MODELLING A WEB BASED REAL TIME APPLICATION BUILDER WITH
REACTJS AND NODEJS TECHNOLOGIES
Master of Science Thesis

EMRAH OZ

Eskisehir, 2017

MODELLING A WEB BASED REAL TIME APPLICATION BUILDER WITH
REACTJS AND NODEJS TECHNOLOGIES

EMRAH OZ

MASTER OF SCIENCE THESIS

Computer Engineering Program
Supervisor: Assoc. Prof. Dr. Ozgiir YILMAZEL

Eskisehir
Anadolu University
Graduate School of Science
December 2017

JURI VE ENSTITU ONAYI
(APPROVAL OF JURY AND INSTITUTE)

Emrah Oz’iin, “ReactJS ve NodeJS Teknolojileri ile Web Tabanh Gercek
Zamanh Uygulama Tasarlayic1 Modellenmesi” baslikli tezi 22/12/2017 tarihinde
asagidaki jiiri tarafindan degerlendirilerek “Anadolu Universitesi Lisansiistii Egitim-
Ogretim ve Sav Ydnetmeligi” nin ilgili maddeleri uyarinca, Bilgisayar Miihendisligi

Anabilim dalinda Yiiksek Lisans tezi olarak kabul edilmistir

Unvam Adi Soyad Imza
Uye (Tez Danismani) : Dog. Dr. Ozgiir Yilmazel
Uye : Yrd. Dog. Dr. Muammer Akgay
Uye : Yrd. Dog. Dr. Ahmet Arslan

Enstitii Midiiri

ABSTRACT

Master of Science Thesis

MODELLING A WEB BASED REAL TIME APPLICATION BUILDER WITH
REACTJS AND NODEJS TECHNOLOGIES

Emrah Oz

Anadolu University
Graduate School of Sciences

Computer Engineering Program

Supervisor: Assoc. Prof. Dr. Ozgiir YILMAZEL
2017, 76 pages

A real-time web based application builder technique on reactjs and nodejs that
users/developers can design and generate codes without writing manually by hand from
scratch is presented. The designing application is running on the browser while it is generated
by platform. The project has a graphical user interface that everybody can use, users do not
need to be a software developer to design an application. With this work, code generation
and hand coding compared side by side in dimensions “coding quality”, “speed”,” error /
bug” rate. Code generation platform makes the development lifecycle efficient and easy. The

quality and speed of the development process increases by %50 for recurrent tasks.

Keywords: ReactJs, Webpack, NodeJs, Code Generation, Rapid Application Development,

Javascript

OZET

Yiiksek Lisans Tezi

REACTJS ve NODEJS TEKNOLOJILERI iLE WEB TABANLI GERCEK
ZAMANLI UYGULAMA TASARLAYICI MODELLENMESI

EMRAH OZ

Anadolu Universitesi
Fen Bilimleri Enstitiisii

Bilgisayar Miihendisligi Anabilim Dal

Damisman: Dog¢. Dr. Ozgiir YILMAZEL
2017, 76 sayfa

Kullanicilarin/gelistiricilerin sifirdan elle yazmadan kodlari tasarlayip tiretebildikleri,
reactjs ve nodejs lizerinde gercek zamanli web tabanli bir uygulama olusturucu teknigi
sunulmustur. Tasarlanan uygulama, platform tarafindan olusturulurken tarayicida g¢aligir
haldedir. Sistem, herkesin kullanabilecegi bir grafik kullanici ara birimine sahiptir ve
uygulamay1 kullanmak i¢in yazilim gelistiricisi olmasi1 gerekmez. Bu ¢alisma ile "kodlama
kalitesi", "hiz", "hata" boyutlar1 altinda, kod firetme ve elle kodlama yanyana
karsilagtirllmistir. Kod iiretme platformu uygulama gelistirme yagam dongiisiinii verimli ve
kolay kilmaktadir. Yazilim gelistirme siireci kalitesi ve hiz1 %50 oranda tekrarl tasklarda

artmigtir.

Anahtar Kelimeler: React]s, Webpack, Nodels, Kod Olusturma, Hizli Uygulama

Gelistirme, Javascript

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Assoc. Prof. Dr. Ozgiir YILMAZEL for his
patience, advice, criticism and encouragements for all those years.

I would like to thank Dr. Alp Vasfi ASUTAY, Louisiana State University Faculty of
Engineering Center of Advanced Computer Studies Department, Louisiana / United States
for discussing about advanced javascript topics.

I would like to thank to my wife (also an academic person) Cagla TERZIOGLU OZ
for helping me out about proofreading and keeping the thesis document clear.

I would like to thank to React]S, Webpack and NodeJS open source project

contributors to all for creating such nice libraries and platforms.

