

MODELLING A WEB BASED REAL TIME APPLICATION BUILDER WITH

REACTJS AND NODEJS TECHNOLOGIES

Master of Science Thesis

EMRAH ÖZ

Eskişehir, 2017

i

MODELLING A WEB BASED REAL TIME APPLICATION BUILDER WITH

REACTJS AND NODEJS TECHNOLOGIES

EMRAH ÖZ

MASTER OF SCIENCE THESIS

Computer Engineering Program

Supervisor: Assoc. Prof. Dr. Özgür YILMAZEL

Eskisehir

Anadolu University

Graduate School of Science

December 2017

ii

JÜRİ VE ENSTİTÜ ONAYI

(APPROVAL OF JURY AND INSTITUTE)

Emrah Öz’ün, “ReactJS ve NodeJS Teknolojileri ile Web Tabanlı Gerçek

Zamanlı Uygulama Tasarlayıcı Modellenmesi” başlıklı tezi 22/12/2017 tarihinde

aşağıdaki jüri tarafından değerlendirilerek “Anadolu Üniversitesi Lisansüstü Eğitim-

Öğretim ve Sınav Yönetmeliği” nin ilgili maddeleri uyarınca, Bilgisayar Mühendisliği

Anabilim dalında Yüksek Lisans tezi olarak kabul edilmiştir

 Ünvanı Adı Soyadı İmza

Üye (Tez Danışmanı) : Doç. Dr. Özgür Yılmazel ……….............

Üye : Yrd. Doç. Dr. Muammer Akçay ……….............

Üye : Yrd. Doç. Dr. Ahmet Arslan ……….............

……….............

 Enstitü Müdürü

iii

ABSTRACT

Master of Science Thesis

MODELLING A WEB BASED REAL TIME APPLICATION BUILDER WITH

REACTJS AND NODEJS TECHNOLOGIES

Emrah Öz

Anadolu University

Graduate School of Sciences

Computer Engineering Program

Supervisor: Assoc. Prof. Dr. Özgür YILMAZEL

2017, 76 pages

A real-time web based application builder technique on reactjs and nodejs that

users/developers can design and generate codes without writing manually by hand from

scratch is presented. The designing application is running on the browser while it is generated

by platform. The project has a graphical user interface that everybody can use, users do not

need to be a software developer to design an application. With this work, code generation

and hand coding compared side by side in dimensions “coding quality”, “speed”,” error /

bug” rate. Code generation platform makes the development lifecycle efficient and easy. The

quality and speed of the development process increases by %50 for recurrent tasks.

Keywords: ReactJs, Webpack, NodeJs, Code Generation, Rapid Application Development,

Javascript

iv

ÖZET

Yüksek Lisans Tezi

REACTJS ve NODEJS TEKNOLOJİLERİ İLE WEB TABANLI GERÇEK

ZAMANLI UYGULAMA TASARLAYICI MODELLENMESİ

EMRAH ÖZ

Anadolu Üniversitesi

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Özgür YILMAZEL

2017, 76 sayfa

Kullanıcıların/geliştiricilerin sıfırdan elle yazmadan kodları tasarlayıp üretebildikleri,

reactjs ve nodejs üzerinde gerçek zamanlı web tabanlı bir uygulama oluşturucu tekniği

sunulmuştur. Tasarlanan uygulama, platform tarafından oluşturulurken tarayıcıda çalışır

haldedir. Sistem, herkesin kullanabileceği bir grafik kullanıcı ara birimine sahiptir ve

uygulamayı kullanmak için yazılım geliştiricisi olması gerekmez. Bu çalışma ile "kodlama

kalitesi", "hız", "hata" boyutları altında, kod üretme ve elle kodlama yanyana

karşılaştırılmıştır. Kod üretme platformu uygulama geliştirme yaşam döngüsünü verimli ve

kolay kılmaktadır. Yazılım geliştirme süreci kalitesi ve hızı %50 oranda tekrarlı tasklarda

artmıştır.

Anahtar Kelimeler: ReactJs, Webpack, NodeJs, Kod Oluşturma, Hızlı Uygulama

Geliştirme, Javascript

v

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Assoc. Prof. Dr. Özgür YILMAZEL for his

patience, advice, criticism and encouragements for all those years.

I would like to thank Dr. Alp Vasfi ASUTAY, Louisiana State University Faculty of

Engineering Center of Advanced Computer Studies Department, Louisiana / United States

for discussing about advanced javascript topics.

I would like to thank to my wife (also an academic person) Çağla TERZİOĞLU ÖZ

for helping me out about proofreading and keeping the thesis document clear.

I would like to thank to ReactJS, Webpack and NodeJS open source project

contributors to all for creating such nice libraries and platforms.

Emrah Öz

December, 2017

22/12/2017

vi

ETİK İLKE VE KURALLARA UYGUNLUK BEYANNAMESİ

Bu tezin bana ait, özgün bir çalışma olduğunu; çalışmamın hazırlık, veri toplama,

analiz ve bilgilerinin sunumu olmak üzere tüm aşamaşarında bilimsel etik ilke ve kurallara

uygun davrandığımı; bu çalışma kapsamında elde edilen tüm veri ve bilgiler için kaynak

gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; bu çalışmanın Anadolu

Üniversitesi tarafından kullanılan ‘bilimsel intihal tespit programı’yla tarandığını ve hiçbir

şekilde “intihal içermediğini” beyan ederim. Herhangi bir zamanda, çalışmamla ilgili

yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve

hukuki sonuçları kabul ettiğimi bildiririm.

……….............

