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ABSTRACT 

 

RF BASED INDOOR POSITIONING SYSTEM 

 

Sinem BOZKURT KESER 

 

Department of Computer Engineering 

Anadolu University, Graduate School of Sciences, December 2017 

 Supervisor: Assoc. Prof. Dr. Serkan GÜNAL 

Second Supervisor: Assoc. Prof. Dr. Ahmet YAZICI 

 

Although the Global Positioning System is a publicly recognized technology for 

positioning in the outdoor environment, it is ineffective in the indoor environment. For this 

reason, the search for effective solutions to indoor positioning still continues. Within the 

scope of this dissertation, it is aimed to develop radio frequency (RF) based, high-accuracy 

and low-cost indoor positioning approaches based on the fingerprint method. For this 

purpose, in addition to the existing indoor positioning datasets in the literature, a new 

dataset has been constituted and made available to researchers. In terms of selected 

performance criteria, the most suitable algorithm for three different indoor environments is 

determined by multi-criteria optimization technique. Hybrid fingerprints are defined using 

a combination of WiFi received signal strength and magnetic field measurements. It has 

been observed that the positioning accuracy is improved when the proposed hybrid 

fingerprint dataset is used with different classification algorithms. F-score weighted indoor 

positioning algorithm combining WiFi received signal strength and magnetic field 

measurements is proposed. It has been observed that the accuracy of the proposed 

algorithm is higher than that of the conventional algorithms. In addition, an improved 

indoor positioning approach has been proposed that uses WiFi signal strength and 

magnetic field fingerprints for more precise locating. With this approach, high accuracy 

position estimation can be done. 

Keywords:  Indoor Positioning Systems, Fingerprint Based Positioning, WiFi Received 

Signal Strength, Magnetic Field.   
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ÖZET 

 

RF TABANLI İÇ ORTAM KONUMLANDIRMA SİSTEMİ 

 

Sinem BOZKURT KESER 

 

Bilgisayar Mühendisliği Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Aralık 2017 

Danışman: Doç. Dr. Serkan GÜNAL        

İkinci  Danışman: Doç. Dr. Ahmet YAZICI 

 

Küresel Konumlama Sistemi, dış ortamlarda konumlandırma için herkes tarafından 

kabul gören bir teknoloji olmasına karşın iç ortamlarda etkisiz kalmaktadır. Bu nedenle, 

araştırmacıların iç ortamlarda konum belirlemek için etkili çözüm arayışları devam 

etmektedir. Bu tez çalışması kapsamında, parmak izi yöntemini temel alan radyo frekansı 

(RF) tabanlı, yüksek doğruluğa sahip ve düşük maliyetli iç ortam konumlandırma 

yaklaşımları geliştirilmesi hedeflenmiştir. Bu doğrultuda, literatürde var olan iç ortam 

konumlandırma veri kümelerine ilave olarak yeni bir veri kümesi oluşturulmuş ve 

araştırmacıların kullanımına sunulmuştur. Seçilen performans kriterleri açısından üç farklı 

iç ortam için en uygun algoritma, çok-kriterli optimizasyon tekniği ile belirlenmiştir. WiFi 

alınan sinyal gücü ve manyetik alan ölçümleri bir arada kullanılarak hibrid parmak izleri 

tanımlanmıştır. Önerilen hibrid parmakizi veri kümesi, farklı sınıflandırma algoritmalarıyla 

birlikte kullanıldığında konumlandırma doğruluğunun iyileştiği görülmüştür. WiFi alınan 

sinyal gücü ve manyetik alan ölçümlerini bir araya getiren F-skor ağırlıklı iç ortam 

konumlandırma algoritması önerilmiştir. Önerilen algoritmanın sağladığı doğruluğun 

geleneksel algoritmalardan daha yüksek olduğu gözlenmiştir. Ayrıca, daha hassas konum 

belirleme amacıyla, WiFi alınan sinyal gücü ve manyetik alan parmak izlerini kullanan, 

geliştirilmiş bir iç ortam konumlandırma yaklaşımı önerilmiştir. Bu yaklaşım ile yüksek 

hassasiyette konum tahmini yapılabilmiştir.  

 

Anahtar Sözcükler:  İç Ortam Konumlandırma Sistemleri, Parmakizi Tabanlı 

Konumlandırma, WiFi Alınan Sinyal Gücü, Manyetik Alan.  
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1. INTRODUCTION 

Indoor positioning systems (IPS) include technologies and methods to calculate 

mobile unit (MU) position within a structure in a closed area. IPS are used to estimate 

user position in closed areas such as airports, shopping centres, train stations, hospitals, 

to inform promotions and discounts at stores to the users, and automatically directing a 

visually impaired user in a closed area. The main problem in IPS is to perform 

positioning in a cheapest and accurate way. There is no standardized system for solving 

indoor positioning problem like as Global Positioning System (GPS) for outdoor 

environment [1]; therefore studies on this area are still in the process of evolution. 

Various technologies are utilized to support IPS such as Global System for Mobile 

Communications (GSM) [2], Radio-frequency Identification (RFID) [3], ultrasonic [4], 

Bluetooth Low Energy (BLE) [5], Wireless Local Area Network (WLAN) [6], magnetic 

field (MF) [7], and so on. GSM-based system uses existing infrastructure, but it does 

not give reasonable accuracy for indoor areas. RFID-based and ultrasonic-based IPS are 

also having reasonable accuracies, but they need the installation of extra sensors. BLE-

based IPS have short operating range as well as poor predictability. Therefore, it is 

recommended that BLE is used as a supplementary technology in an IPS. WLAN-based 

IPS is the most widely deployed system when compared with other systems. It is 

inexpensive, infrastructure free, and it has ubiquitous availability and easier deployment 

inside buildings. So, several algorithms are proposed in this context. 

Indoor positioning algorithms are divided into five main categories such as 

triangulation, proximity, pedestrian dead reckoning (PDR), vision analysis and 

fingerprinting as it can be seen in Figure 1.1. 
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Figure 1.1. Classification of Indoor Positioning Algorithms 

Triangulation is a geometric-based method that uses signal parameters to calculate 

the MU position [8]. It is divided into two subcategories such as lateration and 

angulation based on the signal parameters. Distance measurements are used to calculate 

the MU position in lateration method. Time of Arrival (TOA) and Time Difference of 

Arrival (TDOA) are two most popular lateration methods. In TOA, the distance 

between the transmitter of the Access Point (AP) and the receiver of the MU is 

calculated using the velocity and the travel time of the transmitted signal [9]. At least 

three APs are needed for positioning in this method. The calculated distances between 

each AP and the MU are utilized as the radius of the three propagation circles of the 

signals transmitted from the APs. At the end, the intersection point of these three circles 

is the estimated position of the MU. TOA requires time synchronization between the 

APs and the MU. This synchronization is eliminated using TDOA method. In TDOA, 

arrival time differences of the signals obtained from different APs at the receiver are 

utilized as distance measurements in place of travel time [10]. Angle of Arrival (AOA) 

of the signal is used to calculate the MU location in the angulation method [11]. In 

AOA, intersection of virtual lines from different transmitters is used to calculate the 

MU position. It does not require any time synchronization between the transmitters and 

receivers. But, it requires more complex hardware (an array of antennas) to determine 

the angle between the transmitters and receivers. All the triangulation methods suffer 

from Non Line-of-Sight (NLOS) conditions; therefore give erroneous results for indoor 

positioning. In proximity, the MU location is estimated as the antenna position which 

receives the strongest signal from the MU [12]. Therefore, a dense grid of antennas with 
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known positions is used. This method is generally used in RFID technology. It requires 

additional hardware, and has low resolution and poor accuracy. So, it is impractical for 

indoor positioning. In PDR, the position of the MU is calculated using the previously 

calculated position, speed, and the direction of the MU [13]. Since current position is 

relative to the previous position, the errors are cumulative. In addition to this, the 

sensors in the most smartphones do not provide very accurate data. Therefore, PDR is 

not solely adequate for an IPS. Vision analysis has the high complexity, since it requires 

creating the large image database and the real-time communication between the server 

and the MU [14]. Therefore, it gives undesirable solution for indoor positioning. 

Wireless Fidelity (WiFi) Received Signal Strength (RSS) based fingerprinting method 

is widely adopted approach due to the relatively high accuracy and modest cost. It 

utilizes the existing WLAN infrastructure. RADAR [15] and HORUS [16] are typical 

IPS based upon WiFi-RSS based fingerprinting method. MF-based positioning is 

another approach to solve indoor positioning problem [7]. In this method, LOS is not 

required in order to estimate the MU position. It is easy to obtain MF measurements 

using today’s smartphones. When MF signals are static, fingerprinting method can be 

applied to construct MF-based fingerprinting method for indoor positioning [17]. 

1.1. Problem Statement and Technical Challenges 

The main problem in IPS is to obtain a reasonable positioning accuracy in a cost-

effective manner. Therefore, WiFi-RSS based fingerprinting method is the most 

employed method by the researchers. But, it has some challenges such as WiFi-RSS 

values suffer from multipath effect which leads to erroneous position estimate. 

Therefore, it can be enhanced using supplementary technologies such as BLE or MF as 

mentioned above. But, using BLE with WiFi-RSS based fingerprinting method is not a 

good choice. Because both of the technologies operate in the same frequency (2.4GHz), 

therefore signal inference is inevitable. On the other hand, MF has some advantages 

such as MF does not suffer from NLOS conditions or multipath effects in indoors 

whereas it has short operating range, and sensitivity to certain materials. However, MF 

strength diminishes rapidly with distance. So, MF-based fingerprinting method is best 

utilized as a supplementary method to WiFi-RSS based fingerprinting method for 

indoor positioning.   
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1.2. Research Aim and Objectives 

The aim of this study is to design a cost-effective radio frequency (RF)-based IPS 

which adopts fingerprinting method. Our objective is to enhance the IPS positioning 

performance. For this purpose, various positioning algorithms are utilized with the 

publicly accessible indoor positioning datasets to determine the most appropriate 

algorithms in terms of selected performance metrics. A multi-criteria optimization 

technique is defined to obtain the most appropriate algorithm for a given dataset. In 

another approach, the test environment is divided into clusters to construct cluster-based 

classification algorithms. By using this approach, the positioning accuracy is improved. 

Since using solely WiFi-RSS based fingerprinting method is not adequate to obtain 

reasonable accuracy for indoor positioning, we shed light on the advantages of WiFi-

RSS and MF measurements at the same time and counteract their drawbacks. For this 

purpose, we handle MF-based fingerprinting method as a supplementary solution with 

the WiFi-RSS based fingerprinting method. Therefore, hybrid fingerprints are defined 

to improve the positioning performance. Then, several positioning algorithms are 

applied with hybrid fingerprint database to solve the indoor positioning problem. In 

another study, we propose an f-score weighted indoor positioning algorithm integrating 

WiFi-RSS fingerprints with MF fingerprints to enhance IPS performance in terms of 

accuracy. The proposed f-score weighted indoor positioning algorithm has better 

accuracy performance than the conventional algorithms.  Thus far, these algorithms 

solve indoor positioning problem as a classification task. Since more precise position 

estimates are more preferred, and then we propose an enhanced indoor positioning 

algorithm using WiFi RSS and magnetic field fingerprints. This final method calculates 

the position in terms of x and y coordinates to obtain more precise location. 

1.3. Outline 

The rest of the thesis is organized as follows: Literature review for fingerprint-

based positioning is given in Section 2. The methods and positioning approaches 

proposed by this thesis and their evaluation are explained in Section 3. Finally, Section 

4 outlines the conclusion and future work. 
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2. BACKGROUND AND RELATED WORK 

Fingerprint-based positioning is one of the most exploited methods in indoor 

positioning because of its inexpensive cost, relatively high accuracy, simplistic design, 

and easier deployment [18]. It contains mainly two phases: fingerprint mapping 

(offline) phase and positioning (online) phase. In the fingerprint mapping phase, signal 

measurements obtained from each reference point (RP) are stored into the database 

named as fingerprint map with the known RP coordinates. In the positioning phase, a 

positioning algorithm is applied to estimate the position of the MU by comparing online 

fingerprint measurement with the fingerprints in the fingerprint map. There is also one 

internal step named as preprocessing which used to optimize the IPS by removing 

redundant information, by selecting most informative information, or by dividing whole 

experimental area into sub-areas using clustering.  The fingerprint-based positioning is 

illustrated in Figure 2.1. 