Emrah Oz

December, 2017

22/12/2017

ETiK iLKE VE KURALLARA UYGUNLUK BEYANNAMESI

Bu tezin bana ait, 6zgiin bir ¢alisma oldugunu; ¢alismamin hazirlik, veri toplama,
analiz ve bilgilerinin sunumu olmak {izere tiim asamasarinda bilimsel etik ilke ve kurallara
uygun davrandigimi; bu ¢alisma kapsaminda elde edilen tiim veri ve bilgiler igin kaynak
gosterdigimi ve bu kaynaklara kaynak¢ada yer verdigimi; bu ¢alismanin Anadolu
Universitesi tarafindan kullanilan ‘bilimsel intihal tespit programi’yla tarandigini ve higbir
sekilde “intihal i¢ermedigini” beyan ederim. Herhangi bir zamanda, calismamla ilgili
yaptigim bu beyana aykiri bir durumun saptanmasi durumunda, ortaya ¢ikacak tiim ahlaki ve

hukuki sonuglar1 kabul ettigimi bildiririm.

Emrah Oz

vi

TABLE OF CONTENTS

BASLIK SAYFASI oo e s b e e e e nnnees i
JURI VE ENSTITU ONAYI (APPROVAL OF JURY AND INSTITUTE)................... ii
ABSTRACT .ttt e bt R bbb Rt et e et r e bt n e b bt ne et i
OZET ... v
ACKNOWLEDGEMENTS ...ttt e e a e nnae e anne e Y
ETiK iLKE VE KURALLARA UYGUNLUK BEYANNAMESI.........cccooviiiiiriiinnn, vi
TABLE OF CONTENTS ..ottt et vii
LIST OF TABLE ...ttt ettt Xii
LIST OF FIGURES ...ttt e e e e neeeanes Xiii
ABBREVIATIONS ...t e e e e e e et e e e neeeaneas XV
1. INTRODUCTION Lottt sttt sttt e e ne e 1
1.1 Comparison to Similar SYSIEMIS........cccciiiiiiie e 1
1.2 LITErature REVIEW......cciuieieiiieieeie sttt sttt et eneesne e e aneenreeneennes 1
1.3. Similar Platforms COMPAriSONSccueiiiieririeiesie st 1
1.3 FOIMS. IO . ettt 1

1.3.2 GAlSDY QPP ..i it 4

1.3.3 Helmetrex.com - StrUCEOr PrOJECTcooveiiiiiiiiieieee e, 4

2. METHODOLOGY, TECHNOLOGIES AND ARCHITECTURE ..cccvvvee iiiniinenee. 6
2.1. Summary and Used TechnolOogies..........cccovveiiiiiiii e 6

P2 05 I N[To L= T TSRS 9

2.1.2 REACTE.JS ...ttt ae e 11

2. 1.3 REAUX.JIS ..ottt ettt ne e nre e neennes 11

2.1 A WEDPACK ... 12

2.1.5 Webpack hot module replacement - HMR ..., 13

2.1.6 ESS /T ESB / EST ..ottt 14

2.1.7 BADEIJS ... e 14

2. L8 NPM. . 14

2.2 PrOJECT STIUCTUNE ..ottt ettt re e e s 15

Vii

2.2.1 Project arChiteCturecccooiiiiiiieice e 15

2.2.1.1 Project backend StrUCTUIE.cccviiiiiiiieicee e 15
2.2.1.1.1Core MOAUIEcooevieieiiiese e 16
2.2.1.1.2 Database MaN@GENcccerererireeieienie e, 16
2.2.1.1.3 Bidirectional middleware compilerc.ccocvvniiiiiennn. 17
2.2.1.1.4 DUMmMY SEerviCe MAaNAJENccceevveieerreieeseerieareseesseaeessens 17
2.2.1.1.5 EXPOIt MANAGETcoveiriiiieriieiisiiesieesie e 17
2.2.1.1.6 File format modulecccocevirieiieiice e 18
2.2.1.1.7 File MANAGETc..iieecieee e 19
2.2.1. 1.8 FilE PAISEr ..ocvveii et 19
2.2.1.1.9 Generator manager / template managercccceevevennen. 20
2.2.1.1.10 GIt MANAYET.......iciecieee et sbe e eres 20
2.2.1.1.11 INAEX MANAYELvveveeieiie et ete e ste e e sae e sraesre e e 20
2.2.1.1.12 LOQIN MANAGETcuveniiieieiieniesieeieeiee et 21
2.2.1.1. 13 NPM MANAGETvviiiiiieiiiie it sire e rraesine e 21
2.2.1.1.14 SOCKEt MANAGETcc.eeviiieiieeie e 21
2.2.1.1.15 EXPOIrt MANAGETccvveviiiieiiieiesiesiee e 21
2.2.1.1.16 State MANAGETcvvvveieiiiieiiie e 21
2.2.1.1.17 StOrage MaNAQELcuueeiueeeiiieeiieeesiieeesireesseeessseee e e senes 22
2.2.1.1.18 Webpack builder middlewarecccccoeniriiininienennn, 22