 Emrah Öz

vii

TABLE OF CONTENTS

BAŞLIK SAYFASI ... i

JÜRİ VE ENSTİTÜ ONAYI (APPROVAL OF JURY AND INSTITUTE) ii

ABSTRACT ... iii

ÖZET .. iv

ACKNOWLEDGEMENTS ... v

ETİK İLKE VE KURALLARA UYGUNLUK BEYANNAMESİ vi

TABLE OF CONTENTS .. vii

LIST OF TABLE ... xii

LIST OF FIGURES .. xiii

ABBREVIATIONS ... xv

1. INTRODUCTION .. 1

1.1 Comparison to Similar Systems .. 1

1.2 Literature Review... 1

1.3. Similar Platforms Comparisons .. 1

1.3.1 Forms.IO ... 1

1.3.2 Gatsby app .. 4

1.3.3 Helmetrex.com - structor project ... 4

2. METHODOLOGY, TECHNOLOGIES AND ARCHITECTURE ………. 6

2.1. Summary and Used Technologies .. 6

2.1.1 Node.JS.. 9

2.1.2 React.JS ... 11

2.1.3 Redux.JS ... 11

2.1.4 Webpack ... 12

2.1.5 Webpack hot module replacement - HMR .. 13

2.1.6 ES5 / ES6 / ES7 ... 14

2.1.7 Babel JS ... 14

2.1.8 NPM... 14

2.2 Project Structure .. 15

viii

2.2.1 Project architecture ... 15

2.2.1.1 Project backend structure ... 15

2.2.1.1.1 Core module ... 16

2.2.1.1.2 Database manager ... 16

2.2.1.1.3 Bidirectional middleware compiler 17

2.2.1.1.4 Dummy service manager ... 17

2.2.1.1.5 Export manager ... 17

2.2.1.1.6 File format module .. 18

2.2.1.1.7 File manager .. 19

2.2.1.1.8 File parser .. 19

2.2.1.1.9 Generator manager / template manager 20

2.2.1.1.10 Git manager .. 20

2.2.1.1.11 Index manager ... 20

2.2.1.1.12 Login manager ... 21

2.2.1.1.13 Npm manager ... 21

2.2.1.1.14 Socket manager .. 21

2.2.1.1.15 Export manager ... 21

2.2.1.1.16 State manager .. 21

2.2.1.1.17 Storage manager .. 22

2.2.1.1.18 Webpack builder middleware .. 22

2.2.1.2 Project front end structure ... 22

2.2.1.2.1 API files .. 22

2.2.1.2.2 Static files ... 23

2.2.1.2.3 Components .. 23

2.2.1.2.4 Middleware ... 23

2.2.1.2.5 Appbuilder pages .. 23

2.2.1.2.5.1 Administration pages .. 23

2.2.1.2.5.2 User Pages .. 23

2.2.1.2.6 Redux files .. 24

2.2.1.2.7 Route definitions .. 24

2.2.1.2.8 Configuration files ... 24

2.2.2 User interface and usage guide ... 24

2.2.2.1 User pages ... 25

ix

2.2.2.1.1 Login page .. 25

2.2.2.1.2 Dashboard page ... 25

2.2.2.1.3 My projects page .. 26

2.2.2.1.4 User dummy files page ... 27

2.2.2.1.5 Start new project page .. 28

2.2.2.1.6 Application designer page ... 29

2.2.2.2 Administration pages .. 30

2.2.2.2.1 Component management page .. 30

2.2.2.2.2 User management page ... 31

2.2.2.2.3 User project management page ... 32

2.2.2.2.4 Project management page ... 33

2.2.2.2.5 Template category management page 34

2.2.2.2.6 Template management page .. 34

2.2.2.2.7 Dummy files management page .. 35

2.2.2.2.8 Environment management page ... 36

2.3 Project methodology .. 36

2.3.1 Webpack hot loading ... 37

2.3.2 Changing source files ... 38

2.3.3 Running designing application ... 39

2.3.4 Parsing designing application ... 40

2.3.5 Identify components & component selection ... 40

2.3.6 Modifying pages & components .. 41

2.3.7 Communication between backend and frontend applications 45

2.3.8 Modify Reactjs source code for appbuilder ... 45

2.3.9 Modules, components and more ... 46

2.4 Multiple User Interface ... 49

2.4.1 Multiple user support .. 49

2.4.2 Multiple project support .. 49

2.5 Designer/Code Generator Page Details .. 49

2.5.1 Management panel ... 49

2.5.1.1 Main application menu .. 50

2.5.1.2 Component management panel .. 51

x

2.5.1.3 Module management panel .. 52

2.5.1.4 Page management panel... 53

2.5.1.5 Dummy files management panel .. 53

2.5.1.6 Component hierarchy panel ... 54

2.5.1.7 Properties management panel .. 55

2.5.1.8 Designer mode button ... 55

2.5.1.9 Preview mode button... 55

2.5.2 Configurations panel.. 56

2.5.3 Selection panel .. 57

2.5.4 Properties panel.. 58

2.5.5 Page component tree panel.. 58

3. SCIENTIFIC FACTS AND RESULTS .. 59

3.1 Scientific Facts .. 59

3.1.1 Why this technique is needed .. 59

3.1.2 Benefits of code generation.. 59

3.1.3 Possible problems ... 60

3.2 Performance Metrics ... 60

3.2.1 Basic page development in app builder versus hand coding 60

3.2.2 Advanced page development in appbuilder versus hand coding 61

3.2.3 Bug rates in basic page in appbuilder versus hand coding 62

3.2.4 Bug rates in advanced page in appbuilder versus hand coding 63

3.2.5 Appbuilder in continuous delivery ... 64

3.2.6 Appbuilder in devOPS ... 65

3.2.7 Appbuilder in cloud platform ... 65

4. USER COMMENTS ... 66

4.1 User Comments .. 66

4.2 Instructor Comments ... 66

4.3 Software Engineer Comments .. 66

5. CONCLUSION AND WHAT IS NEXT ... 68

5.1 Conclusion ... 68

5.2 Future Word ... 69

xi

REFERENCES .. 70

GLOSSARY .. 72

RESUME ... 76

xii

LIST OF TABLE

Table 1. Forms.IO & Appbuilder Comparison .. 3

Table 2. Gatsby & Appbuilder Comparison .. 4

Table 3. Helmetrex.Com - Structor Project & Appbuilder Comparison 5

Table 4. Average Times Taken in Basic Page Development ... 61

Table 5. Average Times Taken in Complex Page Development ... 62

Table 6. Average Bug Count in Basic Page Development .. 63

Table 7. Average Bug Count in Complex Page Development... 64

xiii

LIST OF FIGURES

Figure 1. Forms.IO designer screen .. 2

Figure 2. Forms.IO export screen ... 3

Figure 3. Common structure of a single user's project structure .. 7

Figure 4. General structure of app builder project .. 8

Figure 5. 100K request with 1K concurrency .. 10

Figure 6. 1M request with 20K concurrency .. 10

Figure 7. Login page screen .. 25

Figure 8. Dashboard page screen .. 26

Figure 9. My projects page screen .. 27

Figure 10. User dummy files page screen ... 28

Figure 11. Start new project page screen .. 29

Figure 12. Project loading page screen ... 29

Figure 13. Application designer page screen .. 30

Figure 14. Component administration page screen .. 31

Figure 15. User management page screen .. 32

Figure 16. User project management page screen .. 33

Figure 17. Project management page screen .. 33

Figure 18. Template category management page screen .. 34

Figure 19. Template management page screen ... 35

Figure 20. Dummy file management page screen .. 35

Figure 21. Environment management page screen ... 36

Figure 22. Highlighting components .. 41

Figure 23. Selecting components .. 42

Figure 24. Property toolbox .. 42

Figure 25. Source file editor ... 43

Figure 26. Sample application page selection and navigation .. 44

Figure 27. Sample modules tree for a sample project ... 48

Figure 28. Module locking and unlocking .. 48

Figure 29. Main management panel (left panel) ... 50

xiv

Figure 30. Main application menu .. 51

Figure 31. Component management panel ... 52

Figure 32. New page creation menu ... 53

Figure 33. Dummy file selection menu .. 54

Figure 34. Component hierarchy panel ... 55

Figure 35. Designer mode button ... 55

Figure 36. Preview mode button ... 56

Figure 37. Configurations panel ... 56

Figure 38. Screen size selection .. 57

Figure 39. Selection panel .. 58

xv

ABBREVIATIONS

DB : Database

DOM : Document Object Model

ES : EcmaScript

GUI : Graphical User Interface

HMR : Hot Module Replacement

HTML : Hypertext Markup Language

JS : Javascript

JSON : JavaScript Object Notation

LDAP : Lightweight Directory Access Protocol

NPM : Node Package Manager

SPA : Single Page Application

UI : User Interface

XML : Extensible Markup Language

WYSIWYG : What You See Is What You Get

1

1. INTRODUCTION

1.1 Comparison to Similar Systems

Code Generation is a very old topic if considered the subject on code generation, lots

of articles, applications and open source projects can be found. But when focused to code

generation on javascript applications and narrowed it down to ReactJS based single page

applications this project becomes unique on its kind [http-1]. The main research is not the

only code generation, but also generation after the codes modified by hand.

When code generation term used, mostly generation of the code is one way, which

means; generate the source and use it and cannot generate it again. This is one of the unique

difference that is used in this research.

The term bidirectional code generation is used to name the two-way code generation.

Two way means, users can generate the codes from scratch and they can also generate the

sources after developer coded by hand. The generated codes can be modified by developers

by hand coding and those modified sources can be loaded and generated/modified again.

1.2 Literature Review

Since bidirectional term is unique in its kind, similar systems have been focused that

exists in the community. The javascript projects are commonly open sourced and can be

examined in detail. On the next chapter, some of the code generation platforms are examined.

1.3. Similar Platforms Comparisons

There are so many code generation platforms on the web. Those are also web based

projects like appbuilder itself. The main difference is loading existing projects and start from

where the project is.

1.3.1 Forms.IO

Forms.IO is a web based application generation platform, most of the features and ideas

are similar to appbuilder platform. With Forms.IO user can generate form based applications

and can gather data from those screens.

2

The second difference is, forms.io creates an entire project after user finishes the

design. Since the codes are generated from scratch, it lets to output a few technologies based

app like ReactJS, Angularjs etc.

Figure 1. Forms.IO designer screen

As shown in the Figure 1. Forms.IO designer screen the generation layout seems

similar to each other. The side by side comparison is shown in the Table 1. Forms.IO &

Appbuilder Comparison. Plus side of appbuilder is, code generation is two ways, weak side

is Forms.IO supports for AngularJS and ReactJS as an output but appbuilder supports only

reactjs.

3

Figure 2. Forms.IO export screen

Table 1. Forms.IO & Appbuilder Comparison

AppBuilder Forms.IO

Each page/form can be designed from scratch or

loaded and old design.

Each page/form can be designed from scratch or

loaded and old design.

Project loaded from its own source at start and after. Project created from scratch, after creating it can be

loaded again and modified.

Original source can be loaded and can be allowed for

design.

Only its source project definition can be loaded.

Users own source cannot.

Bidirectional code generation allowed. One way code generation is supported.

ReactJS is supported. Angular JS and ReactJs is supported.

Backend mocking allowed Backend mocking allowed

Source can load from any git repo Projects load from its own database.

Forms.IO is a commercial product, users have to pay for each project. It is not an open

source project.

4

1.3.2 Gatsby app

Gatsby is an open source project for code generation and make javascript development

easy. But main problem with the gatsby system is, it is not drag & drop style designer.

It just creates a workspace and a hot loading javascript project environment to

developers and leaves it there. The main idea is also the main code generation idea, create

source code from intermediate languages like json, markdown etc.

Table 2. Gatsby & Appbuilder Comparison

AppBuilder Forms.IO

Each page/form can be designed from scratch or

loaded and old design.

Pages generated from source language or console. No

graphical interface.

Project loaded from its own source at start and after. Project loaded from its own source at start and after.

Original source can be loaded and can be allowed for

design.

Original source can be loaded and can be allowed for

design.

Bidirectional code generation allowed. One way code generation is supported.

ReactJS is supported. ReactJS is supported.

Backend mocking allowed Backend mocking allowed

Source can load from any git repo Source can load from any git repo

Gatsby an open source project, so anybody can contribute, but it seems it is not a well-

stable project yet.

1.3.3 Helmetrex.com - structor project

Helmetrex is the start point of this study. It’s first sparkles comes from helmetrex

project. Appbuilder starts with helmetrex original source, but in time everything needs to be

changes.

The project is an open source project that is served over github.com [http-2]. The aim

of the project is to generate and design an app without coding it.

The structure and the ideas are similar as a running application with appbuilder and

helmetrex’s structor project. They both gives users a GUI for designing applications.

5

But the main difference between the appbuilder and the structor project is like all the

others, code generation is bidirectional on appbuilder, but in structor, each project is

generated from json source files. So, code generation is one way.

Table 3. Helmetrex.Com - Structor Project & Appbuilder Comparison

AppBuilder Forms.IO

Each page/form can be designed from

scratch or loaded and old design.

Pages generated from source language (JSON).

Project loaded from its own source at start

and after.

Project loaded from its own database, not original source,

only its own project types can be loaded.

Original source can be loaded and can be

allowed for design.

Only special project type to itself can be loaded and

designed.

Bidirectional code generation allowed. One way code generation is supported.

ReactJS is supported. ReactJS is supported.

Backend mocking allowed Backend mocking allowed

Source can load from any git repo Source can load from any git repo

There is a general idea on code generation on projects and articles related to them, there

is a source language and a target language. Generation is one way from source to destination,

for designer perspective, designing creates the source language files, the generation engine

creates the target sources files from those source files.

Like all the similar projects inspected above, each project has its own source generation

files to create / generate target source code. There comes the main difference between

appbuilder project and the others. Appbuilder uses directly source files themselves to create

new ones.

6

2. METHODOLOGY, TECHNOLOGIES AND ARCHITECTURE

2.1. Summary and Used Technologies

It is every software team’s goal to design applications by just drag and dropping

application items. The idea starts with “Code Generation” or the term “Rapid Application

Development”. To decrease cost of production, most of companies believe code generation

may be a solution.

In most code generation techniques, there are a pre-stage of the codes that generated

from a second language like XML or JSON. That makes the code generation one way, which

means users can generate the sources from second language to target one. But cannot reload

current/latest source code and redesign it, or it is very difficult. Because their development

team has already changed the sources, and most of the case, those codes cannot be

decompiled back to source code generation language.

Solution is the keywords above. If users can combine them all together, it is possible

to create sources from nothing (there is no second language), users can reload their current /

latest source code from source versioning tool and start designing / code generating (For

specific programming languages).

Sources taken from version control system (git/tfs etc.), generated-designed with a

WYSIWYG (what you see is what you get) editor, and committed back to source control.

This technique told in this document (thesis) will be called Application Builder later on.

Application Builder framework provides each user a webpack sandboxed execution

unit. Clients directed to the chain of webpack middleware during the design stage of their

projects [http-3].

Users create/modify/manage their pages, modules and components within their project

and webpack sandboxed unit provides a transparent passage from server to the UI. The

transparency involves [http-4]:

-Server-in-memory packaged ReactJS based Single Page Application (SPA) Project

-Hot module replacement (HMR) to inject updated modules into the active runtime

-Preserve DOM and React component state when components are saved

-Record Compilation timings and status

7

Figure 3. Common structure of a single user's project structure

Webpack sandboxed execution unit provides a chain of 4-layer middleware

infrastructure. At the top, there is the Webpack Builder Middleware provides a websocket

connection to the client based on the immediate HMR compilation status. Build errors and

succeeded changes are published to the clients through websocket.

Webpack Builder middleware wraps the HMR middleware as the next layer in the build

pipeline. HMR middleware provides the underlying mechanism for replacing Javascript

modules on the fly.

Webpack hot middleware wraps the dev-middleware. Webpack dev-middleware

provides an in-memory bundling the target SPA Project. It splits the files into chunks,

8

separates the vendors and parallelize the build process to improve immediate builds triggered

by client changes.

Webpack dev-middleware wraps the react-hot-loader layer deepest in the hierarchy.

This layer attempts to build on top of Webpack HMR and preserve DOM and React

component state when components are saved.

Figure 4. General structure of app builder project

Webpack dev-middleware wraps the react-hot-loader layer deepest in the hierarchy.

This layer attempts to build on top of Webpack HMR and preserve DOM and React

component state when components are saved.

Each user login to App Builder, open a Project feature session. Users can have multiple

feature sessions allocated to them. Webpack Sandbox execution units are spawned through

the system as an isolated mini server providing a transparent gateway to the target project

feature. Project features changed are published to their target repository through Application

Builder.

By combining applicable technologies together, it is possible to create an application

builder platform, which can build applications while they are even running on the browser.

In this thesis, every step will be defined clearly [http-3].

9

2.1.1 Node.JS

 Node.JS is the core system that lies on everything and enables the whole project

possible. All components on the project runs on the Node.JS infrastructure. Node.JS is an

asynchronous event driven Javascript runtime that runs on Google V8 engine. It uses a very

light ware and efficient event driven non-blocking I/O model. Node.JS also has a big open

source package library ecosystem inside (npm).

NPM is a part of the Node.JS platform. Developers can share libraries over npm and

also use other libraries that is shared by others before. At first, npm is used to share Javascript

code blocks for Node.JS projects, but today, any kind of code can be shared over npm.

The first use of Node.JS to run Javascript code on server side over network. But it goes

furthermore and users can create large scaled network apps with high performance today.