 

Figure 2.1. Fingerprint-based positioning 

In the following subsections, prior works and the necessary background and 

methods employed in the fingerprint-based positioning algorithms are presented. 
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2.1. Fingerprint-based Mapping  

Fingerprint-based mapping is started with dividing test area into equi-sized grids; 

then sensor measurements are collected from the center of each grid, and stored as a 

fingerprint in the database. There are various studies which adopt fingerprint-based 

indoor positioning in the literature. These studies generally store the WiFi-RSS values 

for their database [19, 20]. Recent studies recognize the efficiency of the MF and store 

the samples from the magnetometer to construct their database [21, 22]. Among these 

databases, the publicly available databases are limited [19, 20, 22]. And these databases 

contain one type of sensor measurement. A multi-sensor fingerprint database that 

includes WiFi-RSS and MF for indoor positioning is proposed in [23]. The processes of 

obtaining the fingerprint-based maps are given below. 

2.1.1. Radio Map  

Radio map is constructed by dividing the experimental area into equi-sized grids 

[15]. The centre of each grid represents the reference points (RPs) where WiFi-RSS 

(measured in decibel-milliwatt (dBm)) values of the radio signals transmitted by APs are 

collected. These WiFi-RSS values are stored into the radio map as a fingerprint with the 

known coordinates of RPs. The fingerprint at the 
thi  RP in the radio map is stored as 

  ,1 ,1 , ,, , , ( , ),..., , ( , )
i ii i i i i i i k i kFP lb xCoord yCoord MAC RSS MAC RSS             (2.1) 

where iFP  is the fingerprint information at iRP , ilb  is the label of the iRP , ixCoord and 

iyCoord  are the x and y  coordinates of iRP , 
,i jMAC  and 

,i jRSS  are the MAC address 

and WiFi-RSS values of the thj  AP received at iRP , and ik  is the number of available 

APs at iRP . An example of the radio map is given in Table 2.1. 
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Table 2.1. An example of a radio map 

RP Label x Coordinate y Coordinate MAC1 … MACn 

… ……. 

1 1.2 1.2 -82 … -83 

1 1.2 1.2 -82 … -83 

1 1.2 1.2 -86 … -83 

1 1.2 1.2 -86 … -82 

2 3.6 1.2 -87 … -81 

2 3.6 1.2 -88 … -77 

2 3.6 1.2 NaN … -76 

2 3.6 1.2 NaN … -76 

… ……. 

2.1.2. Magnetic Map  

Magnetic map is established using the same procedure as the radio map 

construction. Each fingerprint in the magnetic map contains the x , y , and z  values of 

MF strength values (measured in microTesla or T ) which are obtained by a 

magnetometer sensor on a mobile device [22]. The magnetic fingerprint at the 
thi  RP in 

the magnetic map is represented as 

  , , ,, , , , ,i i i i i x i y i zMFP lb xCoord yCoord global global global             (2.2) 

where iMFP  is the magnetic fingerprint information at iRP , ilb  is the label of the iRP , 

ixCoord  and iyCoord  are the x and y coordinates of iRP ,
, ,,i x i yglobal global  and 

,i zglobal  are the global x , y , and z  values of magnetic field strength in relation to the 

world coordinates at iRP . An example of the magnetic map is given in Table 2.2. 
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Table 2.2. An example of a magnetic map 

RP Label x Coordinate y Coordinate Global x Global y Global z 

… ……. 

1 1.2 1.2 8.76 -5.03 -2.52 

1 1.2 1.2 8.76 -5.15 -2.88 

1 1.2 1.2 8.86 -5.05 -2.88 

1 1.2 1.2 8.86 -4.73 -2.90 

2 3.6 1.2 -71.02 -2.68 -0.22 

2 3.6 1.2 -70.98 -2.75 -0.26 

2 3.6 1.2 -71.01 -2.78 -0.09 

2 3.6 1.2 -70.96 -2.78 -0.07 

… ……. 

2.2. Preprocessing  

The aim of the preprocessing is to optimize the IPS performance in terms of 

accuracy and computation time. This can be done by removing redundant information, 

by selecting most informative information, or by dividing whole experimental area into 

sub-areas using clustering. Therefore, the applied methods for preprocessing step in this 

thesis can be classified as follows: fingerprint filtering, AP selection, and fingerprint 

map clustering. These methods are explained in the following subsections. 

2.2.1. Fingerprint Filtering 

Fingerprint filtering is applied for two signal types such as WiFi RSS and MF 

measurements separately. In this subsection, filtering methods are explained in terms of 

each signal type. 

Radio map contains the RSS values from the APs for each RP. When collecting 

RSS data to form the radio map, some APs are not detected during each scan. Therefore, 

NaN values are occurred in the radio map. Since the WiFi-RSS level values are ranged 

from -100dBm to 0dBm, generally NaN values are replaced with -100dBm in the 

literature. Then, minimum (except -100dBm) and maximum RSS values for each AP 

are replaced with the minimum and maximum values of all instances in the radio map. 

This filtering approach is illustrated in Figure 2.2 and Figure 2.3 as before filtering and 

after filtering.  



 

 

9 

 

 

Figure 2.2. Measurements of RSS values from three APs in first RP 

 

Figure 2.3. Measurements of RSS values from three APs in first RP after filtering 

approach 

As seen in the Figure 2.2 and 2.3, the interval between the minimum and 

maximum values of WiFi RSS values from APs in a RP comes closer, and the -100dBm 

values are replaced with the lowest detected signal measurement in the dataset. There 

are also other filtering approaches are applied frequently for WiFi RSS values such as 

median filtering [24] and neighbourhood mean filtering [25] in the literature. Median 

filtering is a non-linear filtering method which replaces NaN values in the radio map 

with the median value of the neighbourhood, whereas in neighbourhood mean filtering, 

the NaN values are replaced with the average value of the neighbourhood. Since the 

performance of these filtering approaches are depended on the positioning algorithm, 

there is not an exact inference is obtained which filtering method is best suit for the 

radio map.  

Magnetometer sensor returns the ,x y  and z  values of the MF strength values in 

relation to the device orientation, therefore, the magnitude of each axis may differ as the 

device’s orientation changes, even when it stays in the same position. So, they must be 
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converted to the world coordinates before stored in the magnetic map. These 

orientations are represented in the Figure 2.4. 

 

 

(a) (b) 

Figure 2.4. Local axis for device coordinates (a), global axis for world coordinates (b) 

The accelerometer and gyroscope included on the mobile phone can be used to convert 

the device orientation to world coordinates. Yaw ( )  and pitch ( )  angles obtained 

from the accelerometer are integrated with heading angle ( ) from the MF and 

gyroscope sensors using Kalman Filter to obtain the orientation of the mobile device. 

The orientation angles are used to construct rotation matrix as seen in Eq. 2.3. 
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                                         (2.3) 

Then, the local magnetic field strength measurements are multiplied with the rotation 

matrix which includes orientation angles to calculate the global magnetic field strength 

measurements as follows. 

( ) ( ) ( )p x y z eB R R R B                                             (2.4) 
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where 
eB  and 

pB are the magnetic field strength vector in device and world coordinate 

orientations, respectively. Figure 2.5 is constructed to demonstrate changes of the ,x y  

and z  components of all MF data in time in device coordinate orientations. 

 

Figure 2.5. Magnetic field x, y, and z components in time 

2.2.2. AP Selection 

The dimension of the radio map is increased when using all the detected APs in 

the experimental area. But, same accuracy results may be obtained using less APs after 

applying AP selection methods. Performing AP selection methods before positioning, 

less complex models are constructed and the overfitting is decreased. Besides, 

computation time of the IPS is reduced. Various AP selection methods are proposed in 

the literature. For example, MaxMean method that is proposed in [26] ranks APs in 

descending order of their average signal-strength values, and selects the kth strongest 

APs to reduce the computation time. In [27], the most discriminating APs are selected 

using the information entropy by the Info Gain method for enhancing computation time. 

In [28], Principal Component Analysis is applied to reduce the computation complexity 

besides reserving all the APs’s information. In [29], AP selection method is based on 

the minimizing correlation between selected APs. In [30], an AP selection strategy 

named as ResidualRanking applied only in the online phase to choose the APs which 

least sensitive to the dynamic environment conditions in an indoor positioning.  

2.2.3. Fingerprint Map Clustering 

With the increasing number of RPs in experimental area, the size of the 

fingerprint map continually expanding. This expansion effects the accuracy and 

computation time of the IPS negatively. Therefore, clustering is applied into IPS to 
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divide the experimental area into sub-areas to improve the system performance. 

Clustering is done by evaluating fingerprint map based on similarity degree of the signal 

measurements. Performing clustering prior to positioning has some advantages. Firstly, 

it diminishes the negative effects on positioning accuracy caused by signal measurement 

deviations. Secondly, it decreases the computation time since cluster-specific models 

are constructed for positioning on each sub-area. 

Various methods which are based on clustering are developed in the literature. In 

[31], median and K-means clustering algorithms are applied separately into the 

fingerprint map. K-means clustering is combined with KNN algorithm to improve the 

performance of the classical KNN approach in [32]. Experimental results demonstrate 

that KNN with K-means clustering reduces the required data for positioning and 

average distance errors. Support vector machine-based clustering (SVM-C) is proposed 

to reduce the positioning mean error in [33]. In [34], the authors reveal that combining 

different metrics for different steps of the cluster-specific positioning algorithms 

enhance the IPS performance. 

2.3. Classification Algorithms for Positioning Purpose 

Classification algorithms are used to determine the MU position in the positioning 

phase. They can be categorized into two groups such as deterministic algorithms and 

probabilistic algorithms. The deterministic algorithms use original or mean values of 

signal measurements observed at a RP whereas the probabilistic algorithms use 

distributions of signal measurements at a RP. In the literature, various deterministic and 

probabilistic algorithms have been used to construct model for the positioning.  Since it 

is not the objective of this thesis to list all the existing algorithms, only the applied 

deterministic algorithms such as k-nearest neighbour, decision tree, support vector 

machine, artificial neural network, and extreme learning machine, and probabilistic 

algorithms such as Bayesian approach, and Maximum Likelihood Estimation are 

presented below. They are selected due to their efficiency, and wide usage in indoor 

positioning. 
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2.3.1. K-nearest Neighbour (KNN) Algorithm 

KNN algorithm is one of the simplest algorithms to estimate the position of the 

MU by using fingerprint map [15]. It considers K  RPs to calculate approximate 

position of the MU. The aim of the KNN is to compare the signal measurements in the 

fingerprint map with the observed measurement of the MU, and to choose the 𝐾 RPs 

with the closest signal measurements. Euclidean, Manhattan, Chebyshev distance 

functions are used in the comparison. The most common RP in the closest K  RPs is 

determined as the MU position. In general, KNN with 3K   and 4K   can achieve 

better accuracy than NN [35]. However, if the density of the fingerprint map is high, 

then NN can perform as well as the more complicated algorithm [36]. 

 In the literature, several algorithms are proposed based on KNN. In a study, a 

feature-scaling-based KNN (FS-KNN) is proposed [37]. In the FS-KNN, RSS-level-

based scaling weights are defined to calculate the signal differences when computing the 

similarity between signal vectors. The experimental results demonstrate that FS-KNN 

outperforms classical KNN algorithm in terms of positioning accuracy and precision. 

Jffreys&Matusita distance is replaced with Euclidean distance in KNN algorithm to 

improve the positioning accuracy and stability [38]. Cluster-specific KNN algorithms are 

proposed in the literature in order to enhance the performance of classical KNN 

algorithm. Cluster filtered KNN (CKF) algorithm that utilizes hierarchical clustering to 

divide the nearest neighbours of RPs is proposed in [39]. In [40], CKF is enhanced by 

using k-means clustering algorithm instead of hierarchical clustering algorithm. In 

another study, KNN is integrated with fuzzy c-means clustering (KNN-FCM) [41]. 

KNN-FCM divides k-nearest neighbours into several clusters and chooses one cluster to 

calculate the MU’s position. KNN with affinity propagation clustering algorithm is 

utilized for positioning and outperforms other mentioned cluster-specific KNN 

algorithms [42]. The proposed method in [42] is improved by removing isolated RPs 

using semi-supervised affinity propagation clustering algorithm in [43].  

