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In this thesis, statistical analysis of membership-set based esti-

mators is studied in two different settings. In the first setting, periodic

input signals and orthonormal regressors are considered. First, upper

and lower probability bounds on the diameter of the membership-set

are obtained. Then, explicit formulae for the central algorithm and the

diameter of the membership-set are derived, and the set of all projec-

tion algorithms is characterized for the special case of overparameter-

ized model structures where the number of the unknown parameters

equals the input period. In the second setting, one-dimensional para-

meter space and arbitrary scalar regressors with magnitude constraints

are considered. Non-asymptotic, order-tight, upper and lower bounds

on the convergence rate of the parameter estimate variance for the

central and the minimax algorithms are derived.
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Minimax algorithms; Convergence analysis.
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ÖZET
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ÜYELİK-SETİ BAZLI KESTİRİM ALGORİTMALARININ

İSTATİKSEL ANALİZİ

NURAY AT
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Fen Bilimleri Enstitüsü
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Danışman: Prof. Dr. Hüseyin Akçay
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Bu tezde üyelik-seti bazlı kestirim algoritmalarının istatiksel

analizi iki farklı durum için çalışıldı. İlk durumda periyodik girdi ve bi-

rimdik regresorlar kullanıldı. Bu durum için ilk önce üyelik-seti çapına

ait alt ve üst olasılık sınırları elde edildi. Daha sonra bilinmeyen para-

metre sayısının girdi periyoduna eşit olduğu durumda merkezi algorit-

maya ve üyelik-seti çapına ait kestirim değerleri verildi, ve projeksiyon

algoritmalarının oluşturduğu set karakterize edildi. İkinci durumda

tek boyutlu parametre uzayı göz önüne alınarak gelişigüzel skalar ve

büyüklük kısıtlı sistem girdileri kullanıldı. Bu durum için merkezi al-

goritma ve en küçük-en büyük algoritma varyanslarının asimptotik ol-

mayan ve gevşek olmayan yakınsama hızlarına ait alt ve üst sınırlar

hesaplandı.

Anahtar Kelimeler: Üyelik-seti; Merkezi algoritmalar; Projeksiyon

algoritmaları; En küçük-en büyük algoritmaları;

Yakınsama analizi.
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1. INTRODUCTION

System identification deals with the problem of building mathematical models

of systems based on observed data from the systems [1]. However, the observed

data are always associated with some uncertainty and the solution of the problem

depends on the type of assumptions made on uncertainty.

The classical approaches assume a probabilistic description of uncertainty

[1 – 3]. Along this direction, a variety of theoretically sound and practically effi-

cient schemes have been developed such as Maximum Likelihood, Least-Squares,

and Bayesian techniques.

An alternative approach, referred to as set membership or bounded error

approach, assumes a deterministic description of uncertainty which is known only

to have given bounds [4 – 16]. In the following, the literature on deterministic

worst case estimation, or robust estimation, is reviewed.

The problem of estimation with set membership uncertainty has been stud-

ied since the late 1960s [4 – 7]. In these studies, particularly, the state estimation

of a linear dynamic system is considered. In [4], a recursive algorithm for calcu-

lating a bounding ellipsoid which always contains the true state of the system was

developed. In [5], the characterization of the set of all possible states was provided

using the concept of support functions. Bertsekas and Rhodes [6] considered two

distinct types of constraints on the uncertain quantities: energy-type constraints

and individual instantaneous constraints; in the former case, the set of all possible

states which is an ellipsoid is characterized, while in the latter case, a bounding

ellipsoid to the set of all possible states is derived. Schlaepfer and Schweppe [7]

extended the work in [4] to the case of continuous-time linear dynamic systems,

and presented an approach for obtaining a bounding ellipsoid to the set of all

possible states.

In [8], a different perspective has been taken within the context of state

estimation of a linear dynamic system, the so-called independent time-varying

parametric uncertainties. In this setting, the set of all possible states might not

be convex due to multiplication of sets of uncertainties; hence, a recursive charac-

terization of the set of all possible states is difficult to obtain. On the other hand,

it was shown in the same work that the convex hull of the set of all possible states
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can be recursively propagated forward in time.

Some first steps in the development of a theory for parameter estimation

and in the evaluation of uncertainty intervals have been taken by Milanese and

Belforte [10]. In this study, for linear families of models and estimators, very

simple and computationally feasible algorithms were derived for evaluating uncer-

tainty intervals, and the solution to the problem of minimum uncertainty interval

estimator was given by means of a linear programming problem.

In [11], the general theory of optimal algorithms [17, 18] was applied to

solve problems in the fields of parameter estimation and time series prediction. In

particular, for linear parameterizations, the results of [10] were extended and the

derivation of computationally simple optimal algorithms for these two problems

was examined.

The investigation of the optimal algorithms and of the optimal information

for linear problems was carried on by Milanese et al. [12] where a particular

emphasis was given to constructive aspects. Two main results were [12]: first, the

Y -strong optimality (see Chapter 2 for the definition) of the central algorithm [11]

is proved; second, a simple solution to a particular case of optimal information

problem, called optimal sampling problem, is given.

Optimality properties of the central and the projection algorithms (see

Chapter 2 for the definition) for linear problems with set membership uncertainty

were investigated in [13]. Particular attention was devoted to least-squares algo-

rithms, and the noise was assumed to be unknown but bounded in the `2-norm

(Hilbert norm). Least-squares algorithms are based on the minimization of the

`2-norm of the residual. In this setting, it was shown that least-squares algorithms

are Y -strongly, and therefore, globally optimal. On the other hand, it was noted in

the same work that algorithms based on least-absolute values or minimax criteria,

in general, are neither Y -strongly optimal nor globally optimal.

Maximum Likelihood Estimators (MLEs) are commonly used in the sto-

chastic setting due to their asymptotic optimality (see, for example [19]) proper-

ties. On the other hand, it is important to know their optimality properties in

the worst case setting. To this effect, Tempo and Wasilkowski [14] studied the fol-

lowing problem: Under what circumstances are MLEs optimal in the worst case?

This problem was attacked by analyzing worst case optimality of MLEs for a num-
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ber of probability density functions (pdfs) of noise such as uniform, normal, and

Laplace. The findings were [14]: For uniform distribution, in general, MLEs are

neither optimal nor robust-interpolatory (see Chapter 2 for the definition), though

there exist two MLEs which are optimal or robust-interpolatory, if the noise is

bounded in the `∞-norm. For normal distribution, the unique MLE is robust-

interpolatory and optimal, if the noise is bounded in the `2-norm. For Laplace

distribution, the unique MLE is robust-interpolatory, if the noise is bounded in

the `1-norm, but is not optimal.

In [15], optimal algorithms for robust estimation and filtering in the pres-

ence of bounded noise were constructed, and the previous results [11] obtained

for complete (one-to-one) and approximate information were extended to the case

of partial (not necessarily one-to-one) and approximate information. The use of

partial and approximate information seems useful 1) for problems in which two

different sources of noise should be considered, for example, process and measure-

ment noise, and/or 2) for problems in which the parameters are not completely

identifiable from the measurements.

An outline of the main results in the area of estimation theory for set

membership uncertainty up to the early 1990s can be found in [16].

In many areas of signals, systems, and control theory, orthogonal functions

play an important role in subjects of analysis and design. The use of orthonormal

basis functions for system identification and approximation has been studied to a

great extent in the literature, see [20 – 30] and the references therein.

In the context of system identification, the transfer function of the system

is represented as a series expansion in terms of orthonormal basis functions, and

the identification is performed by estimating the expansion coefficients. The main

motivation for using orthonormal basis functions to represent the system is that

the resulting model structure leads to a linear regressor form (see Chapter 2).

Another factor in using orthonormal basis functions is due to their numerical

robustness property compared to non-orthonormal ones.

The most commonly used orthonormal basis, the trigonometric basis, yields

a Finite Impulse Response (FIR) model structure. However, the use of FIR model

structures to represent a system with a slow mode has the disadvantage that the

number of terms in the series expansion to provide an acceptable approximation
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of the system can be prohibitively high. To this effect, model structures allow-

ing for the encoding of prior knowledge of pole positions have been introduced,

the so-called Laguerre and Kautz models [20 – 24]. Laguerre functions involve a

scalar design parameter which is chosen in a range that matches the dominant

dynamics of the system to increase the rate of convergence of the Laguerre series

expansion. On the other hand, if prior knowledge of a resonant mode exists, it is

more appropriate to use the two-parameter Kautz basis.

A generalization of the Laguerre and Kautz models has been considered

in [24 – 30]. A state-space approach was taken in [24, 25] where use is made of

balanced realizations of inner functions. In this setting, it was shown that every

stable system gives rise to a complete set of orthonormal functions which form a

basis for the signal space of interest.

A unifying construction of orthonormal bases for system identification and

approximation was given in [28]; the well-known FIR, Laguerre, and Kautz models

are all special cases of this construction. Moreover, the unifying construction

allows prior knowledge of an arbitrary number of modes to be incorporated.

Recently, the rational wavelet basis has been suggested [26, 27]. The

wavelet basis enjoys the advantage of generalizing the FIR, Laguerre, and Kautz

models, and further the generalized orthonormal bases in [24, 25, 28 – 30]; hence,

it allows the utilization of much more prior knowledge about the system.

In the context of robust estimation, perhaps a more important question is

that whether the linear span of a basis can arbitrarily well approximate any given

element in the space in question [29]. This property is referred to as a set A being

fundamental in a space X, i.e., the closure of the linear span of A under the norm

on X is equal to X. A sufficient condition for the wavelet basis to be fundamental

in the disc algebra A(D) was stated in [27]. This result was improved in [29]

and a much milder necessary and sufficient condition for the wavelet basis to be

fundamental in A(D), and in the Hardy space Hp(D) for all 1 ≤ p < ∞ was given;

moreover, several sufficient conditions for the wavelet basis to be fundamental in

`1 were provided. To this end, re-parameterization of the linear space spanned

by the wavelet basis as the linear space spanned by the generalized orthonormal

basis of [24, 25] is utilized.

In the context of bounded error estimation, there are basically two direc-

4



tions. The first one aims to characterize the feasible parameter set, also referred

to as the membership-set (see Chapter 2); and the second one aims to compute a

specific estimate within the membership-set that enjoys some optimality proper-

ties.

For linear models, the feasible parameter set is a polytope. Even then

the computational complexity of an exact representation of this set can be quite

high, and often approximate descriptions are used. Typical choices are boxes

or ellipsoids. In [31], optimal inner bounding of the feasible parameter set by

means of balls in the `∞-norm (boxes), the `2-norm (ellipsoids), and the `1-norm

(diamonds) was investigated.

Although the characterization of the membership-set is a deterministic pro-

cedure, one may still wish to make probabilistic assumptions about its context,

as in this thesis, so as to investigate its average behavior. This line of research,

set membership identification in a probabilistic framework, has been conducted

by [32 – 41] and is reviewed next.

Some fundamental properties of the membership-set were studied by Bai

et al. [33]. Specifically, the three main problems were considered: the size of

the membership-set; optimal inputs and complexity of the membership-set based

estimators; and relations with least-squares estimate. The followings were found

[33]: First, the size of the membership-set is derived if the noise is bounded by

ε but otherwise unknown, for a given ε > 0; and the probability distribution

of the size of the membership-set is obtained if the noise is a sequence of inde-

pendent identically distributed random variables with a pdf supported in [−ε, ε].

Second, optimality conditions on the input in order to minimize the size of the

membership-set are derived. Finally, the relations between least-squares algo-

rithm and membership-set based estimators are studied, and necessary and suffi-

cient conditions under which the least-squares estimate lies in the membership-set

are obtained. In [34], an analytic center approach was proposed for bounded er-

ror parameter estimation. The analytic center minimizes the logarithmic average

output error among all the estimates within the membership-set; is an MLE for a

certain class of noise density functions; and allows an easy-to-compute sequential

algorithm. The convergence of this sequential algorithm was achieved and, more

significantly, it was shown that the number of Newton iterations required to com-
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pute a sequence of analytic centers is linear in the number of observed data points

[34]. Lastly, it was remarked that the analytic center is almost-optimal as it lies

in the membership-set. In [35], the asymptotic performance of the analytic center

approach was established and it was shown that the analytic center converges to

the true parameter under mild conditions.

The problem of robust estimation for families of noise distributions with

bounded support was examined in [36] where a specific attention was given to

minimax algorithms. The minimax algorithm has some nice robust convergence

properties [42] and also some near-optimality properties with respect to bounded

disturbances. In [36], it was shown that the minimax estimate outperforms the

least-squares estimate for certain distributions; more precisely, if the noise dis-

tribution does not vanish at its endpoints, the variance of the minimax estimate

converges to zero much faster than that of the least-squares estimate. On the

other hand, it was also noted in the same work that there are noise distributions

which make the convergence of the minimax algorithm extremely slow.

