advantage over an

active suspension system designed by neglecting tire damping. The contents

of this chapter have been published in [73–75].

In Chapter 7, multi-objective control problems are formulated for a

seven-degrees-of-freedom full-car suspension model and solutions to these op-

timization problems are obtained by using LMIs and the HIFOO toolbox. The

contents of this chapter have been submitted for publication [76].
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In Chapter 8, a prototype three–degrees–of freedom cabin model for

a mid-sized commercial truck is considered. The purpose of this study is to

analyze ride motions of the cabin under random road excitations and to im-

prove its ride performance by designing a suitable compensator. An active

suspension system is designed using the LQG design methodology. The sim-

ulation results show that the cabin vibrations can effectively be suppressed.

The content of this chapter have been published in [77].
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2 SUBSPACE IDENTIFICATION OF

DISCRETE-TIME POWER SPECTRA

In this chapter, we study the problem of fitting a linear discrete-time

power spectrum to given measured power spectrum samples. A parametric or

model-based approach to this problem uses a non-linear least-squares criterion,

which is optimized by an iterative non-linear search in the parameter space.

Discussion of parametric as well as nonparametric methods, which mostly

use time-domain data, can be found in [78–80]. Drawbacks of this approach

are convergence problems and difficulty of parameterizing multi-input/multi-

output systems. There has been an extensive amount of research to determine

the so-called canonical models [81–84].

The subspace approach, on the other hand, does not suffer from any

of these inconveniences. In subspace identification algorithms, there is no ex-

plicit need for parameterization since full state-space models are used and the

only parameter is the order of the system. The major advantage of subspace

identification algorithms over the classical prediction error methods [85] is the

absence of non-linear parametric optimization problems. Subspace identifica-

tion algorithms are non-iterative and therefore do not suffer from convergence

problems. They always produce results, which are often good for practical

data.

Given time domain measurements, there are many state-space sub-

space identification algorithms available [86–89]. Frequency domain subspace

identification algorithms have already appeared in the literature [62, 90–92].

They can be described as direct frequency domain formulations of time-domain

subspace algorithms. If the excitation of the system is well-designed, then each

measurement in the frequency domain compiled from a large number of time

domain measurement is of high quality. Moreover, data originating from differ-

ent experiments can easily be combined in the frequency domain [93]. However,
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these algorithms are not directly applicable for the identification of frequency

domain power spectra since rational spectrum models are constrained to have

positive real transfer functions.

In [54], a subspace algorithm which uses spectrum samples obtained

at uniformly spaced frequencies was presented. The algorithm in [54] is based

on [62]; and it uses biased impulse response coefficients expressed as functions

of the system matrices. However, this algorithm generates strongly consistent

power spectrum estimates. A related work is [94]. In this work, a subspace

algorithm for the time domain identification of mixed causal and anti-causal

systems was proposed. The frequency domain extension of this algorithm was

given in [95].

The objective of this chapter is to remove the restriction on the fre-

quencies. This problem is precisely formulated in Section 2.1. In Section 2.2,

we present our subspace-based algorithm to identify multi–input/multi–output

systems from power spectrum samples measured at nonuniformly spaced fre-

quencies and show that this algorithm is not only strongly consistent but also

recovers finite-dimensional rational spectra given a finite number of noise-free

data (depending on the model order). The proposed algorithm is based on

the results in [54,94,95]. The proofs are given in Appendix A. In Section 2.3,

the properties of the new algorithm are studied by means of two examples.

In the first example, we simulate a system that has a power spectrum with

sharp peaks. In the second example, we illustrate the practical relevance of the

problem treated in this chapter by solving a stochastic road modeling problem.

2.1 Problem Formulation

Consider a multi-input/multi-output square linear time invariant dis-

crete time system represented by the state-space equations:

x(t+ 1) = Ax(t) +Bu(t)

(2.1)

y(t) = Cx(t) +Du(t)
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where x(t) ∈ Rn is the state, u(t) ∈ Rm and y(t) ∈ Rm are, respectively,

the input and the output of the system. The transfer function of the system

described by (2.1), denoted by G(z) is computed as

G(z) = D + C(zIn − A)−1B. (2.2)

We summarize the requirements on G(z) in the following:

Assumption 2.1.1. The system in Eq. (2.1) is stable and strictly minimum

phase: all eigenvalues of A and A− BD−1C lie strictly inside the unit circle.

The pairs {A,B} and {A,C} are controllable and observable, respectively. All

eigenvalues of A are nonzero and distinct.

Thus, the system in Eq. (2.1) is a minimal stochastic system. Note

that since the Jordan canonical form is not numerically stable, a slight per-

turbation of A will lead to distinct eigenvalues if A has repeated eigenvalues.

Assuming that u(t) is zero mean unity variance white noise process,

the power spectrum associated with Eq. (2.1) denoted by S(z) is defined as

S(z)=G(z)GT (z−1). (2.3)

The system in Eq. (2.1) is called the innovation form, unity variance, minimum

phase spectral factor associated with the power spectrum S(z). From Eq. (2.3)

and Assumption 2.1.1, note that

S(ejθ) > 0, for all θ. (2.4)

This is the positive realness condition, and it imposes a constraint on the given

spectrum samples Sk, i.e., Sk > 0 for each k, as well as on the identified power

spectrum denoted by ŜN(z).

The problem studied in this paper can be stated as follows:

Given: N noisy samples Sk ∈ Cm×m of the power spectrum S(z)

evaluated at N points on the unit circle:

Sk = S(ejθk) + ηk, k = 1, 2, · · · , N, (2.5)
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Find: a quadruplet (Â, B̂, Ĉ, D̂) such that the estimated power spec-

trum

ŜN(z) = Ĝ(z)ĜT (z−1) (2.6)

is strongly consistent, i.e.,

lim
N→∞

‖ŜN − S‖∞ = 0, w.p.1. (2.7)

where

Ĝ(z)
∆
= Ĉ(zIn − Â)−1B̂ + D̂. (2.8)

We also require the algorithm to produce the true model if the noise

is zero given a finite amount of data N , i.e., there exists an N0 <∞ such that

‖ŜN − S‖∞ = 0, for all N ≥ N0. (2.9)

We will assume that the noise η corrupting the spectrum samples is a

zero mean complex white noise process with a covariance function satisfying

E


 Re ηk

Im ηk


 [Re ηT

s Im ηT
s ] =




1
2
Rk 0

0 1
2
Rk


 δks. (2.10)

Furthermore, we assume that the fourth order moments are bounded above by

some Mη <∞ as

E ‖ηk‖4
F ≤Mη, for all k. (2.11)

We will assume that the frequencies satisfy

lim
N→∞

inf
1

N
C({θk}N

k=1 ∩ [a, b]) ≥ δ(b− a) (2.12)

for every [a, b] ⊆ [0, 2π] and some fixed δ > 0. This means that every point on

the unit circle has a nonzero asymptotic density of frequencies relative to N .

An identification algorithm which satisfies Eq. (2.9) is called correct

algorithm. In this chapter, we present an algorithm which have these proper-

ties. Strong consistency is a most natural requirement for any useful algorithm.

As the amount of data increases, asymptotically the correct model should be

obtained. In practice, any algorithm has to use a finite amount of data. Then,
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correctness of an algorithm becomes important. This is particularly important

for spectra with sharp peaks.

The above identification problem can be thought as the design of a

linear shaping filter (A,B,C,D) from (corrupted) power spectrum measure-

ments. In this procedure, the zeros of G(z) can be restricted, without loss of

generality, to be minimum phase.

2.2 Identification Algorithm

Let us first consider the noise-free case to motivate the derivation of

the identification algorithm. We begin by splitting S(z) into the so-called

spectral summands as follows.

Theorem 2.2.1. Consider the power spectrum S(z) in Eq. (2.3). Suppose that

Assumption 2.1.1 holds. Let P be the solution of the discrete-time Lyapunov

equation:

P = APAT +BBT . (2.13)

Let

E=CPCT +DDT , (2.14)

F=APCT +BDT , (2.15)

Then S(z) can be split into the sum of two system transfer matrices as follows

S(z) = H(z) +HT (z−1) (2.16)

with

H(z)=
1

2
E + C(zIn − A)−1F. (2.17)

Proof. See, for example, Caines [96].

This splitting of S(z) into the sum of a causal transfer function H(z)

and an anti-causal transfer function HT (z−1) is the first step of our subspace-

based identification algorithm. It is also the starting point of the subspace

algorithm in [54]. As in [54], from the samples Sk we identify a quadruplet
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(A,F,C, 1
2
E) which describes the spectral summand H(z). The algorithm

proposed in [54] uses biased Markov parameters of S(z) as in [62]; and requires

the discrete frequencies θk, k = 1, 2, · · · , N be uniformly spaced in the interval

[0, π]. The contribution of this chapter is to remove this restriction on the

frequencies.

Next, from Eq (2.16) and Eq (2.17) we write a state-representation of

S(z) as follows:

xc(t+ 1) = Axc(t) + Fu(t) (2.18)

xac(t− 1) = ATxac(t) + CTu(t) (2.19)

ys(t) = Cxc(t) + F Txac(t) + Eu(t). (2.20)

These equations are the special cases of the equations considered in [94] for

the time-domain subspace identification of mixed causal and anti-causal linear-

time invariant systems.

Following [95], we take the discrete Fourier transforms of Eqs (2.18)–

(2.20) where we shift Eq (2.19) by p− 1 samples forward in time:

ejθXc(θ) = AXc(θ) + FU(θ)

e−jθXac,p(θ) = ATXac,p(θ) + CT ej(p−1)θU(θ)

Y s(θ) = CXc(θ) + F T e−j(p−1)θXac,p(θ)

+EU(θ)

where Xc(θ), Xac,p(θ), U(θ), and Y s(θ) denote the discrete Fourier transforms

of xc(t), xac(t+ p− 1), u(t), and y(t), respectively, and p > 2n. Let Xc
i (θ) be

the resulting state transform when U(θ) = ei, the unit vector with 1 on the

ith position; and Xac,p
i (θ) is defined similarly. By defining the compound state

matrices:

Xc
C(θ) = [Xc

1(θ) Xc
2(θ) · · · Xc

m(θ)] ,

(2.21)

Xac,p
C (θ) = [Xac,p

1 (θ) Xac,p
2 (θ) · · · Xac,p

m (θ)] ,

S(ejθ) can be implicitly described as

S(ejθ) = CXc
C(θ) + F T e−j(p−1)θXac,p

C (θ) + E
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with

ejθXc
C(θ) = AXc

C(θ) + F,

(2.22)

e−jθXac,p
C (θ) = ATXac,p

C (θ) + CT ej(p−1)θ.

By iteratively substituting the state-equations, we obtain the relation



S(ejθ)

ejθS(ejθ)
...

ej(p−2)θS(ejθ)

ej(p−1)θS(ejθ)




= Γp




Im

ejθIm
...

ej(p−2)θIm

ej(p−1)θIm




(2.23)

+Op


 Xc

C(θ)

Xac,p
C (θ)




where

Op=




C F T (AT )p−1

CA F T (AT )p−2

...
...

CAp−2 F TAT

CAp−1 F T




(2.24)

and

Γp=




E F TCT · · · F T (AT )p−2CT

CF E · · · ...
...

...
. . . F TCT

CAp−2F · · · CF E




(2.25)

By repeating Eq (2.23) for θk, k = 1, 2, · · · , N , we get

SC = OpXC + ΓpWC (2.26)
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where zk = ejθk , k = 1, 2, · · · , N and

SC =
1√
N




S(z1) · · · S(zN)

z1S(z1) · · · zNS(zN)
...

. . .
...

zp−1
1 S(z1) · · · zp−1

N S(zN)



, (2.27)

WC =
1√
N




1 · · · 1

z1 · · · zN

...
. . .

...

zp−1
1 · · · zp−1

N



⊗ Im, (2.28)

XC =
1√
N


 Xc

C(θ1) · · · Xc
C(θN)

Xac,p
C (θ1) · · · Xac,p

C (θN)


 . (2.29)

Now, we consider the noisy data case. From Eqs (2.5), (2.26), and

(2.27), we get

ŜC = OpXC + ΓpWC + NC (2.30)

where

ŜC =
1√
N




S1 · · · SN

z1S1 · · · zNSN

...
...

. . .
...

zp−1
1 S1 · · · zp−1

N SN



, (2.31)

NC =
1√
N




η1 · · · ηN

z1η1 · · · zNηN

...
. . .

...

zp−1
1 η1 · · · zp−1

N ηN



. (2.32)

Since Op is a real matrix and we are interested in the real range space,

we convert (2.26) into a relation involving only real valued matrices:

Ŝ = OpX + ΓpW + N
(2.33)

= S + N
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where

Ŝ =
[
Re ŜC Im ŜC

]
, (2.34)

S = [ReSC ImSC ] , (2.35)

X = [ReXC ImXC ] , (2.36)

W = [ReWC ImWC ] (2.37)

N = [ReNC ImNC ] . (2.38)

Let W⊥ be the projection matrix onto the null space of W given by

W⊥=I2mN −WH(WWH)−1W . (2.39)

The term ΓpW in Eq (2.33) is cancelled when multiplied from right by W⊥.

Thus,

ŜW⊥ = OpXW⊥ + NW⊥

(2.40)

= SW⊥ + NW⊥.

The range space of SW⊥ equals the range space of Op unless rank cancellations

occur. A sufficient condition for the range spaces to be equal is that the

intersection between the row spaces of W and X is empty. In the following,

we present sufficient conditions in terms of the data and the system.

Lemma 2.2.1. Let N ≥ (p/2) + n + 1, WC, and XC be given by (2.28) and

(2.29) with distinct frequencies θk such that zk is not an eigenvalue of A. Then

rank


 W

X


 = pm+ 2n⇐⇒ (A,B,C,D) minimal. (2.41)

Proof. See Appendix A.1.

If the frequencies are distinct, the number of data satisfiesN ≥ (p/2)+

n + 1, and (A,B,C,D) is minimal, then the two row spaces of W and X do

not intersect and the range space of SW⊥ coincides with the range space of

Op. Now, a study of the relation between the column range spaces of SW⊥

and ŜW⊥ for large N is in order.
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In [97], it was shown that by using the singular value decomposition

of ŜW⊥, the 2n left singular vectors corresponding to the 2n largest singular

values form a strongly consistent estimate of the range space of SW⊥ if the

following conditions hold w.p.1

(i) lim
N→∞

SW⊥(NW⊥)T = 0; (2.42)

(ii) lim
N→∞

NW⊥(NW⊥)T = αIpm (2.43)

for some scalar α ≥ 0. In [62], it was shown under the assumption in Eq (2.11)

that Eq (2.42) holds and

lim
N→∞

NW⊥(NW⊥)T = KKT , w.p.1. (2.44)

where K ∈ Rpm×pm is a matrix defined by

KKT = Re
(
WCRWH

C

)
;

(2.45)

R =




R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · RN



.

The matrix K can be found by a Cholesky decomposition. Thus, from Eq (2.40)

we have the weighted version

K−1ŜW⊥ = K−1SW⊥ + K−1NW⊥ (2.46)

satisfying Eq (2.42) and (2.43) with α = 1. Hence, the 2n left singular vectors

corresponding to the 2n largest singular values of K−1ŜW⊥ will form a strongly

consistent estimate of the range space of K−1SW⊥ which equals to the range

space of K−1Op.

A numerically efficient way of forming ŜW⊥ is to use the QR-factorization:

 W

Ŝ


 =


 R11 0

R21 R22




 QT

1

QT
2


 . (2.47)

A simple derivation yields

ŜW⊥ = R22Q
T
2 (2.48)
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and it suffices to use R22 since QT
2 is a matrix of full rank. Thus, the 2n left

singular vectors corresponding to the 2n largest singular values of K−1ŜW⊥

are obtained from the singular value decomposition:

K−1R22 =
[
Û2n Ũ

]

 Σ̂2n 0

0 Σ̃




 V̂2n

Ṽ


 (2.49)

where this decomposition is partitioned such that Σ̂2n contains the 2n largest

singular values.

Our consistency analysis has shown that

lim
N→∞

KÛ2n = OpT, w.p.1 (2.50)

for some nonsingular matrix T . In the calculation of Û2n, 2n elements with

fixed indices can be chosen freely subject to the constraint that magnitudes

are not greater than unity. Thus, by fixing values of those elements for all N ,

we see from Eq (2.50) that Û2n converges to a matrix denoted by U2n w.p.1 as

N → ∞. Hence,

KU2n = OpT. (2.51)

This asymptotic formula (in the number of data) will be the key in the de-

velopment of our algorithm. Before undertaking this study, let us record the

following result which will be used later.

Lemma 2.2.2. Let Sk, k = 1, · · · , N be noise-free samples of the power spec-

trum of a discrete-time system of order n satisfying Assumption 2.1.1 at N

distinct frequencies θk. Furthermore, let N ≥ (p/2) + n + 1 and K ∈ Rpm×pm

be any nonsingular matrix. Then, for some nonsingular T

KÛ2n = OpT. (2.52)

Thus, the equations derived from the asymptotic formula are also valid

for a finite number of data under the conditions stated in Lemma 2.2.2.

Let Ju and Jd be the upward and downward shift matrices defined by

Ju =
[
0(p−1)×m I(p−1)m

]
, (2.53)

Jd =
[
I(p−1)m 0(p−1)×m

]
. (2.54)
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Then,

JuOp = JdOpA
′ (2.55)

where

A′=


 A 0

0 (AT )−1


 . (2.56)

Hence,

A′ = (JdOp)
†JuOp = TA′′T−1 (2.57)

and

A′′=(JdKU2n)†JuKU2n. (2.58)

From Eq (2.57), we see that A′ and A′′ are similar matrices. This means that

they have the same Jordan blocks in their Jordan canonical representations.

Likewise, we have from Eqs (2.24) and (2.51),

C ′=[C F T (AT )p−1] = JfOp = C ′′T−1 (2.59)

where

Jf = [Im 0m×(p−1)], (2.60)

C ′′ = JfKU2n. (2.61)

Let us put A′′ into the following Jordan canonical form:

A′′ = [Πc Πac]


 Σc 0

0 Σac


 [Πc Πac]

−1 (2.62)

where the eigenvalues of Σc lie inside the unit circle. Since H(z) is invariant

to similarity transformations, we may let

A=Σc (2.63)

in Eq (2.1). The canonical form (2.62) is invariant to ordering of eigenvalues as

long as the eigenvalues and the corresponding eigenvectors of Σc are permuted

accordingly, in complex pairs. Moreover, from the similarity of A′′ to A′, in

Eq (2.1) we may let

Σac = (ΣT
c )−1. (2.64)
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This, of course, imposes a certain structure on T . Let

Π = [Πc Πac] . (2.65)

Then, Eq (2.62) can be written as

A′ = Π−1A′′Π (2.66)

Hence from Eqs (2.57) and (2.66),

A′ = TA′′T−1 = Π−1A′′Π. (2.67)

The relations among Σ, Π, and T are captured in the following lemma.

Recall that A has distinct eigenvalues.

Lemma 2.2.3. Let A′′ be as in (2.58). Consider the Jordan canonical form of

A′′ given by Eq (2.62) where A and Σac satisfy Eqs (2.63) and (2.64). Then,

Σc is a block diagonal matrix

Σc =




Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
. . .

...

0 0 · · · Σk



, Σi ∈ Rni×ni (2.68)

where ni ∈ {1, 2}, νi 6= 0, and

Σi=





µi, if ni = 1
 µi νi

−νi µi


 , if ni = 2.

(2.69)

Also, Σac is a block diagonal matrix with block types and sizes compatible with

Σc. For some Λc and Λac compatible with Σc, the following holds

Π = T−1Λ (2.70)

where

Λ=


 Λc 0

0 Λac


 . (2.71)

Let X and Y be two block diagonal matrices with block sizes and types com-

patible with Σc, then XT , XY and X−1 are also compatible with Σc and

XY = Y X.
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Proof. See Appendix A.2.

Now, multiplying Eq (2.51) from right by Π, we get

KU2nΠ = OpΛ. (2.72)

Hence, from Eqs (2.24), (2.65), and (2.71)

KU2nΠc =




CΛc

CΣcΛc

...

CΣp−2
c Λc

CΣp−1
c Λc




,

KU2nΠac =




F T (ΣT
c )p−1Λac

F T (ΣT
c )p−2Λac

...

F T ΣT
c Λac

F T Λac




.

Thus,

CΛc = JfKU2nΠc, F T Λac = JlKU2nΠac (2.73)

where

Jl=[0m×(p−1) Im]. (2.74)

The problem of finding the state-space matrices C, F , and E is now reduced

to estimating E, Λc, and Λac from the spectral data in Eq. (2.5).

From Lemma 2.2.3, S(z) in Eq. (2.16) can be written as

S(z) = E + CΛc(zΛ
T
acΛc − ΛT

acΣcΛc)
−1ΛT

acF

+F T Λac(z
−1ΛT

c Λac − ΛT
c ΣT

c Λac)
−1ΛT

c C
T

= E + CΛc(zIn − Σc)
−1Λ−1

c F

+F T (ΛT
c )−1(z−1In − ΣT

c )−1ΛT
c C

T

= E + χ(z)Z + ZT χT (z−1) (2.75)
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where

χ(z) = JfKU2nΠc (zIn − Σc)
−1, (2.76)

Z = Λ−1
c F. (2.77)

Thus, E and Z can be estimated from the data in Eq (2.5) by solving the

following linear least-squares problem:

E♯, Z♯ = arg min
Ě,Ž

N∑

k=1

‖R− 1

2

k (χ(zk) Ž + ŽT χT (z−1
k ) + Ě − S(zk))‖2

F .(2.78)

The formula (2.78) is non-asymptotic in N though asymptotic quan-

tities are used in it. However, it suggests a scheme to consistently estimate

the state-space parameters A, C, E, and F .

Recall that when the spectrum samples are noise-free, we can replace

U2n with Û2n in the above formulae. Thus, we have the following result.

Lemma 2.2.4. Let S(z) be the power spectrum of a discrete-time system of

order n satistying Assumption 2.1.1. Let χ(z) and Z be as in Eqs. (2.76)

and (2.77), respectively. Consider the linear least-squares problem (2.78). If

N ≥ (p/2) + n+ 1, then

E♯ = E, Z♯ = Z. (2.79)

Proof. The proof of this lemma is contained in the proof of Theorem 2.2.3.

Once we find Z, we calculate C and F from the first equation in (2.73)

and (2.77) as

C = JfKU2nΠc, F = Z (2.80)

which is due to the fact that H(z) defined by Eq (2.17) is invariant to post-

multiplication of C by Λc and pre-multiplication of F by Λ−1
c since from

Lemma 2.2.3, we have Λ−1
c (zIn − Σc)

−1Λc = (zIn − Σc)
−1.

We are left with the determination of the system matrices B and D.

To this end, we first solve the following Riccati equation for P :

P = APAT + (F − APCT )(E − CPCT )−1(F − APCT )T . (2.81)
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Then, we compute B and D as follows

B = (F − APCT )(E − CPCT )−
1

2 ; (2.82)

D = (E − CPCT )
1

2 . (2.83)

Now, we return to the normal case to outline the proposed algorithm.

Let

Ã=(JdKÛ2n)†JuKÛ2n (2.84)

and put Ã into the Jordan canonical form:

Ã=
[
Π̂c Π̂ac

]

 Σ̂c 0

0 Σ̂ac



[
Π̂c Π̂ac

]−1

(2.85)

where the eigenvalues of Σ̂c lie inside the unit circle. Let

Â = Σ̂c, (2.86)

Ĉ = JfKÛ2nΠ̂c. (2.87)

From Eqs.(2.50) and (2.58), we have

lim
N→∞

Ã = A′′, w.p.1. (2.88)

As in the calculation of Û2n, we can freely choose 2n elements of Π̂c and Π̂ac

with fixed indices subject to the constraint that magnitudes are not greater

than unity. Then, by fixing values of those elements equal to the values of the

corresponding elements in Πc and Πac for all N , we see from Eqs. (2.88) and

(2.85) that

lim
N→∞

Σ̂c = Σc and lim
N→∞

Σ̂ac = Σac, w.p.1;

(2.89)

lim
N→∞

Π̂c = Πc and lim
N→∞

Π̂ac = Πac, w.p.1.

Let

χ̂(z)=Ĉ(zIn − Σ̂c)
−1. (2.90)

Then, from Eq. (2.89) and the fact that Û2n → U2n w.p.1 as N → ∞ we have

lim
N→∞

‖χ̂− χ‖∞, w.p.1. (2.91)
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The uniform convergence is due to the fact that the spectral radius of the limit

matrix Σc is less than one.

The estimates of E and F are obtained by solving the following linear

least-squares problem:

Ê, F̂ = arg min
Ě,F̌

N∑

k=1

‖R−1/2
k (χ̂(zk) F̌ + F̌ T χ̂T (z−1

k )

(2.92)

+Ě − Sk)‖2
F

Before concluding the consistency analysis, let us summarize the final

algorithm in the following.

Algorithm 2.2.1. Subspace algorithm with nonuniformly spaced spectrum sam-

ples:

1. Given the data Sk, θk, and the covariance data Rk, form the matrices S,

WC, W, and K defined by Eqs. (2.34), (2.28), (2.37), and (2.45).

2. Calculate the QR-factorization in Eq. (2.47).

3. Calculate the SVD in Eq. (2.49).

4. Determine the system order n by inspecting the singular values and par-

tition the SVD such that Σ̂2n contains the 2n largest singular values.

5. With Ju, Jd, and Û2n defined by Eqs. (2.53), (2.54), and (2.49), calculate

Ã from (2.84).

6. Block-diagonalize Ã as in Eq. (2.85) and let Π̂c and Â be as in Eqs. (2.85)

and (2.86).

7. With Jf defined by Eq. (2.60), let Ĉ be as in Eq. (2.87).

8. Solve the least-squares problem in Eq. (2.92) for Ê and F̂ where χ̂ is

defined by Eq. (2.90).
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9. Solve the Riccati equation for P̂ :

P̂ = ÂP̂ ÂT + (F̂ − ÂP̂ ĈT )(Ê − ĈP̂ ĈT )−1 · (F̂ − ÂP̂ ĈT )T(2.93)

and calculate B̂ and D̂ from

B̂ = (F̂ − ÂP̂ ĈT )(Ê − ĈP̂ ĈT )−
1

2 ; (2.94)

D̂ = (Ê − ĈP̂ ĈT )
1

2 . (2.95)

10. Calculate Ĝ(z) and ŜN(z) from Eqs. (2.8) and (2.6).

Combination of Lemma 2.2.2 and Lemma 2.2.4 yields our first result

captured in the following.

Theorem 2.2.2. Consider Algorithm 2.2.1 with N noise-free samples of the

power spectrum of a discrete-time system of order n satisfying Assumption 2.1.1

at N distinct frequencies θk. Let K ∈ Rpm×pm be any nonsingular matrix. If

N ≥ (p/2) + n+ 1, then Algorithm 2.2.1 is correct.

Now, we finish the consistency analysis of Algorithm 2.2.1.

Theorem 2.2.3. Consider Algorithm 2.2.1 with corrupted measurements of

the power spectrum of a discrete-time system of order n satisfying Assump-

tion 2.1.1 where the corruptions and the frequencies satisfy the assumptions in

Eqs. (2.10), (2.11), and (2.12). Then, Algorithm 2.2.1 is strongly consistent.

Proof. See Appendix A.3.

The algorithm described in [54] is a special case of Algorithm 2.2.1.

The only difference between the algorithms is the choice of the annihilator

W⊥. In Algorithm 2.2.1, a maximal rank annihilator is used whereas in [54]

an annihilator of much smaller rank is used. In the nonuniform case, we can

not a priori derive a smaller matrix to cancel ΓpW in Eq. (2.33) since there

is a risk of cancelling some of the row space of X . The details can be found

in [62].
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Another issue to be addressed is the positivity of the power spectrum.

Any physically meaningful power spectrum must be positive real. The power

spectrum estimated by the above algorithm may not satisfy this requirement

due to noise and undermodeling. This requirement manifests itself as the

existence of a positive definite solution of Eq. (2.81). If a positive definite

solution fails to exist, then the spectral factor can not be computed. Thus, the

positivity of the spectrum should be enforced after the identification. There are

many possibilities. Two methods enforcing the positivity condition in Eq. (2.4)

are outlined in [54], These methods can be integrated into Algorithm 2.2.1

without modification.

2.3 Examples

In this section, we use two identification examples to illustrate the

properties of the developed algorithm. The first example is based on simu-

lated data. This example will show us the role played by the noise covariance

information. The second example deals with the design of a linear shaping

filter from measured road data.
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2.3.1 Simulation Example

Let the true system G(z) = C(zI4 − A)−1B + D be a fourth-order

system described by the state-space model:

A =




0.8876 0.4494 0 0

−0.4494 0.7978 0 0

0 0 −0.6129 0.0645

0 0 −6.4516 −0.7419




B =




0.2247

0.8989

0.0323

0.1290




C = [0.4719 0.1124 9.6774 1.6129]

D = 0.9626.

We assume N noisy samples Sk of the power spectrum S(z) evaluated at N

points on the unit circle are given as

Sk = S(ejθk) + S̃(ejθk)νk, k = 1, · · · , N

where the noise term S̃(ejθk)νk is composed of a noise transfer function S̃(z),

given by a second-order state-space model:

S̃(z) = C̃(zI2 − Ã)−1B̃ + D̃

with

Ã =


 0.6296 0.0741

−7.4074 0.4815


 , B̃ =


 0.04

0.9




C̃ = [1.6300 0.0740] , D̃ = 0.2

and νk being independent complex identically distributed normal random vari-

ables with zero mean and unit variance. The variance of the noise process at
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each frequency equals Rk = |S̃(zk)|2. We picked the frequencies randomly and

independently from the intervals
[
π

N
(k − 1

2
),
π

N
(k +

1

2
)

]
, k = 1, · · · , N.

Thus, each θk has a uniform distribution.

To examine the consistency properties of Algorithm 2.2.1, we per-

formed Monte Carlo simulations estimating the power spectrum, given the

samples Sk, using different noise realizations of νk. For N = 400 and fixed fre-

quencies, 100 different noise realizations were generated, and Algorithm 2.2.1

with p = 50 estimated 100 models. To assess the quality of the resulting model

both the (measured) supremum norm

‖Ŝn − S‖m,∞= max
1≤k≤N

|ŜN(zk) − S(zk)|

and the (measured) H2 norm

‖Ŝn − S‖m,2=

(
1

N

N∑

k=1

|ŜN(zk) − S(zk)|2
) 1

2

of the estimation error were determined for each estimated model and averaged

over the 100 estimated models. In Figure 2.1, the results for the 100 estimated

models using the covariance information are shown. We computed ‖Ŝn −
S‖m,2 = 0.3307 and ‖Ŝn − S‖m,∞ = 2.4208.

In Figure 2.2, the results for the 100 estimated models without using

the covariance information, i.e., Rk = 1 for all k, are shown. We computed

‖Ŝn − S‖m,2 = 0.4500 and ‖Ŝn − S‖m,∞ = 2.6240.

Comparing H2 errors, as predicted by the analysis, using the noise co-

variance information in Algorithm 2.2.1 reduces the estimation error by about

30%.

2.3.2 Stochastic Road Modeling Example

In this subsection, we consider one practical application of Algorithm 2.2.1.

Provided that occasional large irregularities such as potholes are removed from

31



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Frequency (Hz)

Estimated Power Spectrum

Figure 2.1: The results from Monte Carlo simulations for the 100 estimated models

using the covariance information.

the analysis,the road surface may be described as a realization of a stationary

random process. This assumption enables one to determine the response of a

vehicle traversing a road by accepted techniques of the theory of random vibra-

tion. If the road surface is further assumed to be homogeneous and isotropic,

then a road profile can be completely described by a single power spectral

density evaluated from any single track.

In Figure 2.3 [52], the spectral density of a typical road and its split

power law approximation:

Ŝ(j2πñ) =





C|ñ/ñ0|−2δ1 , 0 < |ñ| < ñ0;

C|ñ/ñ0|−2δ2 , ñ0 ≤ |ñ| <∞

obtained by trial and error for ñ0 = 0.15708 cycles/m, δ1 = 1.6, δ2 = 1.1,

and C = 0.76 × 10−5 are plotted. In the figure, we also show the integrated

white noise approximation to the data: C|ñ/ñ0|−2 which is commonly used

in stochastic road modeling. It is clear that the fit by the integrated white-

noise modeling is rather poor; in particular at the frequencies below ñ0. The

problem with the split power approximation is that it can not be generated by
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Figure 2.2: The results from Monte Carlo simulations for the 100 estimated models

without using the covariance information.

shape filters. Hence, it is not suitable for simulating the response of vehicle.

Besides, it is unbounded at ñ = 0.

In this application, we seek a low order shape filter whose output

spectrum matches the spectral data in Figure 2.3 as closely as possible. The

continuous-time estimation problem is converted to a discrete one by using the

bilinear map:

s = ψ(z) = λ
z − 1

z + 1
(λ > 0).

The number of data is N = 63. We picked λ = 0.2 and p = 32 in Algo-

rithm 2.2.1. In the first trial, we chose n = 1 and RN = IN . The continuous-

time spectral factor was obtained by substituting z = ψ−1(s) in the discrete-

time spectral factor. Thus,

ĜN(s) = 0.0122
s+ 1.1154

s+ 0.0404
. (2.96)

In Figure 2.4, the output spectrum and the estimation error of this trans-

fer function are compared with the road data. This figure tells us that the

first order rational filter produced by Algorithm 2.2.1 is accurate up to 0.02

cycles/m.
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Figure 2.3: The road power spectrum and its approximate modeling by the split

power law and the integrated white noise.

To interpret this result, assume that the bandwidth of the vehicle sus-

pension is 10 Hz and the forward velocity of the vehicle is 30 m/sec. Note

that the vehicle frequency response rolls off at least 20 decibels per decade.

This bandwidth is translated to a (spectral) bandwidth of 1/3 cycles/m in Fig-

ure 2.3. Since the road power spectrum rapidly rolls off, we conclude that the

first order model provides a good first-degree approximation to the measured

data although this model is accurate only in very low frequencies. It should be

noted that the power spectrum of this model is not integrable. A convergence

factor rolling the frequency response off at high frequencies can be introduced.