Node.JS platform is completely open source based over GitHub. Anybody can

contribute to project. Currently more than 250 people is contributing to project and this

number is increasing over time. With Node.JS it is very easy to create web applications;

http = require('http');

http.createServer(function(req, res) {

res.writeHead(200, {'Content-Type': 'text/html'});

res.write('<p>Hello World</p>');

res.end();

These 5 lines of code is enough to create a simple web application that says hello. Only

Node.JS is needed to run this app, not even need a web server is needed. If these lines

compared to PHP it‘ll be written down;

<?php

echo '<p>Hello World</p>';

?>

These lines above. For example, if those two lines compared for performance [http-5];

For about 100.000 request with 1000 concurrency, the results below have accuired.

10

Figure 5. 100K request with 1K concurrency

Figure 6. 1M request with 20K concurrency

11

With higher values, users can see the node performance more clearly. Users can find

many performance tests that is done by users on the internet [http-5].

With Node.JS there is a second subject called ECMAScript. ECMAScript is the

language library version of javascript. It is also called as ECMAScript (ES). Currently there

are ES5, ES6 and ES7 versions of ECMAScript. Standard browsers are all supporting ES5,

ES6 is partially supported, and ES7 is the future [http-6]. This thesis uses version ES6 and

ES7 which will be described later [http-7].

2.1.2 React.JS

React JS is a javascript library that makes custom web components possible. Users can

create even custom html tags and attributes as if they really exist.

React makes it painless to create interactive UIs. Design simple views for each state in

applications and React will efficiently update and render just the right components when data

changes. In general, react components, will be executed and run on client side (web

browsers), but with combining Node.JS, react can be execute also on server side.

React.JS creates a copy of DOM (called virtual DOM), at first, creates the operations

(changes in HTML) on the virtual DOM, calculates the differences to the real DOM on the

browser, makes only the necessary changes with the smallest change. DOM operations cost

much for browsers (performance perspective), thus, making small changes on DOM makes

React.JS a better JS library [http-1].

2.1.3 Redux.JS

Redux is a predictable state container for JavaScript apps. It helps users to write

applications that behave consistently, run in different environments (client, server, and

native), and are easy to test [http-8]. On top of that, it provides a great developer experience,

such as live code editing combined with a time traveling debugger.

Javascript applications (client or server), needs a structure, a living data structure that

data can be stored, and notified when changed to listeners. This called generally “state”.

Redux javascript library’s goal to achieve that with perfection.

12

The state of whole application is stored in an object tree within a single store. This

makes it easy to create universal apps, as the state from server can be serialized and hydrated

into the client with no extra coding effort.

In Redux, state object has to be read only, and can only be modified with actions. This

ensures that neither the views nor the network call backs will ever write directly to the state.

Instead, they express an intent to transform the state. Therefore, Redux can tell the state

listeners that data is changed.

Changes are made with pure functions. To specify how the state tree is transformed by

actions, pure reducers needed. Reducers are just pure functions that take the previous state

and an action, and return the next state. Remember to return new state objects, instead of

mutating the previous state. User can start with a single reducer, and as app grows, split it off

into smaller reducers that manage specific parts of the state tree. Because reducers are just

functions, user can control the order in which they are called, pass additional data, or even

make reusable reducers for common tasks such as pagination.

2.1.4 Webpack

Webpack is a module bundler system for javascript applications. Users can combine

and bundle javascript codes together into single or partitioned files. Multiple file formats are

also supported. Which means, user can bundle images into javascript applications is also can

be done [http-3].

Not only javascript or image files supported, it is possible to bundle any kind of file by

writing an appropriate loader for it. Existing module bundlers are not well suited for big

projects. The most important property of webpack is Code Splitting. Users can split bundles

into small pieces that have been decided.

The main goals of webpack project are;

1. Split the dependency tree into chunks loaded on demand

2. Keep initial loading time low

3. Every static asset should be able to be a module

4. Ability to integrate 3rd-party libraries as modules

5. Ability to customize nearly every part of the module bundler

13

6. Suited for big projects

In the heart of this thesis, webpack means a lot for bundling modules (javascript code

blocks). The most important spec of webpack for this thesis is the hot loading ability of

webpack.

Webpack HMR, is a great technology that can create an interactive bundle mechanism,

that can be modified at run time. This means, users can change the source of their bundle

while running.

The idea of hot loading makes this project possible. If the project that can change source

files at runtime, Webpack HMR can serves them live. This is the core of the App Builder

technology.

2.1.5 Webpack hot module replacement - HMR

Webpack has an embedded specification called HMR. Webpack adds a small HMR

runtime to the bundle, during the build process, that runs inside the application. When the

build completes, Webpack does not exit but stays active, watching the source files for

changes.

If Webpack detects a source file change, it rebuilds only the changed module(s).

Depending on the settings, Webpack will either send a signal to the HMR runtime, or the

HMR runtime will poll webpack for changes. Either way, the changed module is sent to the

HMR runtime which then tries to apply the hot update. First it checks whether the updated

module can self-accept. If not, it checks those modules that have required the updated

module. If these too do not accept the update, it bubbles up another level, to the modules that

required the modules that required the changed module. This bubbling-up will continue until

either the update is accepted, or the app entry point is reached, in which case the hot update

fails.

This hot loading mechanism enables us to create the real-time app builder mechanism.

At the overall hierarchy, a hot loader structure was set up over source code, after that, build

a project that can modify the source code with technique what you see is what you get kind

and finally webpack HMR does the rest, it directly compiles the code and displays on the

browser.

14

2.1.6 ES5 / ES6 / ES7

With the technology advancing in programming languages, some new titles occurred

in literature. For example, javascript had started a versioning like .NET or any other library.

And also, these versions welcomed and accepted by the w3 consortium [http-9].

Currently there is 3 major versions on javascript. The supported by every browser and

what users have known till now is the version ES5. For recent years, new coding techniques

are added to the standard and it was called ES6. End the next coming version is called ES7.

On this project, ES7 level code is used for the latest abilities.

2.1.7 Babel JS

The ES5, ES6, ES7 which are the core versions of the javascript, are not supported by

all of the browsers yet. ES5 is covered by all of current browsers, ES6 is mostly covered,

ES7 is the least covered version.

To solve this support problem, a platform called Babel JS has been created. Babel JS

is a javascript compile engine, that converts ES6 and ES7 code into ES5, which is

understandable for every browser.

Because ES6 and ES7 is new, they are not supported by every browser. Babel fixes this

problem for us. The compile engine used in this project is Babel JS. It is not enough just

compiling and converting the code for the browsers. If the browser has not the functionality

to support ES6 or 7 features at all, it has to be poly filled. Polyfilling is also done by Babel

JS.

2.1.8 NPM

Node Package Manager (NPM), is the package management for javascript projects. All

the packages used in this project are publicly deployed to npm and they are used from there

in this project.

Npm comes with Node JS (embedded), by installing Node JS , users can start to use

npm from their computer's console. It is possible to search the packages through its web

portal [http-10] and easy to install whatever needed. Like components ReactJS, Redux JS,

Babel and etc. all packages are retrieved from npm network.

15

2.2 Project Structure

App builder project has two main parts, one is the backend part and one is the front-

end part, both parts have significant contribution to the project. Backend part does the most

work like pulling project code from version tool, package and bundle the code, serve the

project like a web site, do the code generation and at the and push back the code to the version

tool (Git / TFS Etc.).

Frontend part is a SPA (single page application), written in reactjs, has two main roles,

first role, displaying the designing project inside itself like a sub-application, second role,

create a user interface for building and generation. This generator interface is a second layer

above the designing project and they seem as a whole project. But in reality, there are two

projects running on the browser (as called front end).

2.2.1 Project architecture

As displayed in Figure 3. Common structure of a single user's project structure, app

builder project has some layers and modules inside. Both backend and frontend parts have a

substructure inside them.

2.2.1.1 Project backend structure

App builder backend is written in Node JS in ecmascript 5 the technology mentioned

in 2.1.6 ES5 / ES6 / ES7 section. This project has several modules inside that does’ different

jobs for the main goal.

The backend project is a Node JS Application. Because, Node JS applications

becoming very popular in recent years. With the improvements on the cloud computer

systems, creating and serving nodejs apps are very easy today. To create and run a Node JS

app, only Node JS library is needed installed on target PC/Server. As already mentioned in

2.5.1.1 Node.JS section, NodeJS is an easy to use platform.

NodeJS applications are generally web-based (runs on the browser) kind applications.

But it is possible to create console applications too. In fact, with nodejs users can only create

console applications right now, because Node JS is not a web server or does not include a

web server technology, it only executes and outputs the javascript sources on console. App

builder backed also is just like this [http-10].

16

To make NodeJS a fully capable web application, users need express package. As

mentioned in 2.1.8 NPM, users can install it from NPM. Express package is one of the mostly

used package on Node JS applications. It makes node JS to behave like a web server, users

can serve web pages or web services by node JS with express.

Express package is the core part that makes app builder to behave like a web server

and serve backend services. The backend projects can be summarized as submodules below.

2.2.1.1.1 Core module

 Core module is the main module of the backend part. This module keeps everything

together and it also includes the express module. Core Module creates a web server and a

web service, from those, the app builder user interface served and generator commands are

executed.

Core modules also boots up the app builder project and does what need to be done at

project start. It boots up the database if it is not running, it reads the start-up parameters, it

executes the update process, and starts the web server for serving user interface and also it

starts the web service layer for listening user interface for commands.

2.2.1.1.2 Database manager

 This module is responsible for database and database storage operations. By default,

app builder project has its own database inside mongodb. If there is no database configured

externally it boots up its own database and start to use it.

Database manager module also has business functions for database operations like

select, insert, update and delete. Currently app builder is working with mongodb, but buy

using alternative database drivers, it is also possible to use other databases like Microsoft

SQL server or Oracle Database, but users also need to update the database functions inside

the module (select, insert, update, delete).

App builder project does its most of the job on the source files, so database operations

aren't that much, just a few database tables are using to keep things organized like user logins,

project names and definitions. There are no code generational database tables at all.

17

2.2.1.1.3 Bidirectional middleware compiler

As shown in Figure 3. Common structure of a single user's project structure javascript

(webpack) middleware compilation on the hot is very important for this project. As

mentioned in 2.1.5 Webpack Hot Module Replacement (HMR) section, thanks to webpack

javascript files can know be replaced and reloaded while they are executing. This module

creates the webpack hot loader middleware layer for each designer project and puts it to the

express located in the core module, so that updates on the source javascript files can be sent

to the user interface over express from javascript sockets.

Each manipulation on source javascript files creates an update on the webpack

middleware compiler, those updates sent to the client (which is the user interface runs on the

browser on users) over socket. Socket called websocket in general term, is a live connection

between backend and frontend layers that communicates several things. Webpack hot

middleware changes is one of them.

2.2.1.1.4 Dummy service manager

The designing projects may have backend connections. For example, the project that

will be designed in the app builder may have a login page, in app builder the designing

application is running on the browser while it is designing, so it may not be possible to log

the user inside the app while it was designing.

For such those cases, users need to simulate the backend that the designing application

uses. The simulation of the backend is called dummy service or in general term “Mocking”.

This module does the backend service mocking of the designing application. It is

possible to create mock/dummy service calls from app builder project. For example, user can

create a fake reply for login feature. It is possible to make fake replies to all the backend calls

that the designing application makes.

2.2.1.1.5 Export manager

App builder project can download source files for the designing project from its source

control system, and can commit back to the result. Today there are some highly common

source control system like Git or TFS. App builder is currently works with Git versioning

system. But it is possible to make it work with other source control systems easily.