In [37], the size of the membership-set was studied in a probabilistic frame-

work; in particular, upper and lower non-asymptotic probability bounds on the

diameter of the membership-set were given assuming that the regressors are per-

sistently exciting and the measurement noise is a sequence of independent identi-

cally distributed bounded random variables. These bounds were then used in the

derivation of confidence intervals for interpolatory estimators (see Chapter 2 for

the definition) providing a criterion whether a given estimator is likely to lie in

the membership-set or not.

We remark that the diameter is more useful than the volume to quantify the

size of the membership-set since volume of a set could be zero while its diameter

is infinity at the same time.

Finite sample properties of system identification methods have been studied

both in deterministic and in stochastic settings. The deterministic setting has been

considered in [43 – 45]. In this framework, under the assumptions of unknown but

bounded noise and the system being in the model set, it was shown [43, 44] that

the required number of data points increases exponentially with the model order in

order to keep the diameter of the membership-set below a certain value (measured

in the `1-norm of the impulse response). In [45], the finite sample properties of
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worst case deterministic identification in `1 and in H∞ were studied using n-widths

and metric complexity.

The stochastic setting has been considered in [46 – 48]. In [46], the finite

sample properties of prediction error methods using a quadratic criterion function

were studied. Specifically, the following problem was considered: How many data

points are required to guarantee with high probability that the expected value of

the quadratic identification criterion is close to its empirical mean value? This

problem was resolved using risk minimization theory; more precisely, uniform

probabilistic bounds on the difference between the expected value of the squared

prediction error and its empirical mean evaluated on a finite number of data

points are derived, and therefore, the sample sizes are obtained. Further, it was

shown that the number of data points required to maintain a given bound on

the deviation grows no faster than quadratically with the number of parameters.

Similar results, concerning probabilistic bounds on the difference between the

expected value of the identification criterion evaluated at the estimated parameters

and at the optimal parameters, were obtained for a general linear model class in

[47]; nevertheless, derived bounds are known to be not tight. In [48], the finite

sample results using frequency domain measurements corrupted by Gaussian noise

were established.

1.1 Organization of the Thesis

The thesis is organized as follows:

In Chapter 2, the basic concepts in set membership identification theory

are introduced. Also, orthonormal basis functions are reviewed.

In Chapter 3, periodic input signals and orthonormal regressors are consid-

ered. First, upper and lower probability bounds on the diameter of the membership-

set are obtained. Then, explicit formulae for the central algorithm and the diam-

eter of the membership-set are derived, and the set of all projection algorithms

is characterized for the special case of overparameterized model structures. A

preliminary version of this chapter appeared in [38] and the present version is

submitted for publication [39].

In Chapter 4, one-dimensional parameter space and arbitrary scalar regres-
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sors with magnitude constraints are considered. Non-asymptotic, order-tight, up-

per and lower bounds on the convergence rate of the parameter estimate variance

for the central and the minimax algorithms are derived. The results pertaining

to statistical analysis of the central algorithm appeared in [40] and the present

version of this chapter is accepted for publication [41].

8



2. PRELIMINARIES

In this chapter, we will introduce the basic concepts in set membership identifica-

tion theory and review orthonormal basis functions. The material presented here

is fairly standard and can be found, for example, in [12, 16 – 18, 22 – 24, 28, 49].

2.1 The Setting

Let X, Y , and Z be normed linear spaces:

• X: problem element space,

• Y : measurement space,

• Z: solution space.

Suppose K to be a bounded subset of X. Consider a given operator S, called a

solution operator, which maps X into Z

S : X → Z.

The goal is to approximate S(x) for x ∈ K ⊆ X using only partial information

about x. Let H be the information operator

H : X → Y.

In general, the exact information H(x) about x is not available and only the

perturbed information y ∈ Y is known. Under the additive noise assumption, the

perturbed information y is given by

y = H(x) + η,

where η is assumed to be unknown-but-bounded, that is,

‖η‖∞ ≤ ε,

for a given ε > 0. An algorithm A is a mapping (not necessarily a linear one)

from Y into Z

A : Y → Z

which provides an approximation A(y) to S(x). Such an algorithm is also called

an estimator.

We now introduce the following sets [16]:
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• FPS(y, ε): feasible problem element set

FPS(y, ε) = {x ∈ K : ‖H(x) − y‖∞ ≤ ε} ,

• FSS(y, ε): feasible solution set

FSS(y, ε) = S(FPS(y, ε)),

• MUS(y, ε): measurement uncertainty set

MUS(y, ε) = {ȳ ∈ Y : ‖ȳ − y‖∞ ≤ ε} ,

• EUSA(y, ε): estimate uncertainty set for a given algorithm A

EUSA(y, ε) = A(MUS(y, ε)).

The process is illustrated in Figure 2.1 where K is taken to be the space

X. Note that the sets FSS(y, ε) ⊆ Z and EUSA(y, ε) ⊆ Z are usually different

since the latter depends on the particular algorithm used.

Figure 2.1: General estimation problem
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2.2 Measure of Information

In this section, we review some set-theoretic concepts such as the radius and the

diameter of a set.

Let Z be a linear normed space. Consider a set M ⊆ Z. The radius of M ,

denoted by R(M), is defined as

R(M) = inf
z∈Z

sup
a∈M

‖z − a‖Z . (2.1)

Similarly, the diameter of M , denoted by D(M), is defined by

D(M) = sup
z,a∈M

‖z − a‖Z . (2.2)

Note that one may view R(M) as the radius of the smallest ball that contains the

set M , and D(M) as the largest distance between any two elements of M . Hence,

the following relationship holds

R(M) ≤ D(M) ≤ 2R(M).

Furthermore, for any a ∈ M ,

R(M) ≤ sup
z∈M

‖z − a‖Z ≤ D(M) ≤ 2R(M).

There are several ways of measuring the size of a set including the radius,

the diameter, and the volume. In this thesis, we use the diameter of a set as a mea-

sure of its size. The local diameter of information at y is given by D(FSS(y, ε)),

whereas the global diameter of information is defined as

D(ε) = sup
y∈Y

D(FSS(y, ε)),

where

Y = {y ∈ Y : FPS(y, ε) 6= ∅}. (2.3)

Note that the local diameter of information is computed for a specific perturbed

information (or, measurement) y. On the other hand, the global diameter of

information is obtained using the set Y of measurements.

Similarly, the local radius of information and the radius of information are

given, respectively, by

R(FSS(y, ε))

and

R(ε) = sup
y∈Y

R(FSS(y, ε)). (2.4)
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2.3 Optimality Concepts

The performance of a given algorithm A can be specified according to the following

errors:

• E(A, y): Y -local error

E(A, y) = sup
x∈FPS(y,ε)

‖S(x) − A(y)‖Z ,

• E(A): global error

E(A) = sup
y∈Y

E(A, y),

where the set Y is as in (2.3).

An algorithm A] is Y-strongly optimal if

E(A], y) ≤ E(A, y), ∀A,∀y ∈ Y .

Note that Y -strong optimality is a particularly important property in system

identification, where a set of measurements is available and one wants to minimize

the error related to the worst case problem element x ∈ FPS(y, ε) for each y ∈ Y .

Similarly, an algorithm A? is called globally optimal if

E(A?) ≤ E(A), ∀A. (2.5)

It is worthwhile to observe that Y -strong optimality is stronger property than

global optimality in the sense that a Y -strongly optimal algorithm is also globally

optimal while the converse is not necessarily true.

The minimum global error (also known as the intrinsic error) is given by

the radius of information in (2.4), that is,

R(ε) = min
A

E(A).

Moreover, from (2.5) we have

E(A?) = R(ε).

It may be difficult in some cases to implement optimal algorithms. On

the other hand, almost-optimal algorithms are generally easy to implement. An
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algorithm A† is called Y-strongly almost-optimal (or Y -strongly optimal within a

factor of k, k > 1) if

E(A†, y) ≤ kE(A], y).

Likewise, an algorithm A‡ is called globally almost-optimal if

E(A‡) ≤ kE(A?) = kR(ε).

An important class of almost-optimal algorithms, interpolatory estimators,

are studied in the following section.

2.4 Interpolatory Estimators

In system identification, it is usually desired for an algorithm to provide estimates

within the feasible solution set. Interpolatory estimators form one such a case.

An algorithm Ai is called interpolatory if

Ai ∈ FSS(y, ε).

Some of the well-known interpolatory estimators are described in the following.

The most popular one is the central algorithm which picks the so-called

Chebyshev center of the feasible solution set. More precisely,

Ac = arg inf
z′∈Z

sup
z′′∈FSS(y,ε)

‖z′ − z′′‖Z . (2.6)

This is the best worst case estimate of the solution. Note that the Chebyshev

center of FSS(y, ε) needs not be unique. It is a well-known fact that any central

algorithm is Y -strongly optimal in the class of all algorithms. The problems with

central algorithms: they are known to be very sensitive to outliers and are not

robust with respect to the bound ε.

To overcome the latter, robust-interpolatory algorithms are proposed. An

algorithm Ar is called robust-interpolatory if and only if it is interpolatory for

all ε > 0. The robust-interpolatory algorithms coincide with the projection algo-

rithms [14] defined by

Ap = S(xp), xp = arg min
x∈K

‖H(x) − y‖Y . (2.7)

This is the best estimate of the solution in the sense that the Y -norm of the output

error is minimized.
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A recently introduced algorithm [34, 35] picks the analytic center of the

feasible solution set. More precisely,

Aa = S(xa), xa = arg max
x∈FPS(y,ε)

N∑

t=1

ln
(
ε2 − {[H(x) − y] (t)}2

)
, (2.8)

where N denotes the number of measurements.

Note that by definition, interpolatory estimators are Y -strongly optimal

within a factor of two. Hence,

E(Ap, y) ≤ 2E(Ac, y), ∀y ∈ Y

and

E(Aa, y) ≤ 2E(Ac, y), ∀y ∈ Y .

In this thesis, we mainly consider the central and the projection algorithms.

2.5 Application to Parameter Estimation

In this section, we apply the general framework discussed earlier to the problem

of parameter estimation. Here, the solution operator S is identity, and therefore,

the feasible solution set coincides with the feasible parameter set which will be

referred to as, hereinafter, the membership-set.

Consider a discrete-time scalar system represented by the output-error

model:

y(t) = φT (t)θ + η(t), t = 1, 2, · · · , N (2.9)

where y(t) is the system output, φ(t) ∈ Rn is the measurable regression vector,

θ ∈ Rn is the unknown parameter vector, and η(t) is the additive measurement

noise. Let u(t) be the applied input. We assume that η(t) is a sequence of

independent identically distributed random variables satisfying

‖η‖∞ = max
1≤t≤N

|η(t)| ≤ ε, ε > 0. (2.10)

The membership-set, the set of all possible parameters that are consistent

with the model (2.9), the available data {φ(t), y(t)}N
t=1, and the noise assumption

(3.3), is defined as

SN(y, u, ε)=
N⋂

t=1

{θ̂ ∈ Rn : |y(t) − φT (t)θ̂| ≤ ε}. (2.11)
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Figure 2.2: A graphical illustration of the membership-set

Figure 2.2 shows a graphical illustration of SN(y, u, ε).

From (2.1) and (2.2), the radius and the diameter of SN(y, u, ε) are given

respectively by

R(SN(y, u, ε)) = min
θ′∈SN (y,u,ε)

max
θ′′∈SN (y,u,ε)

||θ′ − θ′′||∞ (2.12)

and

D(SN(y, u, ε)) = max
θ′,θ′′∈SN (y,u,ε)

||θ′ − θ′′||∞. (2.13)

We now study the central and the projection algorithms in this framework.

From (2.6), the central estimate is given by

θ̂c = arg min
θ′∈SN (y,u,ε)

max
θ′′∈SN (y,u,ε)

||θ′ − θ′′||∞. (2.14)

Due to the `∞-norm imposed on the parameter space, from [11] we have the

following simple formula for the central algorithm for k = 1, · · · , n,

θ̂c(k) =
1

2

[
max

θ̂∈SN (y,u,ε)

θ̂(k) + min
θ̂∈SN (y,u,ε)

θ̂(k)

]
. (2.15)

Figure 2.3 shows a graphical illustration of θ̂c. Note that this estimator is also a

maximum likelihood estimator when η(t) is uniformly distributed random variable

in [−ε, ε] [14].

From (2.7), the projection algorithms are given by

θ̂p = arg min
θ̂∈SN (y,u,ε)

max
1≤t≤N

|y(t) − φT (t)θ̂|. (2.16)

Robustness properties of the projection algorithms have been studied extensively

in both set membership identification [13, 14] and worst case identification con-

texts [42, 50, 29].
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Figure 2.3: A graphical illustration of the central algorithm

2.6 Orthonormal Bases for System Identification

The main motivation for using orthonormal basis functions in system identification

and approximation is that the resulting model structure leads to a linear regressor

form. In the following, we outline this procedure.

2.6.1 A linear regression form

Consider a discrete-time scalar system represented by

y(t) = g(t) ∗ u(t). (2.17)

Here, y(t) is the output, g(t) is the impulse response, u(t) is the input, and the

convolution operator is

g(t) ∗ u(t) =
∞∑

τ=0

g(τ)u(t − τ).