2.3.2. Decision Tree (DT) Algorithm 

Decision tree algorithm constructs tree structure to build models by using the 

fingerprint map [44]. A DT contains root, decision, and leaf nodes. The root node has 

zero or more outgoing edge without incoming edge. The decision node contains two or 

more branches with one incoming edge. It is represented with the function of any 
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attribute of the fingerprint map. It breaks down the fingerprint map into smaller subsets. 

Each leaf node is assigned a classification decision. The sensor values and reference 

point labels are utilized in the decision and leaf nodes, respectively in the indoor 

localization problem. The position of the MU is calculated by traversing the tree from the 

root node down to a leaf node, according to the output of the condition or the function 

along the path. Since the goal is to construct the optimal DT by minimizing the 

generalization error, several heuristic methods are needed for solving the problem such 

as Iterative Dichotomizer (ID3) [45], C4.5 [46], Classification and Regression Tree 

(CART) [47], and so on. The C4.5 algorithm is generally used method to find the 

optimal tree. It takes the fingerprint map as input and generates a tree using the divide-

and-conquer algorithm. 

 In the literature, several algorithms are proposed based on DT. The work in [48] 

analyse the parameters of the DT and find the optimal DT for their IPS. The intervals of 

RSS values represent the nodes of the DT in [49]. Then, the proposed DT algorithm is 

compared with NN, Bayesian approach, and ANN in terms of accuracy and computation 

time, and experimental results demonstrate that the proposed DT algorithm is better than 

other algorithms in terms of both performance metrics. In another study, the proposed 

DT algorithm is compared with NN, and MLP in terms of accuracy and experimental 

results demonstrate that the DT is more accurate than other algorithms [50]. In [51], RSS 

combination of each AP is selected using Random Forest algorithm by recursively 

creation of DT. Multiple weighted DTs using boosting algorithm is proposed in [52] in 

order to enhance the computational complexity and accuracy of the IPS. The proposed 

algorithm in [53] combines information theory, clustering analysis, and a DT algorithm 

in order to increase the accuracy of the IPS while decreasing the power consumption. A 

DT based localization algorithm specific to context awareness is presented in [54]. 

2.3.3. Artificial Neural Network (ANN) 

ANN is a mathematical model which simulates the functions of the human brain 

[55]. It consists of interconnected nodes and directed links in order to process 

information. The connections between these nodes contain weights which store the 

knowledge of this model. ANN algorithm is frequently used for indoor positioning 

field, since it is robust to noise and interference. Multi-layer perceptron (MLP) is one of 

the extensively used neural network topology that incorporates an input layer with input 
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nodes and output layer. MLP was used for WLAN-based IPS by [55] for the first time. 

The MLP has a feed-forward layered structure. In addition to this, the MLP has the 

advantage of having hidden layers.  The input layer and output layer represent input 

variables and output variables, respectively. The hidden layer is responsible for the 

capacity of the MLP and represents the connections between the input and output 

layers.  

The classification process of MLP is a nonlinear mapping from a list of attributes 

(sensor measurements) into MU’s location. The MLP performance is enhanced by 

tuning the parameters such as number of hidden layers, the number of nodes in each 

hidden layer, initial weights to start the training, the activation function, learning rate, 

and the momentum rate. Since there is no explicit algorithm to select optimal 

parameters, therefore, they can be selected empirically.  

Various algorithms are proposed based on ANN structure in the literature. A 

multilayer feed-forward network with a secant activation function is used for 

positioning in [55]. Modular MLP (MMLP) is proposed in [56] to decrease the 

uncertainty arising from unavailable signals at positioning phase in IPS. In [57], the 

robustness of ANN algorithm to noise and interference is proved using three different 

environments. In addition to this, The ANN is compared with probabilistic model, and 

better results in terms of accuracy are obtained with the ANN. A cascade-connected 

ANNs and space partitioning are utilized in the proposed positioning algorithm in [58] 

to enhance the performance of the IPS in terms of accuracy. In [59], a multilayer feed-

forward back-propagation based model with hyperbolic tangent sigmoid activation 

function is developed. The optimal parameters of the ANN are selected using genetic 

algorithm to improve the system performance in [59]. In a study, a discriminant-

adaptive neural network (DANN) is proposed [60]. The DANN considers the redundant 

information as noise and extract the useful information from the available APs into 

discriminative components (DCs). Then, these DCs are inserted into neural network for 

updating weights. Since the network is trained only using the discriminative 

information, the IPS performance is improved. In addition to this, experimental results 

demonstrate that the DANN outperforms MLP in terms of positioning accuracy.  
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2.3.4. Extreme Learning Machine (ELM) 

ELM is a new learning algorithm based on single-hidden layer feed forward 

neural network (SLFN) architecture [61]. It has faster training speed since it chooses the 

input weights randomly and calculates the output weights of SLFN analytically [62]. 

Various algorithms are proposed based on ELM structure in the literature. ELM 

algorithm is used to estimate the position by taking the advantage of signal strength and 

signal quality in [63]. The proposed model based on ELM is superior to KNN in terms 

of accuracy. The work in [64], the ELM is compared with KNN and MLP in terms of 

accuracy, and the ELM outperforms other algorithms. An indoor localization algorithm 

based on an online sequential extreme learning machine (OS-ELM) is proposed in [65]. 

OS-ELM is compared with ELM and it can provide higher accuracy and faster learning 

speed under dynamic environment conditions than ELM. Weighted version of ELM 

(WELM) and Signal Tendency Index (STI) are integrated in STI-WELM to construct an 

efficient and robust IPS [66]. STI is presented in order to handle the device 

heterogeneity and environmental changes in indoors. A feature adaptive online 

sequential extreme learning machine (FA-OSELM) is proposed in [67] in order to 

handle the changes of APs numbers in indoor areas. Robust ELM (RELM) considering 

close to mean (CTM) and small residual (SR) constraints is proposed to improve the 

robustness of the IPS [68]. Experimental results show that RELM achieves good 

performance in terms of accuracy, repeatability, and worst case error. A constraint 

online sequential extreme learning machine (COSELM) is proposed to deal with 

fluctuation of wireless signals over time [69]. Experimental results demonstrate that 

COSELM outperforms OS-ELM in terms of accuracy and computation time. There are 

also new methods are proposed recently in the literature which integrate deep learning 

with ELM to classify the unlabelled data in indoor positioning field [70, 71]. 

2.3.5. Support Vector Machine (SVM) 

SVM is a non-parametric supervised learning algorithm which is used in the IPS 

by training the support vectors on the fingerprint map [72]. SVM is based on statistical 

learning theory and structural risk minimization.  In the training phase, a decision 

boundary that separates the samples belonging to different classes is determined at an 

optimal level. The aim of the SVM is to obtain the optimal separation hyperplane to 
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distinguish the classes from each other, i.e. to maximize the distance between the 

support vectors of different classes. 

Various algorithms are proposed based on SVM structure in the literature. SVM 

algorithm is used in two versions such as classification and regression in [73]. 

Experimental results demonstrate that SVM as a classifier outperforms WKNN, 

Bayesian approach, and MLP in terms of accuracy. And, its accuracy results nearly 

same as WKNN results when its regression version is utilized for indoor positioning. 

The proposed positioning algorithm in [74] divides experiment area into sub-areas 

according to RSS features, and then applies SVM models in each sub-area to estimate 

the position. Since SVM has higher training time, Least Squares SVM (LS-SVM) is 

proposed in order to reduce the training time of SVM [75]. The work in [76] transforms 

LS-SVM into multiple binary classification problems by introducing axial decoupled 

LS-SVM (AD-LS-SVM). Experimental results demonstrate that AD-LS-SVM is 

superior to LS-SVM, SVM, and KNN in terms of accuracy and computation time. 

2.3.6. Bayesian Approach 

Naïve Bayes is a simple bayesian approach but effective probabilistic classification 

method for indoor positioning [16]. It utilizes the samples with known class labels to 

calculate the likelihood of new sample with unknown label belong to any of the existing 

classes. Bayesian Network (BN) is another bayesian approach method which is also 

frequently used in the literature for calculating MU’s position [77]. The BN is a directed 

acyclic graph (DAG) which consists of nodes and edges.  

Various algorithms are proposed based on Bayesian approach in the literature. In 

[78], Naïve Bayes algorithm is utilized considering user’s orientation to deal with the 

blocking effect of human body. Improved Naïve Bayes Simple (INBS) learning 

algorithm is proposed in [79] in order to solve zero probability problems in WiFi-based 

fingerprinting approach. Domain Clustering (DC) based algorithm based on Naïve Bayes 

classifier is proposed in [80] to enhance the IPS performance in terms of accuracy. In 

[81], Bayesian-based location estimation system is proposed for indoor positioning. 

Bayesian hierarchical model is utilized for positioning in [82]. In [83], probabilistic 

fingerprinting approach is presented to reduce the computation time of traditional 

probabilistic fingerprinting algorithms. 
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2.3.7. Maximum Likelihood Estimation (MLE) Algorithm 

Maximum likelihood estimation (MLE) is one of the most popular algorithms 

which take into account the standard deviation of the measurements [84]. It gives higher 

accuracy when compared with the other algorithms [85]. Additionally, the calculated 

likelihood values for different sensor types are useful for constructing hybrid solutions 

for the indoor positioning problem.  

Various algorithms are proposed based on MLE structure in the literature. MLE is 

applied in [86] to estimate the MU’s location. Experiment results in [87] prove that MLE 

is more accurate than WKNN, SVM, and MLP to estimate the MU’s position. Maximum 

likelihood function is chosen for positioning in [88]. Maximum likelihood-based fusion 

algorithm which integrates WiFi IPS with a pedestrian dead reckoning system is 

presented in order to improve the positioning accuracy [89].  

2.4. Datasets 

Fingerprint-based indoor positioning is started with constructing datasets 

(fingerprint maps). Various datasets are proposed which are publicly available in the 

literature. In the following subsections, the datasets which are used in this study are 

described briefly. 

2.4.1. KIOS Dataset 

KIOS dataset is constructed by collecting RSS data at KIOS Research Centre 

which is a 560𝑚2 typical office environment that consists of offices, labs, a conference 

room and corridors [19]. 9 APs and 5 different mobile devices were used for data 

collection (HP iPAQ hw6915 PDA with Windows Mobile, an Asus eeePC T101MT 

laptop running Windows 9, an HTC Flyer Android tablet and two other Android 

smartphones (HTC Desire, Samsung Nexus S)). Training dataset is constructed by 

collecting RSS measurements from all 9 APs, at 105 distinct reference locations by 

carrying all 5 devices at the same time. There are 20 fingerprints per reference points, so 

total number of fingerprints in training data is 2100. Besides, test data are collected 2 

weeks later by walking along a predefined route 10 times at the same time with all 

devices. There are 96 locations on this route most of which different from the RPs. 

There are ten fingerprints are collected per each test location, so total number of 

fingerprints in test data is 960. This database is used to solve device calibration 
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problems in indoor positioning [19]. The experimental setup of KIOS dataset is given in 

Fig. 2.6. 

 

Figure 2.6. Experimental setup at KIOS Research Centre [20] 

As seen in Fig. 2.6, blue circles represent the training RPs, and red points represent the 

test RPs. Test data are collected by following a route which is represented with a red 

line in Fig. 2.6.  

2.4.2. UJIIndoorLoc Dataset 

UJIIndoorLoc database is the biggest and publicly available database in the 

literature [20]. Data were collected from a surface of 108703𝑚2containing 3 buildings 

with 4 or 5 floors depending on the building. There are 933 RPs and 520 different 

wireless access points (WAPs) including in the database. More than 20 users using 25 

different mobile devices collect fingerprints. There are 19938 fingerprints for training 

and 1111 fingerprints for testing are recorded. Test data are collected 4 months later 

after training data. This database could be used to make comparisons among different 

methods in indoor positioning. The experimental setup of UJIIndoorLoc dataset is given 

in Fig. 2.7. 