Next, we tried higher model orders with R as a design variable. In

Figure 2.5 and Figure 2.6, the output spectra and the estimation errors are

compared with the road data for n = 7, p = 32, and the two cases R = IN

and Rk = Sk. Clearly, Figure 2.6 indicates improvement in the high frequency

rolling caused by weighting.

The purpose of modeling a power spectrum by a rational function of

reasonably low order is to use this approximation for the design of a linear

shaping filter with a white noise input. Then, the identified road spectrum is
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Figure 2.4: The spectral data and its modeling by a rational model of order one

produced by Algorithm 2.2.1 with R = IN .

used, for example in a quarter-car model, to study the response of the vehicle

to random road inputs [98].

2.4 Rational interpolation from real or imaginary parts:

A subspace-based approach

2.4.1 Motivation for the Problem

Let f(z) denote the transfer function of a given nth order, stable,

single-input/single-output, discrete-time system. Then, f(z) is analytic on

{z ∈ C : |z| > ρ} for some ρ < 1. In this section, we study construction

of f(z) from its real or imaginary parts evaluated on a discrete set of points

ejθk ∈ T, k = 1, · · · , N , not necessarily on a uniform grid of frequencies as in

the most existing works [99]. In the classical textbook [100], applications of

this construction to representation and efficient sampling of bandpass signals

are discussed.

The problem of determining a complex function that is analytic on
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Figure 2.5: The spectral data and its modeling by a rational model of order 7

produced by Algorithm 2.2.1 with R = IN .

the open unit disk (or its complement, depending on how the z-transform is

defined) from evaluations of its real part on the unit circle has a long history in

both mathematics [101] and digital signal processing [100]. This construction

is given by the following formula, see Lemma 1.2 in Chap. III of [101],

v(θ) = lim
ε→0

1

2π

∫

|θ−φ|>ε

cot

(
θ − ϕ

2

)
u(ϕ)dϕ (2.97)

where u(θ) and v(θ) are the real and the imaginary parts of the function we are

after evaluated on the unit circle, that is f(ejθ) = u(θ) + jv(θ). The harmonic

conjugate is normalized so that v(0) = 0. The linear mapping sending u to v

defined in (2.97) is called the conjugation operator. This mapping is commonly

known as the Hilbert transform in digital signal processing although a different

operator, but with similar boundedness behavior, is called with the same name

in mathematics [101]. The principal value in (2.97) exists almost everywhere

if |u(θ)| is integrable [101].

In this section, we present a subspace-based algorithm to construct

transfer functions of stable, discrete-time systems from their real or imaginary

parts evaluated on finite subsets of T. Consistency property of the algorithm
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Figure 2.6: The spectral data and its modeling by a rational model of order 7

produced by Algorithm 2.2.1 with Rk = Sk.

with respect to noisy data is also discussed. Our objective is to show that

Algorithm 2.2.1 can be used to solve the problem considered in this section.

The problem considered in this section was studied in [99] assuming

that the frequencies are uniformly spaced, and finite-impulse response models

that interpolate the given data were constructed. Complexity of these models

equals (N − 1)/2 when the number of data, N , is odd and N/2 when N is

even. The statistical analysis in [99] showed that the transfer function estimate

has a variance that equals to noise variance assuming that the corruptions are

independent, identically distributed Gaussian random variables. It is easy to

understand the reason why the variance does not decrease with N : the number

of the parameters to be determined is the half of the number of data.

In contrast, the algorithm of this section does not require model com-

plexity grow unboundedly as N increases. Thus, the proposed algorithm con-

sistently estimates finite-dimensional systems from real or imaginary parts of

their transfer functions corrupted by noise.
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2.4.2 Main result

Consider a single-input/single-output, linear-time invariant, stable,

discrete-time system represented by the state-space equations:

x(t+ 1) = Ax(t) + bν(t)

(2.98)

y(t) = 2cTx(t) + dν(t)

where x(t) ∈ Rn is the state, ν(t) ∈ R and y(t) ∈ R are, respectively, the

input and the output of the system. The transfer function of the system in

Eq. (2.98) denoted by f(z) is computed as

f(z) = d+ 2cT (zIn − A)−1b. (2.99)

The pairs (A, b) and (cT , A) are assumed to be controllable and observable,

respectively. The stability of Eq. (2.98) means that all the eigenvalues of A

are inside the unit circle and both the controllability and the observability of

Eq. (2.98) imply that f(z) is an nth order rational function of z.

From Eq. (2.99), the real part of f(z) can be written as

u(θ) =
1

2
[f(z) + f(z)]

(2.100)

= h(z) + h(z−1)

where

h(z) =
d

2
+ cT (zIn − A)−1b, (2.101)

z = ejθ. The second equality in Eq. (2.100) is due to the fact that f(z) is

a scalar-valued function of z. In this chapter, we study the problem of de-

termining v(θ) from corrupted evaluations of u(θ) on finite subsets of [0, π].

But, from Eqs. (2.99)–(2.101) this problem is equivalent to determining a re-

alization similar to (A, b, c, d
2
) from the corrupted evaluations ûk = u(θk) + ηk,

k = 1, · · · , N .

Assuming that ν(t) is zero-mean unity variance white-noise process,

the power spectrum associated with Eq. (2.98) is defined as

S(z) = f(z)f(z−1). (2.102)
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If f(z) is minimum-phase, i.e., it has all zeros inside the unit circle, then

S(ejθ) > 0 for all θ. This is the positive realness condition, and it imposes

a constraint on the given spectrum samples Sk = S(ejθk) + ηk, i.e, Sk > 0

for all k. Now, assuming for a moment that f(z) is minimum-phase, let us

consider the problem of determining f(z) from corrupted spectrum samples

Sk, k = 1, · · · , N . The transfer function f(z) is called the spectral factor of

S(z).

Suppose S(z) > 0 on the unit circle and let P be the solution of the

discrete-time Lyapunov equation:

P = APAT + bbT .

Let

γ = 4cTPc+ d2,

β = 2APc+ db.

Then, S(z) can be split into the sum of two system transfer functions [96] as

follows

S(z) = ψ(z) + ψ(z−1)

with

ψ(z) =
γ

2
+ 2cT (zIn − A)−1β.

This splitting of S(z) into the sum of a causal transfer function ψ(z)

and an anti-causal transfer function ψ(z−1) is the first step of the subspace-

based identification algorithms in [54, 57]. The transfer functions ψ(z) and

ψ(z−1) are called the spectral summands of S(z). In [54,57], realizations simi-

lar to (A, β, 2c, γ
2
) are consistently estimated from corrupted power spectrum

samples Sk. The subspace-based algorithms proposed in [54,57] do not require

the power spectrum be scalar-valued.

The spectral factor (A, b, 2c, d) is extracted from the quadruplet (A, β, 2c, γ
2
)

by first solving the Riccati equation for Q:

Q = AQAT + (β − 2AQc)(γ − 4cTQc)−1(β − 2AQc)T (2.103)

39



and then computing b and d as follows:

b = (β − 2AQc)(γ − 4cTQc)−1/2,

d = γ − 4cTQc)1/2.

The Riccati equation (2.103) may fail to have a positive definite solution.

This may happen due to the finiteness of the data record, undermodelling,

and the noise. The positivity of the spectrum can be assured by modifying γ

and β. There are many possibilities to ensure this positivity. Two methods

enforcing the positivity condition (2.102) are outlined in [54]. (See, also [102]

for alternative implementations).

Since the positivity of the spectrum is enforced after the estimation of

the spectral summands, the consistency properties carry on to the next stages

of the algorithms in [54, 57]. Moreover, the interpolation properties of these

algorithms are determined in the estimation step of ψ(z) from the spectrum

samples. Thus, the estimation problem of determining f(z) from the corrupted

samples of u(θ) can be viewed as a first step in the spectral estimation problem

of determining f(z) from the corrupted samples of |f(ejθ)|2.

The former estimation problem is simpler since the positivity condition

is not needed. (The case that f(z) is a positive-real transfer function can be

handled similarly to the spectral estimation problem). In [57], the interpolation

condition, which links the number of data with the system order, is derived

in Lemma 2 there. This condition is obtained under the assumption that the

realization (A, β, 2c, γ/2) is minimal, which is equivalent to the minimality of

(A, b, 2c, d). In the current problem however, the latter equivalence is not even

needed.

Identification Algorithm

The following algorithm has been derived from Algorithm 2.2.1 by

discarding the spectral factor computation component.

Algorithm 2.4.1. Subspace algorithm.
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1. Given the data ûk = u(θk) + ηk, Rk; k = 1, · · · , N form the matrices Û ,

W, and K:

Û = [Re ÛC Im ÛC ],

W = [ReWC ImWC ] ,

KKT = Re
(
WCRWH

C

)

where p > 2n is a free parameter,

ÛC =
1√
N




û1 · · · ûN

z1û1 · · · zN ûN

...
. . .

...

zp−1
1 û1 · · · zp−1

N ûN



,

and WC is the matrix in Eq. (2.28) evaluated at m = 1.

2. Calculate the QR-factorization:


 W

Û


 =


 R11 0

R21 R22




 QT

1

QT
2


 .

3. Calculate the singular value decomposition:

K−1R22 =
[
Û2n Ũ

]

 Σ̂2n 0

0 Σ̃




 V̂2n

Ṽ


 .

4. Determine the system order n by inspecting the singular values and par-

tition the SVD such that Σ̂2n contains the 2n largest singular values.

5. Calculate

Ã = (JdKÛ2n)†JuKÛ2n

where Ju and Jd are the upward and downward shift matrices in Eqs. (2.53)

and (2.54) evaluated at m = 1.
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6. Block-diagonalize Ã:

Ã =
[
Π̂c Π̂ac

]

 Σ̂c 0

0 Σ̂ac



[
Π̂c Π̂ac

]−1

where the eigenvalues of Σ̂c lie inside the unit circle and let

Â = Σ̂c.

7. Let

ĉT = JfKÛ2nΠ̂c

where Jf is the matrix in Eq. (2.60) evaluated at m = 1.

8. Solve the linear least-squares problem:

d̂, b̂ = arg min
ď,b̌

N∑

k=1

R−1
k [2Re(χkb̌) + ď− ûk]

2

for the estimates of d and b where

χk = ĉT (eiθkIn − Σ̂c)
−1.

9. Calculate an estimator of f(z) as

f̂(z)=d̂+ 2ĉT (zIn − Â)−1b̂.

The main result of this section is contained in the following.

Theorem 2.4.1. Consider Algorithm 2.4.1 with N noise-free samples of the

real part of the transfer function f(z) of a discrete-time stable system of order

n at N distinct frequencies θk. Assume that the poles of f(z) are nonzero

and distinct. Choose p > 2n and let K ∈ Rp×p be any nonsingular matrix.

If N ≥ (p/2) + n + 1, then f̂ = f . If the samples are corrupted by noise

satisfying Eqs. (2.10) and (2.11), and the frequencies satisfy Eq. (2.12), then

Algorithm 2.4.1 is strongly consistent, i.e.,

lim
N→∞

sup
z∈D

|f̂(z) − f(z)| = 0, w.p.1.
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By picking p = 2n+1, it is possible to exactly recover nth order stable

systems from real parts of their transfer functions using only 2n+ 2 noise-free

evaluations on the unit circle whereas polynomial model structures in [99] can

only recover finite-impulse responses without error. If the true system is lightly

damped, a large number of impulse-response coefficients need to be estimated

from data for accurate system representations. But, such representations have

large model variability due to the random component of uncertainty as opposed

to the strong consistency of Algorithm 2.4.1.

When the samples of v(θ) are given, its harmonic conjugate u(θ) is

obtained by simply interchanging the roles of u and v by noting if = −v+ iu.

Now, suppose that the samples of argf(z) are given and we wish to construct

|f(z)| under the minimum-phase constraint. This case is simple if one notes

that log f(z) is analytic whenever f(z) is minimum phase. However, Theo-

rem 2.4.1 does not hold in this case; but, approximations to the true rational

system can be obtained with greater precision for large model orders. The

converse problem has already been solved by Algorithm 2.2.1.

2.4.3 Example

In this subsection, we use a simulation example to illustrate the prop-

erties of the proposed algorithm. Let the true system f(z) = 2cT (zI4−A)−1b+d
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be a fourth-order system described by the state-space model:

A =




0.8876 0.4494 0 0

−0.4494 0.7978 0 0

0 0 −0.6129 0.0645

0 0 −6.4516 −0.7419



,

b = (0.2247 0.8989 0.0323 0.1290)T ,

2cT = (0.4719 0.1124 9.6774 1.6129),

d = 0.9626.

We assume N noisy samples ûk of u(θ) evaluated at N points on the unit circle

are given as

ûk = u(θk) + 0.25ηk, k = 1, · · · , N

where ηk are independent identically distributed normal random variables with

zero mean and unit variance. We picked the frequencies randomly and inde-

pendently from the intervals
[
πk

N
,
π(k + 1)

N

]
, k = 0, · · · , N − 1.

Thus, each θk has a uniform distribution.

To demonstrate the consistency property of Algorithm 2.4.1, we per-

formed Monte Carlo simulations estimating f(z), given the samples ûk, using

different noise realizations of ηk. For N = 1000 and fixed frequencies, 20 dif-

ferent noise realizations were generated, and Algorithm 2.4.1 with p = 100 and

R = IN estimated 20 models. To assess the quality of the resulting model the

(measured) H2 norm:

‖f̂ − f‖m,2=

(
1

N

N∑

k=1

|f̂(ejθk) − f(ejθk)|2
) 1

2

of the estimation error was determined for each estimated model and averaged

over the 20 estimated models. In Figure 2.7, the results for the 20 estimated

models are shown. We computed 0.0315 for the average value of ‖f̂ − f‖m,2.
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Figure 2.7: The results from Monte Carlo simulations for the 20 estimated models.

Next, we used Algorithm 2.4.1 with N = p = 9, randomly chosen

frequencies, and ηk = 0 for all k to verify its interpolation properties. In fact,

for this case we computed ‖f̂ − f‖m,2 = 4.33× 10−13. Since p > 2n, the choice

for p is appropriate. From Theorem 2.4.1, one would confer N ≥ 10. However,

θ1 and θN are not equal to 0 or π. In this case, the interpolation condition

(from the proof of Lemma 2 in [57]) is 2N > p+ 2n− 1, yielding N = 9 as the

smallest number satisfying this inequality.

2.5 Summary

In this chapter, we presented a strongly consistent subspace algorithm

for the identification of square multi-input/multi-output, discrete time, linear

time invariant systems from non uniformly spaced power spectrum measure-

ments. The algorithm was illustrated with one practical example that solves

a stochastic road modeling problem.

Construction of analytic functions from evaluations of real or imagi-

nary parts on finite subsets of the unit circle was also studied in this chapter.
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A subspace-based algorithm, which exactly retrieves finite-dimensional sys-

tems from noise-free data, was presented. This algorithm is expected to find

applications in the approximation of band-limited filters by rational ones.
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3 SUBSPACE-BASED SOLUTION OF

LAGRANGE–SYLVESTER

INTERPOLATION PROBLEM

Many problems in control, circuit theory, and signal processing can

be reduced to the solution of matrix rational interpolation problems which

have been widely studied (see, for example, [55,56,103–115] and the references

therein). Applications arise, for example, in robust controller synthesis [55,56],

in the Q-parameterization of stabilizing controllers for unstable plants [116],

in the problem of model validation [117], in circuit theory [118], in spectral

estimation [119], and in adaptive filtering and control [114,120].

In the simplest form, given complex numbers zk and wk for k =

1, . . . , N , an interpolation problem asks for scalar rational functionsG(z) which

meet the interpolation conditions

G(zk) = wk, k = 1, . . . , N.

The interpolants can further be required to have minimal complexity in terms

of their McMillan degree. An extension of this problem to the matrix case is

as follows.

Given: a subset ϑ ⊂ C, points z1, . . . , zL in ϑ, rational 1 × p row

vector functions v1(z), . . . , vL(z) with vk(zk) 6= 0 for all k, and rational 1 ×m

row vectors w1(z), . . . , wL(z).

Find: (at least one or all) p×m rational matrix functions G(z) with

no poles in ϑ which satisfy the tangential interpolation conditions

dj

dzj
{vk(z)G(z)}

∣∣∣∣
z=zk

=
dj

dzj
wk(z)

∣∣∣∣
z=zk

(3.1)

for 0 ≤ j ≤ Nk, 1 ≤ k ≤ L.

This problem is known as the tangential Lagrange–Sylvester rational

interpolation problem. One approach to finding a solution is to reduce the

47



problem to a system of independent scalar problems, which is not interesting

from the viewpoint of matrix interpolation theory. In addition, a minimal re-

alization can be obtained only after the elimination of unobservable or/and

uncontrollable modes. The contour integral version of this problem is treated

in the comprehensive work [107]. The bitangential or bidirectional version is

studied, for example, in [106, 108, 112, 113]. Related problems are the non-

homogenous interpolation problem with metric constraints, as in the various

types of Nevanlinna–Pick interpolation and its generalizations [110, 121], and

the partial realization problem, that is, finding a rational matrix function ana-

lytic at infinity of the smallest possible McMillan degree with prescribed values

of itself and a few of its derivatives at infinity [103,107,122,123]. Further ap-

plications of interpolation theory to control and systems theory and estimation

are presented in [107,124,125].

Prior work on the unconstrained tangential interpolation problem has

been largely carried out by Ball, Gohberg, and Rodman [107, 108]. The solv-

ability issues of the interpolation problem, i.e., the existence and the unique-

ness of the solutions, have been analyzed in [126] by using a residual interpola-

tion framework. A more direct algebraic approach in [111] shows that solving a

tangential interpolation problem is equivalent to solving a matrix Padé approx-

imation problem with Taylor coefficients obeying a set of linear constraints.

In [103–106], the tangential interpolation problem above was studied using

a tool called the Löwner matrix. In [106], the problem of finding admissi-

ble degrees of complexity of the solutions to the above interpolation problem,

that is, finding all positive integers n for which there exits an interpolant with

McMillan degree n, and the problem of parameterizing all solutions for a given

admissible degree of complexity were investigated. Clearly, the solutions of

minimal complexity are of special interest.

The main result in [108] states that the family of rational matrix

functions satisfying (3.1) can be parameterized in terms of a certain linear

fractional map. First, the interpolation data is translated into a so-called left

null pair that describes the zero structure of a (p + m) × (p + m) resolvent
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matrix. The computation of the resolvent matrix requires that the solution

of a particular Sylvester equation be invertible. The details can be found

in [107]. In [111], a recursive method for computing the resolvent matrix as a

product of elementary first-order rational matrix functions is presented. This

scheme allows recursive updating of the resolvent matrix whenever a new in-

terpolation point is added to the input data. In the special case when the

resolvent matrix is in column-reduced form, it is possible to extract the admis-

sible degrees of complexity as well as the minimal degree of complexity from

the linear fractional parameterization formula. The resolvent matrix obtained

by an unconstrained algorithm can be transformed into column-reduced form

via a sequence of elementary unimodular transformations [127]. A detailed

algorithm for the construction of a column-reduced rational matrix function

from a given null-pole triple is given in [128]. This algorithm is not recursive,

whereas in [111] a column-reduced transfer function is recursively obtained.

In this chapter, we present a numerically efficient algorithm for solving

the unconstrained tangential interpolation problem formulated above. This al-

gorithm is inspired by the recent work on the frequency domain subspace-based

identification [62,90–92]. The solvability conditions for the proposed algorithm

are simple, and depend only on the total multiplicities of the interpolation

points. The resulting interpolating function is in the minimal state-space

form. To this date, interpolation properties of the subspace-based methods

have not been investigated in the generality of this chapter. Only in [62] was

an interpolation result obtained for uniformly spaced data on the unit circle

of the complex plane. The problem of curve fitting is also closely related to

the interpolation problem. The use of the frequency domain subspace-based

methods for curve fitting is briefly described in [129].

Let us reformulate the tangential interpolation problem described above

in terms of system properties. More precisely, let us consider a multi-input/multi-

output, linear-time invariant, discrete-time system represented by the state-
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space equations

x(k + 1) = Ax(k) +Bu(k),

(3.2)

y(k) = Cx(k) +Du(k),

where x(k) ∈ Rn is the state and u(k) ∈ Rm and y(k) ∈ Rp are, respectively,

the input and the output of the system. The transfer function of the system

(3.2) denoted by G(z) is computed as

G(z) = D + C(zIn − A)−1B. (3.3)

We assume that the system (3.2) is stable and the pairs (A,B) and (C,A)

are controllable and observable, respectively. The stability of (3.2) means that

G(z) is a proper rational matrix that is analytic and bounded in the region

ϑ = {z ∈ C : |z| ≥ 1}, and both the controllability and the observability of the

pairs (A,B) and (C,A) mean that the quadruplet (A,B,C,D) is a minimal

realization of G(z).

The interpolation problem studied in this paper can be stated as fol-

lows.

Given: noise-free samples of G(z) and its derivatives at L distinct

points zk ∈ ϑ,

dj

dzj
G(z)

∣∣∣∣
z=zk

= wkj, j = 0, 1, . . . , Nk, k = 1, 2, . . . , L. (3.4)

Find: a quadruplet (Â, B̂, Ĉ, D̂) that is a minimal realization of G(z).

Clearly, Eq. (3.4) is a special case of Eq. (3.1) with suitably selected

left vectors vk(z) and nodes zk. A subspace-based algorithm handling the

tangential-type constraints in Eq. (3.1) as well can be derived along the same

lines of the proposed algorithm. The minimality and the uniqueness of the

interpolant are the parts of the problem formulation. What is left unanswered

is a condition on the number of the interpolation nodes, counting multiplicities.

It is also clear that, if it exists, the subspace-based solution is a minimal

interpolating function in the set of all possible solutions.
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The proposed interpolation scheme is particularly useful when the

samples of G(z) and its derivatives are corrupted by noise and the amount of

data is large with respect to n. In the noisy case, most interpolation schemes

deliver state-space realizations with McMillan degrees tending to infinity as

the amount of data grows unboundedly; thus such schemes are sensitive to in-

accuracies in the interpolation data. Since our algorithm is subspace-based, it

inherits robustness properties of the subspace-based identification algorithms.

In particular, there is no need for explicit model parameterization, and this al-

gorithm is computationally efficient since it uses numerically robust QR factor-

ization and the singular value decomposition. In the chapter, we also consider

subspace-based system identification with interpolation constraints.

Note that a given interpolation problem on the right half complex

plane can be converted to an interpolation problem on the unit disk by using

the Möbius transformation:

s = ψ(z)=λ
z − 1

z + 1
(λ > 0). (3.5)

We omit the details.

3.1 Subspace-Based Interpolation Algorithm

We begin by taking the z-transform of Eq. (3.2),

zX(z) = AX(z) +BU(z),

(3.6)

Y (z) = CX(z) +DU(z),

assuming x(0) = 0, where X(z), Y (z), and U(z) denote respectively the z-

transforms of x(k), y(k), and u(k) defined by

U(z)=
∞∑

k=0

u(k) z−k. (3.7)

Let Xj(x) be the resulting state z-transform when

u(k) =





ej, k = 0,

0, otherwise,
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where ej denotes the unit vector in Rm with 1 on the jth position and 0

elsewhere. By defining the compound state z-transform matrix,

XC(z)= [X1(z) X2(z) · · · Xm(z)] , (3.8)

G(z) can implicitly be described as

G(z) = CXC(z) +D (3.9)

with

zXC(z) = AXC(z) +B. (3.10)

By recursive use of Eq. (3.10), we obtain the relation

zkXC(z) = AkXC(z) +
k−1∑

j=0

Ak−1−jBzj, k ≥ 1. (3.11)

Multiplying both sides of Eq. (3.11) with C and using Eq. (3.9), we get

zkG(z) = CAkXC(z) +Dzk +
k−1∑

j=0

CAk−1−jBzj, k ≥ 1. (3.12)

Now, recall that the impulse response coefficients of G(z) are given by

gk =





D, k = 0,

CAk−1B, k ≥ 1.
(3.13)

Thus, from Eqs. (3.9), (3.12), and (3.13),

zkG(z) = CAkXC(z) +
k∑

j=0

gk−j z
j, k ≥ 0. (3.14)

Hence from Eq. (3.14),




G(z)

zG(z)
...

zq−1G(z)




= OqXC(z) + Γq




Im

zIm
...

zq−1Im



, (3.15)
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where

Oq =




C

CA
...

CAq−1



, (3.16)

Γq =




g0 0 · · · 0

g1 g0 · · · 0
...

...
. . .

...

gq−1 gq−2 · · · g0



. (3.17)

For later use, let us write Eq. (3.15) in a compact form. The matrix

Oq is known as the extended observability matrix and has full rank n if (A,C)

is an observable pair and q ≥ n.

Let

Zq(z) =




1

z
...

zq−1



, (3.18)

Jq,2 =




0 · · · 0

1 0

0 1 0
...

. . .
...

0 · · · 1 0




∈ Rq×q. (3.19)

By a slight abuse of notation, let Jq,1 denote the q × q identity matrix Iq.

Observe that Jq,2 is obtained by shifting the elements of Jq,1 one row down

and filling its first row with zeros. Let Jq,j denote the matrix obtained by j−1

repeated applications of this process to Jq,1 and J0
q,2 = Iq. Note the following

relations:

Jq,j =





J j−1
q,2 , j ≤ q

0, j > q.
(3.20)
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Thus, the lower triangular block Toeplitz matrix in Eq. (3.17) can be written

as

Γq =

q−1∑

j=0

Jq,1+j ⊗ gj. (3.21)

Hence, from Eqs. (3.16)–(3.21) we arrive at the following compact expression

for Eq. (3.15):

Zq(z) ⊗G(z) = OqXC(z) +

q−1∑

j=0

[J j
q,2 ⊗ gj] [Zq(z) ⊗ Im] . (3.22)

This equation forms the basis of the frequency domain subspace-based

identification algorithms [62, 90]. In subspace-based identification algorithms,

Zq(z)⊗G(z) and the right-hand side of Eq. (3.22) are evaluated at a set of dis-

tinct points on the unit circle and then stacked into columns of long matrices.

This procedure yields a matrix equation affine in Oq. From this equation, the

range space of Oq is recovered by a projection. Once the observability range

space is recovered, a realization of G(z) is derived in a routine manner. We

will adapt the same strategy.

First, we differentiate both sides of Eq. (3.22) l times with respect to

z:

dl

dzl
Hq(z) =

l∑

j=0


 l

j


 dj

dzj
Zq(z) ⊗

dl−j

dzl−j
G(z)

(3.23)

= Oq
dl

dzl
XC(z) +

q−1∑

j=0

[J j
q,2 ⊗ gj]

[
dl

dzl
Zq(z) ⊗ Im

]
, l ≥ 0,

where

Hq(z)=Zq(z) ⊗G(z). (3.24)

Then, we augment Hq(zk) and the first Nk derivatives of Hq(z) at zk

in a data matrix:

Hk=

[
Hq(z)

d

dz
Hq(z) · · · dNk

dzNk
Hq(z)

]

z=zk

, k = 1, . . . , L. (3.25)

Using the right-hand side of the first equality in (3.23), let us derive a compact
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expression for Hk in terms of the elementary matrices

Dk=




0 1 0 · · · 0

0 2

0 · · ·
...

. . . Nk

0 · · · 0




∈ R(Nk+1)×(Nk+1) (3.26)

and

Wk=

[
Zq(z)

d

dz
Zq(z) · · · dNk

dzNk
Zq(z)

]

z=zk

, k = 1, . . . , L, (3.27)

as follows:

Hk =

[
Zq(z)

d

dz
Zq(z)

d2

dz2
Zq(z) · · · dNk

dzNk
Zq(z)

]

z=zk

⊗G(zk)

+


0 Zq(z) 2

d

dz
Zq(z) · · ·


 Nk

1


 dNk−1

dzNk−1
Zq(z)




z=zk

⊗ d

dz
G(zk)

+


0 0 Zq(z) · · ·


 Nk

2


 dNk−2

dzNk−2
Zq(z)




z=zk

⊗ d2

dz2
G(zk) + · · ·

+ [0 0 0 · · · Zq(z)]z=zk
⊗ dNk

dzNk
G(zk)

= Wk ⊗G(zk) + [WkDk] ⊗
d

dz
G(zk) +

1

2!
[WkD2

k] ⊗
d2

dz2
G(zk)

+
1

Nk!
[WkDNk

k ] ⊗ dNk

dzNk
G(zk).

Note that Dj
k = 0 for all j > Nk. Hence,

Hk =

Nk∑

j=0

1

j!
[Wk Dj

k] ⊗ wkj, k = 1, . . . , L. (3.28)

It remains to compute the derivatives of Zq(z). To this end, let

Tq=




0! 0 · · · 0

0 1! · · · 0
...

...
. . .

...

0 0 · · · (q − 1)!



∈ Rq×q. (3.29)
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Then, it is easy to verify that

dl

dzl
Zq(z) = TqJ l

q,2T −1
q Zq(z), l ≥ 0. (3.30)

Hence from Eqs. (3.27) and (3.30),

Wk = Tq

[
Iq Jq,2 · · · J Nk

q,2

] [
INk+1 ⊗ T −1

q Zq(zk)
]
, k = 1, . . . , L.

(3.31)

An alternative compact expression for Hk is obtained by evaluating

the right-hand side of the second equality in Eq. (3.23) for l = 0, . . . , Nk,

k = 1, . . . , L, and augmenting the similar terms in compound matrices as

follows:

Hk = Oq Xk +

q−1∑

j=0

[J j
q,2 ⊗ gj] [Wk ⊗ Im], k = 1, . . . , L, (3.32)

where

Xk=

[
XC(z)

d

dz
XC(z) · · · dNk

dzNk
XC(z)

]

z=zk

, k = 1, . . . , L. (3.33)

Now, we collect Hk, Xk, and Wk, k = 1, . . . , L, in the compound

matrices

H = [H1 H2 · · · HL] , (3.34)

X = [X1 X2 · · · XL] , (3.35)

W = [W1 W2 · · · WL] . (3.36)

Hence,

H = Oq X +

q−1∑

j=0

[J j
q,2 ⊗ gj] [W ⊗ Im], (3.37)

where H and W are computed from the problem data {zk, {wkj}Nk

j=0}L
k=1 by the

formulae (3.18), (3.26),(3.19), (3.28), (3.31), (3.29), (3.34), (3.36). This com-

pletes the first stage of our subspace-based interpolation algorithm. Observe

that H is affine in Oq as advertised.

Since Oq is a real matrix and we are interested in the real range space,

we can convert Eq. (3.37) into a relation involving only real valued matrices:

Ĥ = Oq X̂ +

q−1∑

j=0

[J j
q,2 ⊗ gj]F , (3.38)
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where

Ĥ = [ReH ImH] , (3.39)

F = [ReW ImW ] ⊗ Im, (3.40)

X̂ = [ReX ImX ] . (3.41)

Let z∗ denote the complex conjugate of z. When zk ∈ R, from

Eq. (3.18) we have Zq(zk) ∈ Rq. This, by Eq. (3.31), implies that Wk ∈
Rq×(Nk+1). From Eq. (3.10),

XC(z) = (zIn − A)−1B. (3.42)

Then, from Eqs. (3.9), (3.42), and (3.33), it follows that Xk ∈ Rn×m(Nk+1) and,

for all j = 0, . . . , Nk, wkj ∈ Rp×m whenever zk ∈ R. Thus, whenever zk ∈ R

from Eq. (3.28) we have Hk ∈ Rpq×m(Nk+1). Hence, the imaginary parts of Hk,

F , and Xk are all zero, and they need not be included in Eqs. (3.39)–(3.41) if

zk ∈ R; without loss of generality, we will assume this in what follows. Let

N=
∑

k:zk∈R

(Nk + 1) +
∑

k:zk∈C−R

2(Nk + 1). (3.43)

Then, Ĥ ∈ Rpq×mN , F ∈ Rmq×mN , and X̂ ∈ Rn×mN .

3.1.1 Projection onto the Observability Range Space

Let F⊥ be the projection matrix onto the null space of F given by

F⊥=ImN −FT (FFT )−1F , (3.44)

where FT denotes the transpose of F . The summand in Eq. (3.38) is cancelled

for all j when multiplied from right by F⊥. Thus,

ĤF⊥ = Oq X̂F⊥. (3.45)

A numerically efficient way of forming ĤF⊥ is to use the QR-factorization

 F

Ĥ


 =


 R11 0

R21 R22




 QT

1

QT
2


 . (3.46)
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A simple derivation yields

ĤF⊥ = R22Q
T
2 , (3.47)

and it suffices to use R22 ∈ Rpq×m(N−q) in the extraction of the observability

range space since QT
2 is a matrix of full rank.

The range space of ĤF⊥ equals the range space of Oq unless rank

cancellations occur. A sufficient condition for the range spaces to be equal is

that the intersection of the row spaces of F and X̂ be empty. In the following,

we present sufficient conditions in terms of the data and the system.

Lemma 3.1.1. Let X̂ , F , and N be as in Eqs. (3.41), (3.40), and (3.43),

respectively. Suppose that N ≥ q+ n and the eigenvalues of A do not coincide

with the distinct complex numbers zk. Then,

rank


 F

X̂


 = qm+ n ⇐⇒ (A,B) controllable pair. (3.48)

Proof. See Appendix B.1.

Since all the eigenvalues of A are inside the unit circle, none of them

coincide with any of zk. Thus, by applying Lemma 3.1.1, we conclude that the

two row spaces of X̂ and F do not intersect and the range space of ĤF⊥ coin-

cides with the range space of Oq. Then, using the singular value factorization

of ĤF⊥,

ĤF⊥ = ÛΣ̂V̂ T

(3.49)

=
[
Ûs Ûo

]

 Σ̂s 0

0 Σ̂o




 V̂ T

s

V̂ T
o


 ,

where Σ̂s ∈ Rn×n, we determine the system matrices Â and Ĉ as

Â = (J1Ûs)
†J2Ûs,

(3.50)

Ĉ = J3Ûs,
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where

J1 =
[
I(q−1)p 0(q−1)p×p

]
, (3.51)

J2 =
[
0(q−1)p×p I(q−1)p

]
, (3.52)

J3 =
[
Ip 0p×(q−1)p

]
, (3.53)

Provided that (C,A) is an observable pair, the pseudoinverse in Eq. (3.50)

exists if and only if q > n. Therefore, in order to apply the lemma it suffices

to let q = n + 1. In this case, we have the sole requirement N > 2n with N

defined by Eq. (3.43). From Lemma 3.1.1, it follows that Â and Ĉ defined in

Eq. (3.50) are related to A and C in Eq. (3.2) by

Â = T−1AT,

(3.54)

Ĉ = CT

for some T ∈ Rn×n.