Suppose the transfer function G(z) is represented as

G(z) =
∞∑

k=0

θ(k)Gk(z),

where Gk(z) are the orthonormal basis functions and θ(k) are the expansion co-

efficients. Then, (2.17) can be written as the following linear regressor form

y(t) = φT (t)θ

and

φT (t)θ =
∞∑

k=0

θ(k)[gk(t) ∗ u(t)],

where gk(t) are the impulse responses of the orthonormal basis functions.

Next, we examine some of the well-known orthonormal basis functions.
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2.6.2 Orthonormal bases

FIR Basis

The simplest choice for the basis functions

Gk(z) = z−k, k ≥ 0

leads to the FIR model structures. However, the representation of a system with

poles close to the unit circle in terms of this basis is not appropriate since the

number of terms in the series expansion to provide an acceptable approximation

of the system can be prohibitively high.

On the other hand, a prior knowledge of the underlying dynamics can be

incorporated into the model structure leading to the popular use of the so-called

Laguerre model.

Laguerre Basis

The Laguerre basis is given by [20, 22]

Gk(z) =

(√
1 − ξ2

z − ξ

)(
1 − ξz

z − ξ

)k

, k ≥ 0,

where ξ ∈ R, |ξ| < 1 is a free parameter. The design parameter ξ is chosen in

a range that matches the dominant dynamics of the system. Note that the FIR

model is a special case of the Laguerre structure when ξ = 0.

The Laguerre basis allows only the incorporation of prior knowledge of non-

resonant dynamics. When prior knowledge of a resonant mode exists it is more

appropriate to use the Kautz basis.

Kautz Basis

The two-parameter Kautz basis is given by [23]

Gk(z) =





√
(1−a2)(1−c2)

z2−a(c+1)z+c

(
cz2−a(c+1)z+1
z2−a(c+1)z+c

) k−1

2 , k odd√
(1−c2)(z−a)

z2−a(c+1)z+c

(
cz2−a(c+1)z+1
z2−a(c+1)z+c

) k
2 , k even

where |a| < 1, |c| < 1, and k ≥ 0. Note that the Laguerre model is a special case

of the Kautz structure when the poles are real and equal.

For systems with several resonant/non-resonant dynamics, model struc-

tures allowing for the encoding of prior knowledge of several modes would be

more desirable.
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Generalized Orthonormal Bases

These basis functions are generated from a balanced realization of a given inner

function [24, 25]. They allow the incorporation of prior information about a set

of the poles of the underlying dynamics. In [28], the simple construction

Gk(z) =




√
1 − |zk|2
z − zk




k−1∏

i=0

(
1 − z̄iz

z − zi

)
, k ≥ 0 (2.18)

is proposed. This structure allows prior knowledge about an arbitrary number,

say n, of modes {z0, z1, · · · , zn−1} to be incorporated. Moreover, the well-known

FIR, Laguerre, and Kautz models are all special cases of this construction.
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3. SET MEMBERSHIP IDENTIFICATION WITH PERIODIC

INPUTS AND ORTHONORMAL BASIS FUNCTIONS

In this chapter, we will consider periodic input signals and the orthonormal re-

gressors. First, we will derive upper and lower probability bounds on the diameter

of the membership-set. Then, we will study the central and the projection algo-

rithms for the special case that the number of the unknown parameters equals

the input period, in other words, the overparameterized model structures. We

will derive explicit formulae for the central algorithm and the diameter of the

membership-set, and characterize the set of all projection algorithms.

3.1 Problem Formulation

Consider the discrete-time scalar system in (2.9). For convenience, we repeat here:

y(t) = φT (t)θ + η(t), t = 1, 2, · · · , N (3.1)

where y(t) is the system output, φ(t) ∈ Rn is the measurable regression vector,

θ ∈ Rn is the unknown parameter vector, and η(t) is the additive measurement

noise.

We assume a linear regression model:

φT (t)θ =
n∑

k=1

θ(k)[gk(t) ∗ u(t)], (3.2)

where u(t) is the applied input, and gk(t) are the impulse responses of the ortho-

normal basis functions [24, 28, 29]. Note that the orthonormal basis functions can

be constructed, for example, as in (2.18).

The use of the basis functions defined by (2.18) is especially fruitful when

some amount of data about the (main) time constants of the system at hand

is available. This prior knowledge is reflected in the choice of the poles of the

basis functions and the accuracy of this information has a strong influence on the

number of significant parameters to be estimated.

In the model (3.1), we assume that η(t) is a sequence of independent iden-

tically distributed random variables satisfying (2.10), that is,

max
1≤t≤N

|η(t)| ≤ ε, ε > 0. (3.3)

19



In [33], the volume of the membership-set and the optimal input design for

FIR models and periodic inputs for the special case that the number of parameters

equals the input period was studied in a statistical framework.

In this chapter, we study a generalization of this problem to the linear re-

gression model (3.2). We derive exact expressions for the central algorithm (2.15)

and the diameter of the membership-set (2.13), and characterize the solution set

of the projection algorithms (2.16) denoted by PN(y, u), under the assumption

that u(t) is an m-periodic sequence:

u(t + im) = u(t), for all integers i (3.4)

and m equals n. This restriction amounts to overparameterizing the linear regres-

sion model (3.2) where m represents an upper bound on the number of parameters

to be estimated for a given periodic input signal.

In practice, the periodicity and the model order constraints are not essen-

tial for the application of the central and the projection algorithms. However, the

statistical analysis of the resulting estimators is very difficult since in general it is

impossible to give closed form expressions for them that are valid even asymptot-

ically. In [36], the simple case of a single constant regressor is considered. We also

note that if the chosen basis poles are close to the system poles, a small number

of the basis functions is sufficient to accurately model the dynamics. Thus, from

a practical standpoint (3.4) is not very restrictive as it looks.

In throughout the chapter, inequalities between vectors, such as x ≤ y, are

to be interpreted componentwise, and 1 denotes vectors with entries equal one.

3.2 Membership-Set with Periodic Inputs and Orthonormal Regres-

sors

In this section, we show that SN(y, u, ε) is reduced to a convex polytope supported

by 2m hyperplanes in Rn when u(t) is an m-periodic sequence. Let U denote the

circulant matrix

U=




u(1) u(m) · · · u(2)

u(2) u(1) · · · u(3)
...

...
. . .

...

u(m) u(m − 1) · · · u(1)




. (3.5)
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Define Ĝ ∈ Rm×n by

Ĝ= [ĝ1 ĝ2 · · · ĝn] , (3.6)

where ĝk denote the estimates of the impulse response coefficients of Gk(z) defined

by

ĝk(i)=
1

m

m−1∑

l=0

Gk(e
j 2π

m
l) e−j 2π

m
li, 0 ≤ i < m. (3.7)

Lemma 3.2.1 Consider the set SN(y, u, ε) defined by (2.11). Let

y(t)= min
i≥0

y(t + im), y(t)= max
i≥0

y(t + im), t = 1, 2, · · · ,m. (3.8)

Let u(t), U , and Ĝ be as in (3.4), (3.5), and (3.6). Then,

SN(y, u, ε) = {θ̂ ∈ Rn : y − ε1 ≤ U Ĝ θ̂ ≤ y + ε1}. (3.9)

Proof. The membership-set is described by the following inequalities

y(t) − ε ≤
n∑

k=1

[gk(t) ∗ u(t)] θ̂(k) ≤ y(t) + ε, t = 1, 2, · · · , N. (3.10)

Under the m-periodicity assumption on u(t) note that

n∑

k=1

[gk(t) ∗ u(t)] θ̂(k) =
n∑

k=1

∞∑

ζ=0

gk(ζ)u(t − ζ) θ̂(k)

=
m−1∑

i=0

u(t − i)
n∑

k=1

∞∑

ζ=0

gk(i + mζ) θ̂(k)

= κT (t) Ξ θ̂

where

κT (t) = [u(t) · · · u(t − m + 1)],

Ξ(i, k) =
∞∑

ζ=0

gk(i + mζ), 0 ≤ i < m, 1 ≤ k ≤ n.

Thus,

max
i≥0

y(t + im) − ε ≤ κT (t) Ξ θ̂ ≤ min
i≥0

y(t + im) + ε. (3.11)

Now, evaluate

Gk(e
jθ) =

∞∑

ζ=0

gk(ζ) ejζθ

at the m roots of 1

Gk(e
j 2π

m
l) =

∞∑

ζ=0

gk(ζ) ej 2π
m

lζ , l = 0, · · · ,m − 1 (3.12)
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and multiply (3.12) with 1
m

e−j 2π
m

li and sum over l to get

ĝk(i) =
1

m

m−1∑

l=0

Gk(e
j 2π

m
l) e−j 2π

m
li

=
∞∑

ζ=0

gk(ζ)
1

m

m−1∑

l=0

ej 2π
m

l(ζ−i)

(3.13)

= Ξ(i, k).

Hence, (3.9) follows from (3.5)–(3.8), (3.11), and (3.13).

Letting for t = 1, 2, · · · ,m,

η(t)= min
i≥0

η(t + im), η(t)= max
i≥0

η(t + im), (3.14)

we can write y and y as

y = U Ĝ θ + η, y = U Ĝ θ + η. (3.15)

Then, from Lemma 3.2.1

SN(y, u, ε) = θ ⊕ {θ̃ ∈ Rn : η − ε1 ≤ U Ĝ θ̃ ≤ η + ε1}. (3.16)

Note that if η(t) is a sequence of independent identically distributed random

variables, then the marginal and the joint probability distribution functions of

the order statistics η(t) and η(t) can be computed from a knowledge about the

distribution function of η(t), see for example Appendix A or [51]. In addition,

(η(k), η(k)) and (η(l), η(l)) are independent pairs if k 6= l. This greatly simplifies

the stochastic analysis of the membership-set, and therefore, the interpolatory

estimators.

3.3 The Size of the Membership-Set

In this section, we obtain upper and lower probability bounds on the diameter of

the membership-set. We remark that in the following D(SN(y, u, ε); `2) denotes

the membership-set diameter in the `2-norm.

Lemma 3.3.1 Consider the system represented by (3.1). Let u(t) be an m-

periodic sequence; and η and η be as in (3.14). Let

U = U Ĝ, (3.17)
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where U and Ĝ are as in (3.5) and (3.6), respectively. Let σ and σ denote the

largest and the smallest singular values of U . Then,

1

σ
(ε − max

1≤t≤m
e′′(t)) ≤ D(SN(y, u, ε); `2) ≤

2
√

m

σ
(ε − min

1≤t≤m
e′(t)), (3.18)

where for t=1,...,m,

e′(t)= min{−η(t), η(t)}, e′′(t)= max{−η(t), η(t)}. (3.19)

Proof. Let

S̃N(y, u, ε) = {θ̃ ∈ Rn : η − ε1 ≤ U θ̃ ≤ η + ε1}. (3.20)

From 3.16,

SN(y, u, ε) = θ ⊕ S̃N(y, u, ε).

Thus,

D(SN(y, u, ε); `2) = D(S̃N(y, u, ε); `2)

and 0 ∈ S̃N(y, u, ε). Let x ∈ S̃N(y, u, ε). From the following inequalities

‖Ux‖∞ ≥ 1√
m

‖Ux‖2 ≥
σ√
m
‖x‖2,

observe that there exists an index 1 ≤ k(x) ≤ m which depends on x and satisfies

|
n∑

l=1

U(k(x), l)xl| ≥
σ√
m
||x||2.

Equivalently,

n∑

l=1

U(k(x), l)xl ≥
σ√
m
‖x‖2 or

n∑

l=1

U(k(x), l)xl ≤ − σ√
m
‖x‖2. (3.21)

Moreover, from (3.20) the following inequalities

η(k(x)) − ε ≤
n∑

l=1

U(k(x), l)xl ≤ η(k(x)) + ε (3.22)

are satisfied. Hence, we have from (3.22) when the first inequality in (3.21) holds

‖x‖2 ≤
√

m

σ
(ε + η(k(x)) ≤

√
m

σ
max

1≤t≤m
(ε + η(t))

and when the second inequality in (3.21) holds

‖x‖2 ≤
√

m

σ
(ε − η(k(x)) ≤

√
m

σ
max

1≤t≤m
(ε − η(t)).
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Thus,

‖x‖2 ≤
√

m

σ
max

1≤t≤m
{ε + η(t), ε − η(t)}, for all x ∈ S̃N(y, u, ε). (3.23)

Using the triangle inequality with (3.23) yields the upper bound in the lemma as

follows

D(S̃N(y, u, ε); `2) ≤
2
√

m

σ
max

1≤t≤m
{ε + η(t), ε − η(t)}. (3.24)

To establish the lower bound, we define a subset of S̃N(y, u, ε) by

ŜN(y, u, ε)={x ∈ Rn : ( max
1≤t≤m

η(t) − ε)1 ≤ Ux ≤ ( min
1≤t≤m

η(t) + ε)1}

which contains the origin. Thus,

D(ŜN(y, u, ε); `2) ≤ D(S̃N(y, u, ε); `2). (3.25)

Let x̃ ∈ Rn be any vector such that

‖x̃‖2 =
1

σ
(ε − max

1≤t≤m
{−η(t), η(t)}). (3.26)

Then, x̃ ∈ ŜN(y, u, ε) and

D(ŜN(y, u, ε); `2) ≥ ‖x̃‖2. (3.27)

The inequalities (3.25) and (3.27) with (3.26) yield the lower bound in the lemma

which completes the proof.