 

Figure 2.7. Experimental setup at UJI University Campus [21] 

As seen in Fig. 2.7, left subfigure shows the UJI University campus, the centre figure 

shows the three buildings of the School of Technology and Experimental Sciences, and 
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right figure is a zoom inside the third floor of the TI building. The RP which is 

numbered with 111 is an example point in the right figure [20].  

2.4.3. RFKON Dataset 

System architecture and experimental setup of our IPS are explained in this 

section [23]. The system architecture of our indoor positioning system (IPS) contains 

two major units named as Gezkon, and Konsens. Gezkon is a mobile application and it 

is responsible for collecting WiFi-RSS and MF strength values from the test area. 

Konsens is a server which is used to estimate the position of mobile device and also 

responsible for updating and calibrating of RFKON database. The communication 

between Konsens and Gezkon is achieved by sensor nodes through Data Distribution 

Service (DDS) layer. Konsens maintains sensor nodes. The system architecture of our 

IPS is shown in Figure 2.8. 

 

Figure 2.8. System architecture of our indoor positioning system (IPS) 

The layout of the test bed for RFKON database is shown in the Figure 2.9. In this 

area, real-world indoor localization experiments are conducted to evaluate the 

performance of the proposed f-score weighted indoor positioning algorithm. The test 

bed is the Teknopark in the Eskisehir Osmangazi University. The area of the test-bed is 

around 800𝑚2. The area is broken into 2.4𝑚 × 2.4𝑚 size grid squares and the center of 

the each grid is reported as RP. There are five sensor nodes which are represented with 

small squares deployed at the locations on the first floor. The green bolded sub-region is 

used to collect sensor measurements from the area. 
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Figure 2.9. Experimental setup at Eskisehir Osmangazi University, Teknopark 

2.4.4. Other Datasets 

There are also other datasets which are publicly accessible in the literature. For 

example, WiFi RSS, magnetic field strength, and inertial sensors measurements 

including accelerometer and orientation values are collected to construct the database in 

[90]. The measurements are collected by two users each wear both smartphone and 

smartwatch. In another database, WiFi and Bluetooth RSS measurements are collected 

with 28 Android phone users for three weeks in [91]. WiFi RSS data are collected with 

a mobile robot in indoor and outdoor environments by recording the robot location 

using its odometer in [92]. UJIIndoorLoc database [20] is enhanced by collecting 

magnetic field sensor measurement in the same environment in [93]. Miskolc IIS 

Hybrid dataset is recently uploaded dataset which includes data acquired from WLAN 

card, magnetometer, and Bluetooth interface [94]. 

2.5. Performance Metrics  

IPS developers recognize the wellness of their own positioning systems 

considering performance metrics. Several metrics are introduced in the literature to 

evaluate the performance of the IPS. These metrics are defined as follows: 

 Accuracy 

Accuracy is the most important performance metric. It is defined as the mean 

distance error that exists between the predicted and actual position of the MU. 

The IPS with higher accuracies is preferred. 

 Precision 

Precision is the percentage of positive predictions, i.e. the measure of how 

good predictions are with respect to false positives (FP). In terms of 
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positioning purpose, precision considers how often the system works, and the 

consistency between the results of the IPS. Cumulative distribution function 

(CDF) is used to measure the precision of an IPS. When two IPS have same 

accuracy values, then the system which reached the highest probability values 

faster is preferred. 

 Recall 

Recall is the ratio of correctly classified positive instances to the total 

instances in a positive class, i.e. the measure of how good the predictions are 

with respect to false negatives (FN).  

 F-score 

F-score metric is established to optimize accuracy with precision and recall. It 

is the harmonic mean of precision and recall. Thus, it considers both false 

positives (FP) and false negatives (FN). 

 Complexity 

The complexity of an IPS is measured with the time that it takes to calculate 

the MU’s position. This time is high for more complex system. Since the 

shortage of battery life in mobile devices, it is recommended to keep the 

complexity of an IPS as low as possible. 

 Robustness 

A robust IPS can be work even some signals are not seen or are distributed 

because the indoor environment structure is changed. 

 Scalability 

Scalability is affected by the size of the indoor area. When the size of an 

indoor area is huge, IPS requires extra calculation and extra communication 

infrastructure to cover the indoor area. 

 Cost 

The cost of an IPS depends on required infrastructure, time, money, space, 

and so on. 

In the context of this thesis, the proposed methods are evaluated in terms of accuracy, 

precision, and time complexity.  
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3. PROPOSED METHODS 

Indoor positioning still remains unsolved today since there is no standardized 

solution like as GPS for outdoor environment. Therefore, various solutions are proposed 

in the literature for indoor positioning problem. In this section, we present our own 

solutions. The proposed methods in the context of this thesis use the existing 

infrastructure of the indoor area, so they are inexpensive. We start to develop methods 

using WiFi signals, and enhanced the methods by combining MF measurements to 

achieve better positioning accuracies. All the methods adopt fingerprint-based 

positioning approach which is explained in the Section 2. The proposed methods in this 

thesis are introduced in the following subsections. 

3.1. A Multi-criteria Decision Strategy to Select a Machine Learning Algorithm 

for Indoor Positioning System 

Several machine learning (ML) algorithms are applied in indoor positioning field. 

In this method, k-nearest neighbor (KNN), support vector machine (SVM), decision tree 

(DT), naïve bayes (NB) and bayesian networks (BN) which are explained briefly in 

Section 2.3 are compared. In the experiments, UJIIndoorLoc, KIOS and RFKON 

datasets that are given in Section 2.4 are used. The experiments are performed into two 

categories. In the first category, the selected positioning algorithms are applied directly 

using all the attributes of each dataset. In the second category, a preprocess phase is 

employed and feature selection and extraction methods are used to eliminate redundant 

attributes to reduce the dimension of each dataset. In addition to these, ensemble 

learning algorithms, namely adaBoost and bagging, are used to enhance the 

performance of the selected algorithms such as DT and KNN. Then, Experimental 

results are reevaluated using a multi-criteria decision strategy to select the most 

appropriate algorithm. The analytical hierarchy process (AHP) is applied for the multi-

criteria decision process. 

3.1.1. Preliminaries 

IPS can be evaluated using several performance criteria, and an appropriate ML 

algorithm is selected considering the values for each criterion. Multi-criteria decision 

strategies can be used concurrent evaluation of various performance criteria. In 

following subsections, preliminaries are given for these topics. 



 

 

24 

 

The performance criteria in indoor positioning 

Computation time, accuracy, precision, recall, f-score and some other metrics 

related to the performance of ML algorithms may be considered to evaluate the 

performance of an IPS.  

Accuracy is one of the most widely used performance criteria for an indoor 

positioning system and a ML algorithm. In the area of ML, it is measured based on the 

percentage of correctly classified instances over total instances. Although, accuracy is 

easy to use, understand, and compute with less complexity, it induces suboptimal 

solutions when dealing with uneven class distributions and produces less discriminating 

values. To overcome the limitations incurred from accuracy, precision and recall are 

defined. Precision is the percentage of positive predictions, i.e. the measure of how 

good predictions are with respect to false positives (FP). Recall is the ratio of correctly 

classified positive instances to the total instances in a positive class, i.e. the measure of 

how good the predictions are with respect to false negatives (FN). To optimize accuracy 

with precision and recall, the f-score metric is established that is a harmonic mean of 

precision and recall. Thus, it considers both FP and FN.  

Computation time is critical performance criterion of a ML algorithm. It depends 

on both the size of the problem and the complexity of the ML algorithm. It is calculated 

by the sum of the values of training time and test time. The training time is the time 

taken to build the training model, and the test time is the time to predict the position 

using the training model. Since, the test time is negligible compared the training time, 

the computation time of a ML algorithm is usually measured based on the training time. 

Multi-criteria Decision Strategy 

The performance criteria can be used to select a ML algorithm for a specific 

indoor positioning system. As mentioned before, there exists performance metrics such 

as accuracy, precision, recall, f-score or computation time. In order to evaluate multiple 

criterions at the same time a multi-criteria decision strategy [95] is required. In the 

literature, AHP [95] is used in many areas for concurrent evaluation and decision 

making. 

In the multi-criteria decision making, first of all the selected performance criteria 

are normalized. The maximized criterion is normalized using Eq. (3.1), 
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min'

max min

1
ij

ij

x x
x

x x


 


                                             (3.1) 

and, the minimized criterion is normalized using Eq. (3.2) 

 
min'

max min

ij

ij

x x
x

x x





                                               (3.2) 

where 
ijx  is the normalized value, 

'

ijx  is the raw value of the thj  algorithm 
thi  criteria, 

and minx , and maxx  is the minimum and maximum score of the selected criteria in the 

experimental results, respectively. Then, selected criteria are ready to be integrated.  

Secondly, various criteria can be integrated using user preferences and corresponding 

relative weights. The AHP procedure for relative weight calculation from the user 

preferences is explained through an example with three criteria that is used in this study. 

In the AHP, the terms equal, moderate, strong, very strong and extreme importance are 

represented by the numbers 1, 3, 5, 7 and 9, respectively to make a pairwise 

comparison. And, the interval values 2, 4, 6, and 8 are also used to make judgements 

between any two criteria. The pair wise comparison of the criteria is given in Table 3.1. 

In this table, the diagonal elements are set to 1. Each criterion is placed in the Table 3.1 

according to their importance. The upper triangular part of this table is constructed 

according to user preferences. Each element of the lower triangle is set to the inverse of 

these pairwise comparisons automatically. As seen in Table 3.1, a ‘very strong’ 

linguistic term is selected to judge the accuracy over the computation time, which is 

enumerated with 7. Then, the importance of the computation time over the accuracy is 

set to 1/7 automatically. 

Table 3.1. Normal pairwise comparison of criteria 

 Accuracy F-score Computation Time 

Accuracy 1 3 7 

F-score 1/3 1 5 

Computation Time 1/7 1/5 1 

The user preferences in Table 3.1 are transformed into the relative weights as 

follows: 

Construct a matrix 𝐴 from Table 3.1 as 
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1.00 3.00 7.00

0.33 1.00 5.00

0.14 0.20 1.00

A

 
 


 
  

 

 

Then, the following equation  

1

ij

n

ij

i

a

a



                                                        (3.3) 

is applied to each cell of matrix 𝐴 to obtain the following matrix 𝐷: 

0.68 0.71 0.54

0.22 0.24 0.38

0.10 0.05 0.06

D

 
 


 
  

 

After this step, the weight vector 𝑊 is created by the arithmetic mean of each row of the 

𝐷 matrix. 

0.65

0.28

0.07

W

 
 


 
  

 

Each entry of the weight vector W corresponds to the relative weights. In this 

example, the relative weights 1 20.65, 0.28w w   and 3 0.07w   correspond to the 

accuracy, f-score, and the computation time, respectively, where 
3

1

1i

i

w


 . After 

obtaining the relative weight for each criterion, a linear combination is applied to the 

aggregation of the multi-criteria with their weights. According to the above equations, 

the final test result of the thj  algorithm 
jTR  can be calculated by Eq. (3.4). 

'

1

, 1...
n

j i ij

i

TR w x j m


                                          (3.4) 

where n   is the number of selected criteria and m  is the number of selected algorithms. 

3.1.2. Proposed Method  

There are various ML algorithms that used for fingerprint-based indoor 

positioning systems. The ML algorithms show different performance depending on the 

datasets. In order to increase the expected performance, a proper ML algorithm should 
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be selected for a given indoor positioning system considering multiple criteria.  In this 

study, a multi-criteria decision strategy is applied to find the most appropriate ML 

algorithm for any given indoor positioning system considering the user preferences. The 

flowchart of the proposed multi-criteria decision strategy is given in Fig. 3.1.   