As noted before, in Eq. (3.49) ĤF⊥ can be replaced with R22.

3.1.2 Extracting B and D from the Data

We will now determine B and D matrices in the realization using

the given frequency domain data. Repeated application of the differentiation

formula
d

dz
X−1 = −X−1dX

dz
X−1

to XC(z) = (zIn − A)−1B yields the derivatives of G(z) as follows:

dj

dzj
G(z) = δ0j D + (−1)jj!C(zIn − A)−j−1B, j ≥ 0, (3.55)

where δks is the Kronecker delta. Now, let

Gk=




wk0

wk1

...

wkNk



, k = 1, . . . , L, (3.56)
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and

G=




G1

G2

...

GL



. (3.57)

Observe from Eq. (3.55) that, for fixed A and C, the matrices B and

D appear linearly in G. Hence, we can uniquely determine B and D by solving

the following linear least-squares problem

B̂, D̂ = arg min
B,D

∥∥∥∥∥∥
Ĝ − Ŷ


 B

D



∥∥∥∥∥∥

2

F

, (3.58)

where

Ĝ =


 ReG

ImG


 ∈ RpN×m, (3.59)

Ŷ =


 ReY

ImY


 ∈ RpN×(n+p), (3.60)

and

Yk=




C(zkIn − A)−1 Ip

−C(zkIn − A)−2 0
...

(−1)NkNk!C(zkIn − A)−Nk−1 0



, (3.61)

Y=




Y1

Y2

...

YL



, (3.62)

provided that Ŷ is not rank deficient. For the last requirement, a sufficient

condition is presented next.

Lemma 3.1.2. Let N and Ŷ be as in Eqs. (3.43) and (3.60), respectively.

Suppose that N > n and the eigenvalues of A do not coincide with the distinct

complex numbers zk. Then,

rankŶ = p+ n ⇐⇒ (C,A) observable pair. (3.63)
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Proof. See Appendix B.2

Thus, from Eq. (3.54) and Lemma 3.1.2, if N ≥ q + n and q > n, we

have

B̂ = T−1B,

(3.64)

D̂ = D.

Moreover,

Ĝ(z)=Ĉ(zIn − Â)−1B̂ + D̂ = G(z). (3.65)

3.1.3 Solvability Conditions

By picking q = n+1 in the subspace-based algorithm developed above,

we obtain a sufficient condition for the interpolation of G(z) from its noise-free

samples and derivatives evaluated at L distinct points in ϑ as N ≥ 2n + 1,

where N is defined by Eq. (3.43). This condition turns out to be a necessary

condition for the interpolation of G(z), as demonstrated next by a simple

example.

Consider an nth-order stable single-input/single-output system repre-

sented by the transfer function

G(z) =
b0z

n + b1z + · · · + bn
zn + a1z + · · · + an

. (3.66)

We are to determine 2n+1 unknown real coefficients a1, . . . , an, b0, . . . , bn from

the evaluations of G(z) and its derivatives at a given set of distinct frequencies

zk ∈ ϑ. Let N be as in Eq. (3.43).

Let us first assume in Eq. (3.4) that Nk = 0 and zk ∈ C − R for

all k; i.e., the interpolation nodes are simple and purely complex numbers.

Then, N = 2L. With q = n + 1, the subspace-based algorithm delivers a

minimal realization of G(z), provided that 2L ≥ 2n + 1. This condition is

satisfied by choosing L = n + 1. Clearly, this is the least amount of data

one could use to interpolate an arbitrary nth-order system, as can directly
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be verified by writing 2L-linear equations down from Eqs. (3.4) and (3.66) to

determine the unknowns a1, . . . , an, b0, . . . , bn. Notice that if some interpola-

tion nodes have multiplicities, then the resulting equations become nonlinear

in a1, . . . , an, b0, . . . , bn.

Now, as a special case, let us consider the situation that all zk are on

the unit circle excluding the points ±1. Thus, Algorithm 3.1.1 recovers nth-

order stable systems from n + 1 noise-free frequency response measurements,

excluding the frequencies 0 and π. If the frequencies contain 0, from Eq. (3.43)

we then have N = 2L − 1. Hence, with q = n + 1 selected, we must have

2L − 1 ≥ 2n + 1, which is fulfilled by letting L = n + 1. If, in addition,

the frequencies contain π as well, we end up with the interpolation condition

L = n+2. The last conclusion extends an interpolation result in [62] derived for

the uniformly spaced frequencies case to the nonuniformly spaced frequencies

case.

It is easy to see, for example, by the partial fraction expansion or

similar techniques, that these results hold for multi-input/multi-output sys-

tems with multiple interpolation nodes as well. Therefore, Algorithm 3.1.1

is capable of using a minimum amount of the frequency domain data for the

Lagrange–Sylvester interpolation of stable systems.

3.1.4 Summary of the Subspace-Based Interpolation Algorithm

Let us summarize the interpolation algorithm in the following.

Algorithm 3.1.1. Subspace-based interpolation algorithm.

1. Given the data as in Eq. (3.4), compute the matrices Ĥ and F defined by

Eqs. (3.39) and (3.40) through Eqs. (3.34), (3.36), (3.28), (3.31), (3.26),

(3.29), (3.19), and (3.18).

2. Perform the QR-factorization in Eq. (3.46).

3. Calculate the singular value decomposition in Eq. (3.49) with ĤF⊥ re-

placed by R22 defined in Eq. (3.46).
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4. Determine the system order by inspecting the singular values, and parti-

tion the singular value decomposition such that Σ̂s contains the n largest

singular values.

5. With J1, J2, and J3 defined by Eqs. (3.51)–(3.53), calculate Â and Ĉ

from Eq. (3.50).

6. Solve the least-squares problem (3.58) for B̂ and D̂, where Ĝ and Ŷ are

defined by Eqs. (3.59) and (3.60) through Eqs. (3.61)–(3.62) and (3.56)–

(3.57).

Clearly, Σ̂o = 0 in Eq. (3.49) when the data are not corrupted by noise,

the system that has generated the data is of McMillan degree n, N ≥ q + n,

and q > n. As we stated earlier, Algorithm 3.1.1 produces a minimal stable

realization of the interpolant, given that the latter exits. In most interpolation

problems, the existence and the uniqueness questions are easily settled, and

the construction of a solution (or all solutions) with certain properties such as

the McMillan degree constraints, in particular minimality, remains a difficult

one. The algorithm outlined above is straightforward to implement. In the

implementation of the algorithm, it suffices to let q = n + 1 and N = 2n + 1,

where N is defined by Eq. (3.43). The system order, if unknown a priori, can

be determined in Step 4 of Algorithm 3.1.1 from the inspection of the singular

values. This process also reveals redundancies in the data. Numerically, the

most expensive step in the algorithm is the singular value decomposition of

R22. Notice with q = n+ 1 and N = 2n+ 1 selected, that R22 ∈ Rp(n+1)×mn.

The main result of this chapter is captured in the following.

Theorem 3.1.1. Consider Algorithm 3.1.1 with the data in Eq. (3.4) originat-

ing from a discrete-time stable system of order n. Let N be as in Eq. (3.43). If

N ≥ q+n and q > n, then the quadruplet (Â, B̂, Ĉ, D̂) is a minimal realization

of G(z).
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3.1.5 Discussion

In the rest of this section, we will briefly comment on the similarities

and the differences between Algorithm 3.1.1 and the Löwner matrix–based

approach [103].

The most striking difference between the methods appears to be the

formation of data matrices. In [103], elements of a Löwner matrix are computed

by taking partial derivatives of the divided differences [G(z) − G(s)]/(z −
s) evaluated at z = zk and s = zl, where the number of the derivatives is

determined by the particular choice of the (block) row and column sets and

the multiplicities of the nodes. If zk equals zl, a limiting process has to be

used to define that particular element. It is required that the numbers of

the chosen block rows and columns add up to N . The elements of H in the

proposed algorithm, on the other hand, consist of linear combinations of the

derivatives of the products zlG(z) evaluated at z = zk, where for each k, l

satisfies 0 ≤ l ≤ Nk. A simple transformation that relates H to a Löwner

matrix does not seem possible unless all the zk are the same, in which case the

problem solved reduces to a conventional partial realization problem. In the

latter case, notice that this link is provided by the bilinear map as in Eq. (3.5).

Both algorithms rely on the factorization of the data matrices dis-

cussed above as a product of two matrices which are directly related to the

observability and controllability concepts. In [103], the Löwner matrix is ex-

pressed as a product of the so-called generalized observability and the control-

lability matrices, whereas in the proposed algorithm this relation is recovered

after some projections. In fact, the proofs of Lemmas 3.1.1, 3.1.2, and 3.1R

in [103] use the same ideas.

The most striking similarity between the algorithms is the condition

N > 2n. It should be noted that the stability assumption is not essential

in the formulation of the interpolation problem, since the data are already

assumed to originate from a finite-dimensional dynamical system with a com-

plexity bounded above and the number of the nodes is finite. This assumption
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is necessary in an identification setup. Without the knowledge that the data

have originated from a dynamical system with a complexity bounded above,

the condition N > 2n is precisely one of the requirements for the existence

of a unique minimal-order interpolating rational matrix [103]. In addition to

this requirement, there is also a more stringent rank condition captured in

Assumption 4.1 in [103]. Thus, both algorithms operate under the same con-

ditions which assure the existence of a unique minimal interpolating rational

matrix. We have not addressed the properness issue in this chapter due to our

standing assumption on the origins of the data. Again, without the knowledge

of the origins of the data, one has to secure that the solution of the interpo-

lation problem is a proper transfer function. The properness is guaranteed by

Assumption 4.2 in [103]. It is also noted there that this assumption can be

eliminated by means of a suitably chosen bilinear transformation.

The Löwner matrix–based and proposed algorithms cannot be directly

applied when there does not exist a unique minimal interpolating function and

the data are not scalar. This may happen either in the presence of noise which

corrupts transfer function evaluations or when the true dynamics is of higher

dimension. The problem is then to find the admissible degrees of complex-

ity, i.e., those positive integers n for which there exist solutions G(z) to the

interpolation problem (3.4) with deg G = n, and to construct all correspond-

ing solutions for a given admissible degree n. This problem is known as the

partial realization problem. If the original data do not satisfy the criterion

for the existence of a unique minimal interpolating function, one needs to add

interpolation data until the criterion becomes satisfied. The fact that the data

can be found so that the increase in degree is finite is nontrivial. The added

data will necessarily drive up the degree of the interpolating transfer function.

In the scalar case, dealt with in [104], the way this can be done is set out

and is rather complicated. The multivariable case is studied in [106] using the

generating system approach. While [106] gives the theory behind the determi-

nation of the minimal McMillan degree and all admissible degrees, the current

chapter and [103] provide the theory behind the construction in state-space
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terms of the solution of admissible degrees.

A departure of Algorithm 3.1.1 from the Löwner matrix–based ap-

proach is the determination of the minimal order. Under the stated condi-

tions, in Algorithm 3.1.1 the minimal order and the observability range space

are extracted by a singular value decomposition, while in the Löwner matrix–

based approach the minimal order is determined by checking ranks of several

(generalized) Löwner matrices. The singular value decomposition is not sensi-

tive to random inaccuracies in data; that is, the true singular values and the

observability range space are consistently estimated as N increases unbound-

edly, provided that n is finite or increases more slowly than N [62,91]. To our

best knowledge, an asymptotic error analysis for randomly corrupted trans-

fer function evaluations has not been performed for any of the interpolation

algorithms in the literature.

Deficiencies of the proposed interpolation algorithm and the Löwner

matrix–based approach are the same. As pointed out in [103], a parameter-

ization of solutions when the original data have to be added and derivation

of recursive formulae for allowing update of a realization when one or more

interpolation data become available are absent. It would be interesting to de-

velop connections between the constrained interpolation problems such as the

Nevanlinna–Pick and the positive-real interpolation and Algorithm 3.1.1. It is

worth mentioning that the Nevanlinna–Pick interpolation can be transformed

into an interpolation problem without norm constraint by adding the mirror

image interpolation points to the original data [105].

3.2 Subspace-Based Identification with Interpolation Con-

straints

In this section, we will consider identification of an nth-order stable

system with transfer function G(z) from noisy samples of the frequency re-
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sponse,

wl = G(eiθl) + ηl, l = 1, . . . ,M, (3.67)

with the interpolation constraints

dj

dzj
G(z)

∣∣∣∣
z=zk

= Ekj, j = 0, 1, . . . , Nk, k = 1, . . . , L, (3.68)

where 0 ≤ θl ≤ π, l = 1, . . . ,M , denote the discrete-time frequencies and

ηl is a sequence of independent zero-mean complex random variables with

a known covariance function that is uniformly bounded. The number of the

constraints defined in Eq. (3.43) satisfies N < n. The interpolation constraints

in Eq. (3.68) reflect the prior knowledge on G(z). For example, by taking

Ekj = 0 for all j ≤ Nk, we enforce a zero with multiplicity Nk +1 at zk. These

constraints may also be used as design variables to focus on a frequency band

of interest.

We would like to find an identification algorithm which maps the data

{wl, θl}M
l=1 to an nth-order model ĜM(z) that satisfies the interpolation con-

straints in (3.68) such that, with probability one,

lim
M→∞

‖ĜM −G‖∞ = 0,

Algorithms with this property are called strongly consistent. This identification

setup except for the constraints in Eq. (3.68) can be found, for example, in [62].

A motivating example for the constraints in Eq. (3.68) is as follows.

Suppose that the system to be identified is nth order stable single-input/single-

output continuous-time system represented by the transfer function

Gc(s) =
b0s

m + b1s+ · · · + bm
sn + a1s+ · · · + an

, (3.69)

where the denominator degree n is greater than the numerator degree m, and

we are given M noise corrupted frequency response measurements

wl = G(iωl) + ηl, l = 1, . . . ,M. (3.70)

Assuming b0 6= 0, the relative degree of Gc(s) is defined as τ=n−m.

A direct use of the Möbius transform technique in Eq. (3.5) targets
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identifying the discrete-time equivalent of Gc(s) defined by

Gd(z)=Gc (ψ(z)) , (3.71)

using wl, l = 1, . . . ,M , at the transformed discrete-time frequencies

θk = 2 arctan
(ωk

λ

)
, k = 1, . . . ,M. (3.72)

Then, the continuous-time identified transfer function denoted by Ĝc
M(s) is

obtained from the discrete-time identified transfer function denoted by Ĝd
M(z)

by using the inverse Möbius map z = ψ−1(s); i.e., Ĝc
M(s) = Ĝd

M(ψ−1(s)).

Due to noise and unmodeled dynamics, the former is only a proper transfer

function.

If maintaining the relative degree as a concern, we then high-pass filter

Ĝc
M(s) as follows:

ĜM(s) =
Ĝc

M(s)

(s+ µ)τ
,

where µ > 0 is chosen sufficiently outside the bandwidth of Ĝc
M(s). This

filtering increases the order of the identified model by τ . This problem can be

circumvented by including the constraints

dj

dzj
Gd(z)

∣∣∣∣
z=−1

= 0, j = 1, . . . , τ,

in the problem formulation. Observe that when applied to Eq. (3.69), the

Möbius map (3.5) introduces a zero of Gd(z) at z = −1 with multiplicity τ .

Now, the solution of the constrained identification problem in

Eq. (3.67)–(3.68) is particularly simple if one notes from Eq. (3.55) the

following set of equations:

δ0j D + (−1)jj!C(zkIn − A)−j−1B = Ekj, j = 0, . . . , Nk, k = 1, . . . , L,

(3.73)

which describe N hyperplanes in the parameter space of B and D for fixed C

and A. Hence, it suffices to solve the linear least-squares problem in Eq. (3.58)

with the linear constraints in Eq. (3.73). With this modification, the frequency

domain subspace-based identification algorithm presented in [62] is strongly
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consistent. The inclusion of the noise covariance information in the algorithm

is straightforward and can be found in [62]. This extension can be viewed

as the tangential version of the Lagrange–Sylvester interpolation problem in

Eq. (3.1).

3.3 Example

The purpose of this section is to illustrate Algorithm 3.1.1 with a

step-by-step numerical example. Suppose that the system to be found by

interpolation has the following state-space representation:

A =




−0.5 0.5 0 0

−0.5 −0.5 0 0

0 0 0.5 0

0 0 0 −0.25



, B =




1 0 0

1 1 0

0 −1 0

1 1 1



,

C =


 1 1 1 0

0 1 0 1


 , D =


 1 −1 0

0 1 1


 .

Thus, n = 4, p = 2, and m = 3. This system has the transfer function

G(z) =




z2 + 3z + 1.5

z2 + z + 0.5
−z

3 + 0.5z2 + 0.5z + 0.75

z3 + 0.5z2 − 0.25
0

2z2 + 1.25z + 0.5

z3 + 1.25z2 + 0.75z + 0.125

z3 + 3.25z2 + 2.5z + 0.75

z3 + 1.25z2 + 0.75z + 0.125

z + 1.25

z + 0.25


 .

Let us assume that the interpolation data are as follows:

z1 = 1 + i, N1 = 0, z2 = 1 − i, N2 = 0, z3 = 2, N3 = 4

and

w10 =


 1.9333 − 0.5333i −0.8667 + 0.4000i 0

0.8878 − 0.5236i 1.9545 − 0.6569i 1.4878 − 0.3902i


 ,

w20 =


 1.9333 + 0.5333i −0.8667 − 0.4000i 0

0.8878 + 0.5236i 1.9545 + 0.6569i 1.4878 + 0.3902i


 ,
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w30 =


 1.7692 −1.2051 0

0.7521 1.8291 1.4444


 ,

w31 =


 −0.2840 0.2433 0

−0.2804 −0.3395 −0.1975


 ,

w32 =


 0.2003 −0.4251 0

0.2084 0.2757 0.1756


 ,

w33 =


 −0.2000 0.9844 0

−0.2333 −0.3341 −0.2341


 ,

w34 =


 0.2456 −2.8518 0

0.3531 0.5390 0.4162


 .

Then we set q = 5 and compute N = 9. Therefore, the inequalities

N ≥ q + n and q > n are both satisfied. In Step 1, we compute the matrices

Ĥ ∈ R10×27 and F ∈ R15×27. The QR-factorization in Step 2 results in

R22 ∈ R10×12 given by

R22 =




−0.4622 0 0 0 0 · · · 0

0.0381 −0.0518 0 0
...

. . .
...

−0.2544 0.0203 −0.0240 0

−0.0176 0.0194 −0.0075 −0.0009

−0.1144 −0.0070 0.0091 −0.0089

0.0094 −0.0110 0.0094 −0.0025

−0.0583 0.0035 −0.0045 0.0045

−0.0033 0.0057 −0.0061 0.0037

−0.0344 0.0033 −0.0037 −0.0022
...

. . .
...

−0.0007 −0.0013 0.0015 −0.0027 0 · · · 0




,

which is not unexpected since n = 4. In Step 3, we compute the nonzero

singular values 0.5460, 0.0609, 0.0249, and 0.0098. The matrices Â and Ĉ
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computed in Step 5 are

Â =




0.5204 −0.1361 0.3199 0.5352

0.0882 −0.4983 0.4848 −0.1035

0.0052 0.0820 −0.4810 0.7195

−0.0295 0.1919 −0.3546 −0.2911



,

Ĉ =


 0.8460 0.2123 −0.2149 −0.3233

−0.0721 0.8069 0.5289 0.1046


 .

In Step 6, we compute Ĝ ∈ R18×3 and Ŷ ∈ R18×6 matrices, and the solution

of the least-squares problem is

B̂ =




1.0502 −0.5390 −0.0816

2.8626 1.8321 0.9041

−0.1545 1.0984 0.4896

−1.4555 −0.9375 0.0547



,

D̂ =


 1.0000 −1.0000 −0.0000

−0.0000 1.0000 1.0000


 .

The realization (Â, B̂, Ĉ, D̂) is similar to (A,B,C,D). In fact, the estimates

of the interpolation data computed from the former has a maximum error

5.9746 × 10−14.

3.4 Summary

In this chapter, we presented a new algorithm for the Lagrange–

Sylvester interpolation of rational matrix functions that are analytic at infinity.

This algorithm is related to the recent frequency domain subspace-based iden-

tification methods and is not sensitive to inaccuracies in data. A necessary

and sufficient condition for the existence and the uniqueness of a minimal in-

terpolant was formulated in terms of the total multiplicity of the interpolation

nodes. The purpose of this contribution was to pinpoint the kinship between

the frequency domain subspace-based identification of stable linear systems

and the minimal rational interpolation of stable systems.

71



4 ACHIEVABLE PERFORMANCE FOR

QUARTER-CAR ACTIVE SUSPENSIONS

Active and semi-active control of vehicle suspensions have been the

subject of considerable investigation since the late 1960s; see, for example [2,

3,6,8,9,12] and the references therein. Constraints and trade-offs on achievable

performances have been studied in [19–22]. As put forward in [20], in a study

of constraints and trade-offs from a control systems point of view, one has to

properly address:

(i) what can and can not be achieved with general dynamic compensation,

(ii) how much freedom is gained by the selection of measurements for feed-

back purpose?

In [18,22], constraints on achievable frequency responses were derived

from an invariant point perspective. A framework using mechanical multi-port

networks to study the performance capabilities and constraints was developed

in [21]. In [20], for a quarter-car model of an automative suspension a complete

set of constraints on several transfer functions of interest from the road and the

load disturbances were determined by making use of the factorization approach

to feedback stability and the Youla parameterization of stabilizing controllers.

Roughly speaking, completeness means that from a given set of constraints,

one can identify a quarter-car model within the model class matching the

given constraints. Such an approach reveals the degrees of freedom in shaping

the response of the vehicle to disturbances and determines a minimum set of

measurements to exploit this freedom.

In [20], constraints on the frequency responses of the sprung mass

position, the suspension travel, and the tire deflection were derived for various

choices of measurements ranging from the suspension travel to a full set of

state variables. These constraints typically arise in the form of finite and
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nonzero invariant frequency points and the growth restrictions on the frequency

responses and their derivatives at zero and infinite frequencies. The quarter-

car model studied in [20] does not include passive suspension elements spring

and damper; and also tire damping is neglected.

In most works, tire damping is set to zero when modeling automotive

active suspension systems. This is partly due to the fact that tire damping is

difficult to estimate. It is generally accepted that damping ratio in a vehicle

tire ranges between 0.03 and 0.10 depending on the size, applied pressure, free

or rotating, new or worn, and the tire type i.e., all season or snow [23–25].

The tire damping by itself has little influence on the wheel-hop vibration since

this mode is mainly damped by the shock absorber.

The ignorance of damping in tire models compelled misleading con-

clusions that at the wheel-hop frequency, no matter what forces are exerted

between sprung and unsprung masses, their motion are uncoupled, and the

vertical acceleration of the sprung mass will be unaffected [18, 20, 22]. It is

pointed out in [26] that by taking tire damping to be small but nonzero, the

motions of the sprung and unsprung masses are coupled at all frequencies, and

control forces can be used to reduce the sprung mass vertical acceleration at

the wheel-hop frequency. The effect of introducing tire damping can be quite

large.

The chapter is structured as follows. First, the results in [20] are

complemented assuming that

(i) the sprung mass acceleration measurement instead of the sprung mass

position measurement is used for the parametrization of the stabilizing

controllers,

(ii) the closed-loop sprung mass acceleration is targeted instead of the closed-

loop sprung mass position for the evaluation of ride comfort,

(iii) the passive suspension elements are included in the vehicle model. The

differences and the similarities between the derived results and [20] are
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emphasized. For example, it is demonstrated that employment of the

sprung mass acceleration as a measurement and performance objective

in a vehicle model that includes passive suspension elements affects the

parameterizability of the stabilizing controllers.

It is reminded that a semi-active suspension consists of in series a spring and

damper whose coefficient is changed in a nonlinear fashion. In a semi-active

suspension, ride comfort is taken care of by a nonlinear damper while safety

requirements are met by a fixed spring.

Next, the effect of tire damping on the achievable performance is in-

vestigated. The results predicate the conclusions in [26, 130, 131] that tire

damping couples the motions of the sprung and unsprung masses, and con-

trol forces can be used to reduce the sprung mass vertical acceleration at the

wheel-hop frequency without sacrificing road holding.

4.1 The Quarter-Car Model

A two-degree-of-freedom quarter-car model is shown in Figure 4.1. In

this model, the sprung and unsprung masses are denoted, respectively, by ms

and mu. The suspension system is represented by a linear spring of stiffness

ks and a linear damper with a damping rate cs. The tire is modeled by a

linear spring of stiffness kt and a linear damper with a damping rate ct. The

parameter values, except ct, chosen for this study are shown in Table 4.1 [41].

They are typical for a lightly damped passenger car. The parameters ms,mu,

and kt are fixed throughout the chapter while the parameters ks, cs, ct are

freely changed.

Assuming that the tire behaves as a point-contact follower that is in

contact with the road at all times, the equations of motion take the form
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Figure 4.1: The quarter-car model of the vehicle.

msẍ1 = −ks(x1 − x2) − cs(ẋ1 − ẋ2) − u,

(4.1)

muẍ2 = ks(x1 − x2) + cs(ẋ1 − ẋ2) + u− kt(x2 − w) − ct(ẋ2 − ẇ)

where x1 and x2 are respectively the displacements of the sprung and unsprung

masses, and w is the road unevenness. The variables x1, x2, and w are measured

with respect to an inertial frame, and the control input u is a force.

The objective of this chapter is to study the performance limits of an

actively controlled vehicle imposed by the road surface unevenness. The vehicle

response variables that need to be examined are the vertical acceleration of the

sprung mass as an indicator of the vibration isolation, the suspension travel

as a measure of the rattling space, and the tire deflection as an indicator
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Table 4.1: The vehicle system parameters for the quarter-car model.

Sprung mass ms 240 kg

Unsprung mass mu 36 kg

Damping coefficient cs 980 Ns m−1

Secondary suspension stiffness ks 16,000 N m−1

Primary suspension stiffness kt 160,000 N m−1

of the road-holding characteristic of the vehicle. These variables, denoted

respectively by z1, z2, and z3, can be written in terms of the state variables

x1, x2, their derivatives, and the exogenous input w as follows:

z1 = ẍ1, (4.2)

z2 = x1 − x2, (4.3)

z3 = x2 − w. (4.4)

Passenger comfort requires z1 to be as small as possible while compactness of

rattle space, good handling characteristics, and improved road-holding quality

require z2 and z3 be kept as small as possible.

It is a well-known fact [19] that these objectives can not be met simul-

taneously with a passive suspension system. In a passive suspension system,

the only parameter that can be altered in an optimization study is cs since ks

is a priori fixed to obtain stiffness against rolling. The conflicting three goals

can be attained up to a certain level by replacing passive suspension system

with an active or semi-active suspension system [5–8,10,20,41].

4.2 Factorization Approach to Feedback Stability

In this section, the factorization approach developed in [20] for the

feedback stability of the quarter-car model is briefly reviewed. The reader is

referred to Vidyasagar and Zhou etal. [17,132] for a comprehensive treatment.
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Let Z(s), U(s), and W (s) denote respectively the Laplace transforms

of the signals z(t) = [z1(t) z2(t) z3(t)]
T , u(t), and w(t). From Eqs. (4.1)–(4.4),

Z(s) = G11(s)W (s) +G12(s)U(s) (4.5)

where

G11(s) =
1

∆(s)




s2(css+ ks)(cts+ kt)

−mss
2(cts+ kt)

−s2 [msmus
2 + (ms +mu)css+ (ms +mu)ks]


 ,

G12(s) =
1

∆(s)




−s2(mus
2 + cts+ kt)

−[(ms +mu)s
2 + cts+ kt]

mss
2


 , (4.6)

and

∆(s) = msmus
4 + [(ms +mu)cs +msct]s

3 + (cskt + ctks)s+ kskt

+[(ms +mu)ks +mskt + csct]s
2. (4.7)

A polynomial ∆(s) is said to be Hurwitz if all its zeros lie in the open left-half

plane. Note that ∆(s) is Hurwitz if ks, kt > 0, and cs > 0 or ct > 0.

For the design of a feedback law, consider the measurements:

y1 = ẍ1,

(4.8)

y2 = x1 − x2.

In the study of the constraints, the cases y = y2 and y = [y1 y2]
T will be

considered. When y = [y1 y2]
T , from Eqs. (4.1)–(4.4),

Y (s) = G21(s)W (s) +G22(s)U(s) (4.9)

where

G21(s) =
1

∆(s)


 s2(css+ ks)(cts+ kt)

−mss
2(cts+ kt)


 , (4.10)

G22(s) = − 1

∆(s)


 s2(mus

2 + cts+ kt)

(ms +mu)s
2 + cts+ kt


 . (4.11)
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The other case is obtained by simply selecting the second rows of G21 and G22.

Hence, the generalized plant defined by

G(s) =


 G11(s) G12(s)

G21(s) G22(s)


 (4.12)

maps the pair of inputs [w u]T to the pair of outputs [zT yT ]T .

Now, let K(s) denote the transfer function of the controller with input

y and the output u. The feedback configuration is shown in Figure 4.2.

�

w
�

z

�

yG
�

u

�K

Figure 4.2: Standard block diagram.

The stabilization problem is to find a proper feedback transfer function

K such that the closed-loop system in Figure 4.2 is internally stable. Assuming

that G and G22 share the same unstable poles, it is a well-known fact (see,

for example, Lemma 12.2 in [17]) that K internally stabilizes G if and only

if K internally stabilizes G22. Recall that the unstable poles of G are the

roots of ∆(s) in the closed right-half plane. Assuming that G22 is internally

stabilizable, the set of all compensators which stabilize G can be parametrized

in terms of a coprime factorization of G22. This parametrization is called the

Youla parametrization.

The Youla parametrization is obtained as follows. Recall that RHpq
∞

is the set of stable p by q real-rational transfer matrices. (In what follows,

superscripts p and q will be dropped and they will be inferred from the under-

lying context). Given G22, find matrices N ,M ,Ñ ,M̃ ,X,Y , X̃, and Ỹ in RH∞
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such that

G22 = NM−1 = M̃−1Ñ , (4.13)
 X̃ −Ỹ

−Ñ M̃




 M Y

N X


 = I. (4.14)

The factorization Eq. (4.13) of G22 satisfying Eq. (4.14) is called

double coprime factorization over RH∞. Then, the Youla parametrization of

all stabilizing controllers takes the form:

K = (Y −MQ)(X −NQ)−1, Q ∈ RH∞; det(I −X−1NQ)(∞) 6= 0. (4.15)

With this parametrization, the transfer matrix from w to z denoted by Tzw(s)

takes a particularly convenient form which is affine in Q:

Tzw = G11 +G12(Y −MQ)M̃G21. (4.16)

As Q varies over RH∞, Eq. (4.16) parametrizes all achievable transfer matri-

ces.

4.3 Achievable Performance for Quarter-Car Model

In the design of an active suspension system, it is desirable to keep

the road response amplitudes |Tzkw(jω)|, k = 1, 2, 3 as small as possible, at

least in the frequency range of interest. The aim of this section is to investi-

gate the limitations on this goal for the two measurement set-ups and several

assumptions on ks, cs, and ct. By using the factorization approach, a complete

set of constraints on the transfer functions Tzkw(s), k = 1, 2, 3 will be derived.

The first case to be treated in the sequel is the case y = y2 with the

assumption that ks, cs, and ct are all positive. Then, as noted previously, ∆(s)

is a Hurwitz polynomial and a pair of coprime factors for

G22 = −∆−1[(ms +mu)s
2 + cts+ kt] (4.17)

is easily found as

N = Ñ = G22, M = M̃ = 1. (4.18)
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Furthermore, the choice given by

X = X̃ = G22 + 1, Y = Ỹ = 1 (4.19)

enforces Eq. (4.14) as can directly be verified. Now, put Q̂ = 1 − Q where

Q ∈ RH∞. Then, Tzw and K in Eqs. (4.16) and (4.15) take the following

forms:

Tz1w = s2∆−1(cts+ kt)
{
css+ ks + Q̂mss

2∆−1(mus
2 + cts+ kt)

}

(4.20)

Tz2w = −mss
2∆−1(cts+ kt)

{
1 − Q̂∆−1[(ms +mu)s

2 + cts+ kt]
}

(4.21)

Tz3w = −s2∆−1[msmus
2 + (ms +mu)css+ (ms +mu)ks]

−Q̂m2
ss

4∆−2(cts+ kt) (4.22)

K = Q̂(1 +G22Q̂)−1. (4.23)

The first constraint is obtained by observing that the coefficient of Q̂

in the expression for Tz1w is O(s4) for all sufficiently small complex numbers

s and every transfer matrix in RH∞ has elements uniformly bounded on the

closed right-half plane.

Therefore, a Taylor series expansion of the term s2∆−1(css+ks)(cts+

kt) in a neighborhood of zero which is accurate up to the term O(s4) will be

sufficient to determine the behavior of Tz1w there. By long division,

s2∆−1(css+ ks)(cts+ kt) = s2 +O(s4). (4.24)

Hence, for all small s,

Tz1w = s2 +O(s4), (4.25)

which implies,

Tz1w(0) = T (1)
z1w(0) = T (3)

z1w(0) = 0, T (2)
z1w(0) = 2. (4.26)

For all large s, observe that the coefficient of Q̂ in the expression

for Tz1w is O(s−1). Thus, a Taylor series expansion of the term s2∆−1(css +
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ks)(cts+kt) around infinity which is accurate up to a term O(s−1) is obtained,

again by long division, as

s2∆−1(css+ ks)(cts+ kt) =
csct
msmu

+O(s−1). (4.27)

Hence,

Tz1w =
csct
msmu

+O(s−1). (4.28)

It remains to show that Eqs. (4.25) and (4.28) form a complete set

of constraints, i.e., no further constraints on Tz1w, which are valid for all

Q ∈ RH∞, can be derived. This amounts to showing that given an arbi-

trary H1 ∈ RH∞ subject to the constraints Eqs. (4.25) and (4.28), there

exists a stabilizing controller such that for some Q̂ ∈ RH∞, Eq. (4.20) holds

for H1. In this case, H1 is said admissible. To this end, from Eq. (4.20)

Q̂ =
[Tz1w − s2∆−1(css+ ks)(cts+ kt)]

mss4∆−2(mus2 + cts+ kt)(cts+ kt)
.