Observe from (3.18) that the upper and lower bounds on the diameter of

the membership-set weakly depend on the inputs. In particular, they involve only

the smallest and the largest singular values of U .

Probability Bounds on the Diameter of the Membership-Set

Suppose that η(t) is a sequence of independent identically distributed random

variables in [−ε, ε]. Let e′(t) and e′′(t) be as in (3.19); and N = Mm for some

positive integer M . Let

ν̂=ε − νσ

2
√

m
. (3.28)

Taking the probabilities of the right-hand side inequality of (3.18), we get

Prob(D(SN(y, u, ε); `2) > ν) ≤ Prob( min
1≤t≤m

e′(t) < ν̂)

= 1 −
m∏

t=1

Prob(e′(t) ≥ ν̂)

= 1 −
m∏

t=1

Prob(η(t) ≤ −ν̂, η(t) ≥ ν̂). (3.29)
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In the following, we further assume that η(t) has a symmetric distribution which

does not contain any point masses except possibly at the end points of its support.

Since

Prob(η(t) ≤ −ν̂, η(t) ≥ ν̂) = 1 − Prob(η(t) > −ν̂) − Prob(η(t) < ν̂)

+Prob(−ν̂ < η(t) ≤ η(t) < ν̂)

= 1 − (1 − Fη(−ν̂))M − FM
η (ν̂)

+(Fη(ν̂) − Fη(−ν̂))M

= 1 − 2F M
η (ν̂) + (2Fη(ν̂) − 1)M ,

the upper probability bound on the membership-set diameter is given by

Prob(D(SN(y, u, ε); `2) > ν) ≤ 1 − [1 − 2F M
η (ν̂) + (2Fη(ν̂) − 1)M ]m. (3.30)

Note that if 0 < Fη(ν̂) < 1, then Prob(D(SN(y, u, ε); `2) > ν) converges to zero

as N → ∞.

Definition 3.3.1 A bound ε on η(t) is said to be tight bound, if for each µ > 0

satisfying ε > µ,

Prob(η(t) ≥ µ) > 0 and Prob(η(t) ≤ −µ) > 0.

Thus, if ε is a tight bound on η(t), we have

lim
N→∞

Prob(D(SN(y, u, ε); `2) > ν) = 0, ν > 0.

Let

ν∗=ε − σν. (3.31)

Taking the probabilities of the left-hand side inequality of (3.18), we obtain the

lower probability bound on the membership-set diameter as follows

Prob(D(SN(y, u, ε); `2) > ν) ≥ Prob( max
1≤t≤m

e′′(t) < ν∗)

= [2Fη(ν
∗) − 1]N . (3.32)

Note that if Fη(ν
∗) = 0 and N is even, then Prob(D(SN(y, u, ε); `2) > ν) = 1.

Thus, if ε is not a tight bound on η(t), the membership-set can not converge to a

singleton as noted in [33, 37].
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3.4 An Overparameterized Model Structure

In the context of system identification, typically the model order is chosen on a

trial-and-error basis after the input is chosen and the data are collected. With

periodic inputs, it suffices to let m ≥ n for the parameter identifiability [1].

Then, we may interpret m as an upper bound on the number of parameters

to be identified, and the constraint n equals m is equivalent to employing an

overparameterized model structure. However, this choice greatly simplifies the

ensuing analysis as shown in the following.

Assuming m = n, we let

V = Ĝ−1U−1. (3.33)

Thus, from (3.16)

SN(y, u, ε) = θ ⊕ V{x̃ ∈ Rn : η − ε1 ≤ x̃ ≤ η + ε1}. (3.34)

If the basis functions are uniformly exponentially stable, then uniformly in

k,

lim
n→∞

‖ĝk − gk‖∞ = 0. (3.35)

In fact, the convergence rate is geometric. The basis functions in (2.18) are uni-

formly exponentially stable if and only if there exists an r < 1 such that for all

n,

max
1≤k≤n

|zk| < r. (3.36)

Hence, provided that the basis functions are orthonormal and satisfy (3.36), the

following holds

lim
n→∞

Ĝ−1 = lim
n→∞

ĜT (3.37)

where ĜT denotes the transpose of Ĝ.

It is a well-known fact that the inverse of a circulant matrix is also a

circulant matrix [52]. Thus,

V = U−1

is also a circulant matrix with the first row vector denoted by [v(1) v(n) · · · v(2)].

Ordinarily, the central algorithm is not robust-interpolatory if m > n [13].

On the other hand, the following result establishes that for the special case con-

sidered in this section the central algorithm is also robust-interpolatory.
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Theorem 3.4.1 Consider the central algorithm in (2.15). Suppose u(t) is an n-

periodic sequence. Let y and y be as in (3.8); η and η be as in (3.14); and V be

as in (3.33). Then,

θ̂c = V y + y

2
. (3.38)

Equivalently,

θ̂c = θ + V η + η

2
. (3.39)

Proof. From (3.34), for k = 1, 2, · · · , n,

max
θ̂∈SN (y,u,ε)

θ̂(k) = θ(k) +
n∑

i=1

V(k, i) x(k)(i),

where x(k) is defined componentwise by

x(k)(i)
∆
=





η(i) + ε, if V(k, i) ≥ 0

η(i) − ε, if V(k, i) < 0.
(3.40)

Notice that η(i) + ε ≥ 0 and η(i) − ε ≤ 0 for all i. Likewise, for k = 1, · · · , n,

min
θ̂∈SN (y,u,ε)

θ̂(k) = θ(k) +
n∑

i=1

V(k, i) z(k)(i),

where z(k) is defined componentwise by

z(k)(i)
∆
=





η(i) − ε, if V(k, i) ≥ 0

η(i) + ε, if V(k, i) < 0.
(3.41)

Then,

θ̂c(k) = θ(k) +
1

2

n∑

i=1

V(k, i)[η(i) + η(i)] (3.42)

=
n∑

i=1

n∑

l=1

V(k, i) [U Ĝ](i, l)θ(l) +
1

2

n∑

i=1

V(k, i) [η(i) + η(i)]

=
1

2

n∑

i=1

V(k, i)

{
η(i) +

n∑

l=1

[U Ĝ](i, l)θ(l) + η(i) +
n∑

l=1

[U Ĝ](i, l)θ(l)

}

=
1

2

n∑

i=1

V(k, i) [y(i) + y(i)] (3.43)

In Theorem 3.4.1, the central algorithm θ̂c is expressed as a linear trans-

formation of midrange estimators, which are independent identically distributed

random variables if η(t) is a sequence of independent identically distributed ran-

dom variables. Thus once the distribution of η(t) is given, the distribution function

of θ̂c can be computed without difficulty.
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To illustrate the above result, suppose that η(t) is a sequence of indepen-

dent identically and symmetrically distributed random variables and we wish to

compute the quantity

σ2
c = E{[θ̂c − E(θ̂c)]

T [θ̂c − E(θ̂c)]} (3.44)

where E{x} denotes the expected value of x. Then, θ̂c is unbiased and from

Theorem 3.4.1

σ2
c = ‖V‖2

F E

[
η(1) + η(1)

2

]2

, (3.45)

where ‖V‖F is the Frobenius norm of V defined by

‖V‖F =




n∑

k,l=1

[V(k, l)]2




1/2

.

It follows that the sum of the variances of θ̂c(k) tends to zero in proportion to the

variances of the midrange estimators. Interestingly, from (3.37) and the fact that

the Frobenius norm is unitarily invariant we have

lim
n→∞

‖V‖F → ‖V ‖F

provided that the orthonormal basis functions used in the regression model (3.2)

satisfy (3.36). This means σ2
c is independent from the chosen basis poles as n →

∞. If the inputs are bounded as |u(t)| ≤ 1 for all t, then ‖V ‖F is minimized by

letting U = In where In is the n by n identity matrix.

Remark 3.4.1 Let

µ=ε1 − y − y

2
. (3.46)

From (3.34) and Theorem 3.4.1,

SN(y, u, ε) = θ̂c ⊕ V{θ̃ ∈ Rn : −µ ≤ θ̃ ≤ µ}.

Thus, the Chebyshev center of the membership-set does not depend on the norm

used in measuring the size of SN(y, u, ε). This is due to the fact that the box

[−µ, µ] is convex balanced and V is a linear transformation.

Next, we derive an explicit formula for the diameter of the membership-set.

28



Theorem 3.4.2 Consider the diameter of SN(y, u, ε) defined by (2.13). Suppose

u(t) is an n-periodic sequence. Let y and y be as in (3.8), and V be as in (3.33).

Then,

D(SN(y, u, ε)) = 2 max
1≤k≤n

n∑

i=1

|V(k, i)|µ(i) (3.47)

where µ is as in (3.46).

Proof. Let θ̂1, θ̂2 ∈ SN(y, u, ε). From (3.34), we have θ̂1 = θ+Vx and θ̂2 = θ+Vz

for some x, z in the box [η − ε1, η + ε1] . Then, for k = 1, · · · , n,

|θ̂1(k) − θ̂2(k)| = |
n∑

i=1

V(k, i) [x(i) − z(i)]|

≤
n∑

i=1

|V(k, i)| [2ε + η(i) − η(i)].

Hence,

D(SN(y, u, ε)) ≤ max
1≤k≤n

n∑

i=1

|V(k, i)| [2ε + η(i) − η(i)]. (3.48)

For the reverse inequality, suppose that the maximum on the right-hand side of

(3.48) is attained for k = k∗. Let x(k) and z(k) be as in (3.40) and (3.41). Put

θ̂1 = θ + Vx(k∗) and θ̂2 = θ + Vz(k∗). Then,

θ̂1(k
∗) − θ̂2(k

∗) =
n∑

i=1

V(k∗, i) [x(k∗)(i) − z(k∗)(i)]

=
n∑

i=1

|V(k∗, i)| [2ε + η(i) − η(i)].

Hence,

‖θ̂1 − θ̂2‖∞ ≥
n∑

i=1

|V(k∗, i)| [2ε + η(i) − η(i)]

= max
1≤k≤n

n∑

i=1

|V(k, i)| [2ε + η(i) − η(i)]

and therefore,

D(SN(y, u, ε)) ≥ max
1≤k≤n

n∑

i=1

|V(k, i)| [2ε + η(i) − η(i)]. (3.49)

The inequalities (3.48), (3.49), and the equalities in (3.15) yield (3.47).

Next, we study the characterization of the set of all projection algorithms.

Corollary 3.4.1 Consider the projection algorithms defined by (2.16). Suppose

u(t) is an n-periodic sequence. Let y and y be as in (3.8), and V be as in (3.33).

Let

ep= max
1≤k≤n

y(k) − y(k)

2
(3.50)
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and θ̂c be as in (2.15). Then, PN(y, u) = SN(y, u, ep) and its Chebyshev center is

θ̂c. Furthermore,

D(PN(y, u)) = max
1≤k≤n

n∑

i=1

|V(k, i)| [2ep + y(i) − y(i)]. (3.51)

Proof. From (2.16), θ̂p ∈ PN(y, u) if and only if θ̂p is a solution of the following

linear programming problem:





min e

subject to θ̂p ∈ SN(y, u, e)
(3.52)

From (3.34), we have

SN(y, u, e) = V{x̃ ∈ Rn : y − e1 ≤ x̃ + U Ĝθ ≤ y + e1}. (3.53)

A necessary condition for non-empty SN(y, u, e) is derived from (3.53) as follows

e ≥ max
1≤k≤n

y(k) − y(k)

2
. (3.54)

Observe that SN(y, u, ep) is non-empty, and from (3.54) the minimum in (3.52) is

achieved for ep. Hence, SN(y, u, ep) is the set of all possible solutions of (2.16).

From Theorem 3.4.1 recall that θ̂c is the Chebyshev center of SN(y, u, ε) for all

ε > 0. Thus, it is the Chebyshev center of PN(y, u) = SN(y, u, ep). The last

assertion follows from (3.47) with the substitution ε = ep.

From (3.50) and (3.34), notice that PN(y, u) is the image of an n − 1

dimensional box under the linear transformation V . Thus, PN(y, u) is contained

in a hyperplane. However, its diameter relative to D(SN(y, u, ε)) may be rather

large, in particular for large n as will be demonstrated next.

Suppose η(t) is a sequence of independent identically and symmetrically

distributed random variables in [−ε, ε]. Let N = Mn. Observe that if ε is a tight

bound on η(t), µ(k) converges to zero almost everywhere for all k as M → ∞.