18

This module does the commit back the changed files to source control system. App

builder makes changes to all files to make the real time designing happen. But, when source

codes need to commit back to source control system unnecessary changes needed to remove

(the changes that app builder does for itself). At the result, there must be only changes that

the user designed.

This module does the cleaning of the source files to original and makes the commit

back operation. It also creates a new branch from the original branch and does the commit

over that branch. In Git, it is very important to work in branches.

2.2.1.1.6 File format module

This modules formats (beautify) the generated source files. Mostly generated files

won't seem nice. The indentation may be bad, this module uses esformatter npm package to

format the generated source files.

After formatting files, they will look like they will have written by hand on a nice IDE.

The rules of the formatting can be modified and told to the esformatter. Current settings for

the formatter are the general rules in the literature on the javascript. Here is the configuration

for the formatting source files;

 // this is the section this plugin will use to store the settings for the jsx formatting

 "jsx": {

 // by default, is true if set to false it works the same as esformatter-jsx-ignore

 "formatJSX": true,

 // keep the node attributes on the same line as the open tag. Default is true.

 // Setting this to false will put each one of the attributes on a single line

 "attrsOnSameLineAsTag": false,

 // how many attributes should the node have before having to put each

 // attribute in a new line. Default 1

 "maxAttrsOnTag": 2,

 // if the attributes are going to be put each one on its own line, then keep the first

 // on the same line as the open tag

 "firstAttributeOnSameLine": true,

19

 // align the attributes with the first attribute (if the first attribute was kept on the

same line as on the open tag)

 "alignWithFirstAttribute": true,

 "spaceInJSXExpressionContainers": " ",

 "htmlOptions": { // same as the ones passed to jsbeautifier.html

 "brace_style": "collapse",

 "indent_char": " ",

 //indentScripts: "keep",

 "indent_size": 4,

 "max_preserve_newlines": 2,

 "preserve_newlines": true

 //unformatted: ["a", "sub", "sup", "b", "i", "u"],

 //wrapLineLength: 0

 }

 }

As it seemed on the configuration lines, it is possible to create very clean and good-

looking source files while generating them.

2.2.1.1.7 File manager

While code generation, there are so many file operations, like read file, save file,

modify file and etc. This module contains the file operations inside it. To keep the project

files clear (app builder itself), file operations are gathered together on this module.

2.2.1.1.8 File parser

Appbuilder supports ReactJS as UI javascript library. ReactJS has its own file/coding

syntax. So, a special parser for those files needed. Parsing javascript source files to javascript

objects for processing is done in this module.

20

2.2.1.1.9 Generator manager / template manager

Appbuilder project can create file or file groups together with a given template files.

This is used to create pages in designing apps. ReactJS applications may need more than one

file while creating a page in the application.

This can change designing applications structure. For complex projects that contains

multiple subpages, there may need to create several files to create a single page to the project.

If Redux JS used as application state, these files also need to be created for that too.

In appbuilder administration pages, users can define page outline (template)

definitions, so that appbuilder can use those definitions and creates files. Those modules do

the page generation operations that users have created as templates. While creating source

files the defined parameters in the template definition are gathered from the user.

2.2.1.1.10 Git manager

Appbuilder project can download project from version tool (Current supported

versioning tool is Git. After downloading the project, it builds the source code and runs it.

So that user can start designing To do that, users need a running and a hot loading

supported reactjs web application in Git repository. After the designing and code generation

finished, appbuilder also can put (commit) back the generated files to its original versioning

tool. Those code downloading and uploading (pull & push in Git Terms) operations done in

this module.

2.2.1.1.11 Index manager

In ReactJS, web components will become very popular term. In reactjs projects every

item in project (objects) called as “Component”. So, users can create whatever they need as

component and use them as much as they want.

Appbuilder can use those web components as design items in the project. Users can

define their components to appbuilder as design items and appbuilder can identify those items

on source files and can modify them. The identification of source files (finding component

definitions) is done on this module.

21

2.2.1.1.12 Login manager

 Appbuilder can be integrated with different authentication mechanisms, users can

integrate it with LDAP or oAuth, currently a regular authentication is used and auth info

stored in local database. The authentication functions and logic stored in this module.

2.2.1.1.13 Npm manager

 In ReactJS applications, most of the libraries are on npm. So, users need features for

installing and removing npm packages to their designing project. NPM operations like

install and remove are stored in this module.

2.2.1.1.14 Socket manager

Appbuilder can run multiple project designers at the same time. Different user can log

in and start different projects concurrently. Each project creates a separate workspace and

works standalone.

But each workspace needs its own and private socket connection between appbuilder

and client browser to communicate. As mentioned in 2.3.1 Webpack Hot Module

Replacement (HMR), when javascript sources changed and files compiled, client browser is

notified over socket connection. If there are multiple socket connections at the same time,

users need to manage them and keep them separate, this is done by Socket Manager module.

2.2.1.1.15 Export manager

Appbuilder can download and upload project source files from source versioning tool

in addition to that it can also create a compressed single file that contains every file on the

project, and give it to the user - by a browser file download. To do that, app builder needs

some processing on files, after processing all the files compressed together and sent to user

browser. This operation done in export manager module.

2.2.1.1.16 State manager

Appbuilder project has its own application storage called state manager. State means

something different in ReactJS applications but since appbuilder is a nodejs application, it

22

also needs a space to put settings and global variables somewhere. State manager module

stores and handles the changes application wide variables and settings.

2.2.1.1.17 Storage manager

As mentioned in 2.2.1.1.8 File Parser section, ReactJS has its own file structure and

syntax. So, users need special functions to parse, add and remove lines from source files.

ReactJS source specific parsing and manipulations functions stored in storage manager

module.

2.2.1.1.18 Webpack builder middleware

As mentioned in 2.1.5 Webpack Hot Module Replacement (HMR), when javascript

source files changed, webpack hot module replacement module creates some update

operations, those operations created some events, appbuilder use those events to feed the

frontend project. Webpack hot module configuration and management operations done in

this module.

2.2.1.2 Project front end structure

Appbuilder projects frontend part is a single page application written in reactjs. Mainly,

it creates a user interface for users, for administering appbuilder itself and let the projects can

be designed.

It creates a WYSIWYG (what you see is what you get) style builder interface while

user is in designer mode. Designing application is running on an inside frame, appbuilder

puts a hidden layer above it, with this layer it can give to user designer capabilities.

This frontend ReactJS application has some modules and folder structures inside

described below. Frontend project codes are located on the static folder at the root of the

project.

2.2.1.2.1 API files

Frontend needs specific functions like searching through designer components,

creating UI overlays etc. are located inside api directory.

23

2.2.1.2.2 Static files

Every web application uses some css files, font files, external javascript libraries. Those

files that are not written or maintained by this project are located under static folder.

Generally, they were published directly to workspace (project output), without doing extra

process like bundling.

2.2.1.2.3 Components

As mentioned in 2.2.1.1.11 Index Manager section, appbuilder frontend application has

some components that used inside its own pages. Those components are located in

components directory.

2.2.1.2.4 Middleware

Redux JS library has a middleware property, means that users can hook every change

operation in redux data store. In appbuilder, middleware is used to do some UI specific

modifications while redux storage items are modifying.

2.2.1.2.5 Appbuilder pages

Appbuilder project frontend applications has some pages itself. Those pages are

divided into two main categories.

2.2.1.2.5.1 Administration pages

 Appbuilder project needs some definitions to run. For example, the definition of the

source control system or the definition of users and may be the most important part is the

definition of designing components. Appbuilder administration pages stored in pages

directory.

2.2.1.2.5.2 User Pages

Appbuilder project has some pages to run the designer process and gives an output to

user what was done before. Those pages will be described in detail later and they are stored

in pages folder.

24

2.2.1.2.6 Redux files

Redux JS has a specific folder structure, users need to define some sub files and objects

to run it smoothly. In appbuilder, redux needed files stored under redux folder.

As described in 2.1.3 Redux.JS section, redux has some layers inside it. Files are

created related to those layers.

2.2.1.2.7 Route definitions

ReactJS applications are single page applications as described in 2.1.2 React.JS section.

They are called single page but this doesn’t mean they contain only single page inside it.

ReactJS applications may contain multiple pages inside like appbuilder frontend.

If there are multiple files, some routing information needed to define which page is

which route. Those route information’s are stored in rotes folder.

2.2.1.2.8 Configuration files

Every ReactJS application need some configuration for webpack bundling, ecmascript

execution and npm package management. Those files are located at the root folder of frontend

project.

2.2.2 User interface and usage guide

Appbuilder has an easy to use user interface for both system administrators and users.

Node JS server-side application serves the user interface UI. This UI is a single page

application web application.

The UI interface connects to the backend by JSON backend calls. User commands like

insert/update/delete operations done on the Node JS backend application. UI pages can be

separated into two parts. User Pages and Administration Pages.

User pages are the regular pages to design applications. Appbuilder users logs in and

create workspaces for designing applications. Administration pages helps to define and

modify system parameters that appbuilder needs to run.

25

2.2.2.1 User pages

Appbuilder application has its own authentication system. The system cannot be used

without authorization and permission. Users can only use the approved projects that

administrators give to them.

2.2.2.1.1 Login page

 Both admin and user level users use the same login screen. This is a simple login

only uses username and password. Login can be integrated with LDAP services easily for

commercial or corporate usage.

Login connects to backend NodeJS app. NodeJS app checks the login and if it is valid

user redirected to dashboard screen. Users are defined by system administrator, which is

another application user defined with admin role. The screen outline is shown in Figure 7.

Login page screen.

Figure 7. Login page screen

2.2.2.1.2 Dashboard page

Both admin and user level users redirected to dashboard page after successful login.

This screen is a summary screen that contains the previous work of the users. The screen

layout shown in Figure 8. Dashboard page screen.

26

There is a navigation menu for each page that user can navigate. The menu is changed

to the authorization level of the user. Administration pages shown if user has admin role.

Figure 8. Dashboard page screen

2.2.2.1.3 My projects page

 Dashboard page has only quick access/start to user’s previous projects. User can

manage their projects (delete operation) in My Projects Page. Users can also delete the

project in this page and can see additional information about their previous works.

My Projects page shown in Figure 9. My projects page screen. Users can create as

much as project they want, with the physical server limitations and what permission they

have.

27

Figure 9. My projects page screen

2.2.2.1.4 User dummy files page

 ReactJS single page web applications communicate backend with JSON requests. It

can be said those requests are “Backend Calls”. While designing an application on

appbuilder, those backend calls needs to be simulated. Because it may not always possible

to run backend of the designer application.

Simulating backend calls is named service mocking. Service mocking needs dummy

responses to run. They need to what to reply while giving a fake reply to request.

Users can load their own fake backend replies as JSON format from this User Dummy

File Screen. Both admins and users can access and use this page. User Dummy Files page

shown in Figure 10. User dummy files page screen.

28

Figure 10. User dummy files page screen

2.2.2.1.5 Start new project page

To start a new application design, users select the source branch to load initial project

and gives a name to work. Project name also Git repository branch name. So, naming

convention has to be like Git branching name (No empty or blank characters).

This screen is working by user permissions. Administers give users to access projects.

Appbuilder can support to design different projects at the same time. Unless they are in

reactjs web application that has some configuration in it, appbuilder can start a designing

project from its source control.

When user clicks to the ENTER button, the project will be downloaded from its original

version control system and appbuilder navigate to the loader screen. On that loader screen,

some outputs displayed to the user. While waiting the user in that screen, project will be

initialized in the background. Since it is a javascript application the project is bundled, npm

packages will be installed and all those outputs displayed to the user at that time.

When the initialization ends, the designer page will show up. Start new page shown in

Figure 11. Start new project page screen. After this screen, project loading screen showed in

Figure 12. Project loading page screen.