From Eqs. (4.27) and (4.28), the numerator and the denumerator of Q̂ are

O(s−1). Hence, Q̂ is a proper rational function with a singularity at the origin

of multiplicity four. However, the singularity at the origin is removable from

Eqs. (4.24) and (4.25). Thus, Q̂ ∈ RH∞ as desired.

It should be noted that as soon as an admissible H1 is specified, two

other admissible functions, be H2 and H3, corresponding to Tz2w and Tz3w

are generated via Eqs. (4.21) and (4.22). Indeed, elimination of Q̂ in Eqs.

(4.20)–(4.22) results in the following trade-off relations:

H2 = − cts+ kt

mus2 + cts+ kt

+
(ms +mu)s

2 + cts+ kt

s2(mus2 + cts+ kt)
H1 (4.29)

H3 = − mus
2

mus2 + cts+ kt

− ms

mus2 + cts+ kt

H1 (4.30)

H3 = − (ms +mu)s
2

(ms +mu)s2 + cts+ kt

− mss
2

(ms +mu)s2 + cts+ kt

H2. (4.31)

The constraints on H1 and its derivatives at s = 0 are partially recov-

ered by Eqs. (4.29) and (4.30). In fact, given an admissible H2, analyticity of
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H2 at s = 0 forces the following function

H1(s) − s2∆−1(css+ ks)(cts+ kt)

to have at least two zeros there, which implies H1(0) = H ′
1(0) = 0. No results

on further derivatives of H1 at s = 0 can be deduced from Eqs. (4.29) and

(4.30).

The above results are captured in the following.

Proposition 4.3.1. Consider the quarter car model in Eq. (4.1) with ks, cs, ct >

0. Assume that y = y2 and let H1 be any function in RH∞. Then, H1 = Tz1w

for some stabilizing control law if and only if:

1. H1(s) =
csct
msmu

+O(s−1),

2. H1(0) = H
(1)
1 (0) = H

(3)
1 (0) = 0, H

(2)
1 (0) = 2.

A similar derivation to the above can be carried out for H2 and H3

or Proposition 4.3.1 combined with Eqs. (4.29) and (4.30) yields the following

results.

Proposition 4.3.2. Consider the quarter car model in Eq. (4.1) with ks, cs, ct >

0. Assume that y = y2 and let H2 be any function in RH∞. Then, H2 = Tz2w

for some stabilizing control law if and only if:

1. H2(s) = − ct
mu

s−1 +

[
ms +mu

mu

csct
msmu

+
c2t
m2

u

− kt

mu

]
s−2 +O(s−3),

2. H2(0) = H
(1)
2 (0) = 0.

Proposition 4.3.3. Consider the quarter car model in Eq. (4.1) with ks, cs, ct >

0. Assume that y = y2 and let H3 be any function in RH∞. Then, H3 = Tz3w

for some stabilizing control law if and only if:

1. H3(s) = −1 +
ct
mu

s−1 +

[
kt

mu

− (cs + ct)ct
m2

u

]
s−2 +O(s−3),

2. H3(0) = H
(1)
3 (0) = 0, H

(2)
3 (0) = −2(ms +mu)

kt

, H
(3)
3 (0) =

6(ms +mu)ct
k2

t

.
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Now, assume that ct = 0 and ks, cs > 0. Then, ∆(s) is still a Hurwitz

polynomial, and it suffices to let ct = 0 in Eqs. (4.20)–(4.22) and Eqs. (4.29)–

(4.31). Two new constraints arise at the frequencies:

ω1 =

√
kt

ms +mu

, ω2 =

√
kt

mu

(4.32)

which have already been observed in [18, 20]. The results for this case are

summarized in the following.

Proposition 4.3.4. Consider the quarter car model in Eq. (4.1) with ks, cs >

0, and ct = 0. Assume that y = y2 and let H1 be any function in RH∞. Then,

H1 = Tz1w for some stabilizing control law if and only if:

1. H1(s) =
ktcs
msmu

s−1 +O(s−2),

2. H1(0) = H
(1)
1 (0) = H

(3)
1 (0) = 0, H

(2)
1 (0) = 2,

3. H1(jω2) = −(jω2)
2mu

ms

.

Proposition 4.3.5. Consider the quarter car model in Eq. (4.1) with ks, cs >

0, and ct = 0. Assume that y = y2 and let H2 be any function in RH∞. Then,

H2 = Tz2w for some stabilizing control law if and only if:

1. H2(s) = − kt

mu

s−2 +
(ms +mu)cskt

msm2
u

s−3 +O(s−4),

2. H2(0) = H
(1)
2 (0) = 0,

3. H2(jω1) = −ms +mu

ms

.

Proposition 4.3.6. Consider the quarter car model in Eq. (4.1) with ks, cs >

0, and ct = 0. Assume that y = y2 and let H3 be any function in RH∞. Then,

H3 = Tz3w for some stabilizing control law if and only if:

1. H3(s) = −1 +
kt

mu

s−2 − ktcs
m2

u

s−3 +O(s−4),

2. H3(0) = H
(1)
3 (0) = H

(3)
3 (0) = 0, H

(2)
3 (0) = −2(ms +mu)

kt

.
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Propositions 4.3.4–4.3.6 yield Theorems 1–3 in [20] when cs = 0. In

[20], Tx1w is constrained instead of Tz1w. The latter is related to the former by

the equation Tz1w(s) = s2Tx1w(s). Then, the third formula in Proposition 4.3.4

recovers the constraint Tx1w(jω2) = −mu/ms derived in [20].

The appearance of cs in the constraints of Propositions 4.3.4–4.3.6

demonstrates that the damper in Figure 4.1 can not be incorporated to u.

Otherwise, for a given proper controller K♯ that stabilizes the quarter-car

model in Figure 4.1 with cs = ks = 0, a controller K satisfying Eq. (4.23) and

K♯ = K + scs + ks would be improper since both controllers have the same

input y2. The same argument also explains absence of ks in the constraints

of Propositions 4.3.1–4.3.6. The reader is cautioned that the first conclusion

drawn above is valid for the quarter-car model with a suspension consisting

of an actuator in parallel with a spring and a damper as shown in Figure 4.1.

There are many possibilities to connect passive elements with an actuator, in

which the issue of properness never arises. In hardware implementation of

active or semi-active suspensions, parallel connection (without damper) is a

preferred configuration.

Although ks does not appear in the constraint formulae above, a given

set of measurements may not be sufficient to parametrize all stabilizing proper

controllers if the spring in Figure 4.1 is missing. Recall the internal stabi-

lizability condition: G and G22 share the same unstable poles. If cs > 0 or

ct > 0 and ks > 0, then this requirement is satisfied by all elements of G22 in

Eq. (4.11) and one can also use y1 for the parametrization of the stabilizing

controllers. However, in general, different measurements lead to different con-

straint sets. If cs = ct = ks = 0, then ∆ and G22 in Eqs. (4.7) and (4.11) equal

mss
2(mus

2 + kt) and 


− 1

ms

−(ms +mu)s
2 + kt

mss2(mus2 + kt)


 .

Clearly, y1 can not give rise to a parametrization of stabilizing controllers. On

the other hand, if ks > 0, then ∆(s) = msmus
4 +[(ms +mu)ks +mskt]s

2 +kskt,

84



and since ∆(jω1) 6= 0 and ∆(jω2) 6= 0, no pole-zero cancellation can happen

between ∆ and any component of G22. Hence, as a measurement, ẍ1 or x1−x2

is sufficient for the parametrization of the stabilizing controllers.

The next case to be studied is y = [y1 y2]
T .

Let Q̂ = [Q̂1 Q̂2] = (Y −MQ)M̃ . Since Q ∈ RH∞ is a 2-dimensional

row vector, Tzw in Eq. (4.16) can be written as

Tzw = G11 +G12G
T
21Q̂

T . (4.33)

Recall that a non-singular matrix is unimodular if its determinant is

constant. Now, define a product of unimodular matrices by

Π =


 1 0

m−1
s css 1




 1 0

m−1
s ks 1


 (4.34)

which is a unimodular matrix with the inverse:

Π−1 =


 1 0

−m−1
s (css+ ks) 1


 .

The chosen matrix Π has the property:

GT
21Π = −mss

2∆−1(cts+ kt) [0 1]. (4.35)

It should be clear how to proceed in order to parametrize the stabilizing con-

trollers if more than two measurements are available for feedback. For example,

if y equals [y1 y2 ẍ2 x2]
T , a unimodular matrix Π is constructed such that when

premultiplied with GT
21, the result is a row vector with the first three elements

being zero, similar to Eq. (4.35). Therefore, the two factors of Π in Eq. (4.34)

are exactly elementary column operators. The utility of Eq. (4.35) is to allow

a parametrization of Tzw in terms of a scalar transfer function.

Since ∆ is Hurwitz, coprime factors of G22 can be chosen as follows

N = Ñ = G22, M = 1, M̃ = I.

Hence,

Tzw = G11 + q̃ G12s
2∆−1(cts+ kt)(css+ ks)
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where

q̃ = Q̂1 − Q̂2ms(css+ ks)
−1. (4.36)

It follows that

Tz1w = s2∆−1(cts+ kt)(css+ ks)
{
1 − q̃s2∆−1(mus

2 + cts+ kt)
}
(4.37)

Tz2w = −s2∆−1(cts+ kt)

(4.38)

·
{
ms + q̃∆−1[(ms +mu)s

2 + cts+ kt](css+ ks)
}

Tz3w = −s2∆−1[msmus
2 + (ms +mu)css+ (ms +mu)ks]

(4.39)

+q̃ mss
4∆−2(css+ ks)(cts+ kt)

K = Q̂(I +G22Q̂)−1. (4.40)

The range space of q̃ equals RH∞. This means that q̃ and Q̂2 can be used to

parametrize the set of the stabilizing controllers. Then, Q̂1 is solved from Eq.

(4.36) and plugged in Eq. (4.40).

The trade-off relations among H1, H2, and H3 are the same as Eqs.

(4.29)–(4.31). The constraints on the transfer functions H1, H2, and H3 are

expressed in the following results.

Proposition 4.3.7. Consider the quarter car model in Eq. (4.1) with ks, cs, ct >

0. Assume that y = [y1 y2]
T and let H1 be any function in RH∞. Then,

H1 = Tz1w for some stabilizing control law if and only if:

H1(0) = H
(1)
1 (0) = H

(3)
1 (0) = 0, H

(2)
1 (0) = 2.

Proposition 4.3.8. Consider the quarter car model in Eq. (4.1) with ks, cs, ct >

0. Assume that y = y2 and let H2 be any function in RH∞. Then, H2 = Tz2w

for some stabilizing control law if and only if:

1. H2(s) = − ct
mu

s−1 +O(s−2),

2. H2(0) = H
(1)
2 (0) = 0.

Proposition 4.3.9. Consider the quarter car model in Eq. (4.1) with ks, cs, ct >

0. Assume that y = [y1 y2]
T and let H3 be any function in RH∞. Then,

H3 = Tz3w for some stabilizing control law if and only if:
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1. H3(s) = −1 +
ct
mu

s−1 +O(s−2),

2. H3(0) = H
(1)
3 (0) = 0, H

(2)
3 (0) = −2(ms +mu)

kt

, H
(3)
3 (0) =

6(ms +mu)ct
k2

t

.

Based on Propositions 4.3.1–4.3.3 and Propositions 4.3.7–4.3.9, the

following conclusions can be drawn. First, extra measurement, i.e., y1 affects

only the Taylor series coefficients of H1, H2, and H3 at infinity. Second, cs does

not show up in the formulae of Propositions 4.3.7–4.3.9 in contrast to those of

Propositions 4.3.1–4.3.3. Finally, the trade-off relations are the same for both

cases. This implies that a point in the H2 versus H1 trade-off curve determined

uniquely by the controller in Eq. (4.23) corresponds to an infinite number of

controllers in Eq. (4.40). This information can be useful in constraining the

controller dynamics. For example, constraining the ℓ1 norm of K, which is

defined as the absolute integral of the impulse response of K, constrains the

magnitude of the input to persistent measurements.

The last case to be studied in this chapter is the case ks, cs > 0, ct = 0,

and y = [y1 y2]
T . As noted before, ∆ is Hurwitz, and it suffices to let ct = 0 in

Eqs. (4.37)–(4.39). The trade-off relations are the same as Eqs. (4.29)–(4.31)

with ct = 0 substituted. The constraints on H1, H2, and H3 are captured in

the following results.

Proposition 4.3.10. Consider the quarter car model in Eq. (4.1) with ks, cs >

0, ct = 0. Assume that y = [y1 y2]
T and let H1 be any function in RH∞. Then,

H1 = Tz1w for some stabilizing control law if and only if:

1. H1(s) = O(s−1),

2. H1(0) = H
(1)
1 (0) = H

(3)
1 (0) = 0, H

(2)
1 (0) = 2,

3. H1(jω2) = −(jω2)
2mu

ms

.

Proposition 4.3.11. Consider the quarter car model in Eq. (4.1) with ks, cs >

0, and ct = 0. Assume that y = [y1 y2]
T and let H2 be any function in RH∞.

Then, H2 = Tz2w for some stabilizing control law if and only if:
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1. H2(s) = − kt

mu

s−2 +O(s−3),

2. H2(0) = H
(1)
2 (0) = 0,

3. H2(jω1) = −ms +mu

ms

.

Proposition 4.3.12. Consider the quarter car model in Eq. (4.1) with ks, cs >

0, ct = 0. Assume that y = [y1 y2]
T and let H3 be any function in RH∞. Then,

H3 = Tz3w for some stabilizing control law if and only if:

1. H3(s) = −1 +
kt

mu

s−2 +O(s−3),

2. H3(0) = H
(1)
3 (0) = H

(3)
3 (0) = 0, H

(2)
3 (0) = −2(ms +mu)

kt

.

As in Propositions 4.3.7–4.3.9, cs does not show up in the above for-

mulae. Thus, whenever y = [y1 y2]
T , the damper can be modelled as part

of the actuator without affecting the interpolation conditions. The last result

is in contrast with the single measurement case of Propositions 4.3.1–4.3.6.

When cs = ct = 0, ∆ needs not be Hurwitz; but a slightly more complicated

coprime factorization can be performed easily. The reader is referred to [20]

for more details on this.

The question of controller approximation is in order. More specifically,

let K and K̄ be two stabilizing controllers obtained for the quarter-car model

with the measurements y2 and [y1 y2]
T and Hk and H̄k for k = 1, 2, 3 denote

the corresponding closed-loop transfer functions, respectively. In [20], when

ks, cs, and ct are all zero, it is shown that the closed-loop transfer functions

obtained with a stabilizing controller that uses the measurements y2, ẋ1, z3,

and ẋ2 can be approximated within a specified tolerance by the closed-loop

transfer functions of a stabilizing controller that uses only the suspension travel

measurement.

From Eqs. (4.20) and (4.37),

H1 − H̄1 = (cts+ kt)s
4∆−2(mus

2 + cts+ kt) [msQ̂+ q̃(css+ ks)]. (4.41)
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Hence,

H1(∞) − H̄1(∞) =
csct
m2

smu

q̃(∞).

If q̃(∞) 6= 0 and ct > 0, there is no way of arbitrarily well approximating K̄

by a stabilizing compensator K for the entire range of frequencies. However,

if q̃(∞) = 0, i.e., when q̃(s) is a strictly proper transfer function, by setting

Q̂ = −q̃(scs + ks)m
−1
s , we get H1(s) ≡ H̄1(s) whether ct equals zero or not.

Note from Eq. (4.36) that q̃(∞) = 0 if and only if Q̂1(∞) = 0. The latter

equality does not require K̄ to be strictly proper.

Now, consider the case ct = 0. Let

Q̂ = − q̃(scs + ks)

ms(1 + εs)
(ε > 0).

As ε → 0, msQ̂ + q̃(scs + ks) → 0 uniformly on every internal [0, jλ), λ > 0

though outside this interval it diverges as O(s). However, outside the interval

the growth is controlled by the factor kts
4(mus

2 + kt)∆
−2 = O(s−2). Picking

λ sufficiently large and ε sufficiently small, the left hand side of Eq. (4.41) can

be made as small as desired. The convergences H2 → H̄2 and H3 → H̄3 as

ε → 0 follow from the fact that H2 and H3 are continuous functions of H1 on

the closed right-half plane. The controller approximation result is captured in

the following.

Proposition 4.3.13. Let H̄k, k = 1, 2, 3 be the closed-loop transfer functions

obtained for the quarter-car model in Eq. (4.1) with ks, cs > 0, the measure-

ments y1, y2, and some stabilizing controller K̄. If ct = 0 or q̃(∞) = 0, then

for each ε > 0 a stabilizing controller K that uses only y2 can be found with

the corresponding transfer functions Hk satisfying |H̄k(jω) −Hk(jω)| < ε for

all ω and k = 1, 2, 3.

When ct = 0, from Propositions 4.3.6 and 4.3.12 we have Tz3w(s) =

−1 +O(s−2) for all large s, and in this case Theorem 4 in [20] reads out

∫ ∞

0

ln |Tz3w(jω)| dω = π
n∑

k=1

σk
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where σk, k = 1, · · · , n denote the real parts of the zeros of Tz3w in the open

right half plane. This is not a quantitative but a qualitative statement ex-

pressing the difficulty of controlling the tire deflection on a broad band of

frequencies due to the presence of nonminimum phase zeros.

From Propositions 4.3.1–4.3.13, the following conclusions can be drawn:

• When tire damping is present, utilizing the sprung mass acceleration

measurement in addition to the suspension travel measurement in the

feedback law affects only the curvatures of Tz2w and Tz3w at infinity, and

Tz1w(∞). If tire damping is neglected, one degree higher order terms of

the Taylor series expansions of Tzkw, k = 1, 2, 3 at infinity are affected

by the additional measurement.

• Closed-loop performance of any stabilizing feedback law which uses the

sprung mass acceleration and the suspension travel measurements can

be obtained within an arbitrary precision by a stabilizing feedback law

relying only on the suspension travel measurement provided that either

tire damping is neglected or the actuator transfer function satisfies a mild

condition in the steady state.

• No matter how small, tire damping couples the wheel-hop and the heave

modes. This coupling eliminates the constraints of the conventional

quarter-car model, which neglects tire damping at the so-called invariant

frequencies ω1 and ω2. As will be seen in the next section, tire damping

improves ride comfort without sacrificing road holding.

• When the suspension travel is the only available measurement, cs influ-

ences Tz1w(∞), and the second order terms of the Taylor series expan-

sions of Tz2w and Tz3w at infinity if ct > 0. If tire damping is neglected,

one degree higher order terms of the Taylor series expansions of Tzkw,

k = 1, 2, 3 at infinity are affected by cs.

• If the measurements y1 and y2 are both used in the parametrization of
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the stabilizing controllers, then there is no need to consider cs separately

since it can be included in the feedback law.

The analysis of this chapter and the results in [20] show that the con-

straints on the closed-loop transfer functions depend on the system parameters

as well as the measurements. In the present work, ẍ1 is taken as a measured

signal instead of x1 and ẋ1 since in practice, the acceleration is measured, and

the velocity and the position are constructed from the former by integration.

The sprung mass acceleration measurement rather than velocity or position

was also considered in [39][Section 4.5.2]. However, the parameterizability for

the stabilizing controllers and the constraints on the closed-loop transfer func-

tion, in general, depend on which signal is being used. If x1 or x2 is used

for the controller parameterization, then one also has to take into the filtering

constraints and trade-offs [133], which are beyond the scope of the current

work.

The constraints derived in this chapter can be used for the purpose of

comparing closed-loop performance of a proposed controller with benchmark

values at specific frequencies. They don’t give much information about the

design of an actual controller, which is an involved process, and besides the

road disturbance responses many other factors such as the load disturbance

responses and the robustness issues have also to be taken into account. In [20],

the constraints on the load response functions are derived. Further applica-

tions of the controller parameterization to vehicle active suspension design are

reported in [37,38].

In passing, the constraints in Propositions 4.3.1 and 4.3.7 can be

viewed as the interpolation constraints. Then, the problem of finding all stabi-

lizing controllers can be cast into a partial realization problem. Many variants

of this formulation, i.e., interpolation with metric and minimal complexity con-

straints have been considered in the literature on rational interpolation [107].
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4.4 Active Control of the Quarter-Car Model

The purpose of this section is to illustrate the effect of tire damping

on the controller design for the quarter-car model in Figure 4.1. The vehicle

is assumed to traverse a random road profile with a constant forward velocity

v. Then, the derivative of w(t) is a random process denoted by Vi(t).

It will be more convenient to define a new set of state variables in

terms of the old state variables in Eq. (4.1) as follows:

x̃1 = x1 − x2, x̃2 = x2 − w, x̃3 = x3, x̃4 = x4. (4.42)

Thus, ˙̃x1 = x3 − x4, ˙̃x2 = x4 − Vi, and from Eqs. (4.1), (4.2)–(4.4), (4.8),

(4.42),

˙̃x = Ax̃+B1Vi +B2u (4.43)

z = C1x̃+D12u (4.44)

y = C2x̃+D22u+ θ (4.45)

where

A =




0 0 1 −1

0 0 0 1

− ks

ms

0 − cs
ms

cs
ms

ks

mu

− kt

mu

cs
mu

−cs + ct
mu




, (4.46)

B1 =




0

−1

0
ct
mu



, B2 =




0

0

− 1

ms
1

mu




, (4.47)

C1 =




− ks

ms

0 − cs
ms

cs
ms

1 0 0 0

0 1 0 0



, D12 =




− 1

ms

0

0


 , (4.48)

C2 =




− ks

ms

0 − cs
ms

cs
ms

1 0 0 0


 , D22 =


 − 1

ms

0


 . (4.49)
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and θ is an artificially introduced zero-mean white sensor noise uncorrelated

with Vi. Its covariance function denoted by Rθ satisfies

Rθ(τ) = µIδ(τ).

Here, µ > 0 is a design variable.

For simplicity, the random process Vi is modeled as

Vi = 2πn0

√
κvη(t) (4.50)

where η(t) is a zero-mean white noise process satisfying Rη(τ) = δ(τ); and κ,

n0 are the road roughness parameters [98]. In that work, more general road

profile models than the integrated white-noise model defined in Eq. (4.50) are

discussed; and the consequences of the road profile modeling on the random

vibration characterics of the quarter-car model are studied in detail. The

roughness parameters in the current study are set from [98] as n0 = 0.15708

cycles per meter and κ = 0.76×10−5. Notice the relation TzVi
= s−1Tzw. Thus,

the Q-parametrization of TzVi
can be deduced from the Q-parametrization of

Tzw. In particular, they share the same invariant frequencies ω1 and ω2.

The controller will be designed using the LQG design methodology.

Accordingly, u(t) is computed by minimizing

JLQG = lim
tf→∞

E

{∫ tf

0

(
3∑

k=1

ρ−2
k z2

k + ρuu
2

)
dt

}
(4.51)

where ρk, ρu are nonnegative weights to be chosen by the designer. In the

simulation, ρu and ρk were set, respectively, equal to zero and the rms values

of the open-loop zk denoted by rmszk
. Notice that even if ρu were set zero,

the control effort is still penalized in Eq. (4.51) through the term ρ−2
1 z2

1 .

In Figures 4.3–4.5, the frequency response magnitudes of the passive

and the active suspensions using either y2 only or y1 and y2 both as measure-

ments are plotted for the parameter values in Table 4.1, µ = 10−8, and ct = 0.

The rms values of z1, z2, z3 were computed, respectively, as follows: 0.5424,

0.0046, 0.0017 (the passive suspension); 0.5240, 0.0034, 0.0016 (the active sus-

pension with y2 measured); 0.5234, 0.0034, 0.0016 (the active suspension with
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y1 and y2 measured). The frequency responses of the active suspensions for the

two measurement cases are almost identical; and thus, confirming the results

in Proposition 4.3.13 and [20,22].
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Figure 4.3: The acceleration frequency response magnitude: − Passive suspension;

- active suspension using the suspension travel measurement without tire damping;

−. active suspension using the acceleration and the suspension travel measurements

without tire damping.

The natural frequency and the damping ratio of the heave mode are

computed as wh
n = 1.2507 Hz and ζh

1 = 0.2178 for the passive suspension.

For the wheel-hop mode, they are computed as wwh
n = 11.0247 Hz and ζwh

1 =

0.2013. The invariant frequencies are calculated from Eq. (4.32) as ω1 = 3.832

Hz and ω2 = 10.610 Hz. Since ω2 ≈ wwh
n , it is difficult to control the wheel-hop

mode as clearly seen from Figures 4.3–4.5. The 3.5 % drop in the rms vertical

acceleration comes from the suppression of the heave mode vibration. This is

possible since the natural frequency of the heave mode given approximately

by
√
ks/(ms +mu) is well separated from ω1.

Now, let ct = 2cs. This value is unrealistic for tire damping because

it yields wh
n = 1.2463 Hz, ζh

1 = 0.2211; wwh
n = 11.0628 Hz, and ζwh

1 = 0.5919.
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Figure 4.4: The suspension travel frequency response magnitude: − Passive sus-

pension; - active suspension using the suspension travel measurement without tire

damping; −. active suspension using the acceleration and the suspension travel mea-

surements without tire damping.

If ct is set to 0.1cs, then wh
n = 1.2504 Hz, ζh

1 = 0.2180; wwh
n = 11.0267 Hz,

and ζwh
1 = 0.2209. Hence, the latter seems to be a realistic assumption. In

Figs. 4.6–4.8, the counter parts of Figures 4.3–4.5 for the same values of the

vehicle and the control design parameters but ct = 2cs are plotted.

Clearly, all the three responses have been improved due to the removal

of the invariant frequency at ω2. For the rms values of z1, z2, z3, the follow-

ing were respectively computed: 0.4513, 0.0043, 0.0011 (the passive suspen-

sion); 0.2834, 0.0036, 0.0010 (the active suspension with y2 measured); 0.2724,

0.0037, 0.0010 (the active suspension with y1 and y2 measured). Comparison

of Figures 4.6–4.8 with Figures 4.3–4.5, and the modal natural frequencies

and the damping ratios shows that the improved responses are achieved by

suppressing the wheel-hop vibration.

In Figure 4.9, the vertical acceleration frequency response magnitude

is plotted for the case ct = 0.1cs. The suspension travel and the tire de-
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Figure 4.5: The tire deflection frequency response magnitude: − Passive sus-

pension; - active suspension using the suspension travel measurement without tire

damping; −. active suspension using the acceleration and the suspension travel mea-

surements without tire damping.

flection responses are similar to those in Figure 4.4 and Figure 4.5. The rms

values for this case are, respectively, 0.5259, 0.0045, 0.0017 (the passive suspen-

sion); 0.4895, 0.0034, 0.0016 (the active suspension with y2 measured); 0.4900,

0.0034, 0.0016 (the active suspension with y1 and y2 measured). The rms ver-

tical acceleration is reduced by 6.83 % which is about twice of the reduction

computed for the case ct = 0. Though as not impressive as the overdamped

tire case, the last result shows that the influence of tire damping certainly

needs to be taken into account in the design of active suspensions to improve

ride quality. The rest of this section will be devoted to further enhancement

of the closed-loop performance by means of the interpolation approach of this

chapter.

In light of the controller approximation result, it is enough to consider

the case y = y2. Recall that TzVi
= s−1Tzw which implies from Eq. (4.20) that

Tz1Vi
= s∆−1(cts+ kt)

{
css+ ks + Q̂mss

2∆−1(mus
2 + cts+ kt)

}
. (4.52)
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Figure 4.6: The acceleration frequency response magnitude: − Passive suspension;

- active suspension using the suspension travel measurement with tire damping

ct = 2cs; −. active suspension using the acceleration and the suspension travel

measurements with tire damping ct = 2cs.

Put ct = αcs (α > 0) and Hk(s;α, Q̂) = TzkVi
, k = 1, 2, 3, where we have made

the dependence on the parameters ct and Q̂ explicit. Let α1 = 0.1, α2 = 2,

and Q† and Q♯ denote the Q̂ parameters of the compensators designed by the

above LQG method with ct = α1cs and ct = α2cs, respectively. As far as the

closed-loop responses are concerned, Hk(s;α2, Q
♯), k = 1, 2, 3 are satisfactory

while Hk(s;α1, Q
†) are not. Thus, the interpolation problem to be studied is

formulated as follows:

Does there exist a Q̂ ∈ RH∞ such that H1(s;α1, Q̂) = H1(s;α2, Q
♯) ?

If there exists a solution to this problem denoted by Q̂, then the

quarter-car model in Figure 4.1 with ct = 0.1cs will have the closed-loop re-

sponses Hk(s;α2, Q
♯), k = 1, 2, 3 using the unique controller K corresponding

to this Q̂. Unfortunately, the formulated problem has no solution. To see this,

first obtain the complete interpolation conditions for Tz1Vi
from Eq. (4.52) as

follows
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Figure 4.7: The suspension travel frequency response magnitude: − Passive sus-

pension; - active suspension using the suspension travel measurement with tire

damping ct = 2cs; −. active suspension using the acceleration and the suspension

travel measurements with tire damping ct = 2cs.

(i) H1(s) =
csct
msmu

s−1 +O(s−2),

(ii) H1(0) = H ′′
1 (0) = 0, H ′

1(0) = 1.

Then, from the requirement formulated above and (i):

sH1(s;α1, Q̂)|s=∞ = sH1(s;α2Q
♯)|∞,

which forces α1 equal to α2. Hence, there does not exist any solution.

Having seen the infeasibility of this interpolation problem, consider

now the following variant:

Does there exist any Q̂ ∈ RH∞ such that H1(s;α1, Q̂) = H1(s;α2, Q
♯)Ψ(s)

for some Ψ ∈ RH∞?

Fortunately, there exists a solution to the latter problem. In fact,

from the interpolation conditions for Tz1Vi
, it suffices to pick any Ψ ∈ RH∞

satisfying
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Figure 4.8: The tire deflection frequency response magnitude: − Passive suspen-

sion; - active suspension using the suspension travel measurement with tire damping

ct = 2cs; −. active suspension using the acceleration and the suspension travel mea-

surements with tire damping ct = 2cs.

(iv) Ψ(0) = 1,

(v) Ψ′(0) = 0,

(vi) Ψ(∞) = α1/α2.

It is easy to see that the following transfer function

Ψ(s) =
σs2 + as+ b

s2 + as+ b
, a, b > 0

where σ = α1/α2 has the aforementioned properties. Furthermore, for a given

Ω which is sufficiently larger than the wheel-hop frequency ωwh
n , if a and b are

chosen so that Ψ(jω) is a good approximation to the low-pass filter:

LΩ(ω) =





1, 0 ≤ ω ≤ Ω,

σ, ω > Ω

on the frequency band [0,Ω], then a good match to the vertical acceleration

response plotted in Figure 4.6 by the solid line is obtained. From the continuity
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Figure 4.9: The acceleration frequency response magnitude: − Passive suspension;

- active suspension using the suspension travel measurement with tire damping

ct = 0.1cs; −. active suspension using the acceleration and the suspension travel

measurements with tire damping ct = 0.1cs.

of the trade-off curves, it follows that the other two responses are satisfactory

as well.

It remains to calculate Q̂. To this end, from Eq. (4.52),

Q̂ =
H1(s;α2, Q

♯)Ψ(s)∆(s;α1) − s(α1css+ kt)(css+ ks)

mss3(α1css+ kt)(mus2 + α1css+ kt)
∆(s;α1) (4.53)

where ∆(s;α1) is calculated from Eq. (4.7) with ct = α1cs. Since the degree of

H1(s;α2, Q
♯) is 8, the degree of Q̂(s) is bounded above by 13. The numerator

polynomial of Q̂ before cancellations has order 18. Recall how Ψ(∞) was

selected. This drops the order of the numerator polynomial by two. Three

more degrees are canceled by the denumerator factor s3. The end result is a

proper transfer function Q̂. Finally, K is calculated from Eq. (4.23) with Q̂

in Eq. (4.53).

It may seem difficult to keep track of pole-zero cancellations. An easy

way to circumvent this numerically ill-conditioned procedure is to evaluate
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Q̂(s) and/or its derivatives by computing the right-hand side of Eq. (4.53)

and/or its-derivatives at a set of sufficiently many and arbitrarily selected fre-

quencies sk; and from these evaluations, obtain directly a minimal state-space

realization of Q̂(s). For this purpose, numerically efficient robust algorithms

developed in [62,65], which deal with multi-variable data as well, can be used.

In Figure 4.10, the acceleration frequency response magnitude of the

active suspension designed by using the suspension travel measurement with

the (fictitious) tire damping ct = 2cs plotted in Figure 4.6 is reproduced along

with the acceleration frequency response magnitude of the active suspension

designed by the hybrid algorithm outlined above. The purpose of plotting them

together was to show that the approximation H1(s;α1, Q̂) ≈ H1(s;α2, Q
♯) is

very accurate in the bandwidth of interest. This, in turn, implies that the

approximations H2(s;α1, Q̂) ≈ H2(s;α2, Q
♯) and H3(s;α1, Q̂) ≈ H3(s;α2, Q

♯)

are also very accurate in the same band of the frequencies. A comparison

of Figure 4.9 with Figure 4.10 reveals impressive closed-loop performance en-

hancement by the interpolation approach. In the simulation, ψ(s) was chosen

as

ψ(s) =
0.05s2 + 500s+ 10

s2 + 500s+ 10
.

In Figure 4.11, the actuator frequency response magnitudes of the

active suspensions designed by the LOG methodology with tire dampings ct =

0.1cs and ct = 2cs, and the hybrid algorithm with tire damping ct = 0.1cs

using the suspension travel measurement are plotted. Figure 4.11 shows that

the closed-loop performance enhancement by the interpolation approach is

achieved at a reasonable price. Actually, the increase in the actuator gain is less

than 30 decibels for all frequencies. Simulations for the values of tire damping

at the equally spaced 101 points between and including 0.001cs and 0.1cs were

also carried out. The numerical results plotted in Figure 4.12 indicate that the

actuator frequency response magnitudes of the active suspensions designed by

either the LOG methodology or the hybrid algorithm using the suspension
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Figure 4.10: The acceleration frequency response magnitude: − Active suspension

using the suspension travel measurement with the (fictitious) tire damping ct =

2cs; −. active suspension designed by a mixture of the LQG methodology and the

interpolation approach using the suspension travel measurement with the (actual)

tire damping ct = 0.1cs.

travel measurement are insentive to changes in tire damping; hence confirming

the predication about the efficacy of coupling between the motions of the

sprung and unsprung masses.