Proposition 3.4.1 Consider the central and the projection algorithms in (2.15)

and (2.16). Let V be as in (3.33) and N = Mn. Consider the basis functions in

(2.18). Assume that there exists a constant 0 < c < ∞ such that for all n,

max
1≤k≤n

n∑

i=1

|V(k, i)| ≤ c max
1≤k,i≤n

|V(k, i)|. (3.55)

30



Let η(t) be a sequence of independent identically and symmetrically distributed

random variables in [−ε, ε]. Suppose u(t) is an n-periodic sequence and ε is a

tight bound on η(t). Then, for each fixed M < ∞

D(PN(y, u)) → D(SN(y, u, ε)) a.e. (n → ∞).

Proof. From (3.47) and (3.51),

D(PN) ≥ D(SN) − 2(ε − ep) max
1≤k≤n

n∑

i=1

|V(k, i)|.

Thus, from (3.50) we get

D(PN)

D(SN)
≥ 1 −

max
1≤k≤n

n∑

i=1

|V(k, i)| min
1≤k≤n

µ(k)

max
1≤k≤n

n∑

i=1

|V(k, i)|µ(i)

. (3.56)

Choose k∗ and i∗ such that

|V(k∗, i∗)| = max
1≤k,i≤n

|V(k, i)|.

Then,

max
1≤k,i≤n

|V(k, i)|µ(i∗) ≤ max
1≤k≤n

n∑

i=1

|V(k, i)|µ(i).

Hence, from (3.56) and the hypothesis we have

D(PN)

D(SN)
≥ 1 − c min

1≤k≤n

µ(k)

µ(i∗)

for some absolute positive constant c < ∞.

Let δ be a given number satisfying 0 < δ < 1. Then,

Prob(µ(i∗) > (c/δ) min
1≤k≤n

µ(k))

(3.57)

≤ Prob

(
D(PN)

D(SN)
> 1 − δ

)
.

Since µ(k), k ≥ 1 are independent identically distributed random variables,

Prob(µ(i∗) > (c/δ) min
1≤k≤n

µ(k)|µ(i∗) = x)

= 1 − [Prob (µ(1) ≥ δx/c)]n−1 .

31



Integrating the above conditional probability, we get

Prob(µ(i∗) > (c/δ) min
1≤k≤n

µ(k))

=
∫ ε

0
Prob(µ(i∗) >

c

δ
min

k
µ(k)|µ(i∗) = x)fµ(i∗)(x) dx

≥
∫ ε

x∗

Prob(µ(1) >
c

δ
min

k
µ(k)|µ(1) = x)fµ(1)(x) dx

≥ Prob(x∗ > (c/δ) min
k 6=1

µ(k)) Prob(µ(1) ≥ x∗)

= {1 − [Prob (µ(1) > δx∗/c)]n−1}Prob(µ(1) ≥ x∗)

where 0 < x∗ < ε is a number to be fixed next.

Now, choose x∗ such that

1 − δ ≤ Prob (µ(1) > x∗) < 1

which is possible since the probability in the middle tends to one as x∗ approaches

to zero that is a tight lower bound on µ(1). Hence,

lim
n→∞

inf Prob(µ(i∗) > (c/δ) min
1≤k≤n

µ(k)) ≥ 1 − δ.

Therefore, from (3.57) we have

Prob

(
D(PN)

D(SN)
> 1 − δ

)
≥ 1 − δ.

Since δ is arbitrary, it follows that D(PN) → D(SN) in probability as n → ∞.

Recall that for bounded sequences of random variables, convergence in probability,

convergence in mean, and convergence almost everywhere are all equivalent, for

convergence of random variables see Appendix B.

As a special case of the regression model in (3.2), let us consider the fol-

lowing FIR model:

φT (t)θ =
n∑

k=1

u(t − k)θ(k).

Then, the condition (3.55) is satisfied if there exists some constant 0 < c < ∞
such that for all n,

n∑

k=1

|v(k)| ≤ c max
1≤k≤n

|v(k)|.

This condition is satisfied, for example, by all n-periodic pulse inputs:

u(t) =





1, t = n,

0, t = 1, · · · , n − 1.
(3.58)
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Example Suppose η(t) is a sequence of independent identically and uniformly dis-

tributed random variables in [−0.1, 0.1], u(t) is as in (3.58), and for all k, zk satis-

fies zk = 2
3k . For M = 100, and n = 5, 15, 25, 35, 45, we computed the ratio

D(PN (y, u))/D(SN (y, u, ε)) as 0.56, 0.95, 0.95, 0.86, 0.90, respectively. The purpose

of this simulation example was to demonstrate that PN (y, u) could be a rather large

subset of SN (y, u, ε) even for modest values of n; and the convergence in Proposi-

tion 3.4.1 may take place slowly, as evidenced by the fluctuations in the values of

D(PN (y, u))/D(SN (y, u, ε)).

Next, with the same set of zk and n = 5, we computed D(SN (y, u, ε)) = 0.0088,

0.0012, 0.000041, respectively for M = 100, 1000, 10000. Notice that the diameter of

the membership-set shrinks to zero by about an order of magnitude of ten. This is due

to the fact that the minimax estimates y and y defined in (3.8), which describe the

membership-set (3.9), have standard deviations tending to zero as fast as O( 1
M ) for the

uniformly distributed noise.

The mean-squared convergence properties of the estimators θ̂c and θ̂p can

be deduced from Proposition 3.4.1 and Corollary 3.4.1 when η(t) is a sequence of

independent identically distributed random variables. The properties pertaining

to fast convergence of θ̂c and θ̂p have already been investigated in [36, 37, 33] in

more general settings. Then, by utilizing Proposition 3.4.1 and Corollary 3.4.1,

one can complement the results in [36, 37, 33].

In the rest of this chapter, we will briefly study the least-squares algorithm

for the special case considered in this chapter. Though not necessary, for a com-

parison with the estimators θ̂c and θ̂p, we let N = Mm. It is fairly easy to show

that the least-squares estimator of θ denoted by θ̂ls is given by

θ̂ls = V ỹ = θ + η̃ (3.59)

where for k = 1, 2, · · · ,m, ỹ and η̃ are defined by

ỹ(k)=
1

M

M−1∑

i=0

y(k + im), η̃(k)=
1

M

M−1∑

i=0

η(k + im).

The least-squares estimator (3.59) obtained by minimizing the quadratic

norm of the prediction errors [1] is unbiased and has a variance decaying to zero as

O( 1
M

) when η(t) is a sequence of zero-mean, independent identically distributed

random variables.
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The choice between the estimators θ̂c (or θ̂p) and θ̂ls depends on the dis-

tribution of η(t). If η(t) has a heavy-tailed distribution, θ̂c and θ̂p have better

convergence properties than θ̂ls [37] whereas for a noise distribution with thin

tails, (3.44) implies a slower converge rate for the variance of θ̂c than that of θ̂ls.

In the latter case, (3.47) and (3.51) imply large mean values for the diameters of

SN(y, u, ε) and PN(y, u).

For scalar estimation problems with bounded disturbances, the statistical

robustness of the quadratic norm was established in [36]. The results of this

chapter can be used to extend this conclusion from a single constant regressor to

the regression model (3.2) when m equals n and the periodic inputs as in (3.4) are

used. A somewhat more general statistical robustness problem was formulated

and solved in [53].

3.5 Summary

In this chapter, we studied the central and the projection identification algorithms

with periodic input signals and orthonormal basis functions and derived an explicit

formula for the former for a special case. Also derived were the expressions for the

diameters of the membership-set and the set of all projection algorithms. These

results should be useful in analyzing statistical properties of these estimators when

it is possible to employ overparameterized model structures with arbitrary basis

functions and periodic inputs.
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4. STATISTICAL ANALYSIS OF CENTRAL AND MINIMAX

ALGORITHMS

In this chapter, we will study the statistical properties of the central and the

minimax algorithms in a one-dimensional parameter space setting assuming that

the regressor signal and its inverse are magnitude bounded. We will derive non-

asymptotic, order-tight, lower and upper bounds on the convergence rate of the

parameter estimate variance for the central and the minimax algorithms. This

presents an extension of the previous work for constant scalar regressors to arbi-

trary scalar regressors save for magnitude constraints.

4.1 Problem Formulation

Consider the problem of estimating an unknown scalar parameter θ in the model

y(t) = u(t)θ + η(t), t = 1, 2, · · · , N (4.1)

where y(t) is the corrupted measurement, u(t) is the measurable regressor, and

η(t) is the measurement noise. We assume that u(t) is a deterministic signal

and η(t) is a sequence of independent identically distributed random variables

satisfying (2.10).

In this simplified setup, the membership-set in (2.11) is given by

SN(y, u, ε)=
N⋂

t=1

{θ̂ ∈ R : |y(t) − u(t)θ̂| ≤ ε}. (4.2)

Moreover, from (2.12), (2.13), and (2.14), the radius, the diameter, and the Cheby-

shev center of SN(y, u, ε) are given respectively by

R(SN(y, u, ε))= min
θ′∈SN (y,u,ε)

max
θ′′∈SN (y,u,ε)

|θ′ − θ′′|, (4.3)

D(SN(y, u, ε))= max
θ′,θ′′∈SN (y,u,ε)

|θ′ − θ′′|, (4.4)

and

θ̂c= arg min
θ′∈SN (y,u,ε)

max
θ′′∈SN (y,u,ε)

|θ′ − θ′′|. (4.5)

A quite related approach to (4.5) is the minimax estimator defined by

θ̂m= arg min
θ̂∈SN (y,u,ε)

max
1≤t≤N

|y(t) − u(t)θ̂|. (4.6)
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The minimax estimator (4.6) has some robustness and near-optimality properties

[42, 50, 29] with respect to unknown but bounded disturbances.

In [36], formal conditions for the distribution of noise for which the minimax

algorithm parameter estimate variance converges to zero faster than that of the

least squares algorithm O(N−1) were developed when the regressor signal equals to

one all the time. This result was extended in [37] to multi-dimensional persistently

exciting regressors under the same noise assumptions.

The purpose of this chapter is to study the statistical properties of the

central and the minimax algorithms in the simplified setup (4.1) assuming that the

regressor and its inverse are magnitude bounded. In [37], non-asymptotic, tight-in-

the (convergence) rate, upper and lower probability bounds on the membership-set

diameter were derived. These results are applicable only in one direction: if the

probability density function of the noise does not vanish or has point masses at

the boundary of its support, then the upper probability bound on D(SN(y, u, ε))

provides also an upper bound on the convergence rate of the parameter estimate

variance, which is faster than O(N−1). Furthermore, this result applies not only

to the central and the minimax algorithms but also to all interpolatory algorithms.

However, a lower probability bound on D(SN(y, u, ε)) does not necessarily lead

to a lower bound on the convergence rate of the parameter estimate variance as

pointed out in [37].

In this chapter, we consider finite sample properties of the estimators (4.5)

and (4.6). In real life, only a finite number of data is available. On the other hand,

almost all results in mainstream identification apply to asymptotic properties [1].

Our work is quite different than [46, 47, 54] in which finite sample properties of the

quadratic prediction error criterion are investigated. For other criteria, in general,

there is no direct link between the criterion and the quality of the estimate, which

is certainly true for the central algorithm (4.5) and the minimax estimate (4.6).

4.2 Statistical Analysis of the Central Algorithm

In this section, we analyze the statistical properties of the central algorithm for the

model (4.1) assuming that the regressor and its inverse are magnitude bounded.

In the analysis, we also impose certain restrictions on the pdf of the measurement
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noise denoted by fη. For a scalar-valued function x(t), we define its signature

function by

sgn[x(t)]=





x(t)/|x(t)|, x(t) 6= 0

0, x(t) = 0.

We first show that the membership-set is a closed interval when θ ∈ R.

Lemma 4.2.1 Consider the set SN(y, u, ε) defined by (4.2). Let

x1= max
u(t)6=0

y(t) sgn[u(t)] − ε

|u(t)| , xN= min
u(t)6=0

y(t) sgn[u(t)] + ε

|u(t)| . (4.7)

Then, SN(y, u, ε) is a closed interval with the endpoints x1 and xN .

Proof. The membership-set is described by the inequalities

y(t) − ε ≤ u(t)θ̂ ≤ y(t) + ε, t = 1, 2, · · · , N. (4.8)

Since the intervals in (4.8) coincide with the entire real line whenever u(t) equals

0, we may disregard such intervals. Then, from (4.8) for each θ̂ ∈ SN(y, u, ε) we

have

max
u(t)>0

y(t) − ε

u(t)
≤ θ̂ ≤ min

u(t)>0

y(t) + ε

u(t)

and

max
u(t)<0

y(t) + ε

u(t)
≤ θ̂ ≤ min

u(t)<0

y(t) − ε

u(t)
.

Thus,

θ̂ ≤ min

{
min

u(t)>0

y(t) + ε

u(t)
, min
u(t)<0

y(t) − ε

u(t)

}

= min
u(t)6=0

y(t) sgn[u(t)] + ε

|u(t)| .

Likewise,

θ̂ ≥ max
u(t)6=0

y(t) sgn[u(t)] − ε

|u(t)| .

It follows that θ̂ ∈ [x1, xN ]. The reverse inclusion follows also from the above

inequalities.