29

Figure 11. Start new project page screen

Figure 12. Project loading page screen

2.2.2.1.6 Application designer page

After loading project, the designer screen displayed to the user. This screen is the most

important UI screen and everything is done here. Users can see what components are installed

in app builder, they can add new pages, modify current ones.

30

This page, creates a hidden layer onto the designing application inside. While users

moving the cursor above the screen, the components on the designing application is

highlighted and can be selected.

Application designer screen shown in Figure 13. Application designer page screen.

This page will be described in detail.

Figure 13. Application designer page screen

2.2.2.2 Administration pages

Appbuilder has a dynamic format structure. It can be used in any kind of reactjs web

application. It just needs some meta descriptions to identify the applications structure to

design. Each definition needed for appbuilder can be managed over administration pages.

2.2.2.2.1 Component management page

The most important part of the appbuilder designer property is to define and identify

components in the designing application. To do that, appbuilder needs the definitions of the

components. Those are mainly the name of the package (npm package name), the object

name of the component, a category information for displaying the component in the

component toolbox, and finally the definition of the properties.

31

These component metadata is managed in component management page. Each

definition needed can be defined here. Component Management page is shown in Figure 14.

Component administration page screen.

Figure 14. Component administration page screen

2.2.2.2.2 User management page

Appbuilder currently has a built in simple user and permission manage0ment. This

management can be improved with LDAP like services if needed.

User are defined and permissions are granted in this screen. Each user login information

and project specific permissions given here. User management screen shown in Figure 15.

User management page screen.

32

Figure 15. User management page screen

2.2.2.2.3 User project management page

Appbuilder has a permission based workspace system. Each user can access only their

projects (workspaces). But as an admin user, all of the active projects can be displayed and

deleted if needed.

ReactJs web applications has may have so many files (like node_modules directory)

inside. So, deleting old projects keeps the server clean. User project administration page

shown in Figure 16. User project management page screen.

33

Figure 16. User project management page screen

2.2.2.2.4 Project management page

Appbuilder can download projects from their own version control system. Each project

needs some definition for that.

By default, Git is used for projects, so Git repository and branch name is required for

each project. There can be multiple projects and multiple repositories at the same time.

Project definitions are managed in project management page. Project management page

is shown in Figure 17. Project management page screen.

Figure 17. Project management page screen

34

2.2.2.2.5 Template category management page

Appbuilder can create multiple files concurrently at in a project. This means, users can

define some file creation templates (also the body of the files), so that users can create and

add to their projects.

With this technique, user can add new pages at the same time. React JS web

applications with are using redux framework for state management, may need multiple files

to add just a page.

For a big project, there can be several types of template definitions, so they need to be

categorized. The templates categories are defined in template category management page.

Template category management page is shown in Figure 18. Template category management

page screen.

Figure 18. Template category management page screen

2.2.2.2.6 Template management page

As described in 2.2.2.2.5 Template category management page section, appbuilder has

need template definitions for file creation operations. Each project has their own file

structures and types. So for each project there has to be some template definitions. Template

definitions done in template administration page and shown in Figure 19. Template

management page screen.

35

Figure 19. Template management page screen

2.2.2.2.7 Dummy files management page

As described in 2.2.2.1.4 User dummy files page section, designing projects need

dummy file definitions. Those dummy definitions can be done by each user for themselves

only and also there can be definitions that applies to all users. These dummy files that can be

used by all users and defined in dummy file management admin page. Dummy file

management page shown in Figure 20. Dummy file management page screen.

Figure 20. Dummy file management page screen

36

2.2.2.2.8 Environment management page

Each single page web application has a backend to process operations. For example, to

log in users to system applications needs to verify the data entered. Bu single page web

applications runs in client’s browsers, so it can’t do database operations or transactions.

Those operations done in server side and this server side application called backend in

generally. In big projects or in big corporates there can be several environments of the same

application platform. Those environments generally called “testing environment”,

“production environment” and etc. This means, there are several backends to the application.

These environment definitions done in environment management page. Appbuilder can

change environments of the running application while designing it. Environment

management page shown in Figure 21. Environment management page screen.

Figure 21. Environment management page screen

2.3 Project methodology

Appbuilder platform has a unique technique that differs than others. The approach

makes the application building phase can be done at run time (while designing application is

already running).

37

At a summary ReactJS library is modified a little bit, that components on the running

application can be identified. Each file in the project is processed and every component is

tagged with some meta data.

Since ReactJs is a %100 component based library, every component in the designing

application needs to be tagged. After tagging components in the project, modifications on

them can be made.

2.3.1 Webpack hot loading

As mentioned in 2.1.5 Webpack Hot Module Replacement (HMR) section, webpack

javascript bundling library, has hot module replacement feature. This means, if users bundle

together some files (in reactjs applications this means entire application source codes), when

user change any source file in the bundle, webpack automatically updates the javascript

bundle output with the changes that user have made.

This hot loading feature is one of the main concepts in appbuilder. With the technique

that will be told later, source reactjs application files are modified, after sources modified, (a

webpack hot loading mechanism already being setup) webpack does the rest and updates the

rest of the work.

But for react js applications it is not the only thing for hot loading source files, in react

js applications users also need a special package for updating the UI. Webpack only updates

the bundle files, it did not update the UI, to do that users have to reload the browser.

ReactJS has react-hot-loader package for dynamically updating the UI when webpack

updates occurs. If users do not use this package, they have to refresh the UI every time. This

might be a problem if application uses application state, for example user can lost their login

session and start from login again. Especially for application state using reactjs applications,

-for example application needs login for operations if users don’t have hot loading,

developers need to login and may be move across a few pages before what they have coded.

With Webpack Hot Loading and React Hot Loader module together, developers can

open their project, runs the hot loader, they code and test together at the same time

simultaneously. This speed up the development process very much. In appbuilder, webpack

hot loader and react hot loader modules are used in after code generation step to display to

user chat changes are made.

38

2.3.2 Changing source files

The entire code generation operations are done in code generation steps. Appbuilder

platform processes every file in the designing project while loading. In this process step,

every component definition is found and identified.

ReactJs applications has a component driven architecture. Every UI items are

components and have to be like that. So, identifying them is easy. The JSX structure is

simple.

After project loaded in appbuilder, it knows every page and every item (component) in

it. So changing them (source files) can be done easily. For example, app builder modifies the

code below [http-1].

Source Code Sample Original:

<Box context={this.state.context} clearfix style={{ paddingTop: '15px' }}>

 <Text context={this.state.context} text={this.lang.MainCardNo}

typo='standardBodyCopy' style={{ float: 'left' }} />

 <Text context={this.state.context} text={this.CardDetail.MainCardNumber}

typo='standardBodyCopyBlack' style={{ float: 'right', textAlign: 'right' }} />

</Box>

Source Code Sample Processed:

<Box uuid="box-10705-tw866hfc1k"

pageid="/Users/emr550m/Documents/Templates/N52973_Work1/src/modules/cards/cardd

etails/virtualcarddetail.js" context={this.state.context} clearfix style={{ paddingTop: '15px'

}}>

 <Text uuid="text-10982-6cslwm4rdb"

pageid="/Users/emr550m/Documents/Templates/N52973_Work1/src/modules/cards/cardd

etails/virtualcarddetail.js" context={this.state.context} text={this.lang.CardExpiryDate}

typo='standardBodyCopy' style={{ float: 'left' }} />

 <Text uuid="text-11308-a7lwxqqjmf"

pageid="/Users/emr550m/Documents/Templates/N52973_Work1/src/modules/cards/cardd

39

etails/virtualcarddetail.js" context={this.state.context} text={this.CardDetail.ExpireDate}

typo='standardBodyCopyBlack' style={{ float: 'right', textAlign: 'right' }} />

</Box>

As shown in the code samples above, each file is processed while loading the

application. In source code that is processed, each component definition has 2 extra properties

after processing. One called uuid and the second called pageid. UUID property is a unique

value for every component in the entire project. PAGEID property is the physical file that

stores the component source code.

Appbuilder injects those property values into their objects in the browser. So when user

selects a UI component, appbuilder knows where is the definition of the component (which

file and line number in the file).

It is just basic string operations to modify files after knowing the location of the change.

It is possible to add new properties, modify current ones, insert new components. Regular

code generation operations can be easily done.

2.3.3 Running designing application

Appbuilder enables users to run the designing application at the same time while

designing (code generating) it. Each project workspace creates a working directory identical

to developers local working (project) directory and they have their own webpack and hot

loader modules separately. Those separate projects served under a core express web server.

Each project has its own route under express. These routes added dynamically to express

server when user creates a project workspace.

For example, appbuilder is running in address http://localhost, when a user creates a

project, appbuilder downloads its sources and creates a web project for it. When appbuilder

finishes starting project, an address available for viewing the project like

http://localhost/user1_Project1.

The designer page described in 2.2.2.1.6 Application designer page section, this url is

shown inside the designer as an inline frame. So that, appbuilder displays the designing app

while users designing it.

40

2.3.4 Parsing designing application

As described in 2.3.2 Changing source files section, each file in the designing project

is processed and parsed before the designer starts. While parsing the javascript source files

in the project a JSX parser library is used. This library called astparser and a running sample

[http-11].

Ast is a meta description file that stores data about source files and its structures.

Appbuilder uses ast definitions of javascript source files (compilers also use ast files in

compilation). Esprima-fb package is used to get ast definitions of source files.

Example ast structures can be shown in astexplorer.net’s web site. Source code files

described as parsed objects. For appbuilder perspective, these parsed objects are very

important to identify the source files (pages in the designing application). By extracting ast

(parser) definitions from source files, appbuilder can identify components, variables or any

other definitions in the sources [http-1].

2.3.5 Identify components & component selection

 As mentioned in 2.1.2 React.JS section reactjs based applications are coded

completely from components. Like object oriented programming languages, reactjs is

component oriented programming language.

Every UI element in a reactjs application has to be in reactjs component object. In

reactjs, those components used in JSX language syntax. As mentioned 2.3.4 Parsing

designing application section source jsx files are parsed and as mentioned in 2.3.2 Changing

source files section each parsed source files items are tagged with metadata.

By using injected metadata in the source files, appbuilder identifies the components

displayed to user. This done by modifying the reactjs source itself.

In reactjs source code, the rendering components to dome part is modified a little bit.

Normally, ReactJS did not cares what is included dynamically to components. Because

components don’t have these two properties in their definitions (injected properties

mentioned in 2.3.2 Changing source files section). What is changed in reactjs source itself is

reading those extra two properties and inject them to the DOM at the runtime.

41

This modification makes us to know which component is on the UI at any time.

Because inside the browser's UI object (DOM), our component meta descriptions are also

included.

Now the components at the source code is well known, also the objects at the UI, so it

is easy to match them together. Appbuilder has a feature highlighting UI component while

user moves the mouse over them at the designer.

Because what was inside the DOM is already known, there is a hidden layer above the

designing application, appbuilder gives a colour to it, makes its boundaries equal to the

components boundaries. So, user feels like the component is highlighted. When user clicks

to this coloured layer, it is already known which component is related to this layer, so a

callback to appbuilder backend is made and the metadata is retrieved from backend. That's

how the selected components information displayed to the user at the properties window.

2.3.6 Modifying pages & components

As described in 2.3.5 Identify components & component selection section, each

component rendered to UI on the designing application is known. They are also known where

they are on the UI, what is the sizes etc.

Figure 22. Highlighting components shows a sample form application running on the

appbuilder. When user moves the cursor above elements, the components highlighted.