Moreover, in Figure 4.11, the actuator gain is seen to peak at the

heave and the wheel-hop frequencies, which indicates that a stable inversion

of the vehicle transfer function is taking place by canceling these modes. This

feature is reminiscent of the Loop-Transfer-Recovery (LTR) synthesis [16] that

applies to square and minimum-phase plants. Therefore, the hybrid algorithm

can be viewed as a loop-shaping method realized in two-stages. The stages are

the minimization of the quadratic criterion in Eq. (4.51) and the interpolation

procedure. Although, in principle, it is possible to obtain a desired solution in

one step by the LQG methodology, it is not clear how to accomplish this task

since the quadratic criterion in Eq. (4.51) involves nine free weights in its most
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Figure 4.11: The actuator frequency response magnitude using the suspension

travel measurement: − the LQG design with tire damping ct = 2cs; −− the LQG

design with tire damping ct = 0.1cs; −. the hybrid algorithm with tire damping

ct = 0.1cs.

general form. Due to the coupling between the modes, it is a non-trivial matter

to steer these weights towards a desired solution. The hybrid algorithm, on

the other hand, ignores the interactions among the variables zk, k = 1, 2, 3 and

u in the first stage. Then, the effect of the interactions is taken care of in the

interpolation stage. The reader is cautioned not to draw broad conclusions

based on this example solely since hardware limitations and uncertainties may

degrade actuator performance.

4.5 Summary

In this chapter, the flexibility of shaping the closed-loop road frequency

responses of a quarter-car model by feedback control was investigated. The

constraints on the achievable responses of the quarter-car active suspension

systems were derived for a wide range of the suspension parameters. The
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Figure 4.12: The actuator frequency response magnitude using the suspension

travel measurement: − the LQG design with tire damping ct = 2cs; −− the LQG

design with tire damping ct at the equally spaced 101 points between and including

0.001cs and 0.1cs ; −. the hybrid algorithm with tire damping ct at the same 101

points.

derived constraints complement the existing results in the literature on vehicle

dynamics and control. Also, using the factorization approach of the feedback

stability, it was shown that tire damping by coupling the motions of the sprung

and unsprung masses eliminates a constraint on the wheel-hop mode. The

influence of tire damping on the design of an active suspension for a lightly

damped quarter-car model by a mixture of the LQG methodology and the

interpolation approach was also illustrated. The study of the constraints on the

achievable performance has remained largely restricted to pointwise constraints

on the frequency responses while ride comfort and safety criteria are mostly

expressed in terms of the rms values of the related transfer functions. Hence,

a study of the constraints on the achievable rms responses warrants future

research.
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5 TIRE DAMPING EFFECT ON RIDE

QUALITY OF LINEAR QUARTER-CAR

ACTIVE SUSPENSIONS

The study of the constraints on the achievable performance has re-

mained largely restricted to pointwise constraints in the frequency domain

while ride comfort and safety criteria are mostly expressed in terms of the rms

values of the sprung mass vertical acceleration, the suspension travel, and the

tire deflection. It is generally agreed that typical road surfaces may be consid-

ered as realizations of homogeneous and isotropic two-dimensional Gaussian

random processes and these assumptions make it possible to completely de-

scribe a road profile by a single power spectral density evaluated from any

longitidunal track [52,53]. Then, the spectral description of the road together

with a knowledge of traversal velocity and of the dynamic properties of the

vehicle provide an analysis which will describe the response of the vehicle ex-

pressed in terms of displacement, acceleration, or stress.

This chapter is organized as follows. In Section 5.1, first, all achiev-

able transfer matrices from the road disturbance to the sprung mass vertical

acceleration, the suspension travel, and the tire deflection are parameterized

and an optimization problem that aims to minimize a quadratic function of the

rms values of the outputs with respect to the class of all stabilizing controllers

is formulated. In Subsection 5.1.1, the solution of this optimization problem

is numerically obtained for a range of tire damping coefficients. It is observed

that tire damping by coupling the motions of the sprung and unsprung masses

eliminates a wheel-hop mode constraint; thus reduces the rms vertical acceler-

ation without increasing the rms suspension travel and the rms tire deflection.

This result confirms the design procedure outlined in Section 4.4, which is a

mixture of the linear-quadratic-regulator and the interpolation methodologies,

in an rms setup.
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In Section 5.2, first, assuming that tire damping is known, a multi-

objective suspension control problem is formulated and solved by using linear

matrix inequalities. The control objective is to decrease the rms vertical accel-

eration while keeping the rms gain of the tire deflection within given bounds.

This is the well-known ride comfort–road holding trade-off experienced in the

design of active suspension systems. The influence of tire damping on the so-

lution of this constrained optimization problem is studied in Section 5.2.1, and

it is demonstrated that for a given upper bound on the tire deflection rms gain,

tire damping reduces the rms vertical acceleration obtained with the same sus-

pension system but tire damping omitted. Next, in Section 5.2.2, the assump-

tion that tire damping coefficient is known is dropped and a multi-objective

control problem for the suspension models with tire damping coefficient con-

fined to a prescribed interval is formulated. By using LMIs a controller with

guaranteed performance over all suspension models in the uncertainty set is

obtained. The closed-loop performance of this robust controller is studied. In

Section 5.3, the multi-objective control design problem is revisited and it is

formulated as a non-convex and non-smooth optimization problem with con-

troller order less than or equal to the quarter-car model order. For a range of

controller orders, a similar parametric study is performed to assess the depen-

dence of the closed-loop response on tire damping. The chapter is concluded

by Section 5.4.

Multi-objective control of vehicle suspensions by using LMIs is not

new. In [2], a constrained H∞ control scheme with output and control con-

straints were studied. In [28], problems with H2 or H∞ cost under positive

realness constraint on controller structures were considered. The control objec-

tive similar to that of this chapter was studied in [29]. Robust multi-objective

controllers were synthesized in [31,32] to cope with parameter uncertainties in

system matrices characterized by a given polytope. Application of non-convex

and non-smooth optimization algorithms in [33] to suspension control prob-

lems is reported in the recent work [34]. In [35], static output feedback H∞

controller and non-fragile static output feedback H∞ controller design proce-
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dures via LMIs and genetic algorithm are presented. The H∞ control problem

for active vehicle suspension systems with actuator time delay is studied in [36]

and a delay-dependent memoryless state feedback H∞ controller is designed

using LMIs.

This chapter is not about introducing new suspension control methods.

In fact, the research on controlled suspension systems is well developed. The

sole purpose of this chapter is to provide a detailed study of tire damping

effect on ride quality of quarter-car active suspensions based on some popular

H2-optimal control and multi-objective control frameworks. It is the author’s

belief that together with Chapter 4 this chapter will give a fairly complete

picture of tire damping influence on quarter-car active suspensions.

5.1 H2 Optimal Control of Quarter-Car Active Suspen-

sion

Consider the quarter-car model shown in Figure 4.1. Assume that

the vehicle travels on a straight profile with a constant velocity v. The road

roughness model is as in Section 4.4. This model is simple enough to describe

the heave motion of a vehicle traveling on a straight line. The equations of

motion were derived in Section 4.1. In this chapter, the rms response of the

quarter-car model following a random track described by Eq. (4.50) is studied.

The vehicle response variables are as defined in Section 4.1.

For the design of a feedback law, the suspension stroke measurement

y = z2 is considered in this section. Note from Eqs. (4.1)–(4.4) that

y(s) = G21(s)W (s) +G22(s)U(s) (5.1)

where G21(s) and G22(s) denote the bottom elements of G21(s) and G22(s)

matrices defined in Eqs. 4.10– 4.11.

Let K(s) denote the transfer function of the controller with input y

and the output u. The feedback configuration is shown in Figure 4.2. Recall

107



that all compensators stabilizing G have the form [17,132]:

K = Q(1 +G22Q))−1, Q ∈ RH∞ (5.2)

With this parameterization, the transfer matrix from w to z denoted by Tzw(s)

takes a particularly convenient form which is affine in Q:

Tzw = G11 +G12QG21. (5.3)

As Q varies over RH∞, Eq. (5.3) parameterizes all achievable transfer matri-

ces.

Recall that the feedback law in this section relies only on the suspen-

sion travel measurement. This choice is justified by the fact that closed-loop

transfer functions obtained with a stabilizing controller that uses the sprung

mass vertical acceleration and the suspension travel measurements can be ap-

proximated within a specified tolerance for the entire range of frequencies by

the closed loop transfer functions of a stabilizing controller that uses only the

suspension travel measurement [Proposition 4.3.13].

Now, all achievable rms responses of the quarter-car model to white-

noise velocity road inputs are parameterized as follows. The colored-noise case

will briefly be discussed in Section 5.1.1. From the first equality in Eq. (4.1),

and Eqs. (5.3), (4.6)–(4.6), (4.10)–(4.11),

TzVi
= − s

∆




−(cts+ kt)(css+ ks)

ms(cts+ kt)

msmus
2 + (ms +mu)css+ (ms +mu)ks




(5.4)

+
mss(cts+ kt)

∆2




s2[mus
2 + cts+ kt]

(ms +mu)s
2 + cts+ kt

−mss
2


Q.

The autocovariance function of z is calculated from Eq. (4.50) as

Rz(τ) = 2πn2
0κv

∫ ∞

−∞

TzVi
(jω)T∼

zVi
(jω)ejωτ dω. (5.5)

The square roots of the elements in the diagonal of Rz(0) are equal to the rms

vertical acceleration, the rms suspension travel, and the rms tire deflection.
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Note from Eq. (5.5) that the weighted sum of the diagonal elements of Rz(0)

is given by

J(Q; Λ) = (2πn0)
2κv‖ΛTzVi

‖2
2 (5.6)

where Λ is a diagonal matrix with nonnegative entries λ1, λ2, λ3. The optimized

version of Eq. (5.6):

J∗(Λ) = inf
Q∈RH∞

J(Q; Λ) (5.7)

will be considered in the sequel. Observe that the control input chosen in

Eq. (5.7) minimizes
∑3

k=1 λ
2
k E[z2

k] with respect to the set of all stabilizing

controllers.

5.1.1 H2 Synthesis and the Influence of Tire Damping

Let

F = −sΛ
∆




−(cts+ kt)(css+ ks)

ms(cts+ kt)

msmus
2 + (ms +mu)css+ (ms +mu)ks


 , (5.8)

H =
Λ

∆




s2[mus
2 + cts+ kt]

(ms +mu)s
2 + cts+ kt

−mss
2


 . (5.9)

From Eq. (5.7),

J∗(Λ) = (2πn0)
2κv inf

Q∈RH∞

‖F −mss(cts+ kt)∆
−1HQ‖2

2. (5.10)

Suppose λ1 > 0. Then, H(s) has full rank on the imaginary axis including ∞.

Furthermore, mss(cts+ kt)∆
−1 has no zeros in the open right half plane. The

right-hand side of Eq. (5.10) does not change when F and H are transposed.

Hence, Lemma 6.3.10 in [132] is applicable:

J∗(Λ) = (2πn0)
2κv inf

Q∈RH∞

‖F −HQ‖2
2. (5.11)

Next, an inner-outer factorization ofH(s) is done. In doing so, the first

step is to get a spectral factor ofH∼(s)H(s). If the quadruplet (AH , BH , CH , DH)
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denotes a minimal state-space realization of H(s), then a spectral factor de-

noted by Ho(s) is given by

Ho(s) =
(
AH , BH ,D

− 1

2 (DT
HCH +BT

HX),D
1

2

)

where D = DT
HDH and X is the stabilizing solution of the Riccati equation:

(AH −BHD−1DT
HCH)TX +X(AH −BHD−1DT

HCH) −XBHD−1BT
HX

+CT
H(I −DHD−1DT

H)CH = 0.

The inner factor is then

Hi(s) = H(s)H−1
o (s). (5.12)

The next step is the calculation of a complementary inner factor N⊥

of Hi, i.e., finding a matrix N⊥ that makes [Hi N⊥] square and inner. If

(A1, B1, C1, D1) is a minimal state-space realization of Hi, then a realization

of N⊥ is given by the formula [17][Lemma 13.31]:

N⊥ =
(
A1,−Y −1CT

1 D⊥, C1, D⊥

)
(5.13)

where D⊥ is an orthogonal complement of D1 such that [D1 D⊥] is square and

orthogonal and Y is the observability Gramian:

AT
1 Y + Y A1 + CT

1 C1 = 0. (5.14)

Observe that Hi and N⊥ have four common poles. When Λ is nonsingular, D⊥

can be chosen as

D⊥ =




0 0

1 0

0 1


 . (5.15)

Then,

inf
Q∈RH∞

‖F −HQ‖2
2 = ‖N∼

⊥F‖2
2 + inf

Q∈RH∞

‖H∼
i F −HoQ‖2

2

(5.16)

= ‖N∼
⊥F‖2

2 + ‖Π⊥H∼
i F‖2

2
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with

Q = H−1
o ΠH∼

i F. (5.17)

Hence, from Eqs. (5.11) and (5.16)

J∗(Λ) = (2πn0)
2κv

{
‖ΠN∼

⊥F‖2
2 + ‖Π⊥N∼

⊥F‖2
2 + ‖Π⊥H∼

i F‖2
2

}
. (5.18)

The infimum in Eq. (5.10) is not achieved. However, simple modifica-

tions of Q in Eq. (5.17) yield approximations arbitrarily close to J∗(Λ). If w is

not integrated white-noise, but its derivative is colored-noise, i.e., Vi = ẇ = Ψη

for some minimum phase Ψ ∈ RH∞ and unit-intensity white noise η, it suffices

to replace F in Eq. (5.18) with FΨ. From the discussion leading to Eq. (5.11),

observe that Ψ is allowed to have zeros on the imaginary axis.

To investigate the influence of tire damping on the optimal cost J∗(Λ),

it will be more convenient to define a dimensionless quantity:

µ(ct; Λ) =
[J∗(Λ)]1/2

[J(0; Λ)]1/2
. (5.19)

Thus, µ(ct; Λ) is a measure of active suspension performance relative to the

passive suspension performance in the root–mean–square sense. Since J(Q; ∆)

is proportional to v, µ(ct; Λ) does not depend on the vehicle speed. Moreover,

µ(ct; Λ) ≤ 1 for J∗(Λ) is obtained by minimizing J(Q; Λ) over RH∞ and

0 ∈ RH∞. In Figure 5.1, µ(ct; Λ) is plotted versus ct for the weight Λ =

diag(1, 1, 1). This choice of Λ puts equal emphasis on the three output rms

values. The impact of tire damping on the active suspension performance is

remarkable, in particular for large values of ct.

For a vehicle with ct = 0 and traveling at the speed v = 20 m/s, the

passive suspension has the rms values 0.5424, 0.0046, and 0.0017 for the ver-

tical acceleration, the suspension travel, and the tire deflection, respectively.

Thus, the rms vertical acceleration is more than one hundred times the rms

suspension travel and the rms suspension travel is more than three times the

rms tire deflection. Consequently, the choice Λ = I3 results in dramatic re-

duction of the rms vertical acceleration at the expense of the other responses.
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Figure 5.1: The optimized performance index scaled by the open-loop perfor-

mance index as a function of tire damping coefficient for Λ = diag(1, 1, 1).

Therefore, by setting Λ to I3, the trade-offs: the sprung mass vertical accel-

eration versus the suspension travel and the sprung mass vertical acceleration

versus the tire deflection are almost entirely neglected. In Figure 5.2, µ(ct; Λ)

is plotted as a function of tire damping coefficient for Λ = diag(1, 10, 100). The

latter choice for Λ respects the trade-offs. Although it is not as impressive as

in Figure 5.1, the influence of tire damping is strongly felt. In the H2-optimal

control context, this observation reinforces the conclusion in [26, 68] that tire

damping can be used to improve ride comfort while maintaining road holding

ability and rattle space compactness.

The results in this section show that influence of tire damping on the

H2-optimal design of active suspension systems can be significant. To put it

another way, performance of an active suspension system designed by ignoring

tire damping may seriously deteriorate. This conclusion has been reached by

minimizing a single objective function without paying attention to how its

components are being penalized. In fact, ‖F − HQ‖2 does not change when

F and H are left multiplied by any orthogonal matrix or, more generally, by

any square inner matrix. These operations redistributes the trade-offs. In

112



0 10 20 30 40 50 60 70 80 90 100
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

c
t
 (Ns/m)

µ(
c t;Λ

)

Figure 5.2: The optimized performance index scaled by the open-loop perfor-

mance index as a function of tire damping coefficient for Λ = diag(1, 10, 100).

addition, controller synthesis must deal with the issues of actuator saturation,

parameter and load variations, and robustness to uncertainties in road and

tire models. The design problem is then multi-objective synthesis of linear

robust output-feedback controllers, for which LMI based solutions have been

proposed in the literature [2, 29,32].

After minor changes in the proofs, the results derived in this section

extend without modification to half-car models provided that the road exci-

tation at the front wheel can be modeled as output of a linear-shape filter

driven by white-noise. The changes in the proofs are due to the fact that the

Q parameter of the stabilizing controller defined in Eq. (5.2) happens to be

a 2 by 2 rational matrix in RH∞ when the quarter-car model is switched to

half-car model. This change in the dimension of the Q parameter requires

checking right coprimeness of certain two matrices in RH∞. The details can

be found in [75]. The parameters of the linear shape-filter can directly be esti-

mated from measured road data [57,65]. In this case, the coefficient defined in

Eq. (5.19) depends on v. But, this dependence is weak since in the bandwidth

of interest, the power spectrum of the filter output behaves like power spec-
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trum of an integrated white-noise process. The temporal correlation between

the front and the rear wheels may be predicted by a Pade filter of sufficient

order.

5.2 Multi-Objective Control Using LMIs

In designing active suspension systems, one needs to take the following

aspects into consideration:

(i) As an indicator of ride comfort, ẍ1 should be made as small as possible.

(ii) x1 − x2 should be kept below the maximum allowable suspension stroke

to prevent excessive suspension bottoming, which can result in structural

damage and deterioration of ride comfort.

(iii) In order to ensure a firm uninterrupted contact of wheels to road, the

dynamic tire load should not exceed the static ones.

(iv) To avoid actuator saturation, u should stay within limits at all times.

Thus, designing control law for suspension systems is a multi-objective

control problem where the strategy is to minimize the vertical acceleration

while keeping the constraints satisfied. Many other constraints can be added

to the above list. However, this list reveals all fundamental design trade-offs.

The robustness to variations in tire damping will be studied later. Due to the

standing assumption that w is integrated white-noise process, the rms values of

zk, k = 1, 2, 3 are scaled by
√
v for both passive and active suspensions. Hence,

vehicle speed does not influence suspension trade-offs and relative performance

of active suspension with respect to passive suspension.

Let us consider the state-space realization in Eqs. (4.42)–(4.49). In

this section, the following dynamic output feedback structure:

ζ̇ = AKζ +BKy,

(5.20)

u = CKζ +DKy
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where the state-space parameters AK , BK , CK , DK are to be determined will

be studied. Recall that u = DKy with row vector DK unknown is the static

output feedback case. The feedback configuration and the closed-loop transfer

function TzVi
(s) are as in Section 5.1. Then, the multi-objective control design

problem is:

Problem 5.2.1. Given γ, ρ1, ρ2 > 0, design an output-feedback controller u =

K(s)y that satisfies ‖Tz3Vi
‖∞ < γ and minimizes ρ1‖Tz1Vi

‖2
2 + ρ2‖Tz2Vi

‖2
2.

Before the presentation of the solution, several remarks are in order.

First, without the rms gain constraint ‖Tz3Vi
‖∞ < γ and with ρ2 = 0, the rms

vertical acceleration response can be made zero. With tire damping neglected,

it is a well-known trade-off that the vertical acceleration can only be decreased

at the expense of the tire deflection. The choice between ‖Tz3Vi
‖2 and ‖Tz3Vi

‖∞
is arbitrary since both norms reveal the vertical acceleration–tire deflection

trade-off. However, in numerical studies it was observed that ‖Tz3Vi
‖∞ ≤ γ

is a tight constraint, i.e., the equality is attained by the minimizing solution.

Hence, it directly shapes the optimal solution.

The control design requirements were expressed in the time-domain.

The multi-objective control problem formulated above, on the other hand, has

the control objective and the constraints in the frequency-domain. A solution

based on LMIs will be presented next. This paradigm readily encompasses

time-domain constraints at a price of conservatism. By tuning the parameters

γ, ρ1, and ρ2, the solution of the above design problem can be forced to satisfy

time-domain constraints.

In Section 5.1.1, a closed-form expression for the cost function
∑3

k=1 ρk‖TzkVi
‖2

2 was derived and it was demonstrated that this expression

could be made very small provided that ρ2 and ρ3 are in the order of ρ1. As

pointed out there, there is not much control over the tire deflection. Never-

theless, this approach does not introduce any conservatism as opposed to LMI

based approaches, where a common Lyapunov function is sought for all LMI

constraints.
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In the following subsection, guidelines how to choose γ, ρ1, and ρ2

will be provided. As a final remark, notice that the multi-objective control

problem data and consequently the solution of this problem depend on the

uncertain parameter ct. Precise knowledge of tire damping coefficient is an

unrealistic assumption. This assumption will be relaxed later and a robust

multi-objective suspension control problem will be formulated. But, exami-

nation of the influence of tire damping on the solution to the multi-objective

control problem is in order.

5.2.1 Influence of Tire Damping

LetGzkVi
denote the open-loop transfer functions from Vi to the output

variable zk, k = 1, 2, 3. The parameters ρ1, ρ2, and γ of the multi-objective

control problem are chosen as follows. Given ct, compute ‖Gz1Vi
‖2, ‖Gz2Vi

‖2,

and ‖Gz3Vi
‖∞. For example, when tire damping is absent ‖Gz1Vi

‖2 = 44.57,

‖Gz2Vi
‖2 = 0.37, and ‖Gz3Vi

‖∞ = 0.0363. Now, for some positive parameters

λ and µ set ρ1 = ‖Gz1Vi
‖−1

2 , ρ2 = ‖Gz2Vi
‖−1

2 λ, and γ = ‖Gz3Vi
‖∞µ. By these

scalings, it is possible to monitor the progress of the solution with respect

to certain benchmark values. The parameters λ and µ control the trade-offs:

the vertical acceleration–suspension stroke and the vertical acceleration–tire

deflection, respectively. The optimization algorithm is implemented by the

hinfmix command of MATLAB’s LMI Control Toolbox [27]. This command

produces a controller of order which is equal to that of the plant.

In Figs. 5.3 and 5.4, the rms values of zk, k = 1, 2, 3 and the tire

deflection rms gain of a vehicle traveling with a speed of 20 m/s subjected to

white-noise velocity excitation are plotted as functions of tire damping coef-

ficient for both the passive and the active suspension systems designed with

two different sets of λ and µ using the vertical acceleration and the suspension

travel measurements. As expected, the vertical acceleration–tire deflection

and the suspensions travel–tire deflection trade-offs are notable. The declin-

ing responses as functions of tire damping indicate that tire damping improves
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Figure 5.3: The rms values of zk, k = 1, 2, 3 and tire deflection rms gain of the

vehicle subjected to white-noise velocity input as a function of ct: (–) passive

suspension; (-.) active suspension with λ = 0.1 and µ = 1 using vertical

acceleration and suspension travel measurements.

passive and active suspension performances. The improvement on the rms ver-

tical acceleration of the active suspension due to tire damping is noteworthy

for µ = 2. Moreover, the rms actuator force varies between 59.5 and 62.5 for

all 0 ≤ ct ≤ 100. Hence, the actuator saturation is not likely to occur. The

rms tire load can not be calculated when ct > 0 since Vi was modeled as a

white-noise process.

In Fig. 5.5, the vertical acceleration, the suspension travel, and the

tire deflection frequency responses of the active suspension system designed

with the parameters λ = 0.1, µ = 2, and ct = 50 are plotted. The single

measurement case, i.e., y = z2 was also investigated. Numerical results that

are almost identical to those displayed graphically in Figures 5.1–5.3 were

obtained.
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Figure 5.4: The rms values of zk, k = 1, 2, 3 and tire deflection rms gain of the

vehicle subjected to white-noise velocity input as a function of ct: (–) passive

suspension; (-.) active suspension with λ = 0.1 and µ = 2 using vertical

acceleration and suspension travel measurements.

To validate the analysis results of the LMI-based multi-objective con-

troller in time-domain, consider the following bump input [36]

w(τ) =





h
2
[1 − cos(2πvτ/l)], 0 ≤ τ ≤ 1/v

0, τ > l/v
(5.21)

where h and l are the height and the length of the bump. The output

of the active suspension whose frequency response magnitudes are plotted in

Figure 5.5 to the bump input in Eq. (5.21) are shown in Figure 5.6 for h =

0.10m, l = 2m, and v = 45 km/h.

As expected from Figure 5.5, the vertical acceleration amplitude is

significantly reduced by the feedback while the suspension travel and the tire

deflection amplitudes are increased. The influence of tire damping on time-
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Figure 5.5: Vertical acceleration, suspension travel, and tire deflection fre-

quency responses of the active suspension system designed with the parame-

ters λ = 0.1, µ = 2, and ct = 50 using vertical acceleration and suspension

travel measurements.

domain responses to bump inputs as in Eq. (5.21) can be made transparent

by defining the dimensionless quantities:

δk(ct) = 1 − supτ≥0 |zac
k (τ)|

supτ≥0 |zp
k(τ)| , k = 1, 2, 3 (5.22)

where zac
k (τ) and zp

k(τ) denote the regulated output components in Eqs. (4.2)–

(4.4) for the active and the passive suspensions, respectively. The quantities

δk, k = 1, 2, 3 plotted in Figure 5.7 as functions of tire damping coefficient

change analogously to the rms values of zk, k = 1, 2, 3 displayed in Figure 5.4

when the latter are normalized similarly to Eqs. (4.2)–(4.4); thus, validating

the previously drawn conclusions in time-domain.

The numerical studies reported in this section do not hint whether it is
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Figure 5.6: The bump responses of the passive and the active suspensions: (–)

passive suspension; (-.) active suspension designed with λ = 0.1, µ = 2, and

ct = 50 using the vertical acceleration and the suspension travel measurements.
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possible to significantly reduce the rms vertical acceleration without increasing

the rms suspension travel and the rms tire deflection. In fact, this is possible as

soon as tire damping coefficient is non-zero [26,68]. This result was established

in Section 4.4 by using a 17th order controller; but, the order of the resulting

closed-loop transfer function is only 8. However, this controller is susceptible to

saturation. In general, the order of the controller is dictated by the orders of the

plant and the weighting functions. Controllers with lower orders are usually

preferable in terms of implementation and computing efforts. Therefore, in

Section 5.3 fixed-order robust control algorithms will be used to design H∞

controllers with specified orders lower than that of the quarter-car model.

5.2.2 Polytopic Vehicle Suspension Models

The multi-objective control problem solved in Section 5.2.1 assumes

exact value of the tire damping coefficient, which is difficult to estimate since

it depends on many factors and varies during driving. In this subsection, as-

suming that ct takes values in some prescribed interval [α, β], a multi-objective

controller with guaranteed performance for all possible values of tire damping

coefficient will be designed. Note that this uncertainty structure allows fast

variations of tire damping.

Let A0 and B0
1 denote the matrices A and B1 in Eqs. (4.46) and (4.47)

for ct = 0 and set A1 = c−1
t (A − A0) and B1

1 = c−1
t (B1 − B0

1). Define two

vertex systems by the quadruplets P0 = (A0, [B0
1 B2], C1, [0 D12; 0 D22]) and

P1 = (A1, [B1
1 0], 0, 0) where the MATLAB notation is adopted. Then, the

quadruplet P formed conformally with P0 and P1 and describing the system

studied in Section 5.2.1 can be written as

P = P0 + ctP1, ct ∈ [α, β] (5.23)

which is a line segment in the Euclidean space of state-space parameters. Let

P denote the set of systems defined by Eq. (5.23). Then, the robust multi-

objective control design problem is:
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Problem 5.2.2. Given γ, ρ1, ρ2 > 0 and P, design a state-feedback controller

u = Kx that satisfies ‖Tz3Vi
‖∞ < γ for all P ∈ P and minimizes

sup
P∈P

ρ1‖Tz1Vi
‖2

2 + ρ2‖Tz2Vi
‖2

2.

Again, this optimization problem can be solved by using LMIs. Its

solution is implemented by the msfsyn command in MATLAB’s LMI Toolbox

[27]. For illustration, suppose α = 25 and β = 50. The same formulas for

ρ1, ρ2, and γ proposed in Section 5.2 can be used provided that the scalings

‖GzkVi
‖ are computed with a fixed ct. For the computations, ct = 0 was picked

and the above optimization problem was solved. Let Kp denote the solution

which depends on the scalings λ and µ. Using the same msfsyn command with

the uncertainty set P0, which is a singleton, and the same weights, another

controller denoted by K0 was obtained.

Let us see how the robust controller is performing against K0. Fix ct

and denote the corresponding system in Eq. (5.23) by Pt. Then, compute the

closed-loop rms responses of Pt using the controllers K0 and Kp with λ = 0.1.

The two rms response sets were observed to be slightly different, in particular

for small values of µ. For example, when µ = 1 from Table 5.1, the rms

vertical acceleration, the rms suspension travel, and the rms tire deflection are

read respectively as 0.4856, 0.0045, 0.0016 with Kp and 0.4926, 0.0044, 0.0016

with K0 for ct = 35. As µ was increased, the rms vertical acceleration of the

robust design decreased. This is not unexpected since the slope of the rms

vertical acceleration-tire damping curve is steep for large values of µ as seen

in Figure 5.4.

As pointed out earlier, the multi-objective control problems studied

in this section can be reformulated in several different forms by considering a

variety of objective functions and constraints in frequency and time-domains.

Then, these objective functions and constraints can be converted into affine

functions and LMIs by using the transformations cataloged in [46]. The par-

ticular forms chosen in this section have direct implementations in the LMI

Toolbox of MATLAB.
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Table 5.1: The rms responses of the passive suspension and the robustly de-

signed active suspension for tire damping uncertainties 25 ≤ ct ≤ 50. The

active suspension was designed by solving Problem 5.2.2 for λ = 0.1 and

µ = 1.

rms ct = 25 ct = 35 ct = 50

passive K0 Kp passive K0 Kp passive K0 Kp

z1 0.5379 0.4951 0.4881 0.5361 0.4926 0.4856 0.5336 0.4889 0.4818

z2 0.0046 0.0044 0.0045 0.0046 0.0044 0.0045 0.0046 0.0044 0.0045

z3 0.0017 0.0016 0.0016 0.0017 0.0016 0.0016 0.0017 0.0016 0.0016

Multi-objective control of a half-car suspension system using LMIs was

studied in [73] where the front and the rear road velocity inputs were assumed

to be uncorrelated white-noise processes. The parametric tire damping studies

did not conform well with the quarter-car results reported here. In particular,

the robust controller designed to cope with polytopic tire damping uncertain-

ties did not offer any advantage over the conventional suspension system. The

coupling between the heave and the pitch motions appears to be the main

source of this discrepancy because the assumed road excitation model ignores

this coupling.

5.3 Multi-Objective Control via Fixed-Order Optimiza-

tion

In this section, the H∞ fixed-order optimization (HIFOO) toolbox will

be used to design low complexity active suspension systems. More specifically,

consider the following multi-objective control design problem:

Problem 5.3.1. Given β1 > 0 and β2 > 0 and a specified controller order

nK, find an output-feedback controller u = K(s)y that internally stabilizes the
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closed-loop system and minimizes ‖Tz1Vi
‖∞ while satisfying ‖Tz2Vi

‖∞ < β1 and

‖Tz3Vi
‖∞ < β2.

This is a non-convex optimization problem when nK is less than the

order of the passive suspension system. The details on the HIFOO toolbox can

be found in [33, 45]. The optimization algorithms in the HIFOO toolbox do

not attempt to find global minimum. Hence, their success depend on proper

initialization. They have been successfully applied to several benchmark prob-

lems [34,45]. Currently, this toolbox does not accommodate norms other than

the supremum norm on either the objective function or the constraints.

As in the LMI design examples of the previous section, choose β1 and

β2 as follows. Given ct, set β1 = ‖Gz2Vi
‖∞ and β2 = ‖Gz3Vi

‖∞. Thus, it is

possible to monitor the progress of the solution with respect to the passive

suspension. For the same purpose, the objective function may also be scaled

with ‖Gz1Vi
‖∞. In the implementation of the algorithms in the HIFOO toolbox,

the scalings ‖Gz1Vi
‖∞ = 20.2380, ‖Gz2Vi

‖∞ = 0.2739, and ‖Gz3Vi
‖∞ = 0.0331

were used for ct = 98. These scalings result in the choices β1 = β2 = 1 and the

achieved minimum being less than or equal to one.

Table 5.2: The rms responses of the passively and actively suspended quarter-

car model with the HIFOO controllers of order nK and ct = 98.

rms Passive nK = 1 nK = 2 nK = 3 nK = 4

z1 0.5259 0.4627 0.4746 0.4763 0.4748

z2 0.0045 0.0040 0.0041 0.0041 0.0040

z3 0.0017 0.0016 0.0016 0.0016 0.0016

In Table 5.2, the rms values of the vertical acceleration, the suspen-

sion travel, and the tire deflection are displayed for the passive and the active

suspensions designed by using the HIFOO toolbox with controller orders vary-

ing from one to four. The vehicle forward velocity and the road excitation are

as in Section 5.2. The performance improvements obtained with the HIFOO
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controllers in comparison to the LMI designs in Section 5.2 are impressive.

Interestingly, the simplest controller achieves the best performance improve-

ment.
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Figure 5.8: Vertical acceleration, suspension travel, and tire deflection fre-

quency response magnitudes of the first-order HIFOO design using suspension

travel measurement.