Thus, from Lemma 4.2.1, we have the following closed form expressions for

the Chebyshev center and the radius of SN(y, u, ε):

θ̂c =
x1 + xN

2
, R (SN(y, u, ε)) =

xN − x1

2
. (4.9)
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The extreme order statistics x1 and xN can be written as

x1 = θ + x̃1, xN = θ + x̃N , (4.10)

where

x̃1= max
u(t)6=0

η̃(t) − ε

|u(t)| , x̃N= min
u(t)6=0

η̃(t) + ε

|u(t)| , (4.11)

and

η̃(t)=η(t) sgn[u(t)], t = 1, 2, · · · , N

is a sequence of independent random variables provided that η(t) is a sequence of

independent random variables. Note that even if η(t) is a sequence of independent

identically distributed random variables, η̃(t) is not necessarily an identically dis-

tributed sequence unless sgn[u(t)] is constant or fη has a symmetry with respect

to the origin, i.e., fη(s) = fη(−s) for all s. It is a known fact that the statistical

analysis of the central algorithm becomes much simpler when fη does not vanish

at the endpoints of its support denoted by ±ε [36]. Hereinafter, we shall therefore

assume that η(t) has a symmetrical pdf fη that vanishes outside the open interval

(−ε, ε).

We define the distribution function of η(t) by

Fη(s)=Prob(η(t) ≤ s) =
∫ s

−∞
fη(v) dv.

Our analysis starts with a computation of the probabilities of some rare

events generated by the random variables x̃1 and x̃N in the following.

Lemma 4.2.2 Let x̃1 and x̃N be as in (4.11). Suppose that η(t) is a sequence of

independent identically and symmetrically distributed random variables with a pdf

supported in [−ε, ε]. Then, for all ξ ≤ 0 and ζ ≥ 0,

Prob(x̃1 ≤ ξ) =
N∏

t=1

[1 − Fη(−ε − ξ|u(t)|)], (4.12)

Prob(x̃N > ζ) =
N∏

t=1

[1 − Fη(−ε + ζ|u(t)|)], (4.13)

Prob(x̃1 ≤ ξ, x̃N > ζ) =
N∏

t=1

[1 − Fη(−ε − ξ|u(t)|) − Fη(−ε + ζ|u(t)|)].

(4.14)
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Proof. From (4.11), the independence of the random variables η̃(t), and the fact

that η̃(t) and η(t) have the same distribution due to the symmetry assumption,

we have

Prob(x̃1 ≤ ξ) = Prob(η̃(t) ≤ ε + ξ|u(t)|, t = 1, · · · , N)

=
N∏

t=1

Prob(η̃(t) ≤ ε + ξ|u(t)|)

=
N∏

t=1

[1 − Fη̃(−ε − ξ|u(t)|)].

The proofs of the remaining identities are similar.

The following lemma enables us to express the first two moments of x̃1 and

x̃N as the integrals of the probabilities in (4.12)–(4.14).

Lemma 4.2.3 Let x and z be random variables supported in the compact interval

[a, b]. Then,

E(x) = a +
∫ b

a
Prob(x > x0) dx0, (4.15)

E(x2) = a2 + 2
∫ b

a
Prob(x > x0)x0 dx0, (4.16)

E(xz) = bE(x) + aE(z) − ab −
∫ b

a

∫ b

a
Prob(x > x0, z ≤ z0) dx0dz0,

(4.17)

E(x)E(z) = bE(x) + aE(z) − ab −
∫ b

a

∫ b

a
Prob(x > x0)Prob(z ≤ z0)dx0dz0.

(4.18)

Proof. We remark that (4.15) and (4.16) might appear in some standard proba-

bility textbooks. However, their proofs are included in the following for the sake

of completeness. Using the formula for integration by parts, we obtain the identity

in (4.15) as follows

E(x) =
∫ b

a
x0fx(x0) dx0 = b

∫ b

a
fx(s) ds −

∫ b

a

∫ x0

a
fx(s) ds dx0

= b −
∫ b

a
Prob(x ≤ x0) dx0

(4.19)

= a +
∫ b

a
Prob(x > x0) dx0.

Similarly,

E(x2) =
∫ b

a
x2

0fx(x0) dx0 = b2
∫ b

a
fx(s) ds − 2

∫ b

a
x0

∫ x0

a
fx(s) ds dx0
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= b2 − 2
∫ b

a
Prob(x ≤ x0)x0 dx0

(4.20)

= a2 + 2
∫ b

a
Prob(x > x0)x0 dx0.

Next, from several applications of the formula for integration by parts

E(xz) =
∫ b

a

∫ b

a
x0z0fx,z(x0, z0) dx0 dz0

=
∫ b

a

{
b
∫ b

a
fx,z(s, z0) ds −

∫ b

a

∫ x0

a
fx,z(s, z0) ds dx0

}
z0 dz0

= b
∫ b

a
z0fz(z0) dz0 − b

∫ b

a

∫ b

a

∫ x0

a
fx,z(s, l) ds dx0 dl

+
∫ b

a

∫ z0

a

∫ b

a

∫ x0

a
fx,z(s, l) ds dx0 dl dz0

= bE(z) − b
∫ b

a

∫ b

a

∫ x0

a
fx,z(s, l) ds dl dx0

+
∫ b

a

∫ b

a

∫ z0

a

∫ x0

a
fx,z(s, l) ds dl dx0 dz0

= bE(z) − b
∫ b

a
Prob(x ≤ x0) dx0

(4.21)

+
∫ b

a

∫ b

a
Prob(x ≤ x0, z ≤ z0) dx0 dz0

with

∫ b

a

∫ b

a
Prob(x ≤ x0, z ≤ z0) dx0 dz0 =

∫ b

a

∫ b

a
Prob(z ≤ z0) dx0 dz0

−
∫ b

a

∫ b

a
Prob(x > x0, z ≤ z0) dx0 dz0

and several uses of (4.19) yield the identity in (4.17). The identity in (4.18) follows

similarly from several applications of (4.19).

The variance of θ̂c denoted by σ2

θ̂c
is given by

σ2

θ̂c
= (1/4) (σ2

x̃1
+ σ2

x̃N
) + (1/2) σx̃1

σx̃N
rx̃1x̃N

(4.22)

where rx̃1x̃N
is the correlation coefficient of x̃1 and x̃N defined by

rx̃1x̃N
=

E(x̃1x̃N) − E(x̃1)E(x̃N)

σx̃1
σx̃N

. (4.23)

Similarly, the variance of R(SN(y, u, ε)) denoted by σ2
R(SN ) can be written as

σ2
R(SN ) = (1/4)(σ2

x̃1
+ σ2

x̃N
) − (1/2)σx̃1

σx̃N
rx̃1x̃N

. (4.24)

Recall that magnitude of a correlation coefficient is not greater than unity.

However, for the extreme order statistics defined in (4.11), we have the following

more precise result.
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Proposition 4.2.1 Let x̃1 and x̃N be as in (4.11). Consider the correlation coef-

ficient of the extreme order statistics rx̃1x̃N
defined by (4.23). Suppose that η(t) is

a sequence of independent identically and symmetrically distributed random vari-

ables with a pdf supported in [−ε, ε]. Assume that for all t, and for some α, β > 0,

α ≤ |u(t)| ≤ β. (4.25)

Then, 0 ≤ rx̃1x̃N
≤ 1.

Proof. From (4.11) and (4.25), observe that x̃1 and x̃N are bounded random

variables:

−2ε/α ≤ x̃1 ≤ 0, 0 ≤ x̃N ≤ 2ε/α.

Thus, from Lemma 4.2.3, the numerator of rx̃1x̃N
can be written as

E(x̃1x̃N) − E(x̃1)E(x̃N) =
∫ 2ε/α

0

∫ 0

−2ε/α
[Prob(x̃1 ≤ ξ) Prob(x̃N > ζ)

−Prob(x̃1 ≤ ξ, x̃N > ζ)] dξdζ.

(4.26)

Next, from Lemma 4.2.2,

Prob(x̃1 ≤ ξ) Prob(x̃N > ζ) =
N∏

t=1

[1 − Fη(−ε − ξ|u(t)|) − Fη(−ε + ζ|u(t)|)

+Fη(−ε − ξ|u(t)|)Fη(−ε + ζ|u(t)|)]

≥ Prob(x̃1 ≤ ξ, x̃N > ζ). (4.27)

Therefore, the integrand in (4.26) is nonnegative. Hence, the conclusion follows.

The random variable x̃1 defined by (4.11) can be written as

x̃1 = − min
u(t)6=0

−η̃(t) + ε

|u(t)| .

Due to the symmetry assumption, f−η̃(s) = fη(s) for all |s| ≤ ε. Thus,

E(x̃1) = −E(x̃N).

Therefore, θ̂c is an unbiased estimator of θ for all N . Moreover, for all N

E(x̃2
1) = E(x̃2

N).

41



Hence, from Proposition 4.2.1, we have the following important inequalities

(1/2) σ2
x̃N

≤ σ2

θ̂c
≤ σ2

x̃N
. (4.28)

Note that the variance of R(SN(y, u, ε)) can be written as

σ2
R(SN ) = σ2

θ̂c
− σ2

x̃N
rx̃1x̃N

. (4.29)

In general, exact computation of σ2

θ̂c
is difficult since it involves the cor-

relation between x̃1 and x̃N . On the other hand, exactly computing or tightly

bounding σ2
x̃N

is easier. Thus, given a pdf for η(t), from (4.28) we can determine

how fast the variance of the central algorithm decays to zero as the number of

data increases to infinity. This will be illustrated for the following pdf:

fη∗(x) =
p + 1

2ε

(
1 − |x|

ε

)p

, |x| ≤ ε, p ≥ 0. (4.30)

Figure 4.1 shows the pdf in (4.30) for different values of p = 0, 0.4, 1, 2, and

ε = 0.5.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

3

x

f η*
(x

)

p=0 

p=0.4 

p=1 

p=2 

Figure 4.1: The pdf in (4.30) with p = 0, 0.4, 1, 2 and ε = 0.5

Recall that the gamma function, denoted by Γ(z), is defined by [55]:

Γ(z) =

∞∫

0

tz−1e−tdt.
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Alternatively,
1

Γ(z)
= zeγz

∞∏

n=1

[(
1 +

z

n

)
e−z/n

]
, (4.31)

where γ is the Euler’s constant

γ = lim
n→∞

[
1 +

1

2
+

1

3
+ · · · 1

n
− ln n

]
= 0.57721566 · · · .

Lemma 4.2.4 Let x̃N be as in (4.11). Assume that the disturbances η(t) are

independent and have the pdf in (4.30). Let u(t) be as in (4.25) with β < Cp α,

where

Cp = Γ1/2

(
1 +

2

p + 1

)
Γ−1

(
1 +

1

p + 1

)
. (4.32)

Then,

lim inf
N→∞

σ2
x̃N

(
2

N

)−2/(p+1)

≥ ε2

β2
Γ2

(
1 +

1

p + 1

)
C2

p −
(

β

α

)2

 (4.33)

lim sup
N→∞

E(x̃2
N)
(

2

N

)−2/(p+1)

≤ ε2

α2
Γ

(
1 +

2

p + 1

)
. (4.34)

Proof. From Lemma 4.2.3, (4.13), and (4.25),

E(x̃N) =

2ε/α∫

0

Prob(x̃N > x)dx

≤
2ε/α∫

0

[1 − Fη∗(−ε + αx)]Ndx

=

N∫

0

(
1 − s

N

)N ( 2

N

)1/(p+1) ε

α(p + 1)
s−p/(p+1)ds

=
(

2

N

)1/(p+1) ε

α(p + 1)
γ1(N)

where

γ1(N) =

N∫

0

(
1 − s

N

)N

s−p/(p+1)ds.

Similarly,

E(x̃2
N) = 2

2ε/α∫

0

Prob(x̃N > x)xdx

≥ 2

2ε/α∫

0

[1 − Fη∗(−ε + βx)]Nxdx

= 2

N∫

0

(
1 − s

N

)N ( 2

N

)2/(p+1) ε2

β2(p + 1)
s−(p−1)/(p+1)ds

= 2
(

2

N

)2/(p+1) ε2

β2(p + 1)
γ2(N)
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where

γ2(N) =

N∫

0

(
1 − s

N

)N

s−(p−1)/(p+1)ds. (4.35)

Thus,

σ2
x̃N

= E(x̃2
N) − E2(x̃N)

≥
(

2

N

)2/(p+1) ε2

β2


 2

p + 1
γ2(N) −

(
β

α

)2
1

(p + 1)2
γ2

1(N)


 . (4.36)

We define the indicator function of a set A, denoted by χA(s), as

χA(s) =





1, if s ∈ A

0, otherwise.

From the dominated convergence theorem, note that

lim
N→∞

γ1(N) = lim
N→∞

∫ ∞

0
χ[0,N ](s)

(
1 − s

N

)N

s−p/(p+1)ds

=
∫ ∞

0
lim

N→∞

{
χ[0,N ](s)

(
1 − s

N

)N
}

s−p/(p+1)ds

=
∫ ∞

0
e−ss−p/(p+1)ds

= Γ

(
1

p + 1

)
.