 Figure 3.1. The flowchart of the proposed multi-criteria decision strategy 

In order to run the overall algorithm, an indoor positioning training and test 

datasets, performance criteria, and user preferences should be defined as an input. Then, 

in the training phase, each ML algorithm is applied to the indoor positioning system as 

in Fig. 3.2. This step is performed in two ways. In the first way, classification is done 

with preprocessing using Correlation-based Feature Selection (CFS), Chi Square 

Selection (CHI), Filtered Attribute Selection (FILT), Gain Ratio Selection (GAIN), and 

Principal Component Analysis (PCA) to remove redundant APs. In the second way, 

classification is performed without preprocessing algorithms. Decision Tree (DT), 

Naïve Bayes (NB), Bayes Net (BN), Sequential Minimal Optimization (SMO), and 

Nearest Neighborhood (NN) are utilized as classifiers. And, two ensemble learning 

algorithms (AdaBoost (AB) and Bagging (BAG)) are used in order to improve the 

performance of the DT and NN. 
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Figure 3.2. The block diagram of the ML training phase 

In the test phase, the test data are classified using the training model which 

obtained from the training phase. In this step, all performance metrics are calculated and 

returned to the final step. After applying all ML algorithms, finally, the multi-criteria 

decision strategy as mentioned in Section 3.1.2 is applied to find the most appropriate 

algorithm for the indoor positioning problem using the selected performance criteria and 

user preferences. In this final step, firstly, the selected performance metrics are 

normalized. Then, they are weighted according to user preferences with AHP procedure. 

Finally, they are aggregated with Eq. (3..4) to obtain the final result for each algorithm. 

The algorithm that gives the minimum value using Eq. (3.4) gives the most appropriate 

algorithm for the given indoor positioning dataset. 

3.1.3. Experimental Results 

In this subsection, seven different classifiers (Decision Tree (DT), Naïve Bayes 

(NB), Bayes Net (BN), Sequential Minimal Optimization (SMO), Nearest 

Neighborhood (NN), AdaBoost (AB), Bagging (BAG)), and five preprocessing 

algorithms Correlation-based Feature Selection (CFS), Chi Square Selection (CHI), 

Filtered Attribute Selection (FILT), Gain Ratio Selection (GAIN), Principal Component 

Analysis (PCA) from WEKA are tested. The analysis has been performed on a 

Windows 7 operating system with Intel® CoreTM i7-4510U CPU, 2.00 GHz Processor 

and 8.00 GB RAM. 
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Classification results without preprocessing 

In this part, selected classifiers are applied to the all existing datasets without any 

preprocessing. Fig. 3.3 shows the accuracy results of each classifier without removing 

any attributes from the datasets. 

 

Figure 3.3. Accuracy result of raw data 

As seen in Fig. 3.3, BAGG-DT has resulted highest accuracy, for UJI datasets. And, AB-

DT gives the best accuracy results, 90.68% for KIOS and 96.09% for RFKON datasets. 

It can be deduced from Fig. 3.3 that ensemble learning algorithms are improve accuracy 

results of applied classifiers. Computation time results of each classifier using all 

attributes are given in Fig. 3.4. In this experiment, since the value of minimum 

computation time is more important, any algorithm that has bigger than 100sec of 

computation time is assumed to have 100sec computation time. 
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Figure 3.4. Computation time of raw data 

Computation time results from Fig. 3.4 show that NN is superior to other algorithms for 

all UJIIndoorLoc datasets and BN gives the bests for KIOS and RFKON datasets. 

Classification Results with Preprocessing 

Feature selection methods are applied in IPS to remove redundant or irrelevant 

attributed from the fingerprint map. After removing redundant attributes, the remaining 

attributes are adequate for positioning. So, the training time of the IPS is decreased. And, 

the irrelevant attributes do not contain any useful information; the generalization 

performance of the applied algorithm for positioning is enhanced. In this section four 

feature selection (Correlation-based, Chi-square, Filtered, and Gain Ratio) methods and 

an extraction method (Principal Component Analysis) are used in preprocessing step for 

each classifier. Linear Forward Selection is selected as a search method in Correlation-

based feature selection algorithm. Ranker is applied as a search algorithm to order the 

attributes for Chi squared, Filtered, Gain ratio attribute evaluators and Principal 

Components. The threshold value for ranker is selected as zero. 

Analysis using RFKON dataset 

RFKON dataset contains 27 attributes, i.e. APs initially. The number of 

attributes is reduced after preprocessing. The accuracy results of classifiers after 

removing redundant APs are given in Fig. 3.5. 
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Figure 3.5. Accuracy results of RFKON after preprocessing 

Fig. 3.5 reveals that best accuracy result is obtained from AB-DT considering 24 

attributes instead of considering all attributes in the dataset after utilizing Filtered 

attribute evaluator. The best accuracy result (96.31%) is nearly same as the best accuracy 

result (96.09) that obtained considering all attributes. To show the improvement of 

preprocessing step over the computation time Fig. 3.6 is constructed.  

 

Figure 3.6. Computation time results of RFKON after preprocessing 

It can be deduced from Fig. 3.6 that, Filtered attribute evaluator (FILT) reduces the 

computation time of constructing training model of BN from 6.86 sec to 5.95 sec.  

Analysis using KIOS dataset 

KIOS dataset contains 70 attributes before utilizing preprocessing step. The 

irrelevant attributes are removed from the database after this step. The accuracy results 

of classifiers after removing redundant APs are given in Fig. 3.7. 
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Figure 3.7. Accuracy results of KIOS after preprocessing 

As seen in Fig. 3.7, better classification performance is achieved by AB-DT reducing 

number of attributes from 70 to 40 after applying Chi-square attribute evaluator. The 

best accuracy result (90.71%) is nearly same as the best accuracy result (90.68) that 

obtained considering all attributes. Computation time results of KIOS dataset are given 

in Fig. 3.8. 

 

Figure 3.8. Computation time results of KIOS after preprocessing 
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Fig. 3.8 reveals that, Filtered attribute evaluator (FILT) with BN has resulted into 

lowest computation time. Filtered attribute evaluator (FILT) reduces time taken to build 

training model of BN from 7 sec to 5.83 sec. 

Analysis using UJI B0 dataset 

UJI B0 contains the data obtained from the first floor of UJIIndoorLoc dataset and 

includes 521 attributes before utilizing preprocessing step. There are 130 attributes 

remained after this step that is a considerable reduction of the database size. The 

accuracy results of classifiers after this step are given in Fig. 3.9. 

Figure 3.9. Accuracy results of UJI B0 after preprocessing 

Fig. 3.9 reveals that best accuracy result is obtained from BAGG-DT selecting 130 

attributes from the dataset using FILT instead of considering all attributes in the dataset. 

The best accuracy result is 78.58%. To show the improvement of preprocessing step 

over the computation time Fig. 3.10 is constructed. 
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Figure 3.10. Computation time results of UJI B0 after preprocessing 

It can be deduced from Fig. 3.10 that, Filtered attribute evaluator (FILT) reduces the 

computation time of constructing training model of NN from 38.22 sec to 12.44 sec. 

Analysis using UJI B1 dataset 

UJI B1 contains the data obtained from the second floor of UJIIndoorLoc dataset 

and includes 521 attributes before applying preprocessing step. There are 138 attributes 

remained after this step that is a considerable reduction of database size. The accuracy 

results of classifiers after this step are given in Fig. 3.11. 

 

 

Figure 3.11.  Accuracy results of UJI B1 after preprocessing 

Fig. 3.11 reveals that best accuracy result is obtained from BAGG-DT with FILT 

considering only 138 attributes. The best accuracy result (78.58%) is nearly same as the 

 

3
4

,4
6

 

2
3

,9
0

 

2
5

,9
1

 

2
5

,1
6

 3
9

,2
4

 

7
4

,9
4

 

7
7

,8
1

 

8
1

,8
7

 

8
7

,0
5

 

2
8

,6
1

 

3
4

,5
3

 

4
0

,7
5

 

3
4

,4
3

 

3
1

,9
8

 

2
0

,9
2

 

1
2

,4
4

 

1
9

,3
7

 

4
0

,1
5

 

8
7

,9
3

 
8

0
,2

2
 

7
2

,2
2

 

7
2

,7
8

 

0

10

20

30

40

50

60

70

80

90

100

CFS CHI FILT GAIN PCA

Ti
m

e
 (

se
c)

 

DT NB BN SMO NN AB-DT BAGG-DT AB-NN BAGG-NN

6
5

,2
6

%
 

7
1

,3
6

%
 

7
1

,4
8

%
 

7
1

,2
9

%
 

6
1

,1
0

%
 

4
7

,2
5

%
 

6
6

,6
9

%
 

6
6

,6
9

%
 

6
6

,6
9

%
 

6
2

,4
9

%
 

6
2

,8
8

%
 

6
8

,2
1

%
 

6
8

,2
1

%
 

6
8

,2
1

%
 

6
1

,4
3

%
 

4
2

,5
7

%
 

6
7

,6
3

%
 

6
7

,6
7

%
 

6
7

,7
3

%
 

5
8

,3
1

%
 

6
5

,9
0

%
 

7
0

,7
5

%
 

7
0

,7
5

%
 

7
0

,7
5

%
 

7
0

,2
1

%
 

6
8

,9
6

%
 

74
,8

3%
 

75
,0

4%
 

74
,9

8%
 

64
,9

0%
 

7
0

,3
2

%
 

7
8

,5
0

%
 

7
8

,5
8

%
 

7
8

,0
0

%
 

7
0

,5
7

%
 

6
5

,9
0

%
 

7
0

,7
5

%
 

7
0

,7
5

%
 

7
0

,7
5

%
 

7
0

,2
1

%
 

6
4

,7
2

%
 

6
9

,9
2

%
 

6
9

,9
2

%
 

6
9

,9
2

%
 

6
9

,5
3

%
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CFS CHI FILT GAIN PCA

A
cc

u
ra

cy
 (

%
) 

DT NB BN SMO NN AB-DT BAGG-DT AB-NN BAGG-NN



 

 

35 

 

best accuracy result (78.85) that obtained considering all attributes. To show the 

improvement of preprocessing step over the computation time Fig. 3.12 is constructed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Computation time results of UJI B1 after preprocessing 

It can be deduced from Fig. 3.12 that, Filtered attribute evaluator (FILT) with NN 

stands as a better performer with a computation time of 12.88 sec. FILT reduces the 

computation time of constructing training model of NN from 26.59 sec to 12.88 sec. 

Analysis using UJI B2 dataset 

UJI B2 contains the data obtained from the second floor of UJIIndoorLoc dataset 

and includes 521 attributes before applying preprocessing step. There are 100 attributes 

remained after this step that is a remarkable reduction of database size. The accuracy 

results of classifiers after this step are given in Fig. 3.13. 

Figure 3.13. Accuracy results of UJI B2 after preprocessing 

Fig. 3.13 reveals that best accuracy result is obtained from BAGG-DT with 

filtered attribute evaluator considering only 100 attributes. The best accuracy result 
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(70.66%) is nearly same as the best accuracy result (70.55) that obtained regarding all 

attributes. To show the improvement of preprocessing step over the computation time 

Fig. 3.14 is constructed. 

 

Figure 3.14. Computation time results of UJI B2 after preprocessing 

Specifically, as shown in Fig. 3.14, Filtered attribute evaluator (FILT) with NN 

succeeds to obtain low computation time. Filtered attribute evaluator (FILT) reduces the 

computation time of constructing training model of NN from 96.64 sec to 30.69 sec. 

The summary of all the experiments including best results is shown in the Table 3.2 

below. 

Table 3.2. Best results obtained from all experiments 

Dataset 
Raw Data 

Number of Attributes Accuracy (%) F-score (%) Computation Time (sec) 

RFKON 70 AB-DT (96.09) AB-DT (96.00) BN (6.86) 

KIOS 27 AB-DT (90.68) AB-DT (91.00) BN (7.00) 

UJI B0 521 BAGG-DT (78.85) BAGG-NN (79.00) NN (38.22) 

UJI B1 521 BAGG-DT (78.85) BAGG-NN (79.00) NN (26.59) 

UJI B2 521 BAGG-DT (70.54) BAGG-NN (71.00) NN (96.64) 

Dataset 
Preprocessing 

Number of Attributes Accuracy (%) F-score (%) Computation Time (sec) 

RFKON 42 GAIN AB-DT (96.31) GAIN AB-DT (96.00) FILT BN (5.95) 

KIOS 24 CHI AB-DT (90.71) CHI AB-DT (91.00) FILT BN (5.83) 

UJI B0 130 FILT BAGG-DT (78.58) FILT BAGG-DT (79.00) FILT NN (12.44) 

UJI B1 138 FILT BAGG-DT (78.58) FILT BAGG-DT (79.00) FILT NN (12.88) 

UJI B2 100 GAIN BAGG-DT (70.66) GAIN BAGG-DT (71.00) FILT NN (30.69 ) 
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According to Table 3.2, it can be concluded that there is not a single ML algorithm for 

any indoor positioning system. For example, AB-DT is the best algorithm for RFKON 

dataset in terms of accuracy whereas BN is the best algorithm in terms of computation 

time. In order to find a ML algorithm considering multiple user preferences, a multi-

criteria decision strategy should be applied. 