Figure 22. Highlighting components

42

If user selects (clicks) a highlighted item, component is selected as shown in the Figure

23. Selecting components. The allowed operations displayed above the selection highlight.

Figure 23. Selecting components

When a component selected, users can modify it. The property toolbox window can be

opened from main left bar as shown in the Figure 24. Property toolbox.

Figure 24. Property toolbox

43

When users change a value in property toolbox and click save button, the requested

operation sent to backend with a backend call, because it is already known which component

is selected, it is also known where is the file and which lines in the source file (from metadata

that was inserted before). With simple text and string manipulation operations, the

modification is done. Because reactjs uses JSX syntax it is easy to parse and modify.

Figure 25. Source file editor

Appbuilder has an embedded source file editor. The editor itself is an open source npm

package called ACE editor. When user select an item on the UI and click the source button “

”, appbuilder finds the target file from the meta definition and opens up the ace editor

with the target files source in it.

Users can modify the source files if needed. This is an advanced mode for appbuilder.

The main idea in appbuilder project is to generate source code, not modifying the source by

hand. But if users are a software engineer and they know what they are doing, it is okay to

change the source and examine the output directly.

44

In a single page web application, there can be multiple pages in the app. So, user need

to navigate to those pages while application is running. Because appbuilder can design and

modify the current page (what is rendered to the user screen).

Because the app is physically running inside the appbuilder, users can navigate to the

page that they want to modify by using applications menu or flow. Bu when they create a

new page from scratch, there are no links to their page. That's why appbuilder has a routing

table and users can navigate to any page they want.

Figure 26. Sample application page selection and navigation

As shown in the Figure 26. Sample application page selection and navigation,

appbuilder identifies what pages application has and can navigate the screen to that page.

But in most cases, applications have built in authentication mechanisms, this means

users can't navigate directly to these pages. So, they may need to use mocking operations or

they many need to login their application while it is running.

Every design option also available when users navigate to another page. Because

metadata is injected to every page while loading the project from source control and they

have been modified the reactjs source control, when a new page will be displayed, all

metadata will be injected to the new page while it will be rendered to UI.

45

2.3.7 Communication between backend and frontend applications

Appbuilder has two main parts in the project. First part is a nodejs applications and the

second part is a UI application served from that nodejs backend part.

Since there is a 2-layered structure there has to be a communication between them.

There are two types communication between these two parts. One is a live connection

between the nodejs backend, one is a callback type not alive connection.

Live connection between UI and the nodejs backend is called socket connection and

based on socket.io framework. This socket framework used for sending webpack hot loader

messages to the UI. This has to be alive because at any time there can be change occurs on

the source files.

Callback communications are used to send commands from UI application to backend.

These are generally code modification request. They are one-time operations that sends a

command gets a reply type. These callbacks are not keep alive kind calls, they ‘ll expire and

timeout if they take too much time to execute. So, they have to be quick while using those

callbacks.

For example, the webpack bundling at the project designing start takes between 1 to 4

minutes depends on the project, for that time they can't hold a backend call because it will

timeouts and terminates the call. For that kind of call backs, socket infrastructure is used, and

data sent over socket without timeouts. Because socket is open all the time and won’t close

until the project closed [1].

2.3.8 Modify Reactjs source code for appbuilder

As mentioned before, reactjs libraries original source code is modified to the code

generation two way (from generated to hand coded, hand coded to generated). The

modification is so simple in the reactjs library, a few lines added to it to magic happen.

In the source file ReactCompositeComponent.js;

if(inst.props.uuid) {

 var domNode = findDOMNode(inst);

 if(domNode) {

 var idMap = -1;

46

 var targetuuid = null;

 do {

 idMap = idMap + 1;

 targetuuid = idMap == 0 ? inst.props.uuid : inst.props.uuid + "_" + idMap;

 } while(window.uuidHashMap[targetuuid]);

 window.uuidHashMap[targetuuid] = true;

 domNode.setAttribute('data-uuid',targetuuid);

 domNode.setAttribute('data-pageid',inst.props.pageid);

 if(inst.props["data-locked"]) {

 domNode.setAttribute('data-locked',inst.props["data-locked"]);

 }

 }

}

These code block injects the metadata inside to the real DOM object. There is an index

of injected meta data also created for easy access and use in the UI. For module definitions,

there is also a special lock metadata inserted that will described later.

2.3.9 Modules, components and more

In reactjs, every item is called components. But in projects, users may need some

complex components that may be contains a few components together and they may need to

use this complex component item more than once.

Those items called “modules” in appbuilder. Users can create modules and use them

as much as they want in their pages.

Pages are also having special meaning in appbuilder. Pages are also reactjs components

but appbuilder has to say something page to allow users to design it.

So as an hierarchy, appbuilder can be summarized into three main concepts. Pages,

Modules and Components. As described in 2.2.2.2.1 Component management page section,

components can be managed by appbuilder administration page. But for modules and pages

they are not common for every project and they cannot be administered.

47

When appbuilder loading a project, it scans every file for page and module definition.

There is a static rule on these. Page definitions are extracted from reactjs applications route

definitions. Module definitions are extracted from modules folder.

Each project has a folder structure inside. Appbuilder expects there is a modules folder

inside the project and every component definition inside it called and indexed as module.

Just like the components as administered from appbuilder, module list is sent to UI for using

in designer purposes.

As shown in Figure 27. Sample modules tree for a sample project figure, module

definitions extracted from designing project listed to the user. When user selects one of these

modules, it can be inserted to any location on any page.

By using modules, each project can create their project specific parts, declare them,

design once and reuse everywhere. These modules also can be created in appbuilder. An

empty module can be created with the Create New Module section shown in Figure 27.

Sample modules tree for a sample project figure.

As mentioned in 2.2.2.2.6 Template management page section, the modules code

structure can be defined to use here. Each module template definition is displayed in the new

module section, users can create a module just giving the module path and module name.

After adding the module, it automatically added to the list and user can select and insert to

any page.

48

Figure 27. Sample modules tree for a sample project

When user inserts a module to a page, by default it is locked for modification. Because

modules can be used on many pages, modifying a module by accidently, cause every usage

in the project to fault.

So, user need to unlock a module in the page before modifying it. This is done the lock

and unlock button at the top of the highlight frame as shown in the Figure 28. Module locking

and unlocking.

Figure 28. Module locking and unlocking

49

Just like appbuilder does for the components, for modules their source files metadata

injected to its DOM object. So, when user modifies something in it, it changes on its very

own source.

2.4 Multiple User Interface

Appbuilder is a multi-user project. Multiple users can use at the same time. There is no

limit about that. By default, regular login is used. User definitions stored in its own database

[2].

2.4.1 Multiple user support

 Each user can login concurrently to the appbuilder and can start their own project.

And also, a single user can create multiple users at the same time too [3].

2.4.2 Multiple project support

Appbuilder can create multiple hot loading units at the same time as mentioned before.

As mentioned in 2.1 Summary and Used Technologies section, each designer unit has a big

infrastructure inside it (Figure 3. Common structure of a single user's project structure).

With multiples running at the same time concurrent designing tasks can done at the

same time. This is limited with the physical limitations of the server that runs the appbuilder.

Multi user structure shown in the Figure 4. General structure of app builder project.

2.5 Designer/Code Generator Page Details

Most of the project operations occurs on the appbuilder designer page. It is the core of

the project. Users do the code generation and appbuilder operations on this page [4].

2.5.1 Management panel

 Main code generation operations done in the left main panel.

50

Figure 29. Main management panel (left panel)

This management panel has these features on it.

2.5.1.1 Main application menu

The main application menu contains (Figure 30. Main application menu)

Export Project: This creates a single zip files that contains the designer applications entire

source. This export feature is described before.

Publish Project: This feature publishes (commit back) the sources that generated in the

project to the source control.

Go to Dashboard: This feature ends the designing session and navigates user to the

dashboard screen.

Sign Out: Signs out the user from appbuilder.

51

Figure 30. Main application menu

2.5.1.2 Component management panel

Components that are defined for designing operations are displayed and selected for

adding to the project from here. The plus sign (+) displayed in Figure 31. Component

management panel figure.

Components are displayed in categories in this panel. That category information is

extracted from component definitions or can be administered from by component

administration pages.

When user selects a component in the selection bar the selected components name

appears and user understands that he/she can insert this item to the UI wherever he/she wants.

Component items also can be dragged and dropped to any place.

52

Figure 31. Component management panel

2.5.1.3 Module management panel

As already described in 2.3.9 Modules, components and more section identified

modules are displayed in modules panel (opens with M icon in the Figure 29. Main

management panel).

Like shown in the Figure 27. Sample modules tree for a sample project figure, new

modules also can be added to the application from here. Selected modules inserted to the

project just like components. When a module is selected, it will be displayed in the selection

bar and the user can insert it any place on the project. Module items also can be dragged and

dropped to any place.

53

2.5.1.4 Page management panel

 Appbuilder has the ability to add new pages to the project. Those pages created

from template definitions that described in 2.2.2.2.6 Template management page section.

Each template definition has its own parameters that prompted to the user while

creating the page. These parameters like the page name, page route or back route information.

Figure 32. New page creation menu

2.5.1.5 Dummy files management panel

Dummy files may be needed for some backend using applications while designing the

application.

54

Figure 33. Dummy file selection menu

As described in 2.2.2.2.7 Dummy files management page and 2.2.2.1.4 User dummy

files page files page sections, there can be several dummy definitions for backend calls. There

can be even more than one definition for the same service. Because there can be several

scenarios on the same screen. Users selects the active dummy files from this screen, the

selected dummy files are served from node js backend if the application is running on dummy

mode.

2.5.1.6 Component hierarchy panel

When appbuilder parsing every file at start, it is also possible to create a component

hierarchy tree for selecting items in the screen. React JS is a component base language and

components can be structured nested form in pages.

Some components may not have a width or height or some components may not even

display in the screen. For example, there can be If, Select or Loop components (logic

components). Those components do not have a volume on the screen so it cannot be selected

on the screen.

With the component hierarchy tree window, users can select any component for

modification. Hierarchy panel is shown in Figure 34. Component hierarchy panel figure.

55

Figure 34. Component hierarchy panel

2.5.1.7 Properties management panel

Properties windows can be opened with the properties button in the main menu. The

opening toolbox is shown in the Figure 24. Property toolbox. This toolbox is one of the most

important panel on the application.

2.5.1.8 Designer mode button

Appbuilder has the capability to design the application at the run time. Users can

modify the pages while it was actually running on the browser. So there is a switch needed

between designer mode and preview (running) mode. These options are on the main panel.

As shown on the Figure 35. Designer mode button figure, user can switch between designer

and preview mode.

Figure 35. Designer mode button

2.5.1.9 Preview mode button

When user clicks the preview mode, appbuilder designer add-ons (hidden layer to

highlight components) removed above the project. Because the application is also running

inside the appbuilder, the rest after the layer removing is the application itself. So it can be

said that preview mode is running the application (Figure 36. Preview mode button).

56

Figure 36. Preview mode button

2.5.2 Configurations panel

If an application is running on a web browser, it needs so many extra features except

its own business. For example, web browsers run on any device, any size of screen, so

application needs to be responsive in the browser.

There are also different platforms that uses the web. Like mobile phones, tablets and

thousands of types computers. Designer application may be needed to be different on each

platform.

Appbuilder has the ability to change the platform (by simulating it), it can simulate

variety of screen sizes while designing the application. For example, user can see the app in

a mobile size (320 pixel) width if they want.

Figure 37. Configurations panel

From configurations panel, there are several options can be changed:

Environment Choose: As mentioned before, designing application can have multiple

backend environments like, production, testing etc. Users can define and select the running

applications environment from this menu. Dummy mode also enabled from this section.