Likewise,

lim
N→∞

γ2(N) =
∫ ∞

0
e−ss−(p−1)/(p+1)ds

= Γ

(
2

p + 1

)
. (4.37)

Then,

lim
N→∞


 2

p + 1
γ2(N) −

(
β

α

)2
1

(p + 1)2
γ2

1(N)


 =

=
2

p + 1
Γ

(
2

p + 1

)
−
(

β

α

)2
1

(p + 1)2
Γ2

(
1

p + 1

)

= Γ

(
1 +

2

p + 1

)
−
(

β

α

)2

Γ2

(
1 +

1

p + 1

)
, (4.38)

where the last equality above follows from the recurrence formula [55]:

Γ(z + 1) = zΓ(z).

From (4.31), observe that

(
1

zΓ(z)

)2

2zΓ(2z) =

∞∏
n=1

(
1 + z

n

)2

∞∏
n=1

(
1 + 2z

n

) ≥ 1.
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With z = 1
p+1

, we have

C2
p ≥ 1,

and hence, Cp ≥ 1 for all p ≥ 0. This can also be seen from the Figure 4.2. Thus

for all sufficiently large N , (4.33) follows from (4.36) and (4.38).

100 101 102 103 104
1

1.05

1.1

1.15

p

C
p

Figure 4.2: Plot of Cp in (4.32) as a function of p

An upper bound on σ2
x̃N

is obtained as follows. From Lemma 4.2.3, (4.13),

and (4.25),

E(x̃2
N) = 2

2ε/α∫

0

Prob(x̃N > x)xdx

≤ 2

2ε/α∫

0

[1 − Fη∗(−ε + αx)]Nxdx

= 2

N∫

0

(
1 − s

N

)N ( 2

N

)2/(p+1) ε2

α2(p + 1)
s−(p−1)/(p+1)ds

= 2
(

2

N

)2/(p+1) ε2

α2(p + 1)
γ2(N),

where γ2(N) is as in (4.35). Hence, for all sufficiently large N , (4.34) follows from

(4.37) and the recurrence formula.

Combining (4.28) with Lemma 4.2.4, we obtain the following result.
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Theorem 4.2.1 Consider the Chebyshev center θ̂c for the model (4.1). Assume

that the disturbances η(t) are independent and have the pdf in (4.30). Let u(t)

be as in (4.25) with β < Cp α, where Cp is defined by (4.32). Then, there exist

positive constants c1 and c2

c1 ≤ lim inf
N→∞

σ2

θ̂c
N2/(p+1) ≤ lim sup

N→∞

σ2

θ̂c
N2/(p+1) ≤ c2. (4.39)

The above results can be summarized as follows.

• The Chebyshev center is the midrange of the extreme order statistics x1 and

xN , which are the extreme points of SN(y, u, ε):

θ̂c = (1/2)x1 + (1/2)xN .

• Provided that the disturbances are independent identically and symmetri-

cally distributed random variables, and the regressor signal and its inverse

are magnitude bounded, the variance of the Chebyshev center is bounded

below by

σ2

θ̂c
≥ (1/4) (σ2

x1
+ σ2

xN
).

• If, in addition, the pdf of η(t) is chosen as in (4.30), then the variance of the

Chebyshev center converges to zero at the rate O(N−2/(p+1)).

4.2.1 Correlation analysis of the extreme order statistics

As a final result in this section, let us show that the gap between the upper and

lower bounds in (4.28) closes asymptotically when η(t) have the pdf in (4.30). To

this end, we have the following result.

Proposition 4.2.2 Let x̃1 and x̃N be as in (4.11). Assume that the disturbances

η(t) are independent and have the pdf in (4.30). Let u(t) be as in (4.25). Then,

E(x̃1x̃N) − E(x̃1)E(x̃N) = O

(
(ln N)2

N

)
. (4.40)

Proof. Let DN be the set of all pairs (ξ, ζ) satisfying ξ ≤ 0, ζ ≥ 0,

Prob(x̃1 ≤ ξ) > 1/N, and Prob(x̃N > ζ) > 1/N.
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From (4.12),

Prob(x̃1 ≤ ξ) ≤ [1 − Fη∗(−ε − ξα)]N .

Thus,

ln[1 − Fη∗(−ε − ξα)] > − ln N

N
. (4.41)

Hence, from (4.41) and the inequalities [55]

x

1 + x
< ln(1 + x) < x (x > −1, x 6= 0),

we have

Fη∗(−ε − ξα) <
ln N

N
. (4.42)

Likewise,

Fη∗(−ε + ζα) <
ln N

N
. (4.43)

From (4.30) and (4.42),

Fη∗(−ε − ξβ) < (β/α)p+1 ln N

N
. (4.44)

Similarly,

Fη∗(−ε + ζβ) < (β/α)p+1 ln N

N
. (4.45)

Next, from Lemma 4.2.2

Prob(x̃1 ≤ ξ, x̃N > ζ) = Prob(x̃1 ≤ ξ) Prob(x̃N > ζ) ∆N(ξ, ζ)

where

∆N(ξ, ζ)=
N∏

t=1

(1 − δt(ξ, ζ))

and

δt(ξ, ζ)=
Fη∗(−ε − ξ|u(t)|)

1 − Fη∗(−ε − ξ|u(t)|)
Fη∗(−ε + ζ|u(t)|)

1 − Fη∗(−ε + ζ|u(t)|) .

If

(β/α)p+1 ln N

N
≤ 1

2
,

then from (4.25), we have

δt(ξ, ζ) ≤ 4Fη∗(−ε − ξ|u(t)|)Fη∗(−ε + ζ|u(t)|)

≤ 4Fη∗(−ε − ξβ)Fη∗(−ε + ζβ)

= δ̄(ξ, ζ).
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Thus,

∆N(ξ, ζ) ≥ [1 − δ̄(ξ, ζ)]N . (4.46)

From (4.44) and (4.45),

δ̄(ξ, ζ) < 4(β/α)2(p+1)

(
ln N

N

)2

.

Hence, from (4.46) and the inequalities

e−x/(1−x) < 1 − x < e−x (0 < x < 1),

we have

∆N(ξ, ζ) >


1 − 4(β/α)2(p+1)

(
ln N

N

)2



N

> exp


− 4(β/α)2(p+1) (ln N)2

N

1 − 4(β/α)2(p+1)
(

ln N
N

)2




> exp

(
−8(β/α)2(p+1) (ln N)2

N

)
. (4.47)

Let Q={(ξ, ζ) ∈ R2 : −2ε/α ≤ ξ ≤ 0, 0 ≤ ζ ≤ 2ε/α}. Then,

E(x̃1x̃N) − E(x̃1)E(x̃N) =
∫ ∫

Q
Prob(x̃1 ≤ ξ) Prob(x̃N > ζ)[1 − ∆N(ξ, ζ)] dξdζ.

(4.48)

Moreover, from (4.47)

0 ≤
∫ ∫

DN

Prob(x̃1 ≤ ξ) Prob(x̃N > ζ)[1 − ∆N(ξ, ζ)] dξdζ

≤ 32(ε/α)2(β/α)2(p+1) (ln N)2

N

and

0 ≤
∫ ∫

Q−DN

Prob(x̃1 ≤ ξ) Prob(x̃N > ζ)[1 − ∆N(ξ, ζ)] dξdζ ≤ 4ε2

α2N
.

From the above inequalities and (4.48), we have

E(x̃1x̃N) − E(x̃1)E(x̃N) ≤ 32(ε/α)2(β/α)2(p+1) (ln N)2

N
+

4ε2

α2N
(4.49)

which is the desired result.

When u(t) is constant, it is a well-known fact that x̃1 and x̃N are asymp-

totically uncorrelated [51]. The essence of Proposition 4.2.2 is the upper bound

estimate on the right hand side of (4.40), which turns out to be quite important

in the asymptotic analysis of rx̃1x̃N
.
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Corollary 4.2.1 Let x̃1, x̃N , and rx̃1x̃N
be as in (4.11) and (4.23), respectively.

Assume that the disturbances η(t) are independent and have the pdf in (4.30). Let

u(t) be as in (4.25). Then,

lim
N→∞

rx̃1x̃N
= 0.

Our final result in this section is captured in the following.

Theorem 4.2.2 Consider the Chebyshev center θ̂c of the membership-set

SN(y, u, ε) for the model (4.1). Assume that the disturbances η(t) are indepen-

dent and have the pdf in (4.30). Let u(t) be as in (4.25). Then, SN(y, u, ε) is the

convex hull of the extreme points x1 and xN defined in (4.7) and

lim
N→∞

σ2

θ̂c

σ2
x1

+ σ2
xN

= lim
N→∞

σ2
R(SN )

σ2
x1

+ σ2
xN

=
1

4
.

The last result tells us that asymptotically, the variance of the Chebyshev

center is as large as the variance of the radius of the membership-set. Whether

the conclusions of Theorem 4.2.1 and Theorem 4.2.2 hold for multi-dimensional

parameter case remain open problems for the future work.

4.3 Statistical Analysis of the Minimax Algorithm

In this section, we study the statistical properties of the minimax estimate for the

model (4.1) assuming that the regressor and its inverse are magnitude bounded.

In the general case, the minimax estimate is quite difficult to analyze since it

is impossible to give a closed-form expression that is valid even asymptotically.

Recall that θ̂m coincides with θ̂c when the regressor is constant. The magnitude

constraint on u(t) controls the distance between these estimators. More precisely,

we have the following continuity type result.

Lemma 4.3.1 Consider the Chebyshev center θ̂c and the minimax estimator θ̂m

for the model (4.1). Let R(SN(y, u, ε)) and u(t) be as in (4.3) and (4.25), respec-

tively. Then,

|θ̂m − θ̂c| ≤ (1/2)[(β/α) − 1] R(SN (y, u, ε)). (4.50)

Proof. The minimax estimator in (4.6) is the solution of the linear programming

problem: 



min e

subject to SN(y, u, e) nonempty
(4.51)
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Let e∞ denote the optimal value of e in (4.51). Observe that SN(y, u, e∞) is a

singleton since otherwise it is a closed interval and e∞ can be reduced further.

Thus, from the inequalities in (4.8), we have for all u(t) 6= 0,

y(t) sgn[u(t)] − ε

|u(t)| +
ε − e∞
|u(t)| ≤ θ̂m ≤ y(t) sgn[u(t)] + ε

|u(t)| − ε − e∞
|u(t)|

which implies

x1 +
ε − e∞

β
≤ θ̂m ≤ xN − ε − e∞

β
.

It follows that

ε − e∞ ≤ βR(SN(y, u, ε)). (4.52)

Since SN(y, u, e∞) contains only θ̂m, from Lemma 4.2.1 we have

θ̂m =
1

2

[
max
u(t)6=0

y(t) sgn[u(t)] − e∞
|u(t)| + min

u(t)6=0

y(t) sgn[u(t)] + e∞
|u(t)|

]

(4.53)

≤ θ̂c −
ε − e∞

2β
+

ε − e∞
2α

.

Likewise,

θ̂m ≥ θ̂c −
ε − e∞

2α
+

ε − e∞
2β

. (4.54)

Thus, from (4.53) and (4.54) we get

|θ̂m − θ̂c| ≤ (2β)−1[(β/α) − 1] (ε − e∞). (4.55)

The inequalities (4.52) and (4.55) complete the proof.

If ε is a tight bound (see Definition 3.3.1) on η(t), it is known [32, 33, 56, 37]

that for all δ > 0,

lim
N→∞

Prob(R(SN(y, u, ε)) > δ) = 0

which implies that θ̂m is a consistent estimator of θ since θ̂m ∈ SN(y, u, ε) for all

N .

Confidence intervals for θ̂m can be computed either by using the general

results in [37] derived for all interpolatory estimators or resorting to the Cheby-

shev’s inequality assuming that the variance of θ̂m denoted by σ2

θ̂m
is available.

To this end, we have the following result.

Lemma 4.3.2 Consider the minimax estimator θ̂m for the model (4.1). Let θ̂c,

x̃N , and u(t) be as in (4.5), (4.11), and (4.25), respectively. Suppose that η(t)
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is a sequence of independent identically and symmetrically distributed random

variables with a pdf supported in [−ε, ε]. Then,

(1/2)σ2

θ̂c
− (1/4)[(β/α) − 1]2 {σ2

θ̂c
+ 2E(x̃2

N)} ≤ σ2

θ̂m

(4.56)

σ2

θ̂m
≤ 8σ2

θ̂c
+ 2[(β/α) − 1]2{σ2

θ̂c
+ E(x̃2

N)}.

Proof. Since the variance of a random variable is invariant to translations, we

have

σ2

θ̂m
= E([θ̂m − θ]2) − E2(θ̂m − θ). (4.57)

By Lemma 4.3.1 and the symmetry assumption on the pdf of η(t) note that

|E(θ̂m − θ)| = |E(θ̂m − θ̂c)| + |E(θ̂c − θ)|

= |E(θ̂m − θ̂c)|

≤ (1/2)[(β/α) − 1]E(R(SN(y, u, ε)))

(4.58)

= (1/2)[(β/α) − 1]E(x̃N)

since E(R(SN(y, u, ε))) = E(x̃N) and E(θ̂c) = θ. Again by Lemma 4.3.1, whenever

θ̂c − θ > δ holds, the inequality θ̂m − θ > δ− (1/2)[(β/α)− 1]R(SN (y, u, ε)) holds.