Multi-criteria algorithm selection strategy 

In this subsection, the best ML algorithm for each dataset is determined 

considering the user preferences. They play a significant role to judge one criterion over 

another one as mentioned before. In order to show, the multi-criteria decision approach 

two set of user preferences are given as in Table 3.3. 

Table 3.3. The user preferences for the selected criteria 

Set 1 Set 2 

 Accuracy F-score Computation Time  Accuracy F-score Computation Time 

Accuracy 1 5 9 Accuracy 1 1/2 1/9 

F-score 1/5 1 3 F-score 2 1 1/7 

Computation 

Time 
1 1/3 1 

Computation 

Time 
9 7 1 

As mentioned before, lower triangular part should be filled after the user defines 

the relative importance in the upper triangular. According to user preferences in Set 1, 

the relative importance of accuracy over f-score and computation time are 5 and 9, 

respectively, and the relative importance of f-score over computation time is 3. 

According to these user preferences, the calculated relative weights for each criterion 

are given in Table 3.4. 

Table 3.4. The relative weights for the selected criteria 

 𝑤1 (Accuracy) 𝑤2 (F-score) 𝑤3 (Computation Time) 

Set 1 0.76 0.16 0.08 

Set 2 0.08 0.13 0.79 

The best algorithm in terms of the selected criteria for the specific dataset is 

obtained using the multi-criteria decision strategy as seen in Table 3.5.  
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Table 3.5. Final performance comparisons of all experiments 

 
Accuracy + F-score + Computation Time 

Set 1 

Accuracy + F-score +  Computation Time 

Set 2 

RFKON 
GAIN AB-DT 

(96.31%, 96.00%, 153.97sec) 

FILT BN 

(93.56%, 94.00%, 5.95sec) 

KIOS 
CHI AB-DT 

(90.71%, 91.00% , 127.59sec) 

CFS NN 

(90.63%, 91.00% , 9.81sec) 

UJI B0 
FILT BAGG-DT 

(78.58%, 80.00%, 126.60sec) 

FILT NN 

(70.75%, 71.00%, 12.44sec) 

UJI B1 
FILT BAGG-DT 

(78.58%, 79.00%, 141.83sec) 

FILT NN 

(70.75%, 71.00%, 12.88sec) 

UJI B2 
GAIN BAGG-DT 

(70.66%, 72.00%,  258.71sec) 

FILT NN 

(67.78%, 68.00%, 30.69sec) 

The best ML algorithm for the RFKON dataset considering the user preferences in 

Set 1, i.e. highest accuracy is GAIN AB-DT. Since the computation time is the 

dominated criteria in Set 2, and the best ML algorithm for the RFKON dataset is FILT 

BN. In addition to dominated criterion, the other selected criteria also play a role in order 

to select the best ML algorithm. For example, for the KIOS dataset, the ML algorithm 

with the best computation time is FILT BN. The proposed approach finds out CFS NN 

due to effects of the relative weights of other criteria. The best ML algorithms in Table 

3.5 can be changed with respect to user preferences. 

3.2. A Hybrid Approach for Indoor Positioning 

Performance of IPS can be enhanced by constructing cluster specific classification 

algorithms. Therefore, a hybrid method that utilizes both clustering and classification 

algorithms is proposed in this method. After selecting most discriminative APs from the 

WiFi-RSS based fingerprint map, Expectation Maximization (EM) algorithm is applied 

to divide the whole area into sub-clusters. Then, decision tree algorithm is utilized to 

develop a classifier models for each sub-cluster [96]. 

3.2.1. Preliminaries 

IPS can be effected various situations such as using all detectable APs in the 

fingerprint map and size of the indoor area. As the number of APs and size of the test 

area are increased, fingerprint map is getting huge. Therefore, the computational 
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complexity of the IPS is also increased. To overcome this situation, various methods are 

proposed in the literature. Feature selection and clustering techniques are frequently 

applied methods before positioning among them. In the following subsections, 

preliminaries are given for feature selection, and clustering. In addition to these, applied 

positioning algorithm (Decision Tree) is described. 

Information Gain Based Feature Selection 

Information gain (InfoGain) based feature selection method is the most commonly 

used feature selection method in the ML that is based on the entropy [97]. Information 

gain of each feature is calculated using Eq. 3.5. 

, ,
( ) ( ) log( ) ( | ) log ( | )

c c f f
IG f P c c P c f P c f                 (3.5) 

where f  is the feature (access point for fingerprint map) and c is the class. Information 

gain based feature selection is applied in the proposed method to determine the most 

important APs in the fingerprint map. 

Expectation Maximization (EM) Clustering Algorithm 

Clustering algorithms assign similar data to same cluster without the prior 

knowledge about the data’s characteristics. Since the data’s labels’ are not known, these 

algorithms are also called as unsupervised learning algorithms [98]. EM algorithm is a 

clustering algorithm that assigns data to particular clusters by computing one or more 

probability distributions. It then maximizes the overall probability of the data belonging 

to a certain cluster [99]. EM algorithm consists of two steps: determination of 

expectation and maximization of expectation iteratively. To handle the size of the 

indoor area problem, EM algorithm is applied in the clustering step to divide the indoor 

area into sub-areas. 

Decision Tree Classifier Algorithm 

Decision Tree (DT) predicts an output by tracking the decisions in the tree from 

the root node down to a leaf node according to the outcome of the tests along the path. 

DT algorithm is detailed in Section 2.3.2 [44]. In this study, C4.5 that is a benchmark 

tree is applied in the classification step for performing positioning. 
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3.2.2. Proposed Method 

The proposed method is started with preparing the collected WiFi-RSS 

measurements from all accessible APs at each RPs in the experimental area for 

constructing fingerprint map. This can be done by replacing NaN values with the 

minimum values in the fingerprint map. Then, train and test dataset are reorganized in 

order to comparable among each other. In the next step, minimum and maximum values 

for each APs are replaced with the minimum and maximum values in the whole 

fingerprint map as mentioned in Section 2.2.1. Most important APs are selected using 

InfoGain based feature selection algorithm. Then, EM algorithm is applied to divide 

experimental area into optimum number of sub-areas. Finally, DT algorithm is applied 

for each cluster for positioning purpose. The flowchart of the proposed method is given 

in Figure 3.15. 

 

Figure 3.15. The flowchart of the hybrid approach for indoor positioning 

3.2.3. Experimental Results 

RFKON database that is described briefly in Section 2.4.3 is used to show the 

effectiveness of the proposed method. In experiments, firstly “InfoGain based Feature 

Selection” algorithm is applied to determine the number of most important APs. The 

optimum number of APs for RFKON dataset is given in Figure 3.16. 
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Figure 3.16. Optimum number of APs determination using InfoGain based feature 

selection 

There are 24 APs in the database before applying InfoGain based feature selection 

algorithm. As seen in Figure 3.16, we obtain best accuracy results after selecting 8 APs 

using InfoGain based feature selection algorithm. This is an important improvement of 

reducing computational time. 

In the clustering phase, EM algorithm is applied. In experiment, different number 

of clusters are tried to select the best number of clusters. Among the attempted numbers 

of clusters, five clusters give best accuracy results. Each RP in RFKON database is 

assigned to a cluster using EM algorithm as seen in Table.3.6.  

Table 3.6. EM Clustering Assignments 

Cluster Name RP Number 

Cluster0 7, 8, 9, 10 

Cluster1 19, 20 

Cluster2 11, 12, 13 

Cluster3 14, 15, 16, 17, 18 

Cluster4 1, 2, 3, 4, 5, 6 

After applying EM clustering algorithm, the whole area is divided into sub-clusters. 

Then, DT algorithm is utilized to form cluster-specific classifier models for each cluster. 

The accuracy and computation time of the positioning are enhanced using this hybrid 

algorithm. The comparison of the applied hybrid algorithm with DT algorithm is given 

in Table 3.7. 
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Table 3.7. Comparison of accuracy results 

Algorithm Number of APs Accuracy Results (%) 

DT 19 42.25 

DT with InfoGain 8 42.37 

Proposed Method 8 66.42 

As seen in Table 3.7, the accuracy of DT algorithm without preprocessing is 42.25%. 

When we apply InfoGain-based feature selection before DT classifier; the number of 

APs is reduced to 8, and the accuracy is 42.375%. As a result of Table 3.7, the hybrid 

algorithm enhances the accuracy about %25 using 8 APs. To demonstrate the applied 

hybrid algorithm improvement on the decision tree size, Table 3.8 is constructed. 

Table 3.8. Decision tree size 

Train database Number of  leaves Size of the tree 

19 APs 34 67 

8 APs 35 69 

Cluster0 3 5 

Cluster1 8 15 

Cluster2 6 11 

Cluster3 2 3 

Cluster4 5 9 

As seen in Table 3.8, reducing the number of APs using InfoGain algorithm does not 

make an improvement on the tree size solely.  But, after utilizing EM clustering 

algorithm, the size of the decision tree is diminished. This causes lower computational 

time in the classification step in addition to improvement on the accuracy results as seen 

in Table 3.8. 

3.3. A Hybrid Fingerprint Based Indoor Positioning with Extreme Learning 

Machine  

WiFi-based indoor positioning is preferred frequently by the researchers due to 

massive deployment in indoor area, and wide usage of WiFi enabled devices. But, WiFi 

based indoor positioning methods have some drawbacks such as WiFi signals 
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deteriorate over time which lead to inaccurate position estimates. Therefore, the 

accuracy of only WiFi signals may not be adequate for some applications and can be 

enhanced using other sensor measurements such as MF. In the proposed hybrid 

fingerprint based indoor positioning with extreme learning machine method, the method 

which is given Section 3.2 is enhanced by considering two sensor types such as WiFi-

RSS and MF measurements concurrently. This can be performed by constructing hybrid 

database which contains WiFi-RSS and MF sensor data. The accuracy of IPS is 

improved by taking advantages of these sensor types. Besides, significant improvements 

are acquired in terms of computation time using ‘ReliefF’ feature selection and ‘k-

means’ clustering algorithms [100]. 

3.3.1. Preliminaries 

In the following subsections, the methods and the algorithms that are used in the 

proposed hybrid fingerprint based indoor positioning with extreme learning machine 

method are explained. 

Constructing Hybrid Fingerprint Map 

In the literature, fingerprint-based positioning is generally started with collecting 

one type of sensor measurements. But, in recent years hybrid fingerprint maps are 

generated to take the advantage of more than one sensor measurement at the same type. 

Therefore, in this study a hybrid fingerprint map is constructed which contains WiFi-

RSS and MF values. An instance in the hybrid fingerprint map is given in Equation 3.6. 

 

,1 ,2 ,19 , , ,[ , , , , ,..., , , , ]i i i i i i i x i y i zRP x y RSS RSS RSS global global global          (3.6) 

 

where iRP  is the 
thi  RP label, ,i ix y  are the x  and y  coordinates of 

thi  RP, 
,i jRSS  is the 

signal strength measurement obtained from thj  AP, and 
, , ,, ,i x i y i zglobal global global  are 

the MF global ,x y , and z  values at the 
thi  RP.  

ReliefF Feature Selection Algorithm 

Feature selection algorithm is applied to reduce the dimension of the hybrid 

fingerprint map. ReliefF is applied in the proposed method before positioning to remove 
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the redundant APs in the hybrid fingerprint map. ReliefF is the extended version of 

statistical Relief method from two-class problems to multi-class problems [101]. The 

feature selection process is done by constructing model with choosing an instance 

closeness of the instances in the same class, and distantness of the instances in different 

classes.  

, ,1
( , tan ) ( , tan )

Re
i j i j

m

ij sameclass ij differentclassj

i

diff x nearestins ce diff x nearestins ce
lief

m


 




 (3.6) 

where m  is the size of randomly selected subset of the fingerprint map, 
,i jx  is the thj

value of 
thi  instance,

,
( , tan )

i jij sameclassdiff x nearestins ce  is the difference between the 
,i jx  

and the nearest instance in same class, and  
,

( , tan )
i jij differentclassdiff x nearestins ce is the 

difference between the 
,i jx  and the nearest instance in different class. It is expected that  

,i jx  and 
,

tan
i jsameclassnearestins ce are very close each other, and 

,i jx  and 

,
tan

i jdifferentclassnearestins ce are far away from each other for discriminative attributes.  