Screen Size Selection: Users can change the running applications screen size to some

predefined screen sizes. Various screen sizes supported for testing the applications screen.

From here as shown in the Figure 38. Screen size selection.

57

Figure 38. Screen size selection

Platform Selection: There are mobile, tablet and desktop mode simulation selected from

here. Appbuilder acts as if is running inside the selected platform.

Theme Selection: If the components supports theming option, it can be integrated and

changed from that option.

Page Info: The routes and pages defined in the designing application is displayed from here.

User can navigate to any page from the routing menu (Figure 26. Sample application page

selection and navigation).

Reload: Sometimes users need to reload the application runs inside the appbuilder (The

designing application). Reload button reloads the application and the appbuilder metadata

operations done again.

Undo: Each code modification done in appbuilder can be undone with this button. Every step

is saved in a designing session. Each step can be undone one by one. When user closes the

session undo buffer cleans out. This means users can’t undone the previous design sessions.

2.5.3 Selection panel

In appbuilder designer screen, selection on the running designing application and

selection from the components tree has special meanings. The selection panel displays what

is currently selected. So, users can do different operations on what is selected. On the lower

line the selected component on the UI is displayed. On the upper line, the selected

components tree is displayed. The selection panel is shown in Figure 39. Selection panel.

58

Figure 39. Selection panel

2.5.4 Properties panel

Properties panel also shown in Figure 24. Property toolbox, is used to modify what is

already inserted to the application. Current values also displayed to user and user can modify

them too.

2.5.5 Page component tree panel

 As mentioned in 2.5.1.6 Component hierarchy panel section, the component tree is

used to select and summarize the page’s component hierarchy.

59

3. SCIENTIFIC FACTS AND RESULTS

3.1 Scientific Facts

 In this section, why this technique is needed described with facts.

3.1.1 Why this technique is needed

In software development lifecycle, development phase is the most expensive and time

consuming one. Everything that is done for speeding up the development phase, speeds up

the projects.

Most of the corporates that does products for themselves or their customers, has similar

business development steps. First development need or job comes from business line or

management. After main product described by them, details are outlined by analysis people

or product owners. By having a described task, developers can do their job. But all that

procedure has circular repeat over and over again because job needs may change, or business

line changes opinions after what they seen that coded.

To speed up those procedures, this appbuilder platform can generates the UI of the

project easily by any level of people, even managers, analysis people or product owners. Job

can be seen and examined even before it will be coded. So mostly repeated coding sessions

can be skipped that way.

3.1.2 Benefits of code generation

 For developer side of code generation, most repeating tasks can be done in seconds.

Every project has repeating patterns inside. For example, each unit function has same

outline or template as said. First, code generation saves too much time for repeating tasks

or codes.

With code generation technique, also mistakes and bugs are decreased tremendously.

Because there is no handwriting error, only mistakes can be occurred from false definitions.

If users can define the templates correct for once, there won't be any mistakes any time after

that.

60

For DevOps, code generation also can be used. If users can generate source codes, they

can also generate unit tests too. That means, for continuous integration steps users can take

benefit too.

3.1.3 Possible problems

It is not always easy to generate every code or page in applications. To generate codes

without having hard time, users need to keep things simple and clear. If they have complex

architecture in their applications generation may be convert their life more complex.

In ReactJS based applications and for appbuilder platform, pages must be declaratively

written in render block. If pages are generated by javascript blocks and executions,

appbuilder platform cannot identify the component blocks and it won't’ run correctly.

3.2 Performance Metrics

To proof what have done so far, side by side comparison handwriting and code

generation that is done by appbuilder is needed. To do that, a sample 20 people (they need to

be developers, so that they can write the same task) is selected. Each 20 people does the same

task with handwriting and by using the appbuilder. Each test subject also has the ability to

write in reactjs and they know to use appbuilder platform. There are several tasks from easy

to hard. Each task is examined below;

3.2.1 Basic page development in app builder versus hand coding

In this test, test subjects were asked to create a simple page that has two inputs on it.

Users first do the job by handwriting and after by appbuilder; on the same project and starting

at the same point. Each test iteration page was asked to developers with different input names

and types but same amount number two.

61

Table 4. Average Times Taken in Basic Page Development

 Average Time Taken Number of Users in Iteration
It

er
a

ti
o

n

1

App Builder 5.6 min 3

Handwriting 12.4 min 3

It
er

a
ti

o
n

2

App Builder 7.8 min 5

Handwriting 16 min 5

It
er

a
ti

o
n

3

App Builder 6.3 min 15

Handwriting 14.7 min 15

As shown in Table 4. Average Times Taken in Basic Page Development number of

development count used in tests did not makes changes too much the average times. For a

basic page, it can be said that nearly %50 of time saved while developing with appbuilder

platform.

This happens because page templates defined in appbuilder and users can create the

page outlines just in seconds. The time taken in giving the properties of the inputs. This

means, more detailed templates give more generated codes.

3.2.2 Advanced page development in appbuilder versus hand coding

In this test, test subjects were asked to create a complex page that has two subpages on

it. Each subpage has 5 inputs in it. Users first do the job by handwriting and after by

appbuilder; on the same project and starting at the same point. Each test iteration page was

asked to developers with different input names and types but same amount of inputs.

62

Table 5. Average Times Taken in Complex Page Development

 Average Time Taken Number of Users in Iteration
It

er
a

ti
o

n

1

App Builder 12.2 min 3

Handwriting 35.3 min 3

It
er

a
ti

o
n

 2

App Builder 15.2 min 5

Handwriting 42 min 5

It
er

a
ti

o
n

3

App Builder 16.1min 15

Handwriting 39.4 min 15

As shown in Table 5. Average Times Taken in Complex Page Development number of

development count used in tests did not makes changes too much the average times. For a

complex page, it can be said that nearly %65 of time saved while developing with appbuilder

platform.

This happens because page templates are defined in appbuilder and users can create the

page outlines just in seconds. The time taken in giving the properties of the inputs. This

means, more detailed templates give more generated codes.

It is understood that when codes or pages becomes complex, the time that users have

gained increases. But there is a break point for that, if things gone very complex appbuilder

loses the generation ability and times changes and loses the gain over handwriting.

3.2.3 Bug rates in basic page in appbuilder versus hand coding

Each test iteration was evaluated (code reviewed) after developers finishes their work.

Bug’s called miss-writings or malfunctioning on the code. Since appbuilder generates the

codes by itself and the templates defined for those pages are bug clear, users do only

definition errors. But in hand coding, users define and writes everything and this also reflects

the bug counts.

63

Table 6. Average Bug Count in Basic Page Development

 Average Bug Count Number of Users in Iteration
It

er
a

ti
o

n
 1

App Builder 1 3

Handwriting 3 3

It
er

a
ti

o
n

2

App Builder 2 5

Handwriting 4 5

It
er

a
ti

o
n

3

App Builder 2 15

Handwriting 5 15

As shown in Table 6. Average Bug Count in Basic Page Development, appbuilder

decreases bug/error very much (Two or three times better).

3.2.4 Bug rates in advanced page in appbuilder versus hand coding

When coding becomes complex, the rate of bugs increases. But in appbuilder, the only

difference is the definitions are more. So, the amount of bug increases both sides. But

appbuilder also a winner here.

64

Table 7. Average Bug Count in Complex Page Development

 Average Bug Count Number of Users in Iteration
It

er
a

ti
o

n

1

App Builder 3 3

Handwriting 14 3

It
er

a
ti

o
n

2

App Builder 5 5

Handwriting 16 5

It
er

a
ti

o
n

3

App Builder 4 15

Handwriting 15 15

3.2.5 Appbuilder in continuous delivery

Since continuous delivery is a hot topic these days, every step that users have done for

it makes development life clear and fast. Continuous delivery means, they have a running

application or software and users are adding new features to it without breaking its working

and doing the development process seamlessly. Seamless means, any part of the development

procedure did not become an anchor. For example, bad coding makes the testing phase

longer, poor analysis makes turn backs from coding etc. If users can define a perfect

environment for all their development lifecycle that any phase did not blocks the procedure

this means they have a continuous delivery ecosystem.

Where appbuilder can used in continuous delivery is all its users choice. Users can use

the appbuilder in design or analysis phase to get clear definitions, they can use appbuilder in

development phase to get perfectly written codes or pre-written unit tests that checks users

coding.

The base idea in appbuilder to generate codes but it can be use in different areas. So,

users can use the appbuilder in multiple steps of continuous delivery.

65

3.2.6 Appbuilder in devOPS

 In recent years a new term is created, DevOPS. That word means development

operations. This term is used to define every step together that users have done for

continuous delivery. Most of the work in dev-ops done in build mechanisms or in source

control mechanisms like TFS or Git.

In projects, to keep things clear and well, some methodologies used like test driven or

behaviour driven developments. Writing tests is the main idea on those concepts and running

those tests while modifying the project source itself. Since it is possible to generate unit tests

by appbuilder platform, it can be said that it is also useful in devOPS ecosystem.

3.2.7 Appbuilder in cloud platform

Cloud platform is a hot topic in recent years. Since appbuilder is a web based

application, it is very possible to run and use appbuilder in cloud platform.

Because appbuilder may need computer power to do multiple designing sessions in

parallel, it is ideal to run it on cloud platform. It can be easily scaled over many servers on

cloud platform. To use appbuilder in cloud, all users need is node js as described before.

66

4. USER COMMENTS

In this section, user’s opinions are gathered and summarized. Users are divided into

two section, developers and users. As software developer perspective things and opinions

may differ than regular users. Appbuilder can be used by both regular users and software

developers.

4.1 User Comments

Önder Akar - General Manager of VOLT Bilişim A.Ş.: There are several problems

on the business software development process. Some of these uses infrastructures that helps

to write less code to adapt changes fast. While trying to manage these criteria, both

software companies and companies that use business applications are faced with projects

that are not able to meet the needs properly and dragged to chaos in time. For this reason,

some frameworks automatically generate code blocks and screens. Those auto generated

codes has some standards but they are not able to modify by hand and in time

inconsistencies occurred. Bidirectional code generation may help to answer the quickly

changing needs in time easily and may help the projects can go live fast.

4.2 Instructor Comments

Assoc. Prof. Dr. Özgür YILMAZEL: For big enterprises, it will always be a dilemma

to use or not use code generation techniques. Because, in most cases, generated codes are

become useless or will be modified too much in time. Since the code generation is done

from a source language most of the time, those source files will deprecate in time.

Described Bidirectional code generation pattern, may be a solution for this problem.

Since the latest source codes used for code generation as start, there won’t be any

deprecating source files for code generation. The idea of code generation after manual coding

on the same source may be the key point of the work and what makes it valuable.

4.3 Software Engineer Comments

İlhan Erikçi - Software Architect - Digital Banking Applications - AKBANK T.A.Ş.:

In 1990s and early 2000s we had WYSIWYG editors to build web pages. These editors

67

gave us the comfort of seeing the effects of the changes we were making. In fact, the page

was being built in design mode by drag'n drop.

While new technologies and new patterns arose, developers lost this comfort. Now

designers and coders work separately, merge their work after finishing and hope to run

smoothly.

A real-time application builder is the solution for this complexity. With such an

application developer can drag and drop existing "components" and see the effects like the

way WYSIWYG editors provided them before. This is a huge step for web development.

Alper Soğukpınar - Senior Consultant – Microsoft: In large applications, page

development time is long and business needs are taking long time to come up. There may

thousands of pages in an institutional application. Therefore, reducing this page development

time will be a significant gain in terms of cost and speed of development.