Thus,

Prob(θ̂m − θ + (1/2)[(β/α) − 1] R(SN(y, u, ε)) > δ) ≥ Prob(θ̂c − θ > δ).

Multiplying with 2δ and integrating both sides of this inequality with respect to

δ, we get from (4.16)

E({θ̂m − θ + (1/2)[(β/α) − 1] R(SN(y, u, ε))}2) ≥ E([θ̂c − θ]2) = σ2

θ̂c
. (4.59)

Since for any two random variables z1 and z2, the inequality 2z2
1 +2z2

2 ≥ (z1 +z2)
2

implies

E((z1 + z2)
2) ≤ 2E(z2

1) + 2E(z2
2),

we have from (4.59)

E([θ̂m − θ]2) ≥ (1/2)σ2

θ̂c
− (1/4)[(β/α) − 1]2 E(R2(SN(y, u, ε))). (4.60)

It follows from (4.57), (4.58), and (4.60)

σ2

θ̂m
≥ (1/2)σ2

θ̂c
− (1/4)[(β/α) − 1]2 {E(R2(SN(y, u, ε))) + E2(x̃N)}

= (1/2)σ2

θ̂c
− (1/4)[(β/α) − 1]2 {σ2

R(SN ) + 2E2(x̃N)}

= (1/2)σ2

θ̂c
− (1/4)[(β/α) − 1]2 {σ2

θ̂c
− σ2

x̃N
rx̃1x̃N

+ 2E2(x̃N)}
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where the last equality has followed from (4.29). Since rx̃1x̃N
≥ 0 and

E2(x̃N) ≤ E(x̃2
N), the above expression can further be simplified as follows

σ2

θ̂m
≥ (1/2)σ2

θ̂c
− (1/4)[(β/α) − 1]2 {σ2

θ̂c
+ 2E(x̃2

N)}. (4.61)

For an upper bound on σ2

θ̂m
, by Lemma 4.3.1 we have

θ̂c − θ > δ − (1/2)[(β/α) − 1]R(SN(y, u, ε))

whenever θ̂m − θ > δ, and therefore,

Prob(θ̂m − θ > δ) ≤ Prob(θ̂c − θ + (1/2)[(β/α) − 1] R(SN(y, u, ε)) > δ)

≤ Prob(θ̂c − θ > δ/2)

+ Prob([(β/α) − 1] R(SN(y, u, ε)) > δ).

Multiplying with 2δ and integrating both sides of the above inequality, we get

2
∫ b

0
Prob(θ̂m − θ > δ)δ dδ ≤ 2

∫ b

0
Prob(θ̂c − θ > δ/2)δ dδ

(4.62)

+2
∫ b

0
Prob(R(SN(y, u, ε)) > δ[(β/α) − 1]−1)δ dδ

where b is an arbitrary positive number larger than the ranges of the random

variables involved in the integrands. Thus, from (4.16) and (4.62),

E([θ̂m − θ]2) ≤ 8E([θ̂c − θ]2) + 2[(β/α) − 1]2 E(R2(SN(y, u, ε)))

(4.63)

≤ 8σ2

θ̂c
+ 2[(β/α) − 1]2{σ2

θ̂c
+ E(x̃2

N)}.

The inequalities (4.61), (4.63), and the fact that σ2
x ≤ E(x2), complete the proof.

4.4 Simulation Example

In this section, we illustrate the results of this chapter by a simulation example.

We consider the model (4.1) with θ = 1 and ε = 0.5. As for the regressor signal,

we choose a high-pass filtered sinusoid

u(t) =





| sin(2πt/N)|, if | sin(2πt/N)| ≥ α

α, otherwise.
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The noise is generated according to the pdf in (4.30) with p = 1 and p = 10; and

the number of data points N = 400 is chosen. We define the relative errors of the

central and the minimax algorithms in the order given as [θ̂c − θ]/R(SN(y, u, ε))

and [θ̂m − θ]/R(SN (y, u, ε)). Figures 4.3 and 4.4 show the relative errors of the

central and the minimax algorithms as a function of β/α for the noise pdf in (4.30)

with p = 1 and p = 10, respectively. From the figures, the following observations

can be made: 1) the central and the minimax estimates coincide when β/α = 1; 2)

for some ranges of β/α, the performances of the central and the minimax estimates

depend on β/α; and 3) after some particular β/α value, the performances of the

central and the minimax algorithms are not affected by β/α.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

β/α

R
el

at
iv

e 
er

ro
r

Figure 4.3: Relative errors of the central and the minimax algorithms as a function

of β/α for the noise pdf in (4.30) with p = 1. [θ̂c − θ]/R(SN (y, u, ε)): −∗; and [θ̂m −
θ]/R(SN (y, u, ε)): −◦

4.5 Summary

In this chapter, we first analyzed the statistical properties of the Chebyshev cen-

ter assuming that the regressor and its inverse are magnitude bounded. This

assumption led to the conclusion that the Chebyshev center is the midrange of

two bounded extreme order statistics. The boundedness of these random vari-

ables facilitated integral representations for the moments of them in terms of rare

event probabilities. These integrals were used to derive upper and lower bounds
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Figure 4.4: Relative errors of the central and the minimax algorithms as a function

of β/α for the noise pdf in (4.30) with p = 10. [θ̂c − θ]/R(SN (y, u, ε)): −∗; and

[θ̂m − θ]/R(SN (y, u, ε)): −◦

on the convergence rate of the variance of the central algorithm for a specific noise

probability density function. We then showed that the results obtained for the

central algorithm carry over to the minimax algorithm under the similar regressor

constraints.
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5. CONCLUDING REMARKS

5.1 Conclusions

In this thesis, statistical analysis of membership-set based estimators was studied

in two different settings.

In Chapter 3, corresponding to the first case, we considered periodic input

signals and the orthonormal regressors. We derived upper and lower probability

bounds on the diameter of the membership-set. We then studied the central and

the projection algorithms for the special case that the number of the unknown

parameters equals the input period. We derived explicit formulae for the central

algorithm and the diameter of the membership-set, and characterized the set of

all projection algorithms.

In Chapter 4, corresponding to the second case, we studied the statisti-

cal properties of the central algorithm and the minimax algorithms in a one-

dimensional parameter space setting assuming that the regressor signal and its

inverse are magnitude bounded. We derived non-asymptotic, order-tight, upper

and lower bounds on the convergence rate of the parameter estimate variance for

the central and the minimax algorithms.

5.2 Recommendations for the Future Work

Although the parameter estimation problem considered in Chapter 4 is one-

dimensional, the changing nature of the regressor signal makes the statistical

analysis very difficult. For example, when the regressor magnitude is constant

the central and the minimax algorithms coincide. The problem becomes even

much harder when the regressor signal is vector-valued. We expect our results

to provide insights in the statistical analysis of these membership-set based es-

timators when the unknown parameter is multi-dimensional and the probability

distribution function of the noise is more general than the one considered in this

thesis.
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[29] AKÇAY, H. and NINNESS, B. Rational basis functions for robust identifica-

tion from frequency and time-domain measurements. Automatica, 34:1101–

1117, 1998.

[30] NINNESS, B., HJALMARSSON, H., and GUSTAFSSON, F. The funda-

mental role of general orthonormal bases in system identification. IEEE

Transactions on Automatic Control, 44:1384–1406, 1999.

[31] VICINO, A. and MILANESE, M. Optimal inner bounds of feasible para-

meter set in linear estimation with bounded noise. IEEE Transactions on

Automatic Control, 36:759–763, 1991.

58



[32] VERES, S. M. and NORTON, J. P. Structure selection for bounded-

parameter models: consistency conditions and selection criterion. IEEE

Transactions on Automatic Control, 36:474–481, 1991.

[33] BAI, E. W., TEMPO, R., and CHO, H. Membership set estimators: size,

optimal inputs, complexity and relations with least squares. IEEE Trans-

actions on Circuits and Systems-I: Fundamental Theory and Applications,

42:266–277, 1995.

[34] BAI, E. W., YE, Y., and TEMPO, R. Bounded error parameter estimation:

a sequential analytic center approach. IEEE Transactions on Automatic Con-

trol, 44:1107–1117, 1999.

[35] BAI, E. W., FU, M., TEMPO, R., and YE, Y. Convergence results of the

analytic center estimator. IEEE Transactions on Automatic Control, 45:569–

572, 2000.
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APPENDIX A ORDER STATISTICS

Let X1, X2, ..., Xn denote a random sample from a continuous distribution with

pdf f(x). The order statistics is obtained by arranging the Xi’s in nondecreasing

order of magnitude so that X1:n ≤ X2:n ≤ · · · ≤ Xn:n. In the following, we review

the basic distribution theory of these ordered random variables and of functions

involving them. The reader is referred to [51] and [57] for more detailed discussion.

Distribution of a Single Order Statistic

The pdf of the ith order statistic is denoted by fi:n(x), 1 ≤ i ≤ n, and is defined

as

fi:n(x) = lim
δx→0

{
Prob(x<Xi:n≤x+δx)

δx

}

= n!
(i−1)!(n−i)!

{F (x)}i−1 {1 − F (x)}n−i f(x), −∞ < x < ∞.

In particular, the pdfs of the smallest and largest order statistics are given by

f1:n(x) = n {1 − F (x)}n−1 f(x), −∞ < x < ∞,

and

fn:n(x) = n {F (x)}n−1 f(x), −∞ < x < ∞.

Moreover, the expected value and the variance of the ith order statistics are given

by using the standard definitions:

E(Xi:n) =
∫ ∞

−∞
xfi:n(x)dx

var(Xi:n) =
∫ ∞

−∞
(x − E(Xi:n))2 fi:n(x)dx.

Example Consider a uniform parent distribution in [−ε, ε]. The pdfs of the smallest

and largest order statistics are given by

f1:n(x) =
n

2ε

(
1

2
− 1

2ε
x

)n−1

, −ε ≤ x ≤ ε

fn:n(x) =
n

2ε

(
1

2
+

1

2ε
x

)n−1

, −ε ≤ x ≤ ε.
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Joint Distribution of Two Order Statistics

The joint pdf of Xi:n and Xj:n, 1 ≤ i < j ≤ n, is denoted by fi,j:n(xi, xj) and is

defined as

fi,j:n(xi, xj) = lim
δxi→0,δxj→0

{
Prob(xi≤Xi:n≤xi+δxi,xj≤Xj:n≤xj+δxj)

δxiδxj

}

= n!
(i−1)!(j−i−1)!(n−j)!

×{F (xi)}i−1 {F (xj) − F (xi)}j−i−1 {1 − F (xj)}n−j f(xi)f(xj),

−∞ < xi < xj < ∞.

In particular, the joint pdf of the smallest and largest order statistics is given by

f1,n:n(x1, xn) = n(n−1) {F (xn) − F (x1)}n−2 f(x1)f(xn), −∞ < x1 < xn < ∞.

Example For a uniform parent distribution in [−ε, ε], the joint pdf of the smallest and

largest order statistics is given by

f1,n:n(x1, xn) =
n(n − 1)

(2ε)n
(xn − x1)

n−2, −ε ≤ x1 < xn ≤ ε.

Distribution of the Range and Midrange

From the joint pdf of two or more order statistics, we can derive the pdf of any

well-behaved function of the order statistics using the standard transformation

techniques. Two important ones include the range and midrange. The range is

defined as

W = Xn:n − X1:n,

and its pdf is given by

fW (w) = n(n − 1)
∫ ∞

−∞
{F (w + x1) − F (x1)}n−2 f(x1)f(w + x1)dx1.

The midrange is defined as

M =
X1:n + Xn:n

2
,

and its pdf is given by

fM(m) = 2n(n − 1)
∫ m

−∞
{F (2m − x1) − F (x1)}n−2 f(x1)f(2m − x1)dx1.
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APPENDIX B CONVERGENCE OF RANDOM VARIABLES

Some of the convergence concepts for a sequence of random variables:

• Almost sure convergence, Xn
a.s.→ X: A sequence of random variables {Xn}

converges almost surely, or converges with probability 1, to a random vari-

able X if

Prob
(

lim
n→∞

Xn = X
)

= 1

• Convergence in probability, Xn
p→X: A sequence of random variables {Xn}

converges in probability to a random variable X if

lim
n→∞

Prob (|Xn − X| ≥ ε) = 0

for every ε > 0.

• Convergence in distribution, Xn
d→X: A sequence of random variables {Xn}

with cdf Fn(x) converges in distribution, or converges weakly, to a random

variable X with cdf F (x) if

lim
n→∞

Fn(x) = F (x)

for all continuity points of F (x).

Note that almost sure convergence implies both convergence in probability and

convergence in distribution. Likewise, convergence in probability implies the con-

vergence in distribution.
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