The magnitude responses of the first-order HIFOO controller plotted

in Figure 5.8 compare favorably with respect to the responses of the LMI

design plotted in Figure 5.5 for ct = 50 and using vertical acceleration and

suspension travel measurements. The HIFOO designs were obtained using

only suspension travel measurement.

Finally, we investigate influence of tire damping on the closed-loop

performance of the HIFOO controllers. In Figures 5.9–5.12, the rms values

of zk, k = 1, 2, 3 are plotted for nK = 1, 2, 3, and 4 versus ct. For each nK
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and a range of ct, the corresponding HIFOO controllers were initialized by the

same nKth order HIFOO controller whose rms response values are displayed in

Table 5.2. For all nK , the rms vertical acceleration decreases as tire damping

increases similar to the patterns observed in Figures 5.3 and 5.4. The rms

suspension travel and the rms tire deflection are observed to be non-increasing

functions of tire-damping coefficient as in Figures 5.3 and 5.4. Thus, the basic

conclusions drawn in Section 5.2, including responses to the bump inputs in

Eq. (5.21), carry on, without modification, to the HIFOO designs as well.
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Figure 5.9: The rms responses of the quarter-car model excited by a white-

noise velocity input as a function of ct: (o) passive suspension; (∗) the HIFOO

design with nK = 1 using suspension travel measurement.
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Figure 5.10: The rms responses of the quarter-car model excited by a white-

noise velocity input as a function of ct: (o) passive suspension; (∗) the HIFOO

design with nK = 2 using suspension travel measurement.

5.4 Summary

In this chapter, influence of tire damping on H2-optimal and multi-

objective control of quarter-car suspensions excited by random road distur-

bances was studied. The multi-objective suspension control problem was first

formulated as a convex mixed H2/H∞ synthesis problem and this problem was

solved using LMIs. This formalism gives rise to controllers with orders equal

to that of the vehicle model.

Parametric studies showed that the influence of tire damping can

not be overlooked in assessing closed-loop performance of actively controlled

quarter-car models. This result constitutes a reinforcement, in the root-mean-
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Figure 5.11: The rms responses of the quarter-car model excited by a white-

noise velocity input as a function of ct: (o) passive suspension; (∗) the HIFOO

design with nK = 3 using suspension travel measurement.

square sense, of a conclusion in [26, 68] drawn for pointwise constraints on

the achievable frequency responses of the quarter-car model. Then, this result

was extended to suspension models with polytopic tire damping uncertainties.

Lastly, the multi-objective suspension control problem was re-formulated as a

non-convex and non-smooth optimization problem with controller order con-

strained to be less than or equal to that of the vehicle model. Controllers of

various orders were synthesized by using the recently developed optimization

algorithms in the HIFOO toolbox. The best performance enhancement was

obtained with the lowest order HIFOO controller, showing that there is still

room for the application of new techniques to linear suspension control prob-

lems. With regard to tire damping, the HIFOO designs were observed to have
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Figure 5.12: The rms responses of the quarter-car model excited by a white-

noise velocity input as a function of ct: (o) passive suspension; (∗) the HIFOO

design with nK = 4 using suspension travel measurement.

closed-loop behavior similar to those of the LMI designs.

Comparing Figures. 5.1–5.12, the following broad conclusions can be

drawn. Tire damping reduces both the magnitude and the rms of the sprung

mass acceleration for the passive suspension and the active suspensions de-

signed by the H2-optimal algorithm and the multi-objective control algorithms

via LMIs and fixed-order optimization. The coupling between the motions of

the sprung and unsprung masses is clearly evident in Figure 5.1 since the

optimized performance index rapidly decreases as tire damping coefficient in-

creases. This coupling is, though weakly, observed also in Figure 5.2 by a

declining line displaying the optimized performance index versus tire damp-

ing and in Figures 5.3 and 5.4, 5.9–5.12 by parallel decreasing lines displaying
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the rms vertical acceleration response versus tire damping. The road holding

or the tire deflection constraint is a hard constraint as clearly seen in Fig-

ures 5.9–5.12. It can be eliminated by exploiting the aforementioned coupling

in Chapter 4. However, the design example in Chapter 4 needs to be further

tested for robustness, actuator saturation, and controller fragility. In closing,

achievable performance and tire damping studies for half and full-car active

suspensions in multi-input/multi-output frameworks are left as future research

work. In addition, even if tire damping is ignored during a design process, it

should be included at validation stage to improve overall simulation accuracy.

131



6 TIRE DAMPING EFFECT ON

HALF-CAR ACTIVE SUSPENSIONS

The contents of this chapter are as follows. In Section 6.1, a four–

degrees–of–freedom half-car model is reviewed and achievable rms responses

to random road inputs are parameterized. An optimization problem that aims

to minimize a weighted sum of the rms values of the outputs with respect

to the class of all stabilizing controllers is formulated. The solution of this

optimization problem is obtained for a range of tire damping ratios and the

vehicle forward velocities. The results derived in this section constitute an

extension of the results obtained in Chapter 5 for quarter-car active suspensions

to half-car active suspensions.

In Section 6.2, first assuming that tire damping is known, a multi-

objective suspension control problem is formulated and solved by using LMIs.

The control objective is to decrease the rms vertical and the pitch accelerations

while keeping the rms gain of the suspension travels bounded. The influence of

tire damping on the solution of this optimization problem is studied; it is ob-

served that tire damping affects only the road holding quality while remaining

responses are insensitive to changes of tire damping coefficients in the range

considered. Next, the assumption that tire damping coefficients are known

is dropped and a multi-objective control problem for suspension models with

tire damping coefficients confined to a prescribed box is formulated. By us-

ing LMIs, a robust controller with guaranteed performance over all suspension

models in the uncertainty set is obtained. The closed-loop performance of the

designed suspension system is studied; and it is found that this robust con-

troller does not offer any advantage over an active suspension system designed

by neglecting tire damping. Section 6.3 concludes the chapter.
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6.1 H2 Optimal Control of Half-Car Active Suspensions

A four degrees-of-freedom half-car model is shown in Figure 6.1. This

model is simple enough to describe the bounce and the pitch motions of a

vehicle traveling on a straight line. In this model, the car body is represented

by the sprung mass ms, the pitch moment of inertia by Ip, and the front and

the rear wheels are represented respectively by the unsprung masses mu1 and

mu2. The suspension system consists of two actuators u1 and u2 in parallel

with the linear passive suspension elements ks1, cs1 and ks2, cs2. Each tire is

modeled by a simple linear spring in parallel with a linear damping element.

The variables xG and θ stand for the vertical displacement at the center of

gravity and the pitch angle of the sprung mass, respectively. The parameter

values, except ct1 and ct2, are shown in Table 6.1 where G denotes the sprung

mass center of gravity.

Figure 6.1: The half-car model of the vehicle.

Assuming that the tires behave as point-contact followers that are in

contact with the road at all times, the equations of motion take the following
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Table 6.1: The vehicle parameters for the half-car model.

Sprung mass ms 500 kg

Pitch moment of inertia Ip 2700 kgm2

Unsprung masses mu1,mu2 36 kg

Damping coefficients cs1, cs2 980 Ns/m

Suspension stiffnesses ks1, ks2 16,000 N/m

Tire stiffnesses kt1, kt2 160,000 N/m

Distance of front axle to G l1 1.5 m

Distance of rear axle to G l2 2.5 m

form:

msẍG = −ks1(x1 − x3) − cs1(ẋ1 − ẋ3) − ks2(x2 − x4)

(6.1)

−cs2(ẋ2 − ẋ4) − u1 − u2,

Ipθ̈ = −l1ks1(x1 − x3) − l1cs1(ẋ1 − ẋ3)

(6.2)

+l2ks2(x2 − x4) + l2cs2(ẋ2 − ẋ4) − l1u1 + l2u2,

mu1ẍ3 = ks1(x1 − x3) + cs1(ẋ1 − ẋ3) + u1

(6.3)

−kt1(x3 − w1) − ct1(ẋ3 − ẇ1),

mu2ẍ4 = ks(x2 − x4) + cs2(ẋ2 − ẋ4) + u2

(6.4)

−kt2(x4 − w2) − ct2(ẋ4 − ẇ2)

where we assume ct1 = ct2 = ct and the front and the rear road disturbances

and the control inputs are w1 and w2 and u1 and u2, respectively. The variables

x1, x2, x3, x4, w1, w2 are measured with respect to an inertial frame. Let

u = (u1 u2)
T and w = (w1 w2)

T .
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6.1.1 Random Road Excitations

As in the previous chapters, road roughness is typically specified as a

random process of a ground displacement power spectral density. It is assumed

that w1 obeys the relation w1 = G̃η for some linear shape filter G̃ where η

is a zero mean (spatial) unit-intensity white noise process and the transfer

function G̃ is stable and minimum phase. The latter property means that G̃

has all finite zeros in the open left-half plane. The relation between G̃ and the

power spectrum of w1 is given by Sw1
(n) = |G̃(j2πn)|2 where n is the (spatial)

frequency measured in cycles/m. The filter G̃ can be translated to the temporal

domain as G̃w1
(s) = G̃(sv−1) where v is the forward velocity of the vehicle

assumed to be constant. Hence, Sη(ω) = v−1 and Sw1
(ω) = Sη(ω)|G̃w1

(jω)|2.
In this section, we will use a first order linear shape filter:

G̃(s) =
0.0195

s+ 0.0572

which is the simplest model approximating the spectral data in [52] in the low

frequency range.

As the vehicle travels straight on a random road profile with a constant

forward velocity a correlation between the front and the rear inputs of the

vehicle is induced. The rear wheel is subject to the same road input as the

front wheel, but with a time delay Td: w2(t) = w1(t−Td) where Td = (l1+l2)/v

and (l1 + l2) is the wheel base of the vehicle. For control purposes, the pure

time delay between the front and the rear inputs may be represented by a

finite-dimensional (Pade) approximation. Then, w2(t) disappears as a variable

and the vehicle control problem can be treated in the same way as in the

single input case, as far as rms responses are concerned. For this study, a

second-order Pade approximation denoted by L(s) is sufficiently accurate.

The objective of this section is to study the rms response of the vehi-

cle. The six response variables are the front and the rear suspension travels,

the front and the rear tire deflections, the heave and the pitch accelerations,

respectively. These variables form the components of a regulated output vec-
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tor z. For the design of a feedback law, we consider the front and the rear

suspension travel measurements stacked into a measured output vector y. Pas-

senger comfort requires the rms body accelerations be as small as possible while

compactness of the rattle space, good handling characteristics, and improved

road-holding quality require the suspension travels and the tire deflections to

be kept as small as possible. It is a well-known fact [19] that these objectives

can not be met simultaneously with a passive suspension system.

Note that vSw1
(ω) → |G̃(0)|2 as v → ∞ for every fixed ω. Thus,

the effect of the wheel-hop modes on the vehicle random vibration becomes

more pronounced and to reduce the wheel-hop induced vehicle vibration, it is

necessary that control forces be applied in a large bandwidth of the frequen-

cies. In the absence of tire damping, applying large forces is not sufficient

to suppress the wheel-hop modes due to the intrinsic performance limitations

as noted earlier [18, 20]. However, as soon as a small damping is allowed in

tire model, these limitations disappear and the effect of control becomes more

pronounced [26, 68]. Hence, the performance improvement over passive sus-

pensions is expected to be significant in particular at large vehicle speeds due

to tire damping.

6.1.2 Achievable Rms Responses

Let Z(s), Y (s), U(s), and W (s) denote respectively the Laplace trans-

forms of z, y, u, and w. Write Z(s) and Y (s) as

Z = G11W +G12U,

Y = G21W +G22U.

Now, let K(s) denote the transfer function of the controller with input

y and the output u. The stabilization problem is to find a proper feedback

transfer function K such that the resulting closed-loop system is internally

stable. All compensators that stabilize G have the form [17,132]:

K = Q(I +G22)
−1, Q ∈ RH∞
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With this parametrization, the transfer matrix from w to z denoted

by Tzw(s) takes a particularly convenient form which is affine in Q:

Tzw = G11 +G12QG21. (6.5)

As Q varies over RH∞, this equation parametrizes all achievable transfer ma-

trices. Note that the feedback law relies only on the suspension travel mea-

surements.

In this section, we will parameterize all achievable rms responses of the

half-car model to random road inputs. From the definition, the auto covariance

function of z is given by

Rz(τ) =
1

2π

∫ ∞

−∞

Tzw(jω)Sw(jω)T∼
zw(jω)ejωτ dω,

The square roots of the elements in the diagonal of Rz(0) are the rms values

of the suspension travels, the tire deflections at the front and the rear corners

of the vehicle, and the body accelerations. Since w = (w1 Lw1)
T , Rz(τ) can

be written as

Rz(τ) =
1

2π

∫ ∞

−∞

Tzw


 1

L


Sw1


 1

L




∼

T∼
zwe

jωτ dω.

Hence, the sum of the diagonal elements of Rz(0) is given by

J(Q) = v−1 ‖Tzw


 1

L


 G̃w1

‖2
2. (6.6)

We will consider weighted and optimized version:

J∗(Λ) = v−1 inf
Q∈RH∞

‖ΛTzw


 1

L


 G̃w1

‖2
2 (6.7)

where Λ =diag{λ1, ...λ6} with λk ≥ 0 for all k. Thus, the optimal control

input minimizes
∑6

k=1 λ
2
k E(z2

k) with respect to all stabilizing controllers. The

weighted version of J(Q) in Equation (6.6) is denoted by J(Q,Λ).
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6.1.3 Root–Mean–Square Performance Analysis

The optimized performance index in Equation (6.7) can be written by

using Equation (6.5) as follows:

J∗(Λ) = v−1 inf
Q∈RH∞

‖F −HQJ‖2
2 (6.8)

where

F = ΛG11


 1

L


 G̃w1

,

H = −ΛG12,

J = G21


 1

L


 G̃w1

The following inequality

inf
Q∈RH∞

‖F −HQJ‖2 ≥ inf
Q∈RH∞

‖F −HQ‖2. (6.9)

is obvious. The equality is actually attained as we will see shortly. The

argument in showing the equality, however, is different than the argument

used in Chapter 5. But, let us first study the right-hand side of Eq. (6.9). The

following derivation is parallel to the quarter-car case in Chapter 5.

The matrix H has full column rank on the imaginary axis including

infinity. We perform an inner-outer factorization of H. The first step is to get

a spectral factor of H∼(s)H(s). If the quadruplet (AH , BH , CH , DH) denotes

a minimal state-space realization of H(s), then a spectral factor denoted by

Ho(s) is given by

Ho(s) = (AH , BH ,D
− 1

2 (DH
TCH +BH

TX), D
1

2 )

where D = DH
TDH and X is the stabilizing solution of the Riccati equation:

(AH −BHD
−1DH

TCH)TX +X(AH −BHD
−1DH

TCH)

−XBHD
−1BH

TX + CH
T (I −DHD

−1DH
T )CH = 0.

The inner factor is then Hi(s) = H(s)H−1
o (s). The next step is the calculation

of a complementary inner factor N⊥ of Hi, i.e., finding a matrix N⊥ that makes
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[Hi N⊥] square and inner. If (Ai, Bi, Ci, Di) is a minimal state-space realiza-

tion of Hi, then a realization of N⊥ is given by the formula [17][Lemma 13.31]:

N⊥ =
(
Ai,−Y −1CT

i D⊥, Ci, D⊥

)
where D⊥ is an orthogonal complement of Di

such that [Di D⊥] is square and orthogonal and Y is the observability Gramian

in AT
i Y + Y Ai + CT

i Ci = 0. Observe that Hi and N⊥ have the same poles.

Thus,

inf
Q∈RH∞

‖F −HQ‖2
2 = ‖N∼

⊥F‖2
2 + inf

Q∈RH∞

‖H∼
i F −HoQ‖2

2

(6.10)

= ‖N∼
⊥F‖2

2 + ‖Π⊥H∼
i F‖2

2

with

Q = H−1
o ΠH∼

i F. (6.11)

Hence, from Eq. (6.10)

vJ∗(Λ) = ‖ΠN∼
⊥F‖2

2 + ‖Π⊥N∼
⊥F‖2

2 + ‖Π⊥H∼
i F‖2

2. (6.12)

It remains to establish that Eq.(6.9) holds with equality. For Q in

Eq. (6.11), it suffices to find a Q̃ ∈ RH∞ such that Q̃J = Q. The left-hand

side of Eq. (6.9) does not change when F − HQJ is transposed. Hence, by

Lemma 6.3.10 in [132], we can safely assume that J has full column rank on

the imaginary axis including infinity. In this case, a necessary and sufficient

condition for the solvability of the equation Q̃J = Q is that J1 and J2 in

J = [J1 J2]
T be right coprime over RH∞. This is indeed the case since J1

and J2 have no open right-half plane zeros in common.

Given Λ, the corresponding optimal cost value is calculated from Eq.

(6.12). This formula holds without modification for different measurement set-

ups as well. In addition, the rms values of the control inputs can be constrained

too by augmenting u to z and expanding Λ to include weights on u. As an

application of the above formulas, we will investigate the effect of tire damping

on the optimal cost value for a choice of the weighting matrices.
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Influence of Tire Damping on the Optimal Cost

Recall the definition of the dimensionless quantity µ(ct; Λ) introduced

in Chapter 5 to quantify the active suspension performance relative to the pas-

sive suspension performance in the rms sense. In Figure 6.2, µ(ct; Λ) is plotted

versus ct for Λ = I6. This choice of Λ puts equal emphasis on the six output

rms values. The simulation was carried out for the vehicle velocities from 5

to 40 m/s. The impact of tire damping on the active suspension performance

is remarkable. The closed-loop performance is further improved by increasing

velocities as predicated by the theory.
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Figure 6.2: The optimized performance index scaled by the open-loop per-

formance index as a function of tire damping coefficient for different vehicle

velocities and Λ = I6.

It should be noted that the rms vertical acceleration is more than one

hundred times the rms suspension travels and the rms suspension travels are

about three times the rms tire deflections. Then, the choice Λ = I6 results

in dramatic reduction of the rms vertical acceleration at the expense of the

other responses. Therefore, by setting Λ to I6, we almost entirely neglect the

trade-offs: the sprung mass vertical acceleration and the pitch acceleration

versus the suspension travels and the sprung mass vertical acceleration and

the pitch acceleration versus the tire deflections. In Figure 6.3, µ(ct; Λ) is
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plotted as a function of tire damping coefficient for Λ = diag(10I2, 100I2, I2)

and v ranging from 5 to 40 m/s. The latter choice for Λ respects the trade-offs.

Although it is not as impressive as in Figure 6.2, the influence of tire damp-

ing is still felt. In the H2-optimal control context, this observation reinforces

the conclusion in [26, 68, 70, 134] that tire damping will help to improve ride

comfort while maintaining road holding ability and suspension rattle space

compactness. These numerical experiments were repeated with different vehi-

cle parameter values. But, the basic conclusion drawn above did not change.
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Figure 6.3: The optimized performance index scaled by the open-loop per-

formance index as a function of tire damping coefficient for different vehicle

velocities and Λ = diag(10I2, 100I2, I2).

The conclusions similar to the results obtained in Chapter 5 can be

drawn as follows. As in Section 5.1.1 the influence of tire damping on the

H2-optimal design of active suspension systems can be significant. In another

words, performance of an active suspension system designed by ignoring tire

damping may seriously deteriorate due to tire damping. In addition, controller

synthesis must address the issues of actuator saturation, parameter and load

variations, and robustness to uncertainties in road and tire models. The design

problem is then multi-objective synthesis of linear robust output-feedback con-

trollers, for which linear matrix inequality based solutions have been proposed
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in the literature [73].

6.2 Mixed H2/H∞ Synthesis of Half-Car Active Suspen-

sions

Let us put the half-car equations of motions given by Eqs. (6.1)–(6.4)

into state-space form. The displacements at the front and the rear wheels of

the vehicle are related to xG and θ by

 x1

x2


 = S


 xG

θ




where

S =


 1 l1

1 −l2


 .

It will be more convenient to define a new set of state variables in terms of the

old state variables and the disturbances as follows:

x̃1 = x1 − x3, x̃2 = x2 − x4, x̃3 = x3 − w1, x̃4 = x4 − w2,

(6.13)

x̃5 = ẋ1, x̃6 = ẋ2, x̃7 = ẋ3, x̃8 = ẋ4.

Let

Vi = [Vi1 Vi2]
T = ẇ,

Ms = diag(ms, Ip),

Ks = diag(ks1, ks2),

Cs = diag(cs1, cs2),

Mu = diag(mu1,mu2),

Kt = diag(kt1, kt2),

Ct = diag(ct1, ct2).

Then, the equations of motions are given in the state-space form by:

˙̃x = Ax̃+B1Vi +B2u (6.14)
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where

A =




04×4

I2 −I2
02×2 I2

K C


 , (6.15)

B1 =




02×2

−I2
N


 , (6.16)

B2 =


 04×2

W


 ,

K = −


 SM−1

s STKs 02×2

−M−1
u Ks M−1

u Kt


 ,

C = −


 SM−1

s STCs 02×2

−M−1
u Cs M−1

u (Cs + Ct)


 ,

N =


 02×2

M−1
u Ct


 ,

W =


 −SM−1

s ST

M−1
u


 .

The objective of this section is to study the multi-objective control of

a half-car active suspension system excited by random road disturbances. The

vehicle response variables that need to be examined are the heave and the pitch

accelerations of the sprung mass as indicators of the vibration isolation, the

suspension travels as measures of the rattling space, and the tire deflections

as indicators of the road-holding characteristic of the vehicle. These variables

stacked in the variable z can be written in terms of the state variables and the

control inputs as

z = (x̃1 x̃2 x̃3 x̃4 ẍG θ̈)T . (6.17)

By using state-space parameters, z can be written compactly as follows

z = C1x̃+D1u (6.18)
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where

C1 =


 I4 04×4

−M−1
s ST [Ks 02×2 Cs] 02×2


 ,

D1 =


 04×2

−M−1
s ST


 .

For the design of a feedback law, the suspension travel measurements:

y = C2x̂ (6.19)

will be considered where

C2 = [I2 02×6] .

The derivative of the road roughness is most commonly specified as

a random process µ
√
vη(t) where v is the vehicle’s forward velocity, µ is the

road roughness coefficient, and η(t) is unit-intensity white-noise process. In

this study, v and µ are fixed as v = 20 m/s and µ = 0.0027. Thus, the

covariance function of Vi denoted by RVi
satisfies

RVi
(τ) = µ2vI2 δ(τ) (6.20)

In contrast to the previous section, in this section we assume that the road

excitations at the front and rear wheels are uncorrelated.

6.2.1 Multi-Objective Control of Vehicle Suspension Systems

The primary goal of active suspension design is to improve ride com-

fort by making the heave and the pitch accelerations of the car body as small

as possible while keeping the suspension travels below the maximum allowable

suspension stroke to prevent excessive suspension bottoming, which can result

in structural damage and deterioration of ride comfort. The dynamic tire loads

should not exceed the static ones in order to ensure a firm uninterrupted con-

tact of wheels to road. Meanwhile, active forces should be amplitude bounded

to avoid actuator saturations. Thus, the design of active suspension system
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is a multi-objective control problem in which the strategy is to reduce the

accelerations while keeping the constraints satisfied. Many other constraints

can also be taken into consideration. However, the above constraints reveal all

fundamental design trade-offs.

In this section, we will consider the following dynamic output feedback

structure:

ẋc = AKxc +BKy, (6.21)

u = CKxc +DKy (6.22)

where the state-space parameters AK , BK , CK , DK of the transfer matrix

K(s) = CK(sI − AK)−1BK +DK are to be determined. The feedback config-

uration of the generalized plant defined by

G(s) =


 G11(s) G12(s)

G21(s) G22(s)


 (6.23)

which maps the pair of inputs [Vi
T uT ]T to the pair of outputs [zT yT ]T and

K(s) is shown in Fig. 6.4.

-

Vi
-

z

-

yG
-

u

�K

Figure 6.4: Standart block diagram

Let TzVi
(s) denote the closed-loop transfer function from Vi to z. The

design specifications mentioned above can be cast into the optimization prob-

lem:

J (Λ) = min
K∈RH∞

‖ΛTzVi
‖2

2 (6.24)
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The weighting matrix Λ = diag(Λ1, · · · ,Λ6) has non-negative entries. Note

from the definition of the H2-norm and the fact that the power spectrum of

Vi denoted by SVi
(jω) satisfies SVi

(jω) = µ2vI2 for all ω, Eq. (6.24) can be

written as

J (Λ) = min
K∈RH∞

1

2π

∫ ∞

−∞

Tr{ΛTzVi
(jω)T∼

zVi
(jω)Λ} dω

= (µ2v)−1 min
K∈RH∞

6∑

k=1

Λ2
k

2π

∫ ∞

−∞

T∼
zkVi

(jω)SVi
(jω)TzkVi

(jω) dω

= (µ2v)−1 min
K∈RH∞

6∑

k=1

Λ2
k E[zk]

2.

Hence, the optimal control inputs minimize a weighted combination of the

squared rms values of the outputs.

By allowing only a few of the weights in Eq. (6.24) to be non-zero,

it is conceivable to make the heave and the pitch accelerations of the body

arbitrarily close to zero at the expense of increasing the suspension travels and

the tire deflections. To respect the trade-offs, in Eq. (6.24) non-zero weights

are assigned to the suspension travels. In addition, an rms gain constraint on

the tire deflections:

‖WTzVi
‖∞ < γ, γ > 0 (6.25)

where W = diag(02×2, I2, 02×2) is imposed and Λ3 = Λ4 = 0 is set in Eq. (6.24).

This rms gain constraint shapes the optimal solution. The multi-objective con-

trol design problem can be summarized as follows:

Problem 6.2.1. For given numbers γ > 0, Λk = 0 for k = 3, 4 and Λk >

0 otherwise, design an output-feedback controller u = K(s)y that satisfies

‖WTzVi
‖∞ < γ and minimizes ‖ΛTzVi

‖2
2.

Some control design requirements were expressed in the time-domain.

The multi-objective control problem, on the other hand, has the control ob-

jective and the constraint in the frequency-domain. A linear matrix inequality

based solution will be presented. This formalism readily encompasses time-

domain constraints at a price of conservatism. By tuning the parameters γ
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and Λ, the solution of the above design problem can be adjusted to satisfy

time-domain constraints. In the next subsection, guidelines will be provided

how to choose these tuning parameters.

6.2.2 A Linear-Matrix Inequality Based Solution

Let GzkVi
denote the open-loop transfer function from Vi to zk, i.e., the

kth row of G11 in Eq. (6.23). The weighting matrix Λ and the upper bound γ

of the multi-objective control problem are chosen as follows. In Eqs. (6.3) and

(6.4), assume ct1 is equal to ct2 and denote the common value by ct. Then, given

ct compute ‖GzkVi
‖2 for k = 1, 2, 5, 6 and ‖WG11‖∞. Now, for some positive

parameters ρ1 and ρ2 set Λk = ‖GzkVi
‖−1

2 ρ1 for k = 1, 2, Λk = ‖GzkVi
‖−1

2

for k = 5, 6, and γ = ‖WG11‖∞ρ2. By these scalings, the solution of the

optimization problem can be monitored with respect to the passive suspension.

The parameter ρ1 controls the trade-offs between the suspension travels and

the sprung mass accelerations while ρ2 controls the trade-offs between the tire

deflections and the sprung mass accelerations. The optimization algorithm is

implemented by the hinfmix command of MATLAB’s LMI Control Toolbox

[27]. This command produces a controller of degree which is equal to that of

the plant.

In Figs. 6.5 and 6.6, the rms values of zk, k = 1, · · · , 6 of a vehicle

traveling with a speed of 20 m/s subjected to white-noise velocity excitatitions

are plotted as functions of tire damping coefficient for both the passive and

the active suspension systems designed with ρ1 = 0.1 and ρ2 = 1.5 using the

suspension travel measurements. As expected, the trade-offs among the ver-

tical acceleration, the pitch acceleration, the suspension travels, and the tire

deflections are notable. In particular, both the vertical and the pitch acceler-

ations are dramatically reduced while the suspension travels are increased by

about 60% and the rms tire deflections are slightly increased by about 4 %.

The rms values of u1 and u2 plotted in Fig. 6.8 for 0 ≤ ct ≤ 100 show that

actuator saturations are not likely to occur. In Fig. 6.7, the rms gain of the tire
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Figure 6.5: The rms values of the suspension travels and the tire deflections

of the vehicle subjected to white-noise velocity road inputs as functions of

ct: (-) passive suspension (front); (- -) passive suspension (rear); (-.) active

suspension (front); (:) active suspension (rear) with ρ1 = 0.1 and ρ2 = 1.5

using the suspension travel measurements.

deflections is plotted versus tire damping. The rms gain was computed with

the formula ‖WTzw‖∞ instead of ‖WTzVi
‖∞ since the former more realistically

quantifies tire deflection sensitivity to road roughness. The rms values and the

rms gain of the tire deflections decrease both for the passive and the active

suspensions as tire damping is increased from 0 to 100 while the remaining re-

sponses decrease very slowly. In fact, the decreases by percentage are 4.1 and

4.2 for the rms passive suspension tire deflections (front and rear), 4.7 and 4.9

for the rms active suspension tire deflections (front and rear), 8.7 for the rms

gain of the passive suspension tire deflections, 9.0 for the rms gain of the active

suspension tire deflections, 0.4 and 0.6 for the rms passive suspension travels

(front and rear), 0.15 and 0.2 for the rms active suspension travels (front and

rear), 0.7 for the passive suspension rms vertical acceleration, 0.2 for the active

suspension rms vertical acceleration, 0.6 for the passive suspension rms pitch

acceleration, and 0.07 for the active suspension rms pitch acceleration.
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Figure 6.6: The rms values of the vertical and the pitch accelerations of the

vehicle subjected to white-noise velocity road inputs as functions of ct: (-)

passive suspension; (-.) active suspension with ρ1 = 0.1 and ρ2 = 1.5 using

the suspension travel measurements.

To improve the suspension travel and the tire deflection responses,

this design procedure is next repeated with ρ1 = 1 and ρ2 = 1. From Figs.

6.9 and 6.10, it is seen that the rms values of the suspension travels, the tire

deflections, the vertical and the pitch accelerations are reduced by about 12%,

3%, 50%, and 45%, respectively, with respect to the passive suspension. From

Fig. 6.11, the rms gain of the tire deflections is seen to be reduced by about

4% in comparison to the passive suspension. Note from Fig. 6.12 that the rms

values of the control inputs are about 40% of the rms values in the previous

case. Thus, the new design is clearly better than the previous one. As noted

earlier, only road holding quality is notably influenced by tire damping. As a

matter of fact, the decreases by percentage are 4.1 and 4.2 for the rms passive

suspension tire deflections (front and rear), 4.0 and 4.0 for the rms active

suspension tire deflections (front and rear), 8.7 for the rms gain of the passive

suspension tire deflections, 8.0 for the rms gain of the active suspension tire

deflections, 0.4 and 0.6 for the rms passive suspension travels (front and rear),
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Figure 6.7: ‖WTzw‖∞ as a function of ct: (-) passive suspension; (-.) ac-

tive suspension with ρ1 = 0.1 and ρ2 = 1.5 using the suspension travel

measurements.

0.5 and 0.7 for the rms active suspension travels (front and rear), 0.7 for the

passive suspension rms vertical acceleration, 0.6 for the active suspension rms

vertical acceleration, 0.6 for the passive suspension rms pitch acceleration, and

0.45 for the active suspension rms pitch acceleration.

Based on these observations, it can safely be said that, with the half-

car model and the road excitation model in Eq. (6.20) only road holding quality

is influenced to some extent by tire damping in both the passive and the active

suspension systems. We investigated in Chapter 5 influence of tire damping

on the quarter-car suspensions and observed that tire damping significantly

reduces all the rms values and the tire deflection rms gains both for the active

and the passive suspensions.

The excitation model in Eq.(6.20) presumes that the velocities Vi1

and Vi2 are uncorrelated. This assumption is hardly justifiable; however, it

guarantees simultaneous excitation of the heave and the pitch motions of the

car body. The results in this section show that the body pitch significantly

impacts the closed-loop performance of the active suspension system. In other

words, decomposition of a half-car model into two independent quarter-car
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Figure 6.8: The rms values of the actuator forces as functions of ct: (-) u1;

(-.) u2 with ρ1 = 0.1 and ρ2 = 1.5 using the suspension travel measurements.

models by a linear transformation is not realistic for a study of the performance

limitations and the trade-offs.

The multi-objective control problem and consequently its solution de-

pend on the uncertain parameters ct1 and ct2. The purpose of this subsection

was to to examine the influence of tire damping on active suspension design

using linear matrix inequalities. For a given range of tire damping coefficients,

it was observed that only road holding quality was influenced to some extent

by tire damping while the rest of the responses were slightly affected. In ad-

dition, precise knowledge of tire damping is an unrealistic assumption. In the

next subsection, this assumption will be relaxed and a robust multi-objective

suspension control problem will be formulated.

6.2.3 Polytopic Vehicle Suspension Models

The multi-objective control problem solved in Section 6.2.2 assumes

exact values of the tire damping coefficients, which are difficult to estimate

since they depend on many factors and vary during ride. In this subsection,

assuming that ctk, k = 1, 2 take values in some prescribed intervals [αk, βk]
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Figure 6.9: The rms values of the suspension travels and the tire deflections

of the vehicle subjected to white-noise velocity road inputs as functions of

ct: (-) passive suspension (front); (- -) passive suspension (rear); (-.) active

suspension (front); (:) active suspension (rear) with ρ1 = 1 and ρ2 = 1 using

the suspension travel measurements.

a multi-objective controller with guaranteed performance for all possible val-

ues of tire damping coefficients will be designed. Note that this uncertainty

structure allows fast variations of the tire damping coefficients.

Let A0 and B0
1 denote the matrices A and B1 in Eqs. (6.15) and

(6.16) evaluated at ct1 = ct2 = 0 and let Ak = dA/dctk, B
k
1 = dB1/dctk,

k = 1, 2. Define three vertex systems by the quadruplets P0 =

(A0, [B0
1 B2], [C1;C2], [0 D1; 0 0]) and Pk = (Ak, [Bk

1 0], 0, 0), k = 1, 2.