K-means Clustering Algorithm 

K-means is the basic clustering algorithm which divides the fingerprint map into 

K subareas where K represents the number of clusters [102]. The division is based on 

the highest similarity between the instances in the intra cluster, and the lowest cluster 

between the inter cluster. Clustering is done by minimizing the sum of square distances 

between the instances and the relevant cluster centroid. This algorithm is performed as 

follows: Select randomly centroid of K clusters initially. Then, the instances in the 

fingerprint map are assigned to nearest cluster. The centroid of each cluster is 

recalculated using the mean of all the instances in each cluster. This recalculation 

repeats until the centroid of each cluster is not change or defined number of iteration is 

reached. 

3.3.2. Proposed Method  

The aim of the proposed hybrid fingerprint based indoor positioning with ELM is 

to use advantages of WiFi and MF sensor measurements at the same time. For this 

purpose, hybrid fingerprint map is constructed. Then, the IPS performance is enhanced 

by removing attributes using ReliefF and dividing the whole dataset to subareas using 



 

 

45 

 

K-means clustering. Finally, positioning is performed using cluster-specific ELM 

algorithm. The flowchart of the proposed method is given in Fig. 3.17. 

 

Figure 3.17. Flowchart of the hybrid fingerprint based indoor positioning with ELM 

3.3.3. Experimental Results 

In experiments, RFKON dataset is utilized. The outputs of the each step of the 

proposed method are as follows: Firstly, ReliefF is applied to determine the number of 

most informative APs in the RFKON dataset. After applying ReliefF, the number of APs 

in the RFKON dataset is decreased from 24 to 19. Then, k-means algorithm is applied to 

assign each RP to a cluster. Table 3.9 gives these assignments.  

Table 3.9. K-means Clustering Results 

Cluster Name Reference Points 

Cluster1 
1, 2, 3, 4 

Cluster2 
5, 6, 7, 8, 9, 10 

Cluster3 
11, 12, 13, 14, 15, 16, 17, 18, 19, 20 
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The number of clusters in K-means algorithm is chosen experimentally. 𝐾 = 3 gives best 

accuracy among the attempted cluster numbers in the experiments. The experiments are 

started with comparing ELM algorithm which uses only one type of sensor measurement 

and hybrid fingerprint map. The comparison results are given in Table 3.10. 

Table 3.10. The accuracy and the computational time results of the proposed method 

Sensor Type Accuracy Results (%) Computational Time (ms) 

WiFi 36 29.01 

MF 29 20.16 

WiFi + MF 55 20.62 

As seen in Table 3.10, the accuracy results of positioning using ELM with WiFi or MF 

data are not adequate, and they are enhanced when using WiFi and MF sensor data at the 

same time. In addition to this, the computational time result of ELM algorithm using 

WiFi and MF data in a hybrid fingerprint nearly same as other types of positioning. 

Then, the results of the proposed hybrid fingerprint based indoor positioning with ELM 

is given in Table 3.11. 

Table 3.11. Experimental results of the proposed method 

 
Sensor Type 

WiFi MF WiFi + MF 

Cluster1 

Accuracy Results (%) 72 96 92 

Computational Time (ms) 0.57 0.53 0.56 

Cluster2 

Accuracy Results (%) 56 82 90 

Computational Time (ms) 1.19 1.08 1.89 

Cluster3 

Accuracy Results (%) 53 24 66 

Computational Time (ms) 4.72 4.32 4.35 

As seen in Table 3.11, the proposed method improves the accuracy and the computation 

time of the IPS significantly. According to the inference from the studies in the 

literature, WiFi based fingerprint positioning success is better in large-scale indoor area, 

whereas MF success is better in small-scale regions due to its nature. This inference is 

verified when comparing the experimental results in Table 3.10 and 3.11. Before 

clustering, accuracy result of positioning using WiFi data is better than MF data. But, 

the accuracy of positioning with MF data is better after clustering process. Besides, the 



 

 

47 

 

proposed method enhances the accuracy results using the advantages of both sensor 

types. Also, dividing whole datasets into sub-areas using clustering reduces the 

computational time. This is an important contribution when considering the battery 

requirements of mobile devices. 

3.4. Integration of Classification Algorithms for Indoor Positioning System 

IPS performance depends on various criteria. Selection of appropriate algorithm 

and sensor measurement type for positioning are critical issues. Various algorithms with 

different sensor types are applied in the literature. The aim of the proposed method is to 

integrate more than one sensor type and positioning algorithm concurrently to enhance 

the IPS performance in terms of accuracy. In the proposed method WiFi and MF data 

are used for positioning with DT, MLP, and BN, simultaneously. The selected 

algorithms are integrated using majority voting method. 

3.4.1. Preliminaries 

Fingerprint-based positioning method is adopted in this study. In the following 

subsections, the phases of this method are explained briefly. 

Training Phase 

Training phase is the first phase of fingerprint-based positioning method. In this 

phase, WiFi RSS values and MF sensor values are combined in order to form a hybrid 

fingerprint for the fingerprint map. The 𝑖𝑡ℎ instance of the fingerprint map is given in 

Eq. (3.7). 

,1 ,1 , , , , ,( , , ,{( , ),..., ( , )},{ , , })i i i i i i i k i k i x i y i zFP RP x y MAC RSS MAC RSS global global global (3.7)  

where iRP  is the 
thi  reference point (RP) label, ,ix and iy  are the x  and y coordinates, 

,i jMAC  and 
,i jRSS  are the MAC address and RSS values of the thj  AP, k  is the 

number of APs, 
, ,,i x i yglobal global , and 

,i zglobal are the MF strength values at the iRP . 

Positioning Phase 

In the positioning phase, the measurement of the mobile device is compared with 

the fingerprints in the database. Different classifier algorithms such as DT, MLF, and 

BN are integrated using majority voting method in this phase to estimate the position. 
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3.4.2. Proposed Method  

Indoor positioning algorithm which is proposed in this study is started with 

constructing hybrid fingerprint database. The database integrates WiFi RSS and MF 

measurements to construct a fingerprint for a RP. After choosing any number of base 

classifiers; majority voting method is utilized to integrate the base classifiers. Majority 

voting method combines the outputs of the classification algorithms to estimate the final 

position. The final position is the one that is mostly predicted by the base classifiers. In 

this study, DT, MLP, and BN are selected as base classifiers [103]. Fig. 3.18 shows the 

flowchart of the proposed hybrid indoor positioning algorithm. 

 

Figure 3.18. The flowchart of the proposed hybrid indoor positioning algorithm 

As seen in Fig. 3.18, three classification algorithms such as DT, MLP, and BN are 

integrated using majority voting method instead of using any single classifier. Majority 

voting method is one of the widely used methods to combine classifiers when the base 

classifiers give class labels as outputs. It improves the performance of the classifiers 

through voting. One of the important advantages of majority voting method is that there 

is no need to adjust parameter if the base classifiers have been trained. After integrating 

different classifiers, the majority voting method constructs a classifier which is superior 

to other classifiers. 

3.4.3. Experimental Results 

In this study, DT, MLP, and BN classifiers are selected as the base classifiers. All 

parameters of the DT and BN classifiers are selected as default values in WEKA. The 

“training time”, “momentum” ,”learning rate”  parameters of MLP change from “500”to 
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“100”, “0.2” to “0.4”, and “0.3” to “0.1” for faster the execution of classifier. The 

average distance error of each algorithm is given in Table 3.12. 

Table 3.12. Average Distance Error of Algorithms (m) 

 WiFi Database MF Database Hybrid (WiFi + MF) Database 

DT 4.21 m 4.78 m 4.21 m 

MLP 2.48 m 3.54 m 1.40 m 

BN 4.22 m 4.85 m 1.06 m 

Hybrid Algorithm 

(Majority Voting) 
2.15 m 4.69 m 1.23 m 

As seen in the Table 3.12, MLP and BN algorithms performance are improved using 

more than single type of measurement. In addition to this improvement, the system 

whole performance is also enhanced by taking multiple sensor measurements for the 

fingerprint map and multiple classifier approach with “majority voting method”. 

3.5. An F-score Weighted Indoor Positioning Algorithm Integrating WiFi with 

Magnetic Field Fingerprints 

In this method, an f-score weighted indoor positioning algorithm is proposed. The 

proposed algorithm integrates WiFi and MF sensor measurements to consider 

advantages of both sensor types simultaneously.   

3.5.1. Preliminaries 

The algorithms used for positioning are given in the following subsections. 

Maximum Likelihood Estimation (MLE) 

Maximum likelihood estimation (MLE) is one of the most popular algorithms 

which take into account the standard deviation of the measurements [84]. It gives higher 

accuracy when compared with the other algorithms [85]. Additionally, the calculated 

likelihood values for different sensor types are useful for constructing hybrid solutions 

for the indoor positioning problem. In MLE algorithm, the probability of obtaining the 

mobile device fingerprint 'F  at the 
thi  RP whose fingerprint iF   is given by 
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where ix  and is  are the mean and the standard deviation of the signal measurements at 

the 
thi  RP, '

ix  is the signal measurement at an unknown location, and n  is the dimension 

of the fingerprint map. The mean and the standard deviation are calculated by 
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where m   is the number of collected measurements for the iRP , j

ix  is the thj  

measurement from iAP  for the radio map. For the magnetic map, j

ix  is magnetic field 

strength value. 

The computational cost of Eq. (3.8) can be reduced by taking its natural log 
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Since the second term of Eq. (3.10) is constant, it can be ignored. Eq. (3.10) is rewritten 

by multiplying -1 and defining 
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Now, the Eq. (3.8) is converted to Eq. (3.11) [104]. For the mobile device fingerprint 'F

Eq. (3.11) is calculated for each RP, and then the label of the RP is returned by 

calculating Eq. (3.12). 

'argmin ( )i ig x                                                   (3.12) 

The wellness of the MLE model can be evaluated using a separated test data. Model 

evaluation is done as follows: after calculating the estimated position of each test data 
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using Eq. (3.12), confusion matrix is generated with the estimated position labels and 

actual position labels. The confusion matrix is a basis for calculating the terms such as 

true positive (TP), false negative (FN), true negative (TN), and false positive (FP) [105]. 

The binary case representation of the confusion matrix is given in Table 3.13.  

Table 3.13. Confusion matrix binary case representation 

 Positive (Estimated) Negative (Estimated) 

Positive (Actual) TP FN 

Negative (Actual) FP TN 

Then, f-score which is one of the performance metrics can be calculated using the 

confusion matrix as follows: 

2

2

TP
f score

TP FP FN


 

  
                                    (3.13) 

In the literature, the f-score values are generally used to evaluate the train model 

performance using the test data. In this study, the f-score values are used to evaluate the 

model (Eq. (3.12)) performance for each signal type. Besides, these f-score values are 

used as the weights of each signal type in the positioning phase to enhance the IPS 

performance.  

3.5.2. Proposed Method  

Traditional fingerprint-based positioning algorithms are started with constructing 

database by collecting measurements from the experimental area. The measurements 

generally contain only WiFi-RSS values obtained from the APs in the region. RFKON 

database contains both WiFi-RSS and MF strength values for each RP. The radio map 

and the magnetic map are utilized as inputs for the proposed f-score weighted indoor 

positioning algorithm. The pseudo code of the algorithm is given in Algorithm 1. 
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Algorithm 1. The pseudo code of the f-score weighted indoor positioning algorithm  

Training-Testing Phase: 

Inputs: Radio Map, Magnetic Map. 

Outputs: WiFi-RSS-based model (
WiFiMLE ), MF-based model (

MFMLE ) 

1) Normalize each instance in radio map and magnetic map using min-max 

normalization procedure. 

2) Split the radio map and the magnetic map as train data (60%) and  test data 

(40%).  

3) Use Equation (3.9) to obtain 𝑥𝑖̅ , and 𝑠𝑖 for the train data of each signal 

type. 

4) Calculate the RP labels for both test data type using Eq. (3.12) separately. 