Although page templates, design, and design rules for such large applications are

developed manually, these pages can easily become a non-standard structure. At the point

where the pages, components are out of the standard, the user experience is difficult and the

ease of using the application is lost. On the other hand, pages and components are not

standard, but they are problematic in maintenance in the future. In practice, when a radical

design change is made, it is necessary to change all the pages one by one.

The code generation tools will speed up code development and make possible future

maintenance easier and faster, since the pages and components used are standardized. Initial

generation of pages with one-time code generation will be fast, but after development, code

generation will be disabled. With the two-way code generation, the corresponding tool will

continue to be used for further development of the pages.

Finally, this tool allows the design and creation of static pages to be done by analysts,

possibly future text changes, etc. it could also be done by analysts. With such a tool, all these

changes will need to be made by the developers, which will extend both the development

cost and the duration

68

5. CONCLUSION AND WHAT IS NEXT

5.1 Conclusion

Appbuilder methodology, is a code generation and designer tool that is presented in

this thesis. This tool uses NodeJS, ReactJS and some side technologies together to generate

sources from a graphical user interface. The designing application is running inside the web

browser while user designing and generation sources in it. So, users can see whatever they

design directly.

This appbuilder tool aims for non-developer users at first. But developers can also use

and do hand coding it together with appbuilder. The purpose of this tool is to speed up

development life cycle. Analysis and design step of a software can be done quickly in

appbuilder. The output of the work directly converts to source codes. Developers can take

the source codes from there and do the rest. They can also use the appbuilder for hand coding

or they can use their own development tool. Since appbuilder is embedded with version tool,

either way it is supported.

The appbuilder tool was examined under dimensions “coding quality”, “speed”,” error

/ bug rate”. A people of 20 selected for measurements. They all know good knowledge for

reactjs. Since the generated sources in reactjs they all need to know hand coding on it.

After doing different iterations with different number of groups on variety of designs,

it was measured that the time efficiency on appbuilder is at least %50 better than hand coding.

The average bug rate that is done by developers decreased by two or three times with

appbuilder. The codes are computer generated, the bug rates become user input mistakes,

since users gives less inputs for code generation, bug counts decreases.

The code generation standards are given to system as templates, so each code

generation makes the same output. So, it can be said that the quality and the standard of the

code is always the same. But in hand coding, each user does their own style, so the output

differs, and the quality is not the same.

Appbuilder currently do design kind (User Interface) code generations, so this means

backend or business execution algorithms needs to be done by developers. If those algorithms

have standard structures they can also be generated but mostly they are not.

69

Appbuilder mostly suitable for huge or big web applications that always in progress or

new functionalities added frequently. Since the productivity in software development is

increased, the production speed and rate increase with it.

5.2 Future Word

Appbuilder uses very recent technologies like ReactJS or NodeJs. That means, things

will change and grow super-fast. For example, each library releases at least 2 version per

month. So appbuilder needs to be updated all the time. If users are using those technologies,

they have one static task is to keep up to date.

It will be a great service that serve appbuilder over cloud platform and keep it open

source. More users that uses appbuilder, more ideas and requirements will come.

For functional perspective, appbuilder generates UI currently. Javascript based code

generations and designer parts can be added. For example, managing global state like Redux

on designing applications can be a great plus.

Appbuilder currently generates UI only, but it will be great if also backend services can

be generated too. For a Node JS based backend, it will also be possible to create backend

services on the fly.

As described before, appbuilder has many useful usages. But for my perspective, it will

be a best usage by non-developer kind people. Because, idea is to generate codes, it will be

meaningless to generate codes with developers. Developers can do that already, to gain

speed, if other people uses like business line or analysis people, development phase speeds

up because, developers get pre-coded sources and start the job with a boost.

Since now, appbuilder get the sources, generate new ones, and commit back them to

the source control back. But it will be great if appbuilder has publisher mechanisms

embedded. So that generated codes can be published and tested on its original environment.

Simple publisher structure can be added that works with the cloud system automatically, that

publishes the application to its original serves.

70

REFERENCES

[http-1] GitHub, Inc. https://github.com/facebook/react (Date of access: 04.09.2015)

[http-2] GitHub, Inc. https://github.com/ipselon/structor (Date of access: 08.10.2016)

[http-3] GitHub, Inc. https://github.com/webpack (Date of access: 18.09.2016)

[http-4] GitHub. https://webpack.github.io (Date of access: 01.02.2015)

[http-5] Benchmarking Node.js - basic performance tests against Apache + PHP.

http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php (Date

of access: 14.01.2015)

[http-6] Can I use ES6 ? https://caniuse.com/#search=ES6 (Date of access: 24.05.2016)

[http-7] Node.js Foundation. https://nodejs.org/en/ (Date of access: 01.06.2015)

[http-8] Redux. https://redux.js.org/ (Date of access: 03.02.2016)

[http-9] W3C. http://www.w3.org (Date of access: 04.11.2017)

[http-10] NPM. https://www.npmjs.com/ (Date of access: 14.08.2016)

[http-11] AST Explorer. http://astexplorer.net (Date of access: 23.10.2016)

[1] Lara, J. A., Lizcano, D., MartíNez, M. A. & Pazos, J. (2013). Developing front-end Web

2.0 technologies to access services, content and things in the future Internet, Future

Generation Computer Systems, v.29 n.5, p.1184-1195, July.

[2] Comai, S., & Mazza, D. (2012). A model-driven methodology to the content layout

problem in web applications. ACM Transactions on the Web (TWEB), 6 (3), 10.

[3] Basta, M. & Willer, M. (2017). Adaptive Determination of Dynamically-Composited Web

Page Elements in A Web Application, US 20170132185 A1. California. BOX, INC.

[4] Leece, M. (2013). Declarative show and hide animations in html5, US 20130346851 A1.

Washington. Microsoft Corporation.

[http-12] GitHub. https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is (Date of

access: 17.05.2016)

[http-13] W3C. https://www.w3.org/ (Date of access: 06.02.2017)

[http-14] GitHub. https://github.com/jquery/jquery (Date of access: 15.10.2016)

[http-15] MongoDB, Inc. www.mongodb.com (Date of access: 08.12.2016)

[http-16] Node.js. https://github.com/expressjs/express (Date of access: 24.10.2017)

[http-17] NPM. https://www.npmjs.com/ (Date of access: 04.12.2017)

https://github.com/facebook/react
https://github.com/ipselon/structor
https://webpack.github.io/
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
https://caniuse.com/#search=ES6
https://nodejs.org/en/
https://redux.js.org/
http://www.w3.org/
https://www.npmjs.com/
http://astexplorer.net/
https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
https://www.w3.org/
http://www.mongodb.com/
https://www.npmjs.com/

71

[http-18] The PHP Group. http://php.net/ (Date of access: 14.11.2017)

http://php.net/

72

GLOSSARY

Ace Editor: Ace editor is an open source project that creates a web based source file

formatter and editor.

Ast: Ast is a meta description format of source code files. Compilers used those ast format

to compile and identify the source files.

Babel JS: BabelJs is an open source platform that converts an compiles ES6, ES7 to ES5

javascript. It can be found on https://babeljs.io

Branch: A branch in git is a very widely used term that has a big definition [http-12].

CSS: Cascading Style Sheets is the general term of styling web applications. In can be

independent “.css” files or can be written directly inside html files.

DevOPS: DevOPS is the shortest term for developer operations, which means the complete

cycle for software development, like testing automating, building deploying and etc.

Recent years, importance of devOps is increases very fast.

DOM (Document Object Model): The Document Object Model (DOM) is a programming

API for HTML and XML documents. It defines the logical structure of documents and

the way a document is accessed and manipulated. In the DOM specification, the term

"document" is used in the broad sense - increasingly, XML is being used as a way of

representing many different kinds of information that may be stored in diverse systems,

and much of this would traditionally be seen as data rather than as documents.

Nevertheless, XML presents this data as documents, and the DOM may be used to

manage this data [http-13].

ECMAScript: ECMAScript is the subset / version of javascript that started used in terms

recently. Currently there is ECMAScript version 5, 6 ,7 are defined. It is very possible

to released some more soon.

Es-Formatter: This is a npm package to format (beautify) source files visual structure. Not

the code itself, only the visual appearances.

Esprima-FB: This library is the extension for ast decoders to understand jsx source files.

Express Package: Express is an npm package and an open source project, that developers

can create web servers easily with it on node js [http-16].

https://babeljs.io/

73

Github.com: GitHub is an open source project platform and it also gives free code storage

repository to developers.

Git Pull-Push Operations: Sending codes to central code repository is called push, taking

latest codes from central code repository means pull operation in Git.

Git / TFS Code Share Tools: Code version tools are used for team collaboration when a

group of people codes a software all together. A centralized code repository is located

on the server and each client (developer) pulls the code from there and pushes their

codes back. TFS and Git are the mostly used ones.

Hot module replacement: HMR is a feature in webpack, to inject updated modules into the

active at runtime. This means, users can update source codes at run time [http-14].

JSON: JSON is a format for storing and exchanging data. It is mostly used in javascript. It

can be said it is invented for javascript needs, but used very widely.

JSX: JSX is the language syntax of react js library that used to define custom web

components.

LDAP: Lightweight Directory Access Protocol, is an Internet protocol that email, and other

programs use to look up information from a server. It mostly used in companies for

authentication mechanisms.

Mocking: Mocking term in computer science means, simulating or replicating some code

execution. Mostly in backend services, mocking term is used. In unit testing

environments, mocking has huge importance.

Mongodb: MongoDB is a document database with the scalability and flexibility that users

want with the querying and indexing that they need. It has both open source and

licenced parts [http-15].

NodeJs: Nodejs is a built in javascript runtime that runs javascript codes in console. It is also

an open source project.

Npm: Npm is the package manager of NodeJS platform. Developers can share codes or

libraries over npm. It is free to use platform and can be used in enterprises locally with

licensing [http-17].

oAuth: OAuth (Open Authorization) is an open standard for token-based authentication and

authorization on the Internet.

74

PHP: PHP is a widely used, open source project, that is especially used for web development

purposes. It is a server-side web programming language [http-18].

Polly Filling: Polyfilling term is used when a web browser did not support a new javascript

functionality, users need a simulation code for this on that browser. That simulation

codes are generally called polyfills.

Pure Javascript Function: The pure function is always returns the same result for same

arguments passed in. It does not depend on any state, or data, change during a

program’s execution. It must only depend on its input arguments. Pure functions do not

produce any observable side effects such as network requests, input and output devices,

or data mutation.

Pure Reducers: Reducers written as pure functions called pure reducers.

React Component: A re-usable code block called component for web applications built with

ReactJS library.

React Hot Loader: React JS libraries webpack hot module replacement plugin extension.

Used to hot load reactjs applications.

React JS: ReactJs is a javascript library for building User Interfaces. It is owned by Facebook

and it is also open source project.

Redux JS: Redux is a predictable state container for JavaScript apps. It is an open source

project.

Responsive: Responsive is a common term used for applications supporting multiple screen

sizes at the same time. It is used mostly for web and mobile applications.

Single Page Application: The term “single-page application” (or SPA) is usually used to

describe applications that were built for the web. These applications are accessed via a

web browser like other websites, but offer more dynamic interactions resembling

native mobile and desktop apps. The difference is all the application is on just single

html file.

Socket: Socket is a common term that is used to name the connection between 2 applications.

Socket.io: Socket.io is an open source project for giving applications a web socket

infrastructure.

Webpack: Webpack is a static module bundler for modern JavaScript applications. It’s an

open source project.

75

W3 Consortium: W3 org is the consortium that defines the standards of web. The World

Wide Web Consortium (W3C) is an international community that develops open

standards to ensure the long-term growth of the Web.