Then, the quadruplet P formed conformally with P0, P1, and P2 and describing

the system studied in Section 6.2.2 can be written as

P = P0 + ct1P1 + ct2P2, ctk ∈ [αk, βk], k = 1, 2, (6.26)

which is a box in the Euclidean space of the state-space parameters. Let P de-

note the set of systems defined by Eq. (6.26). Then, the robust multi-objective

control design problem is:
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Figure 6.10: The rms values of the vertical and the pitch accelerations of

the vehicle subjected to white-noise velocity road inputs as functions of ct: (-)

passive suspension; (-.) active suspension with ρ1 = 1 and ρ2 = 1 using the

suspension travel measurements.

Problem 6.2.2. For given numbers γ > 0, Λk = 0 for k = 3, 4 and Λk > 0

otherwise, and P, design a state-feedback controller u = K0x̃ that satisfies

‖WTzVi
‖∞ < γ for all P ∈ P and minimizes sup

P∈P
‖ΛTzVi

‖2
2.

Again, this optimization problem can be solved by using linear matrix

inequalities. Its solution is implemented by the msfsyn command in MAT-

LAB’s LMI Toolbox [27]. For illustration, suppose αk = 0 and βk = 100 for

k = 1, 2. The same formulas for Λk, k = 1, · · · , 6 and γ proposed in Sec-

tion 6.2.2 can be used provided that the scalings ‖GzkVi
‖ are computed with

fixed ct1 and ct2. For the computations, ct1 = ct2 = 0 were picked and the

above optimization problem was solved . Let K0 denote the solution which

depends on the scalings ρ1 and ρ2. Using the same msfsyn command with

the uncertainty set P0, which is a singleton, and the same weights, another

controller denoted by K̄0 was obtained.

In order to see how the robust controller is performing against K̄0, fix

ct1 and ct2 and denote the corresponding system in Eq. (6.26) by Pt. Then,
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Figure 6.11: ‖WTzw‖∞ as a function of ct: (-) passive suspension; (-.) active

suspension with ρ1 = 1 and ρ2 = 1 using the suspension travel measurements.

compute the closed-loop responses of Pt using the controllers K̄0 and K0 with

a range of values for ρ1 and ρ2. It has been observed that the two response

sets are almost identical in all cases. For example, when ρ1 = ρ2 = 1, the rms

vertical accelerations are 0.10145 with K0 and 0.10160 with K̄0 corresponding

to ct1 = ct2 = 100. The last result suggests neglecting tire damping in the

design of active suspension systems for half-car models when it is difficult to

estimate tire damping coefficients.

6.3 Summary

In this chapter, the rms response of a half-car model excited by random

road inputs were studied. First, the road excitation at the front wheel was

modeled by a first-order linear shape filter driven by a white-noise input; and

the temporal correlation between the front and the rear wheels was predicted

by a second order Pade filter. It was demonstrated that the effect of tire

damping on the rms performance of actively controlled half-car models can be

significant, in particular, at high vehicle velocities. This presents an extension

of the result in [70] obtained for quarter-car suspension models to half-car
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Figure 6.12: The rms values of the actuator forces as functions of ct: (-) u1;

(-.) u2 with ρ1 = 1 and ρ2 = 1 using the suspension travel measurements.

suspension models.

Next, the road excitations at the front and the rear wheels were as-

sumed to be uncorrelated and multi-objective control of the half-car suspension

system using linear matrix inequalities was studied. It was observed that when

the tire damping coefficients are precisely estimated, their values affect to some

extent only road holding quality. In the absence of this information, a robust

controller was synthesized for a suspension system with polytopic tire damping

uncertainties. This robust controller synthesis was seen not to offer any ad-

vantage over an active suspension system designed by neglecting tire damping.

The last observation is in sharp contrast with a conclusion in [70] drawn for

a robustly controlled quarter-car active suspension system. A possible mecha-

nism for this discrepancy is the body pitch which does not allow decomposition

of the half-car model in Figure 6.1 into two independent quarter-car models by

coupling their vertical motions. This mismatch between the quarter and the

half-car active suspension behaviors can not solely be attributed to excessive

pitch moment of inertia used in the simulation study. In fact, when the value

of the pitch moment of inertia was halved the LMI designs were found to follow

the patterns displayed in Figures 6.5–6.12. The robust controller synthesis for
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this parameter value was also seen to be ineffective in coping with polytopic

tire damping uncertainties as in the previous design. In passing, the study of

achievable performance for half-car active suspensions remains future work in

a multi-input/multi-output framework.
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7 MULTI-OBJECTIVE CONTROL OF

FULL-VEHICLE SUSPENSIONS: A CASE

STUDY

This chapter is organized as follows. In Section 7.1, a seven-degrees-

of-freedom full-car model is reviewed. This model was studied in [41] where a

full-state optimal LQG regulator was designed. The LQG regulator designed

in [41] improved ride quality as quantified by the rms sprung mass vertical

acceleration by approximately 15 % relative to a soft passive suspension while

maintaining the rms suspension and tire deflections at reasonable levels. The

purpose of this chapter is to obtain further performance improvements via

LMIs and the HIFOO controllers.

7.1 The Full-Car Model

A seven degrees-of-freedom full-car model intended to study the heave,

the pitch, and the roll motions of a vehicle traveling on a straight line is shown

in Figure 7.1. In the figure, the rear anti-roll bar is not shown and the car body

is represented by the sprung mass ms connected to the four unsprung masses

mu1
, mu2

, mu3
, and mu4

, denoting respectively the wheel masses at the front-

left, the front-right, the rear-left, and the rear-right corners of the vehicle. The

sprung mass is assumed to be rigid and has freedoms of motion in the heave,

the pitch, and the roll directions while the unsprung masses are free to bounce

vertically with respect to the sprung mass. The suspension system between the

sprung mass and the unsprung masses consists of the actuators ui, i = 1, ..., 4

in parallel with the linear passive suspension elements of dampers and springs

while the tires are modeled as simple linear springs connected in parallel with

linear damping elements. The pitch and the roll angles are assumed to be

small and in this study tire damping is neglected, i.e., ct = 0. The variables
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zG, θ, and φ are the vertical displacement at the center of gravity, the pitch

and the roll angles of the sprung mass, respectively. The parameter values

are shown in Table 7.1, [41]. Assuming that the tires behave as point-contact

followers that are in contact with road at all times, the governing equations of

motion of the full-car model are derived as follows.

Table 7.1: The vehicle parameters for the full-car model.

Sprung mass ms 1460 kg

Roll moment of inertia Jx 460 kgm2

Pitch moment of inertia Jy 2460 kgm2

Left and right-front unsprung masses mu1, mu2 40kg

Left and right-rear unsprung masses mu3, mu4 35.5 kg

Left and right-front damping coefficients cA, cB 1290 Ns/m

Left and right-rear damping coefficients cC , cD 1620 Ns/m

Left and right-front suspension stiffnesses kA, kB 19,960 N/m

Left and right-rear suspension stiffnesses kC , kD 17,500 N/m

Front auxiliary roll stiffness KF 19,200 Nrad/m

Rear auxiliary roll stiffness KR 0 Nrad/m

Tire stiffnesses kT 175,500 N/m

Longitudinal distance from the front axle c.g. lf 1.011 m

to the sprung mass c.g

Longitudinal distance from the rear axle c.g. lr 1.803 m

to the sprung mass c.g

Front track width tf 1.522 m

Rear track width tr 1.510 m

Longitudinal distance from the sprung mass xd 0.32 m

c.g. to the driver

Lateral distance from the sprung mass yd 0.38 m

c.g. to the driver

Let xa = [zu1 zu2 zu3 zu4]
T denote the vector obtained by stacking the

wheel displacements. The body motion vector is defined as zq = [zG θ φ]T .

Concatenate the vertical displacements at the corners of the car body as xb =

[z1 z2 z3 z4 ]T and denote the transformation matrix relating zq to xb by Ψ,
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Figure 7.1: The full-car model of the vehicle.

i.e., xb = Ψzq. From Figure 7.1, note that Ψ is given by

Ψ =




1 −lf −tf/2
1 −lf tf/2

1 lr −tr/2
1 lr tr/2



.

Stack the road disturbances and the control inputs into two vectors w and

u as w = [w1 w2 w3 w4]
T and u = [u1 u2 u3 u4]

T . The variables xa, xb,

and w are measured with respect to an inertial frame. Let x̃ = [zq xa]
T ,

Ks = diag(d1, d2), Kt = kT I4, Cs = diag(cA, cB, cC , cD) where

d1 =


 kA +KF/t

2
f −KF/t

2
f

−KF/t
2
f kB +KF/t

2
f


 ,

d2 =


 kC +KR/t

2
r −KR/t

2
r

−KR/t
2
r kD +KR/t

2
r


 ,

Then, the equations of motion can be put into the matrix form:

M ¨̃x = C ˙̃x+Kx̃+Wu+ Pw
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where M = diag(ms, Jy, Jx,mu1, · · · , ,mu4), W = [−Ψ I4]
T , P = [04×3 Kt]

T ,

C =


 −ΨTCsΨ ΨTCs

CsΨ −Cs


 ,

K =


 −ΨTKsΨ ΨTKs

KsΨ −Ks −Kt


 ,

Let x = [x̃T ˙̃xT ]T . Thus, the equations of motion are given in the

state-space form by

ẋ = Ax+B11w +B2u (7.1)

where B11 = [04×7 P TM−T ]T , B2 = [04×7 W TM−T ]T , and

A =


 07×7 I7

M−1K M−1C


 .

7.1.1 The Road Excitation Model

A four-wheeled vehicle traveling along a road with a constant forward

velocity v is subjected to four imposed displacement excitations, one at each

wheel. The road unevenness is commonly modeled as a random excitation

process with two kinds of correlations: the cross-correlation between the left

and the right tracks and the time delay between the front and the rear wheels.

However, in this chapter the displacement excitations will be assumed to be

independent by ignoring the correlations among the wheels. This assumption

is hardly justifiable; but, guarantees simultaneous excitation of all the three

body motions.

The road displacements wk, k = 1, · · · , 4 are assumed to obey the re-

lation wk = G̃ηk for some linear shape filter G̃ where ηk are independent zero-

mean (spatial) unit-intensity white noise processes and the transfer function

G̃(s) is stable with finite number of zeros in the open left-half plane. The rela-

tion between G̃ and the power spectrum of wk is given by Swk
(f) = |G̃(j2πf)|2

where f is the (spatial) frequency measured in cycles per meter. The filter G̃
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is translated to the temporal domain as Ḡ(s) = G̃(v−1s). Hence, Sηk
(ω) = v−1

and Swk
(ω) = Sηk

(ω)|G̃wk
(jω)|2.

A first-order linear shape filter G̃(s) = bw(s+aw)−1 has been observed

to produce good match to measured road spectra by adjusting the filter param-

eters bw and aw > 0 [75]. The parameter values bw = 0.0195 and aw = 0.0572

in [75] are used in the current work. Note that the first-order shape filter

results in the road excitation model

ẇ = −vaww +
√
vbwξ (7.2)

where ξ(t) is a zero-mean vector valued white-noise process with covariance

function Rξ(τ) = I4δ(τ). If v = 20 m/sec, then wk at this speed can be thought

of integrated white-noise, in particular for frequencies larger than 0.2 Hertzs.

On the other hand, the natural frequencies of the first three modes correspond-

ing to the vehicle data in Table 7.1 are computed as 0.99, 1.23, and 1.69 Hertzs.

Thus, in the bandwidth of interest ẇ can be approximated by a vector-valued

white-noise process, and it is safe to assume that subsequent controller design

procedure is robust to small variations of aw. Moreover, an active suspension

designed in the premises of a road excitation model taking into account all

possible couplings among vehicle modes respects the well-known sprung mass

accelerations–tire deflections, suspension travels–tire deflections, and sprung

mass accelerations–suspension travels trade-offs. In fact, the body modes are

highly coupled as evidenced by the closely packed natural frequencies.

7.2 Multi-Objective Control Using LMIs

Let r denote the regulated output obtained by stacking respectively

the suspension travels, the tire deflections, the heave, the pitch, and the roll

accelerations of the driver located at longitudinal and lateral distances xd and

yd from the sprung mass center of gravity into a column vector:

r = C1x+D11w +D12u (7.3)
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where

r = (xT
b − xT

a xT
a − wT z̈d θ̈ φ̈)T ,

C1 =




Ψ − I4 04×7

04×3 I4 04×7

Ψd[03×7 I3 03×4]A


 ,

D11 =




04×4

−I4
Ψd[03×7 I3 03×4]B11


 ,

D12 =


 08×4

Ψd[03×7 I3 03×4]B2


 ,

Ψd =




1 −xd yd

0 1 0

0 0 1


 .

To improve ride comfort, the heave, the pitch, and the roll acceler-

ations of the driver, should be made as small as possible while keeping the

suspension travels below the maximum allowable suspension stroke. This is

important for preventing excessive suspension bottoming, which can result in

structural damage and deterioration of ride comfort. Also, in order to ensure

a firm uninterrupted contact of the wheels to road, dynamic tire loads should

not exceed static ones. Thus, designing control law for suspension systems is

a multi-objective control problem where the strategy is to reduce the three

body accelerations while keeping the constraints satisfied. It is a well-known

fact [19] that these conflicting objectives can not be met simultaneously with

passive suspensions; but to some extent, they can be resolved by replacing

passive suspension with an active or semi-active suspension.

For the design of a feedback law, consider the suspension travel and

the velocity measurements:

y = (xT
b − xT

a ẋT )T .
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Figure 7.2: Standard block diagram.

Note that the output vector y can be can be written as

y = C2x (7.4)

where

C2 =


 Ψ − I4 04×7

07×7 I7


 .

The dynamic output feedback structure

ẋc = AKxc +BKy

(7.5)

u = CKxc +DKy

where the state-space parameters AK , BK , CK , DK of the transfer function

F (s) : y 7→ u are to be determined will be considered in this chapter. The

feedback configuration of G(s) : [wT uT ]T 7→ [rT yT ]T and F (s) is shown in

Figure 7.2.

Let r21 = (z̈d θ̈ φ̈)T , r22 = xb −xa, r∞ = xa −w, and r2 = (rT
21 rT

22)
T .

Partition r as r = (rT
22 rT

∞ rT
21)

T . Let Tr2w(s), Tr∞w(s) and Tr2ξ(s), Tr∞ξ(s)

denote the closed-loop transfer functions w 7→ r2, r∞ and ξ 7→ r2, r∞. The

multi-objective control design problem considered in this section is then as

follows.

Problem 7.2.1. For given two matrices Λ2 and Λ∞ and a subset D of the open

left-half plane, design a controller u = F (s)y that minimizes ‖Λ∞Tr∞ξ‖2
∞ +

‖Λ2Tr2ξ‖2
2 and assigns the closed-loop poles in D.
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The choice of the weights Λ2 and Λ∞ is non-trivial due to their large

sizes. In this chapter, Λ2 and Λ∞ will be picked as block diagonal ma-

trices. In spite of simplicity, this choice leads to controllers capable of ef-

fectively suppressing road induced vehicle vibrations without compromising

road holding while maintaining suspension travels within limits. As an il-

lustration, let Gr21ξ(s), Gr22ξ(s), and Gr∞ξ(s) denote the open-loop trans-

fer matrices from ξ to r21, r22, and r∞, respectively. Given two numbers

λ, µ ∈ [0, 1], set Λ∞ = α1I4 and Λ2 = diag(α2I3, α3I4) where the scalings αk,

k = 1, 2, 3 are defined as α1 =
√
λ ‖Gr∞ξ‖−1

∞ , α2 = µ
√

1 − λ ‖Gr21ξ‖−1
2 , and

α3 = (1 − µ)
√

1 − λ ‖Gr22ξ‖−1
2 . Thus, the control objective is to minimize

α2
1‖Tr∞ξ‖∞ +α2

2E(z̈2
d + θ̈2 + φ̈2) +α2

3E‖xb −xa‖2 over F (s) in (7.5) where E(x)

denotes the expected value of a given random variable x. As the closed-loop

pole set, the open rectangle D = {z = a+ ib, −γ < a < 0, |b| < γ} for a given

γ > 0 is chosen. This simple choice stems from the fact that Problem 7.2.1

can be cast into an LMI problem with pole assignment which requires checking

the feasibility of some 171 LMIs for a positive definite unknown matrix of size

18 × 18. When the pole assignment is not enforced, LMI implementation of

any solution of Problem 7.2.1 typically yields high-gain controllers with poles

of large moduli.

One may hope to control ride comfort–suspension rattle space com-

pactness, road holding–suspension rattle space compactness, and ride comfort–

road holding trade-offs by changing the free parameters µ and λ. Another pos-

sibility is to replace ‖Λ∞Tr∞ξ‖2
∞ in the cost function with ‖Λ∞Tr∞w‖2

∞, which

seems to be a more realistic indicator of road holding. Recall the relation

Tr∞η(s) = G̃(v−1s)Tr∞w(s). This equality means that Λ∞Tr∞ξ(s) converges

to Λ∞Tr∞w(s) uniformly in finite bands of the frequencies as aw in (7.2) is

increased and bw is adjusted accordingly.

In Problem 7.2.1, the cost function was expressed in the frequency-

domain. A solution based on LMIs will be presented in the sequel. The LMI

paradigm encompasses time-domain constraints at a price of conservatism. By

tuning the design parameters, the solution of Problem 7.2.1 can also be forced
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Figure 7.3: The two components of the optimized cost as a function of λ: (x)

‖Λ∞Tr∞ξ‖∞; (*) ‖Λ2Tr2ξ‖2. The multi-objective controllers were synthesized for

γ = 200 and µ = 0.5 and 0.9 using LMIs.

to satisfy possible time-domain constraints.

7.2.1 A Design Example

In this subsection, an example illustrating properties of the multi-

objective controller designed by using LMIs is presented. First, µ was fixed as

either 0.5 or 0.9 and Problem 7.2.1 was solved for γ = 200 and 0.1 ≤ λ ≤ 0.9.

In Figure 7.3, ‖Λ∞Tr∞ξ‖∞ and ‖Λ2Tr2ξ‖2 components of the optimized cost

function are plotted versus λ for µ = 0.5 and 0.9. Observe that one component

increases as λ increases while the other decreases as in quarter-car trade-off

studies. Similar trade-off curves are obtained for the boundary cases µ = 0 and

µ = 1. The former is the road holding–suspension rattle space compactness

trade-off while the latter is the road holding–ride comfort trade-off.

Let us examine a particular solution, for example, the solution ob-

tained for λ = µ = 0.6. The rms values of r21 and r22 are respectively 3.5916
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and 0.0722 for the active suspension while the rms gain of Tr∞ξ is 0.0030.

The corresponding values for the passive suspension are respectively 4.7347,

0.0752, and 0.0090. Thus, the rms accelerations are reduced by 24 % without

increasing the rms suspension travels and the rms tire deflections. In fact,

the rms gain of tire deflections is dramatically reduced by 67 %. These re-

sults are in sharp contrast with quarter-car active suspension designs, which

can not simultaneously improve the heave acceleration, the suspension travel,

and the tire deflection responses and compare favorably with respect to the

linear-quadratic-regulator design in [41] which uses the same full-car model of

this note. More or less, performance improvements hold component-wise as

well, in particular for the three body accelerations. The rms z̈d, θ̈, and φ̈ are

respectively 2.17, 1.35, and 3.98 for the passive suspension and 1.69, 1.13, and

2.95 for the active suspension design above.

In Figure 7.4, the magnitudes of the roll-suspension travel, the roll-

tire deflection, and the roll-acceleration for the passive suspension and the

active suspension to the roll input w(t) = δre
iωt, −∞ < t < ∞ where δr =

[1 − 1 1 − 1]T is the roll-direction vector are plotted versus ω. Here, the roll-

suspension travel and the roll-tire deflection are defined respectively by δT
r r22

and δT
r r∞. The heave, the pitch, and the warp direction vectors are defined

respectively as [1 1 1 1], [1 1−1−1], and [1 −1 −1 1] [41]. The magnitude plots

of the suspension travels, the tire deflections, and the body accelerations to the

heave, the pitch, and the warp inputs resemble Figure 7.4. Thus, once more it

is acknowledged that the designed active suspension effectively suppresses body

vibrations without increasing the suspension travels and the tire deflections in

the bandwidth of interest.

Figure 7.4 reveals that the wheel-hop modes are not essentially affected

by the multi-objective controller and it may be possible to replace the 18th

order controller with one of the lower-degree controllers. This is indeed the

case and the 6th, the 8th, or the 10th order models obtained by the balanced

truncation method are as good as the original high-order controller. More

details will be provided on this.
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Figure 7.4: The roll-suspension travel, the roll-tire deflection, and the roll-

acceleration frequency response magnitudes of the passive suspension and the active

suspension system designed by solving Problem 7.2.1 via LMIs to the roll input

w(t) = δre
iωt: (-.) passive suspension; (-) active suspension.

Problem 7.2.1 was re-formulated in many different ways including up-

per bounds on the H2 and/or H∞ norms of the closed-loop transfer matrices

Λ∞Tr∞ξ and Λ2Tr2ξ with different partitioning of r; but, the basic conclusions

drawn above have remained essentially the same.

7.3 Multi-Objective Control via Fixed-Order Optimiza-

tion

In this section, we consider the following multi-objective control design

problem:

Problem 7.3.1. For given three matrices Λ1,Λ2,Λ3, two numbers β1, β2 > 0,

and a specified controller order nK, find an output-feedback controller u =
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K(s)y internally stabilizing the closed-loop system and minimizing ‖Λ1Tr21w‖∞
while satisfying ‖Λ2Tr22w‖∞ < β1 and ‖Λ3Tr∞w‖∞ < β2.

As we mentioned earlier, this is a non-convex optimization problem

solved by using the HIFOO toolbox [45] when nK is less than the order of

the passive suspension system. Recall that the optimization algorithms in

the HIFOO toolbox do not attempt to find global minimum. Thus, their

success depends on proper initialization. However, they have been successfully

applied to several benchmark problems [34]. This toolbox currently does not

accommodate norms other than the supremum norms.

The weight matrices and the parameters are chosen as follows. Af-

ter some feasibility trials, we set β1 = 1.1 and β2 = 1.2 and let Λ−1
1 =

diag(‖Gz̈dw‖∞, ‖Gθ̈w‖∞, ‖Gφ̈w‖∞), Λ−1
2 = ‖Gr22w‖∞I4, and Λ−1

3 = ‖Gr∞w‖∞I4.
Note that the transfer functions in Problem 7.3.1 are from w to the components

of r. Also, the diagonal elements of Λ are different.

In Table 7.2, the rms response variables are displayed for the passive

and the active suspensions designed by the HIFOO toolbox for different con-

troller orders. In Figure 7.5, the magnitudes of the roll-suspension travel, the

roll-tire deflection, and the roll-acceleration for the passive suspension and the

HIFOO design for nK = 6 to the roll input in Section 7.2.1 are plotted. Fig-

ures 7.4 and 7.5 are nearly the same in spite of the big difference in controller

orders.

Performance enhancements by the HIFOO designs (with respect to

the passive suspension) are remarkable: the rms accelerations are lowered more

than the LQG design in [41] when nK > 2, although numerical results for the

latter design are not reported in this chapter. If the LMI design in Section 7.2.1

is followed by balanced truncation, the rms accelerations of the reduced order

controllers are slightly less than those of the HIFOO controllers. However,

robustness of the HIFOO designs to inaccuracies in road models make them

preferable to the LQG and the LMI designs since the latter depend on the

parameters of the road model through (7.1) and (7.2).
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Table 7.2: The rms responses of the passively and actively suspended full-car model

with the HIFOO controllers of order nK .

rms ‖Tr∞ξ‖2 ‖Tr22ξ‖2 ‖Tz̈dξ‖2 ‖Tθ̈ξ‖2 ‖Tφ̈ξ‖2

Passive 0.0233 0.0752 2.1700 1.3500 3.9800

nK = 2 0.0242 0.0725 2.0381 1.3623 3.6386

nK = 4 0.0238 0.0807 1.9000 1.3189 3.2281

nK = 6 0.0237 0.0765 1.8795 1.3157 3.0871

nK = 8 0.0237 0.0765 1.8815 1.3157 3.0938

nK = 10 0.0263 0.1127 1.7619 1.2023 3.0332

7.4 Summary

In this chapter, multi-objective control of full-car suspension models

excited by random road disturbances was studied. The control problem was

first formulated as a convex mixed H2/H∞ synthesis problem and solved us-

ing LMIs. This formalism yields a controller with degree equal to the vehicle

model order. In a case study, the closed-loop performance of this controller

was found superior to the LQG design in [41]. Next, the multi-objective sus-

pension control problem was re-formulated as a non-convex and non-smooth

optimization problem with controller order constrained to be less than the

vehicle model order. Controllers of various orders were synthesized by using

the recently developed optimization algorithms in the HIFOO toolbox. Perfor-

mance enhancement similar to that of the LMI design was noted especially for

low order HIFOO controllers. Thus, multi-objective control of full-car suspen-

sions via LMIs and fixed-order optimization (as implemented by the HIFOO

toolbox) presents a promising alternative to existing LQG methods.
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Figure 7.5: The roll-suspension travel, the roll-tire deflection, and the roll-

acceleration frequency response magnitudes of the passive suspension and the HI-

FOO design for nk = 6 to roll input w(t) = δre
iωt: (-.) passive suspension; (-) active

suspension.
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8 ACTIVE SUSPENSION DESIGN FOR

IDEALIZED TRUCK CABIN

Heavy road vehicles are typically used for transportation and they

have different characteristics than those of a car. For example, heavy road

vehicles may have more than two axles and each axle weighs an order of mag-

nitude greater than a typical car axle. In addition, heavy vehicles comprise

more than one unit. To accommodate payload volume within practical vehicle

dimensions, in a heavy road vehicle the height of the vehicle’s center of mass

is generally enormous in relation to its track width, compared to cars. The

payload mass is often a large proportion of the gross vehicle mass and the pay-

load mass and its distribution along the chassis may also be highly variable.

In designing suspension systems, selection of optimum dynamic properties re-

quires performance criteria against which to judge alternatives. For example,

infra-structure damage caused by the tires of heavy vehicles traveling over

roads and bridges is a major concern while it is not an issue at all with car

suspensions. In summary, heavy road vehicles have dynamic behavior which

is significantly different than that of cars, and thus require distinct suspension

design approaches. In the comprehensive work [135], published literature on

suspension design for heavy road vehicles is surveyed and fundamental issues

in suspension design for heavy road vehicles that require further attention are

identified.

The issue of ride comfort for vehicle operations has generated consid-

erable interest recently, especially in heavy vehicle systems since long-distance

drivers are more likely to experience high levels of vibration. Vibration-related

health problems and ride comfort assessment criteria and methods are dis-

cussed in the survey paper [47]. Cabin and seat suspension (secondary suspen-

sion) provides the driver with a comfortable ride without requiring soft primary

suspension and consequent problems with vehicle handling, stability, and static

deflection. Recent activity [48–51] in the area of cabin and suspension design
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has focused on the use of controllable suspension elements which provide ride

benefits of active/semi-active primary suspension. In [48], stochastic optimal

control was used to design an active cabin suspension for a tractor semitrailer.

A pitch-plane modeling including the first bending modes of the frames is used,

and the control law is calculated for a range of vehicle speeds. Tong et al. [51]

(see, also [50]) proposed a design comprising semi-active cabin and seat suspen-

sions on a tractor-semitrailer. The suspension consists of semi-active dampers

with sky-hook controllers. Ride quality was assessed using a dynamic model

of the seated driver with only vertical degrees of freedom. Longitudinal and

pitch motions of the driver were not considered. The selected vehicle model

in [50] is planar and includes a cabin with two-degrees-of-freedom: pitch and

vertical displacement.

Very few studies took an integrated look at the primary and secondary

suspensions. In [136], elimination of the seat suspension and using softer cabin

suspension (with natural frequencies below those of the primary suspension)

and stiffer primary suspension was suggested. The author argued that primary

suspension dampers are not effective in dissipating the vibration energy due

to frame bending. The result is that the driver can experience large levels of

vibrations in the longitudinal and vertical directions depending on the cabin

mounting and location. It is also a fact that active-suspension control based

on rigid body dynamics can cause excitation of unmodelled flexural modes.

In [137, 138], flexible frames were incorporated into the authors’ ride model

and active suspension systems were designed to control the beaming. However,

this endeavor resulted with a limited success. In [139], see also [140, 141],

the frame of a prototype truck was modeled using the finite-element method.

The natural frequencies of the frame were found varying between 5.6 Hz and

31.8 Hz; but, they were neglected in the subsequent semi-active (primary)

suspension design. The control objectives were to minimize road-tire forces to

prevent road damage and to keep the accelerations of the seated driver and

the load at reasonable levels. Due to high center of mass in relation to track

width, lateral acceleration of a heavy vehicle leads to significant load transfer
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across the axles. This means that there is a strong coupling between yaw and

roll motions, which should be taken into account in the design of controlled

suspension systems.

Now, we outline the contents of this chapter. In this chapter, we

consider a prototype three degrees of freedom cabin model for a mid-sized

commercial truck. The purpose of this study is to analyze ride motions of the

cabin under random road excitations and to improve its ride performance by

designing a suitable compensator. An active suspension system is designed

using the LQG design methodology. The simulation results show that the

cabin vibrations can effectively be suppressed.

The cabin model considered in this chapter has an additional roll

degree of freedom with respect to the models surveyed above. This choice is

justified by the fact that during cornering or lane changing, roll and yaw modes

of the vehicle are excited by lateral acceleration of the vehicle. Thus, including

roll degree of freedom in the cabin model is expected to yield more realistic

suspension designs. In addition, excitation forces transmitted to the truck

cabin from the vehicle chassis are assumed to be statistically independent.

Although this assumption is not realistic since the road disturbances, which

are already temporally and spatially correlated, are further filtered by the

primary suspension system, it guarantees simultaneous excitation of the heave,

the roll, and the pitch modes of the truck cabin. Hence, it suffices to have a

crude truck model that relates in the mean-square sense the road disturbances

to the chassis displacements at the cabin suspension attachment points to

design an active or semi-active suspension system for the cabin. The truck

model can be obtained either experimentally by using the spectral estimation

algorithm developed in [57] or using a simplified bounce model of the truck.

The latter choice is opted in this chapter. Although there are many control

design methodologies available, the LQG design method was chosen because

it is intuitive and easy to implement.
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8.1 The Three–Degrees–of–Freedom Truck Cabin Model

A three degree of freedom truck cabin ride model is shown in Fig-

ure 8.1. The displacements at the chassis points A′,B′,C′,D′ with respect to

an inertial frame are denoted respectively by wA, wB, wC , wD. Let zA, zB, zC , zD

denote the displacements at the corners A,B,C,D of the cabin with respect to

an inertial frame. The cabin center of gravity, its mass, and the heave degree

of freedom are denoted respectively by G, ms, and zG. The pitch and the roll

degrees of freedom and their moments of inertia are denoted respectively by

θ, φ, Ix, and Iy.

Figure 8.1: Truck cabin model.

The cabin suspension system consists of the actuators uA, uB, uC , uD

in parallel with the linear passive suspension elements: kA, kB, kC , kD (springs)

and cA, cB, cC , cD (dampers). In front of the cabin, an anti-roll bar denoted

by KF is included. In Table 8.1, the notations for truck cabin parameters and
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the parameter values used in this study are shown. These are typical for a

mid-sized truck. This cabin model is the most flexible one since it allows all

possible cabin motions. In addition to the cabin models surveyed above, in

some cabins the front part is practically rigid and the sprung mass can only

rotate with respect to the x axis.

Table 8.1: The parameters for the truck cabin model.

Cabin mass mc 900 kg

Pitch moment of inertia Ix 700 kg m2

Roll moment of inertia Iy 650 kg m2

Front-right/left suspension stiffness kA, kB 31,000 N m−1

Rear-right/left suspension stiffness kC , kD 15,500 N m−1

Front-right/left damping coefficient cA, cB 680 Ns m−1

Rear-right/left damping coefficient cC , cD 560 Ns m−1

Front anti-roll bar stiffness KF 30,000 N m−1

Distance between front-right/left corner and cabin c. g. along x axis n3, n4 0.84 m

Distance between rear-right/left corner and cabin c. g. along x axis n1, n2 0.68 m

Distance between front-right/left corner and cabin c. g. along y axis l2 0.409 m

Distance between rear-right/left corner and cabin c. g. along y axis l1 1.091 m

Assuming that the displacements are sufficiently small from the equi-

librium, the equations of motion are derived as follows. From Figure 8.1, under

the assumption of linearity the following kinematic relations:

zA = zG + l2θ − n4φ,

zB = zG + l2θ + n3φ,

zC = zG − l1θ − n1φ,

zD = zG − l1θ + n2φ,

or compactly

zS = Sxs,
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are easily derived where

zS =




zA

zB

zC

zD



, S =




1 l2 −n4

1 l2 n3

1 −l1 −n1

1 l1 n2



, xS =




zG

θ

φ


 .

Let zA − wA and zB − wB denote the suspension strokes at corners A

and B. Then, the rotation of the anti-roll bar in the counter-clockwise direction

is given by

φF =
(zA − wA) − (zB − wB)

n3 + n4

and accordingly a pair of forces f and −f is formed:

f(n3 + n4) = KFφF ,

or more explicitly,

f = KF
(zA − zB) − (wA − wB)

(n3 + n4)2
.

Now, let FA, FB, FC , FD denote respectively the forces at the corners

A, B, C, D exerted by the suspension system. Then, the following relations

hold for FA, FB, FC , FD :

FA = −f − kA(zA − wA) − cA(żA − ẇA) − uA,

FB = f − kB(zB − wB) − cB(żB − ẇB) − uB,

FC = −kC(zC − wC) − cC(żC − ẇC) − uC ,

FD = −kD(zD − wD) − cD(żD − ẇD) − uD.