5) Apply Equation (3.13) to calculate the f-score values of each signal type 

per RP using the calculated RP labels, and the actual RP labels. The f-score 

values are stored as weight of each sensor type as 
,WiFi iweight , and 

,MF iweight . 

6) Construct WiFi-RSS-based model ( WiFiMLE ), MF-based model ( MFMLE ) 

as follows: 

, ,( , , , , , )WiFi i i i i i i WiFi iMLE lb xCoord yCoord x s weight           (3.14) 

 , ,( , , , , , )MF i i i i i i MF iMLE lb xCoord yCoord x s weight            (3.15) 

Positioning Phase: 

Inputs: ,WiFi MFMLE MLE , WiFi New Test Data, MF New Test Data. 

Outputs: Estimated position. 

1) Apply WiFiMLE  with Equation (3.11) using WiFi New Test Data to obtain 

likelihood values of each RP. 

2) Apply MFMLE  with Equation. (3.11) using MF New Test Data to obtain 

likelihood values of each RP. 

3) Normalize likelihood values using max-min normalization method. 

4) Use Equation (3.16) to calculate final position. 
' ' ' '

, , , ,argmin ( ) ( )i wiFi i WiFi i MF i MF ig x weight g x weight          (3.16) 
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3.5.3. Experimental Results 

WiFi-RSS values or MF values may provide better positioning accuracy depend 

on the structure of indoor area. If there are different fingerprint maps for each signal 

type, the f-score values can be used to understand the quality of accuracy for each map. 

In our experimental area, f-score values are obtained for radio map and magnetic map as 

in Figure 3.19. Heat maps show the quality of positioning in the given RPs. 

 
(a) 

 
(b) 

Figure 3.19. Heat map of f-score values for WiFi (a) and MF (b) data using MLE 

algorithm 

As seen in the Figure 3.19.a, the f-score values are high in the right-above sub 

area which means that WiFi-based positioning has good accuracy. But, the f-score 

values are worse in the left-below area. On the other hand, f-score values have higher 

values for this region in Figure 3.19.b. It means that MF-based positioning has good 

accuracy in that region. The f-score values are almost the same in the middle of the 

figures. It means that the accuracy of each method is nearly same. Therefore, applying 

each sensor type with f-score weight values concurrently in the proposed positioning 

algorithm can be enhanced the performance of the IPS. 

The proposed f-score weighted indoor positioning algorithm is compared with 

KNN that is used in RADAR [15], and NB that is used in Horus [16]. The experiments 

are performed by comparing KNN, NB, and MLE algorithms using only one sensor 

measurement. Therefore, firstly, proposed algorithm is compared with KNN, NB, and 

MLE algorithms with WiFi-RSS data. Then, the comparison is done when applying 

KNN, NB, and MLE algorithms with MF data. Figure 3.20 depicts the distribution of 

localization error for compared algorithms. 
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Figure 3.20. Performance comparison of f-score weighted indoor positioning algorithm 

with KNN, NB, and MLE that uses only WiFi-RSS data 

As seen in Figure 3.20, the cumulative distribution function for the proposed algorithm 

is obviously superior to other algorithms when WiFi-RSS sensor measurements are 

utilized. 

 

Figure 3.21. Performance comparison of f-score weighted indoor positioning algorithm 

with KNN, NB, and MLE that uses only MF data 

In Figure 3.21, the precision results of proposed method are better than MLE, KNN, and 

NB when MF strength measurements are used. According to Figure 3.20 and Figure 

3.21, it is deduced that the proposed algorithm outperforms other algorithms whatever 

which type of sensor measurement is used. The positioning precisions of the applied 

algorithms are given in details in Table 3.14.  
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Table 3.14. Detailed experimental results of the positioning algorithms 

Method Precision (%) 

<3m <6m 

Proposed Algorithm 91% 97% 

MLE WiFi 84% 92% 

KNN WiFi 75% 84% 

NB WiFi  64% 75% 

MLE MF 64% 67% 

KNN MF 69% 70% 

NB MF  66% 67% 

In Table 3.14, the proposed algorithm results positioning error less than 3m for 91% of 

test data, while MLE WiFi, KNN WiFi, NB WiFi, and MLE MF, KNN MF, NB MF are 

84%, 75%, 64%, and 64%, 69%, and 66%, respectively. The proposed algorithm also 

results positioning error less than 6-m for 97% of test data while MLE WiFi, KNN 

WiFi, NB WiFi, and MLE MF, KNN MF, NB MF are 92%, 84%, 75%, and 67%, 70%, 

and 67% respectively. The proposed algorithm can effectively integrate the MF and 

WiFi signals for more accurate positioning. 

The proposed algorithm is also compared with MLE, KNN, and NB which use 

hybrid fingerprint map for positioning. These comparison results are given in Figure 

3.22. 

 

Figure 3.22. Performance comparison of f-score weighted indoor positioning algorithm 

with KNN, NB, and MLE that uses hybrid fingerprint data 
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As seen in Figure 3.22, all algorithms are enhanced when using the hybrid fingerprint 

map, but again the proposed algorithm is the best when compared with other algorithms. 

The detailed results of this comparison are given in Table 3.15. 

Table 3.15. Detailed experimental results of the positioning algorithms 

Method Precision (%) 

<3m <6m 

Proposed Algorithm 91% 97% 

MLE Hybrid Fingerprint 87% 94% 

KNN Hybrid Fingerprint 85% 93% 

NB Hybrid Fingerprint 83% 92% 

According to Table 3.15, MLE, KNN, and NB result positioning error less than 3m are 

enhanced to 87%, 85%, and 83%, respectively. And, also MLE, KNN, and NB result 

positioning error less than 6m are improved to 94%, 93%, and 92%, respectively. 

However, the situation which the proposed algorithm results with 91% and 97% for 

positioning error less than 3m and 6m respectively are superior to other algorithms still 

remains. 

3.6. An Enhanced Approach of Indoor Positioning Algorithm using WiFi 

Received Signal Strength and Magnetic Field Fingerprints 

In this method, a precise indoor positioning algorithm is proposed. The proposed 

method uses WiFi RSS and magnetic field measurements at the same to construct a 

fingerprint map. Then, positioning is performed to obtain the estimated position in 

terms of x and y coordinates. 

3.6.1. Preliminaries 

The algorithms used in the proposed method are given in the following 

subsections. 

WiFi RSS and Magnetic Field based Fingerprint Database 

The fingerprint database contains WiFi RSS and magnetic field signal 

measurements. The measurements are obtained at each RP in the experimental area. All 

measurements at each RP is averaged to eliminate the noisy data. The representation of 

the fingerprint map is illustrated in Fig. 3.23. 
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Figure 3.23. The representation of the fingerprint map 

3.6.2. Proposed Method  

After constructing fingerprint map, the positioning is performed by applying the 

proposed positioning algorithm.  The proposed positioning algorithm is illustrated in 

Fig. 3.24. 

 

Figure 3.24. The proposed method 

The proposed positioning algorithm is performed into two steps. In the first step, 

fingerprint map is constructed using average values of WiFi RSS and magnetic field 

measurements. Then, positioning is started by comparing test data with each instance in 
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the fingerprint map in the calculate unit. Then, 𝐾 closest points are selected using 

distance metric. In this step, the  𝐾 and the distance metric are important parameters that 

change the estimated error. Several distance metrics are applied in the proposed 

algorithm, but spearman’s rank order correlation gives the best result among them. 

Spearman’s rank order correlation is calculates as follows: Rank the two vectors which 

are used in the comparison. The number ‘1’ is given to the biggest number in a vector, 

'2' to the second biggest value and so on. The smallest value in the vector will get the 

lowest ranking. The rank of any equal values is calculated by averaging of the rank 

values. This should be done for both sets of measurements. After calculating the rank 

values, then following equation is used to calculate the distance between two vectors: 

 
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, 2
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1
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n n
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                                 (3.17) 

where id  is the difference between the ranks of the two values on each vector, i.e. the 

rank of the second value is subtracted from the rank of the first value, and n   is the 

number of instances in the column vector. Finally, K   closest points are integrated with 

a weight to calculate the mobile unit position. The proposed algorithm is explained 

briefly in Algorithm 2. 
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Algorithm 2. The pseudo code of the enhanced approach of indoor positioning 

algorithm using WiFi RSS and MF fingerprints 

Training Phase: 

Inputs: WiFi RSS and magnetic field measurements. 

Outputs: Fingerprint map 

1) Normalize each instance in radio map and magnetic map using min-max 

procedure.  

2) Get the average values of each measurements to construct fingerprint map. 

Positioning Phase: 

Inputs: , , , .trainData testData K r  

Outputs: Estimated position. 

1) Find the K  closest points by comparing each instance in the fingerprint 

map with the test data using spearman’s rank-order correlation as given in 

Eq. (3.17). 

2) Each point in the closest list must satisfy the following condition: 

 

, , 1,...,
itrainData testDatadist r i K   

3) Weight of each point is calculated as follows: 
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4) The estimated position is calculated as follows: 
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j j j
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3.6.3. Experimental Results 

The experimental area is given in Fig. 3.25 where red points represents the RPs 

for training phase, and the  blue points represents the RPs for positioning phase. 
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Figure 3.25. Experimental area 

As seen in the Fig. 3.25, the numbers 1, 4, 5, 7, 9, 11, 16, 13, 18, and 20 represent the 

training points. And, the remaining ones are the test points. The training phase is 

performed by collecting measurements from the training points. Then, positioning phase 

is started with collecting test data from the test points which are labelled with the 

numbers 2, 3, 6, 8, 10, 12, 14, 15, 17, and 19. In the positioning phase the parameters 𝐾 

and , 𝑟 are setted to 3 and 0.60, respectively. The parameter 𝑟 is used to restrict the 

search area. After, performing positioning phase the Fig. 3.26 is constructed to show the 

estimated position of the test points 

 

Figure 3.26. Experimental results 
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In the Fig. 3.26, the actual coordinates and estimated coordinates of each test point are 

illustrated with blue point and green small circles, respectively. The letter ‘A’ represents 

the actual point, and the letter ‘P’ represents the predicted point in the figure. Finally, 

the minimum, average, and maximum distance error are obtained as 0.47, 1.56 and 2.96, 

respectively.  
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4. CONCLUSIONS and FUTURE WORKS 

The main problem in IPS is to obtain a reasonable positioning accuracy in a cost-

effective manner. Therefore, the main objective of this study is to construct a cost-

effective radio frequency-based indoor positioning system which adopts fingerprinting 

method. Our objective is to enhance the indoor positioning system performance. For 

this purpose, various positioning algorithms are utilized with the publicly accessible 

indoor positioning datasets to determine the most appropriate algorithms in terms of 

selected performance metrics. A multi-criteria optimization technique is defined to 

obtain the most appropriate algorithm for a given dataset. Since, WiFi Received Signal 

Strength based fingerprinting method suffers from multipath effect which leads to 

erroneous position estimate, it can be enhanced using supplementary technologies such 

as magnetic field. Magnetic field has some advantages such as it does not suffer from 

NLOS conditions or multipath effects in indoors whereas it has short operating range, 

and sensitivity to certain materials. However, magnetic field strength diminishes rapidly 

with distance. Therefore, we handle magnetic field-based fingerprinting method as a 

supplementary solution with the WiFi Received Signal Strength based fingerprinting 

method. So, hybrid fingerprints are defined to improve the positioning performance. 

Then, several positioning algorithms are applied with hybrid fingerprint dataset to solve 

the indoor positioning problem. Then, we propose an f-score weighted indoor 

positioning algorithm integrating WiFi Received Signal Strength fingerprints with 

magnetic field fingerprints to enhance indoor positioning system performance in terms 

of accuracy. The proposed f-score weighted indoor positioning algorithm has better 

accuracy performance than the conventional algorithms. Thus far, these algorithms 

solve indoor positioning problem as a classification task. Since more precise position 

estimates are more preferred, and then we propose an enhanced indoor positioning 

algorithm using WiFi received signal strength and magnetic field fingerprints. This final 

method calculates the position in terms of x and y coordinates to obtain more precise 

location. 

In future works, we plan to develop a robust indoor positioning system that 

aggregates various indoor positioning systems focused on satisfying system 

requirements such as latency, accuracy, and so on.  
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