Thus,

mcz̈G = FA + FB + FC + FD,

Ixθ̈ = (FA + FB)l2 − (FC + FD)l1,

Iyφ̈ = −FAn4 + FBn3 − FCn1 + FDn2.
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Setting

w =




wA

wB

wC

wD



, u =




uA

uB

uC

uD



, z̃S = zS − w,

the following equations of motion:

mcz̈G = −[kA kB kC kD]z̃S − [cA cB cC cD] ˙̃zS − [1 1 1 1]u,

Ixθ̈ = −[kAl2 kBl2 − kC l1 − kDl1]z̃S − [cAl2 cBl2 − cC l1 − cDl1] ˙̃zS

−[l2 l2 − l1 − l1]u,

Iyφ̈ = [(kAn4 +
KF

n3 + n4

) − (kBn3 +
KF

n3 + n4

) kCn1 − kDn2]z̃S

+[cAn4 − cBn3 cCn1 − cDn2] ˙̃zS + [n4 − n3 n1 − n2]u,

or more compactly

MẍS +Kz̃S + C ˙̃zS +Wu = 0,

are obtained where

M =




mc 0 0

0 Ix 0

0 0 Iy


 ,

K =




kA kB kC kD

kAl2 kBl2 − kC l1 − kDl1

−(kAn4 + KF

n3+n4

) (kBn3 + KF

n3+n4

) − kCn1 kDn2


 ,

C =




cA cB cC cD

cAl2 cBl2 − cC l1 − cDl1

−cAn4 cBn3 − cCn1 cDn2


 ,

W =




1 1 1 1

l2 l2 − l1 − l1

−n4 n3 − n1 n2


 .
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Note that from z̃S = zS − w = SxS − w,

MẍS +KSxS −Kw + CSẋS − Cẇ +Wu = 0.

For the controlled cabin dynamics, state-space formulas will be derived

next. To this end, first let

x =


 xS

ẋS




denote the state vector and assume that the displacement vector w is the

output of the linear shape filter:

ẋw = Awxw +Bwν,

(8.1)

w = Cwxw

with dim(xw) = nw and dim(ν) = 4. Further assume that the filter (Aw, Bw, Cw, 0)

has a zero at s = ∞ with multiplicity at least two. This assumption is not

stringent and, for example, is satisfied by the vehicle system under considera-

tion. Then,

ẇ = CwAwxw + CwBwν.

Now, if ẇ is part of the output, the relative degree assumption implies that

CwBw = 0

since, otherwise, the following system

ẋw = Awxw +Bwν,

ẇ = CwAwxw + CwBwν

would only be proper. Hence,

ẍS = [−M−1KS −M−1CS M−1(KCw + CCwAw)]


 x

xw


−M−1Wu.

Let

x̃ =


 x

xw


 .
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Then,

˙̃x = Ax̃+B1ν +B2u (8.2)

where

A =




03x3 I3 03xnw

−M−1KS −M−1CS M−1(KCw + CCwAw)

0nwx6 Aw


 ,

B1 =




03×nν

03×nν

Bw


 , B2 =




03×4

−M−1W

0nw×4


 .

The filter parameters Aw, Bw, Cw can be obtained from power spec-

trum measurements at the chassis points A′,B′,C′,D′ using the subspace-based

algorithm developed in [57]. Alternatively, a transfer function relating road ex-

citations to w can be derived from first principles. This approach requires a

simple physical truck model and it will be discussed in the next section.

For feedback, assume that the accelerometer readings at the corners

A, B, C, D and the secondary suspension strokes stacked respectively into the

vectors z̈S and z̃S which can be expressed as

y =


 z̈S

z̃S


 = C2x̃+D22u

where

C2 =


 −SM−1KS −SM−1CS SM−1(KCw + CCwAw)

S 04×3 −Cw


 ,

D22 =


 −SM−1W

04×4




are available.
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Table 8.2: The parameters for the truck bounce model.

Cabin mass mc 900 kg

Sprung mass ms 5,100 kg

Unsprung mass mu 1,000 kg

Primary suspension stiffness ks 3,600,000 N/m

Secondary suspension stiffness kc 90,000 N/m

Primary damping coefficient cs 5,000 Ns/m

Secondary damping coefficient cc 2,500 Ns/m

Tire stiffness kT 8,000,000 N/m

8.2 Bounce Model of the Truck

A simplified bounce model of the truck is sketched in Figure 8.2. The

model parameters shown in Table 8.2 have been obtained by considering ’heave

only’ motion of a twelve degrees of freedom full truck model.

Figure 8.2: Bounce model of the truck.

Assuming that the tires are in contact with the road at all times, the

equations of motion are given by
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mcẍ2 = −kc(x2 − w) − cc(ẋ2 − ẇ),

msẅ = kc(x2 − w) + cc(ẋ2 − ẇ) − ks(w − x1) − cs(ẇ − ẋ1),

muẍ1 = ks(w − x1) + cs(ẇ − ẋ1) − kT (x1 − r)

where x2, w, and x1 are respectively the vertical displacements of the cabin,

the sprung and the unsprung masses. The sprung and the unsprung masses

represent respectively the truck body and the assembly of the wheels and

the axles. The variable r denotes the road unevenness. Even though we use

common symbols, these variables are not the same as the state variables and

the chassis displacements introduced in the previous section.

Next, change the state variables as:

x̄1 = x2 − w, x̄2 = w − x1, x̄3 = x1 − r, x̄4 = ẋ2, x̄5 = ẇ, x̄6 = ẋ1,

and set ζ = ṙ. Then, the transfer function Gẇζ(s) mapping ζ to ẇ is given by

the following state-space representation:

˙̄x = Ãx̄+ B̃ζ,

(8.3)

ẇ = C̃x̄

where

Ã =




0 0 0 1 −1 0

0 0 0 0 1 −1

0 0 0 0 0 1

− kc

mc

0 0 − cc
mc

cc
mc

0

kc

ms

− ks

ms

0
cc
ms

−cc + cs
ms

cs
ms

0
ks

mu

− kT

mu

0
cs
mu

− cs
mu




, B̃ = −




0

0

1

0

0

0




,

C̃ =
[

0 0 0 0 1 0
]
.
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As in Section 6.2 (see Eq. (6.20)) we will assume that the derivative of

the road roughness i.e., ζ is a random variable µ
√
vη(t) where v is the vehicle’s

forward velocity, µ is the road roughness coefficient, and η(t) is unit intensity

white-noise process. In this study, v and µ were fixed as v = 20 ms−1 and

µ = 0.0027. Thus, the covariance function of ζ denoted by Rζ satisfies

Rζ(τ) = µ2vδ(τ). (8.4)

The power spectral density of w is computed from Eqs. (8.3) and (8.4) as

Sw(ω) = µ2v |ω−1C̃(jωI6 − Ã)−1B̃|2. (8.5)
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Figure 8.3: Power spectral densities of the sprung mass displacement for

a white-noise velocity road input ζ(t) = µ
√
vη(t) and its approximation by

µ2v|Hλ(jω)|2 defined in(8.6) for λ = 0.1.

Let λ be a positive number and consider the system given by the

transfer function

Hλ(s) =
1

s+ λ
C̃(sI6 − Ã)−1B̃. (8.6)

As λ → 0, the output power spectral density of this system driven by ζ(t)

approaches to the spectral density in Eq. (8.5). In fact, from Figure 8.3 this

approximation is seen to be very accurate for all |ω| ≥ 0.02 Hz and λ ≤ 0.1.

Henceforth, we fix λ as λ = 0.1.
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Now, let the quadruplet (Âw, B̂w, Ĉw, 0) denote a state-space realiza-

tion of H0.1(s). Observe that (Âw, B̂w, Ĉw, 0) has a zero at s = ∞ with multi-

plicity at least two as required. Finally, the shape-filter parameters in Eq. (8.1)

are obtained by setting

Aw = I4 ⊗ Âw, Bw = I4 ⊗ B̂w, Cw = I4 ⊗ Ĉw.

This choice presumes that the displacements at the chassis points A′,B′,C′,D′

are uncorrelated and have identical second-order statistics. This assumption

is hardly justifiable; however, guarantees simultaneous excitation of the heave,

the pitch, and the roll motions of the truck cabin as demonstrated in the

controller design example of the next section. It is worth mentioning that the

parameter values in Tables 8.1 and 8.2 have been obtained by approximating

true values and linearizing the spring and the damper nonlinearities.

8.3 Active Suspension Design for the Truck Cabin

Recall the model derived in Section 8.1:

˙̃x = Ax̃+B1ν +B2u

(8.7)

y = C2x̃+D22u+ ξ

where ξ is an artificially introduced sensor noise with a covariance εI8. Here,

ε is a small positive number to be used as a design variable, say 10−5. The

separation principle of the linear-quadratic-design methodology will be used.

More precisely, assume the following covariance structure:

E
(
ννT

)
= I4, E

(
νξT
)

= 04×8, E
(
ξξT
)

= εI8

on the stochastic processes ν(t) and ξ(t). The filter gain Kf is computed by

the lqew command in MATLAB. Thus, the state estimator has the form:

˙̂x = Ax̂+B2u+Kf (y − C2x̂−D22u). (8.8)
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The feedback gain Kr is computed by solving the linear-quadratic regulator

problem:

min J subject to J =

∫
(ẍT

SQẍS + uTRu) dt

where Q is a diagonal matrix and R = ρI4 with ρ > 0. In the simulation,

ρ = 10−3 was picked and the entries of Q were chosen as the inverses of the

covariances E(z̈G)2, E(θ̈)2, and E(φ̈)2. Finally, u is given by

u = −Krx̂. (8.9)

8.3.1 The Closed-Loop Performance

The closed-loop state-space equations can be calculated from Eqs. (8.7),

(8.8), and (8.9) by letting ξ = 0 in (8.7) as follows



˙̃x

˙̂x


 =


 A −B2Kr

KfC2 A−B2Kr −KfC2




 x̃

x̂


+


 B1

034×4


 ν


 ẍS

u


 = −


 M−1 [KS CS − (KCw + CCwAw) WKr]

04×34 Kr




 x̃

x̂


 .

For ν satisfying Eq. (8.4), the rms heave, pitch, and roll accelerations

were computed respectively as 0.710, 0.595, and 1.339 for the passively sus-

pended cabin and 0.519, 0.455, and 0.842 for the actively suspended cabin.

The performance improvements are then by 27%, 23.5%, 37%, respectively for

the rms heave, pitch, and roll accelerations. The rms values of uA, uB, uC , uD

computed as 113.2, 113.2, 82.5, and 82.5, respectively, show that actuator

saturations are not likely to occur.

The frequency response magnitudes of the truck cabin to the warp

input ν = ejωt [1 0 0 − 1]T shown in Figures 8.4–8.6 clearly indicate that

cabin vibrations due to the road unevenness are effectively suppressed by the

controlled secondary suspension. Observe that the frequency response mag-

nitudes do not change at the heave and the wheel-hop natural frequencies of

the truck bounce model. This is not unexpected since these modes can not
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Figure 8.4: The heave acceleration frequency response magnitude of the cabin

for the warp input ν = ejωt [1 0 0 − 1]T : (–) passive suspension,(-.) active

suspension.

be controlled by the actuators in the secondary suspension system. Moreover,

the secondary suspension has little influence on the primary suspension as in-

dicated by a hardly visible peak at 1.6 Hz in Figure 8.3, which is roughly the

heave natural frequency of the cabin. In passing, it should be mentioned that

this active suspension system has been designed for a truck without payload

which is the most critical situation for ride comfort.

8.4 Summary

In this chapter, a three-degrees-of- freedom cabin ride model of a com-

mercial truck was developed for an active/semi-active suspension application.

The control design methodology based on this model is particularly simple in

that it relies on the accelerometer readings and the suspension travel measure-

ments of the cabin. An analytical model relating random excitations at the

wheels to the accelerometer readings of the chassis at the cabin suspension

attachment points can be obtained by using either well-established spectral

estimation methods or a simplified bounce model of the truck derived from
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Figure 8.5: The pitch acceleration frequency response magnitude of the cabin

for the warp input ν = ejωt [1 0 0 − 1]T : (–) passive suspension, (-.) active

suspension.

first principles with certain assumptions on the road profile. The latter route

was pursued in this chapter though the former was easy to implement since it

yields results which are irrespective of the complicacies of the primary suspen-

sion system and the road profile. For a commonly used road model in vehicle

dynamics literature, an active cabin suspension system was designed using the

LQG design methodology. The results demonstrate that the cabin vibrations

can effectively be suppressed. Experimental verification of the derived results

on full truck models and real trucks remains future work.
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9 CONCLUDING REMARKS

9.1 Contributions

The contributions of this thesis are as follows:

• A strongly consistent subspace algorithm to identify discrete-time, lin-

ear time invariant systems from nonuniformly spaced power spectrum

measurements was presented. This algorithm was illustrated with one

practical example that solves a stochastic road modeling problem. A

byproduct subspace algorithm to construct analytic functions from eval-

uations of their real or imaginary parts on finite subsets of the unit circle

was developed.

• A connection between the proposed subspace identification algorithm

and the Lagrange–Sylvester rational interpolation method was estab-

lished.

• Constraints and trade-offs at certain frequencies of closed-loop frequency

responses of quarter-car suspension models were derived. These con-

straints and trade-offs complement the existing results in the literature.

The influence of tire damping on the achievable quarter-car active sus-

pension performance was analyzed in detail. A numerical example utiliz-

ing rational interpolation in the active suspension design was provided.

• The rms and the rms gain constraints for the quarter, half, and full-car

suspension models were studied in the H2-optimal and multi–objective

control frameworks. For the quarter and half-car models, the dependance

of closed-loop rms responses on the tire damping was investigated. The

multi-objective control problem was first formulated as a convex mixed

H2/H∞ synthesis problem for the quarter, half, and full-car models and

solved by using LMIs. The LMI paradigm necessarily yields controllers
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with complexity equal to plant complexity. Next, multi-objective suspen-

sion control problem was re-formulated as a non-convex and non-smooth

optimization problem for the quarter and full-car models. This problem

was solved by using the HIFOO toolbox. In the latter problem formu-

lation, the designer is free to choose controller complexity. Best perfor-

mance enhancements were obtained with simplest HIFOO controllers,

showing that there is still room for the application of new techniques to

linear suspension control problems. Lastly, for the quarter and half-car

models the assumption that tire damping coefficient is exactly known

was relaxed and robust controllers to cope with polytopic tire damping

uncertainties were designed.

• In a case study for half-car models, we have observed that active suspen-

sion performance depends also on the correlation structure between the

wheels. An explanation is that the body pitch by coupling vertical mo-

tions doesn’t allow decomposition of half-car model into two independent

quarter-car models. This observation holds also for the full-car models

which in the literature have been suggested to be decomposed into the

heave, the pitch, and the roll components for the vehicle body and ad-

ditional warp for the wheels in contact with the road. We demonstrated

that multi-objective control methods can be applied to such large-scale

problems without relying on motion decoupling schemes.

• A three–degree–of–freedom cabin ride model for a commercial truck was

derived and an active cabin suspension system was designed by using

the LQG method and a simplified truck bounce model. The preliminary

results showed that cabin vibrations can effectively be suppressed by

the actively controlled suspension. The multi-objective control methods

studied in this thesis can equivalently be applied to this design problem.
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9.2 Recommendations for Further Research

The following topics need further attention:

• Our study of constraints on the achievable performance of controlled

vehicle suspensions is complete as far as the quarter-car model is con-

cerned. An essential tool in this study was the use of Youla factorization.

For more complicated vehicle models, i.e, half and full-car models the

development of effective tools remains an open problem.

• The conclusions drawn on the design trade-offs were based on numerical

studies only for all car models. Unlike pointwise constraints derived

for the quarter-car model, closed-form expressions for the rms and/or

the rms gain performance limits were not derived for any of the vehicle

models. This subject warrants future work.

• We have not addressed the issues of sensitivity, robustness, suspension

nonlinearities (except for tire uncertainty), parameter variations, and

unmodelled dynamics in our studies. In realistic designs they have to be

taken into account.

• Although tire damping might be diffucult to estimate and too small

to consider its effect in a design process, it should be included at the

validation stage to improve overall simulation accuracy.

• The preliminary design results obtained with the optimization algorithms

in the HIFOO toolbox are encouraging. Further numerical experiments

are necessary to confirm the good performance of non-convex and non-

smooth optimization techniques.

• Our results on the control of a cabin model for a commercial truck are

preliminary. Multi-objective control methods, i.e, mixed H2/H∞ syn-

thesis and the optimization algorithms in the HIFOO toolbox could be

used to design realistic active suspension systems for truck cabins.
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• The systems considered in this thesis are assumed to be “fully-active”.

The practical realization details for the controlled actuations and the

associated energy requirements should be considered.
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APPENDIX A

A.1 Proof of Lemma 2.2.1

Equation (2.22) implies that

Xc
C(θ) = (ejθIn − A)−1F

Xac,p
C (θ) = ej(p−1)θ(e−jθIn − AT )−1CT .

The matrix


 WC

XC


 is rank deficient if and only if there exists a row vector

[α1 · · · αp β γ] 6= 0 (A.1)

with αT
k ∈ Rm, k = 1, · · · , p and βT , γT ∈ Rn such that

[α1 · · · αp β γ]


 WC

XC


 = 0

⇐⇒

J (zk) = 0, k = 1, · · · , N (A.2)

where

J (z) =

p∑

k=1

αkz
k−1 + γzp(In − zAT )−1CT

(A.3)

+β(zIn − A)−1F.

Since J (z) is a real-rational matrix, zk is a zero of it if and only if z∗k is a zero

of it. Thus, each element of J (z) has at least 2N − 2 zeros whenever (A.2)

holds. (If zk /∈ R for all k, then the number of zeros is precisely 2N).
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Let ρ(A) be the spectral radius of A, i.e., the largest of the magnitudes

of the eigenvalues of A. The Laurent series of J (z) converges in the annulus:

DA={z ∈ C : ρ(A) < |z| < [ρ(A)]−1}. (A.4)

Each element in the rational vector J (z) is either identically zero or has at

least 2N−2 zeros at e±jθk ; but each element of J (z) can have at most p+2n−1

zeros. Since 2N ≥ p + 2n + 2, we then have J (z) ≡ 0. This implies that all

the coefficients in the Laurent expansion of J (z) are zero. Since the Laurent

series of γzp(In − zAT )−1CT starts with γCT zp and converges in the disk

Dρ={z ∈ C : |z| < [ρ(A)]−1}, (A.5)

the three terms on the right hand side of (A.3) are independent; and therefore

they are identically zero. Hence,

αk = 0, k = 1, · · · , p;

γ(z−1In − AT )−1CT ≡ 0;

β(zIn − A)−1F ≡ 0.

The minimality of (A,B,C,D) implies the minimality of (A,F,C, 1
2
E). Thus,

from the controllability of the pairs (A,F ) and (AT , CT ) we have β = γ = 0.

Hence, (A.1) is violated. Finally, note that


 WC

XC


 is rank deficient if and

only


 W

X


 is rank deficient. The last assertion is due to the fact that for

any complex matrix Z,

xTZ = 0 ⇐⇒ x [ReZ ImZ] = 0.

A.2 Proof of Lemma 2.2.3

The first two claims are obvious. From (2.67),

A′′T−1 = T−1A′, A′′Π = ΠA′. (A.6)
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Now, partition T−1 and Π as

T−1 = [t1 · · · t2n] , Π = [π1 · · · π2n] .

If ni = 1, put l = n1 + · · · + ni. Then, from (2.67)

A′′tl = µitl, A′′πl = µiπl

which shows that tl is an eigenvector of Σc associated with the eigenvalue µi.

Thus, for some Λni
∈ R

πl = Λni
tl.

This equality is due to the fact that eigenvectors corresponding to a simple real

eigenvalue span a one dimensional subspace of Rn. If ni = 2, again putting

l = n1 + · · · + ni, from (2.67) we get

A′′[tl tl+1] = [tl tl+1]Σi,

A′′[πl πl+1] = [πl πl+1]Σi

which shows that tl and tl+1 are eigenvectors of Σc associated with the eigen-

values µi± jνi. It is known that eigenvectors corresponding to a pair of simple

complex eigenvalues form a two dimensional subspace of Rn. Hence, for some

β ∈ R2×2

πl = β11tl + β12tl+1

(A.7)

πl+1 = β21tl + β22tl+1.

Multiplying both sides of the first equation in (A.7) with A′′ and using the

equations in (A.7), we get

(β12 + β21)νitl + (β22 − β11)νitl+1 = 0.

Since νi 6= 0 and tl and tl+1 are linearly independent vectors, we then must

have

β11 = β22, β21 = −β12.

It follows that

[πl πl+1] = Λi[tl tl+1]
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where

Λi=


 β11 β12

−β12 β11


 .

Let

Λc=




Λ1 0 · · · 0

0 Λ2 · · · 0
...

...
. . .

...

0 0 · · · Λk



.

Then, Λc is compatible with Σc and

[π1 · · · πn] = Λc [t1 · · · tn] . (A.8)

Likewise, for some Λac compatible with Σac we get

[πn+1 · · · π2n] = Λac [tn+1 · · · t2n] . (A.9)

Since Σac is compatible with Σc, Λac is compatible with Σc. Thus, combining

(A.8) and (A.9), we get (2.70). The last claims are easy to verify.

A.3 Proof of Theorem 2.2.3

Let

S̃N(z)=χ̂(z) F̌ + F̌ T χ̂T (z−1) + Ě.

The least-squares problem (2.92) can be written as

Ê, F̂ = arg min
Ě,F̌

(Q̂N − T̂N +DN) (A.10)

where

Q̂N =
1

N

N∑

k=1

‖R− 1

2

k S̃N(zk)‖2
F ,

T̂N =
1

N

N∑

k=1

Tr{SH
k R−1

k S̃N(zk) + S̃H
N (zk)R−1

k Sk},

DN =
1

N

N∑

k=1

‖R−1/2
k Sk‖2

F .
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In the derivation of (A.10), we have used the facts that Tr(AB) = Tr(BA)

and Tr(A) = Tr(AT ) for any matrices A and B of compatible sizes. The

boundedness of fourth order moments means the boundedness of second order

moments. More precisely, E‖ηk‖2
F ≤ [E‖ηk‖4

F ]
1

2 . Hence from (2.11) and the

chain of (in)equalities

[σ
1

2

max(Rk)]
2 = σ2

max(R
1

2

k )

≤ ‖R
1

2

k ‖2
F = Tr(Rk) = E‖ηk‖2

F ,

we get σmax(Rk) ≤ M
1

2

η . Let σmin denote the smallest singular value. The

inequality ‖XY ‖F ≥ σmin(X) ‖Y ‖F valid for any matrices of X and Y of

compatible sizes then yields

Q̂N ≥ 1

M
1

2

η N

N∑

k=1

‖S̃N(zk)‖2
F . (A.11)

From (2.91), we have for each Ě and F̌

lim
N→∞

‖S̃N − Š‖∞ = 0, w.p.1 (A.12)

where

Š(z)=χ(z) F̌ + F̌ T χT (z−1) + Ě. (A.13)

Hence,

lim
N→∞

inf Q̂N ≥M
− 1

2

η lim
N→∞

inf
1

N

N∑

k=1

‖Š(zk)‖2
F , w.p.1.

We claim that if Ě and F̌ is a nontrivial pair, then Š(z) can vanish

only at a finite number of points zk. To establish this claim, suppose that

Š(zk) = 0, k = 1, · · · ,M.

Then, from Š(z−1
k ) = ŠT (zk) we see that these inequalities are also satisfied

with z−1
k , k = 1, · · · ,M . Thus, using the same argument in the proof of

Lemma 2.2.1, if 2M−2 > 2n and the frequencies are distinct, we conclude that

Š(z) is identically zero (since its each entry can have at most 2n zeros). Let

DA and Dρ be as in (A.4) and (A.5), respectively. Then, all the coefficients in

the Laurent expansion of Š(z), which converges in DA, are zero. The Laurent
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series of F̌ T χT (z−1) starts with zF̌ T [JfKU2nΠc]
T and converges in the disk Dρ.

Therefore, the three terms on the right hand side of (A.13) are independent;

and thus they are identically zero. Hence,

Ě = 0, F̌ T (z−1In − ΣT
c )−1ΛT

c C
T ≡ 0. (A.14)

Let x ∈ Rm be such that F̌ x=β 6= 0. This is possible since Ě = 0 implies

F̌ 6= 0. Then, from the second equation in (A.14) we have

βT (z−1In − ΣT
c )−1ΛT

c C
T ≡ 0

which means that (ΣT
c ,Λ

T
c C

T ) is not a controllable pair. Since Λc is nonsin-

gular, this means (AT , CT ) is not controllable, i.e., (A,C) is not observable.

Thus, we reach a contradiction and Š(z) is nonzero in the complement of at

most 2n points. Since ‖Š(z)‖2
F is uniformly continuous on the unit circle, a

standard compactness argument then yields

‖Š(ejθ)‖2
F ≥ γ, θ ∈ ∪r

i=1[ai, bi]

for some γ > 0 and disjoint intervals [ai, bi] ⊆ [0, 2π] satisfying
∑r

i=1(bi−ai) >

π. Thus, from (2.12) we obtain for all sufficiently large N

1

N

N∑

k=1

‖Š(zk)‖2
F ≥ δγπ.

We have shown that

(Ě, F̌ ) 6= 0 ⇐⇒ lim
N→∞

inf Q̂N > 0, w.p.1. (A.15)

Let

Γ̌=


 vec(Ě)

vec(F̌ )


 .

For eack k, we can write vec(S̃N(zk)) and vec(ŠN(zk)) as linear func-

tions in Γ̌:

ÃN,k Γ̌ = vec(S̃N(zk)), ǍN,k Γ̌ = vec(ŠN(zk)). (A.16)
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for some matrices ÃN,k and ǍN,k. To be specific on this, let χ̂i(zk) and χi(zk)

denote the ith rows of χ̂ and χ(zk), respectively. Let for each k,

B̃N,k =




eT
1 ⊗ χ̂(zk) + Im ⊗ χ̂∗

1(zk)
...

eT
m ⊗ χ̂(zk) + Im ⊗ χ̂∗

m(zk)


 ,

B̌N,k =




eT
1 ⊗ χ(zk) + Im ⊗ χ∗

1(zk)
...

eT
m ⊗ χ(zk) + Im ⊗ χ∗

m(zk)


 .

Then,

ÃN,k=


 Im2 0

0 B̃N,k


 , ǍN,k=


 Im2 0

0 B̌N,k


 .

Hence,

Q̂N =
1

N

N∑

k=1

‖(Im ⊗R− 1

2

k )vec(S̃N(zk))‖2
F = Γ̌T Ξ̂N Γ̌

where

Ξ̂N=
1

N

N∑

k=1

ÃH
N,k(Im ⊗R−1

k )ÃN,k.

From (A.15), note that Ξ̂N is positive definite for all large N w.p.1. Likewise,

we can write T̂N as

T̂N = ΥN Γ̌

where

ΥN =
1

N

N∑

k=1

[vec(S∗
k)]

T (Im ⊗R−1
k )ÃN,k

+
1

N

N∑

k=1

[vec(Sk)]
T (Im ⊗R−1

k )Ã∗
N,k.

Let Γ̂N denote the least-squares solution of (2.92) in stacked form:

Γ̂N=


 vec(ÊN)

vec(F̂N)


 .
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Then,

Γ̂N = Re{Ξ̂−1
N } 1

N

N∑

k=1

Re{ÃH
N,k(Im ⊗R−1

k )vec(Sk)}.

Split Γ̂N as

Γ̂N = Γ̄N + Γ̃N

where

Γ̄N = Re{Ξ̂−1
N } 1

N

N∑

k=1

Re{ÃH
N,k(Im ⊗R−1

k )vec(S(zk))};

Γ̃N = Re{Ξ̂−1
N } 1

N

N∑

k=1

Re{ÃH
N,k(Im ⊗R−1

k )vec(ηk)}.

Let Γ denote the unknowns in stacked form:

Γ=


 vec(E)

vec(F )


 .

Observe that ifN ≥ (p/2)+n+1 and ηk = 0 for all k, then χ̂(z) = χ(z)

for all z and from (A.16)we have

vec(S(zk)) = ǍN,k Γ = ÃN,k Γ, for all k.

Hence,

Γ̂N = Re{Ξ̂−1
N } 1

N

N∑

k=1

Re {ÃH
N,k(Im ⊗R−1

k )ÃN,k Γ}

= Re{Ξ̂−1
N }Re {Ξ̂N}Γ = Γ.

This proves Lemma 2.2.4.

Now, from (2.91) we have uniformly in k

lim
N→∞

‖ÃN,k − ǍN,k‖F , w.p.1. (A.17)

Recall that Ξ̂−1
N is bounded away from zero w.p.1 for all large N ; and ÃN,k is

also uniformly bounded in k w.p.1 for all large N . Thus, the following series

Γ̄N = Γ + Re{Ξ̂−1
N } 1

N

N∑

k=1

Re {ÃH
N,k(Im ⊗R−1

k )

·(ÃN,k − ǍN,k)}Γ
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converges w.p.1 to Γ as N tends to infinity.

Finally, we study the noise term Γ̃N . Let

cN,k = Re{Ξ̂−1
N }Re {ÃH

N,k(Im ⊗R−1
k )},

dN,k = Re{Ξ̂−1
N }Im {ÃH

N,k(Im ⊗R−1
k )},

ξk = vec(Re(ηk)),

ζk = vec(Im(ηk)).

Then, we can write Γ̃N as

Γ̃N =
1

N

N∑

k=1

cN,kξk +
1

N

N∑

k=1

dN,kζk.

Let us assume for a moment that cN,k and dN,k are bounded sequences of

deterministic matrices denoted by c̄N,k and d̄N,k. Then, c̄N,kξk and d̄N,kζk are

sequences of independent zero mean random variables with uniformly bounded

fourth order moments. Thus, from the strong law of large numbers [142] each

series above tends to zero w.p.1 as N tends to infinity. Now, let

Ξ̌N=
1

N

N∑

k=1

ǍH
N,k(Im ⊗R−1

k )ǍN,k

and

c̄N,k = Re{Ξ̂−1
N }Re {ǍT

N,k(Im ⊗R−1
k )};

d̄N,k = Re{Ξ̂−1
N }Im {ǍT

N,k(Im ⊗R−1
k )}.

From (A.17),

lim
N→∞

‖Ξ̂N − Ξ̌N‖F , w.p.1;

and thus

lim
N→∞

‖cN − c̄N‖∞ = 0, w.p.1;

(A.18)

lim
N→∞

‖dN − d̄N‖∞ = 0, w.p.1

where ‖cN‖∞= sup1≤k≤N σmax(cN,k). The series

ϑ̃N =
1

N

N∑

k=1

(cN,k − c̄N,k)ξk −
1

N

N∑

k=1

(dN,k − d̄N,k)ζk
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is dominated (absolutely) by the series

‖cN − c̄N‖∞
1

N

N∑

k=1

‖ξk‖2 + ‖dN − d̄N‖∞
1

N

N∑

k=1

‖ζk‖2

where ‖x‖2 is the Euclidean norm of x ∈ Rn defined by ‖x‖2=(
∑n

j=1 |xj|2)
1

2 .

From the strong law of large numbers, we have

lim
N→∞

[
1

N

N∑

k=1

‖ξk‖2 −
1

N

N∑

k=1

E ‖ξk‖2

]
= 0, w.p.1;

lim
N→∞

[
1

N

N∑

k=1

‖ζk‖2 −
1

N

N∑

k=1

E ‖ζk‖2

]
= 0, w.p.1.

From (2.10), we have

1

N

N∑

k=1

E ‖ξk‖2 =
1

N

N∑

k=1

E ‖Re ηk‖F =
1

2N

N∑

k=1

Tr(Rk)

≤ m

2N

N∑

k=1

σmax(Rk) ≤
m

2
M

1

2

η .

Thus,

lim
N→∞

sup
1

N

N∑

k=1

‖ξk‖2 ≤
m

2
M

1

2

η , w.p.1.

Likewise,

lim
N→∞

sup
1

N

N∑

k=1

‖ζk‖2 ≤
m

2
M

1

2

η , w.p.1.

Hence, from (A.18) ϑ̃N converges to zero w.p.1 as N tends to infinity;

and therefore Γ̃N converges to zero w.p.1 as N tends to infinity. It follows that

Γ̂N converges to Γ w.p.1 as N tends to infinity.
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APPENDIX B

B.1 Proof of Lemma 3.1.1

The matrix


W ⊗ Im

X


 is rank deficient if and only if there exists a row

vector

[α0 · · · αq−1 β] 6= 0 (B.19)

with αT
k ∈ Rm, k = 0, . . . , q − 1, and βT ∈ Rn such that

[α0 · · · αq−1 β]


 W ⊗ Im

X


 = 0. (B.20)

From (3.36), (3.27), and (3.35), (3.33), equation (B.20) holds if and only if

[α0 · · · αq−1 β]
dj

dzj


 Zq(z) ⊗ Im

XC(z)




z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L,

m
dj

dzj
E(z)

∣∣∣∣
z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L, (B.21)

where

E(z)=

q−1∑

k=0

αkz
k + β(zIn − A)−1B.

Equation (B.21) implies that for each k the elements of the rational vector E(z)

have common zeros at zk with multiplicity Nk + 1. Since E(z) is real-rational,

zk is a zero of E(z) if and only if z∗k is also a zero of E(z). Therefore, E(z)

happens to have a total number of N zeros counting multiplicities. However,

the elements of E(z) have numerator degrees not exceeding n+ q − 1. Hence,

any element of E(z) cannot have N zeros. Thus, E(z) ≡ 0. This implies that
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αk = 0 for all k and β(zIn−A)−1B ≡ 0. The latter result follows from the fact

that β(zIn−A)−1B is analytic and has a zero at z = ∞; hence it is orthogonal

to
∑q−1

k=0 αkz
k. Recall that (A,B) is an uncontrollable pair if and only if it is

possible to find a vector β 6= 0 such that β(zIn − A)−1B ≡ 0. Finally, note

that


F
X̂


 is rank deficient if and only if


W ⊗ Im

X


 is rank deficient. The last

assertion is due to the fact that, for any complex matrix Z and real vector x,

xTZ = 0 ⇐⇒ x [ReZ ImZ] = 0.

B.2 Proof of Lemma 3.1.2

The matrix Y is rank deficient if and only if there exists


B

D


 6= 0 such

that

Y


 B

D


 = 0 ⇐⇒ dj

dzj
G(z)

∣∣∣∣
z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L.

As in the proof of Lemma 3.1.1, this equation implies that every element of

G(z) has a total number of N zeros counting multiplicities, a contradiction if

G(z) is not identically zero unless N ≤ n.
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