2.2.1.2 Project front end StrUCLUIEcceevveiiiiicieceee e 22
2.2.L2. L AP IS .o 22
2.2.1.2.2 StatiC FIlES ..o 23
2.2.1.2.3 COMPONENTS.....viiiiiiieiiiie e 23
2.2.1.2.4 MIAAIEWANE........coeeiiiieieieeie e 23
2.2.1.2.5 Appbuilder pages.........ccocoeiiririniicee e, 23

2.2.1.2.5.1 AdMINIStration PagES.........ccvveieerieiiieiiere et e e 23
2.2.1.2.5.2 USBE PAJES......ciiiiiieiiieeiiie e iiie s siee e sitee s ste e siae e stae e taa e e e asae e e 23
2.2.1.2.6 REAUX IlES....ciuveiicieceee e 24

2.2.1.2.7 Route definitioNS........cccoviiieniinieseerce e 24

2.2.1.2.8 Configuration files...........ccccveiiiiiii i, 24

2.2.2 User interface and USage gUIAEcccoveiiiiiiiinieeee e, 24
2.2.2.1 USEI PAGES ...ttt ettt sttt ettt n e n e nnees 25

viii

2.2.2.1. 1 LOQIN PAGE ...t veeieereeiieniertesie sttt 25

2.2.2.1.2 Dashboard Pagecccceerererininieerese e 25

2.2.2.1.3 MY PrOJECES PAGE ...vveveenreeiieiieeieeiesieesteeneeseesaeesee e steeneesreas 26

2.2.2.1.4 User dummy fileS Page.......ccoovrvriiieiiieiescsesie e, 27

2.2.2.1.5 Start NEW Project PAGE.cccerereeeeieieie et 28

2.2.2.1.6 Application deSigner Pagecccvvvererieeseerieeiesee e eee e 29

2.2.2.2 ADMINISLratION PAGESc.veveviriieriesiesie e 30

2.2.2.2.1 Component management PAGEcovvvereeriereeseeneseennees 30

2.2.2.2.2 User management PAJEccooovvereerireenersneeseesreesne e 31

2.2.2.2.3 User project management Pagecccoeeverenvereeneneseeneenen, 32

2.2.2.2.4 Project management PAQJEccoevvvreerererseerieeeeseesieaenseens 33

2.2.2.2.5 Template category management page..........ccceevevverrrenennnnn 34

2.2.2.2.6 Template management PAge.......ccccververreereereseeseesieneeseens 34

2.2.2.2.7 Dummy files management Pageccccoeverererenenneieennn, 35

2.2.2.2.8 Environment management Pageccocevvereeeieseenieenennens 36

2.3 Project MethodolOgyccviieiieiiiieceee et 36
2.3.1 Webpack hot 10adiNgccovviieiieiceceee e 37
2.3.2 Changing SOUICE fIlEScciiiiiiiiicee e 38
2.3.3 Running designing applicationcccoociiiiiiininineee e, 39
2.3.4 Parsing designing appliCationccocvieiieneniesiere e 40
2.3.5 Identify components & component Selection...........ccccceveveniienenisiecieenen, 40
2.3.6 Modifying pages & COMPONENTS.......cccoiiiiiiiiiiieieie e 41
2.3.7 Communication between backend and frontend applications................... 45
2.3.8 Modify Reactjs source code for appbuilder..........ccccceveriieiiiiiiiniicieen, 45
2.3.9 Modules, components and MOTEccccvevereereeieseere e se e see e seees 46

2.4 Multiple USer INTEITACEccooiiiieie e 49
2.4.1 MUILIPIE USEE SUPPOIT ..ottt ettt 49
2.4.2 MUltiple Project SUPPOITcoviiiieiie ettt 49
2.5 Designer/Code Generator Page DetailS..........cccooeviiiiiniiiiiiieec e, 49
2.5.1 Management PANEL ... 49
2.5.1.1 Main application MeNUcccceveeiiieiie i 50

2.5.1.2 Component management Panel.........cccoceeeienneniiseseeeeee 51

2.5.1.3 Module management Panel...........ccocvviiieieiene e 52

2.5.1.4 Page management PAnel..........ccocooiiiiiiiiieieiee e 53

2.5.1.5 Dummy files management panel............ccccoovveviiieiieve s, 53

2.5.1.6 Component hierarchy panel...........ccccccoviriiiiiniinnie e 54

2.5.1.7 Properties management panel ... 55

2.5.1.8 Designer mode DUttoN..........c.ccveiiiie i 55

2.5.1.9 Preview mode DULEON...........cooeiiiiiie e 55

2.5.2 Configurations PANEL............cciiiiiiiiie e 56

2.5.3 SEleCtion PANEl.........ooiiieee e 57

2.5.4 Properties PANEL.........c.coveiiiie it 58

2.5.5 Page component tree panel..........ccoiiiiiiiiiee 58

3. SCIENTIFIC FACTS AND RESULTS ... 59
3L SCIBNTITIC FACTS.....viiviiiieiieieie e e bbbt 59
3.1.1 Why this technique is Needed...........ccovevuiiiieiieiicc e 59

3.1.2 Benefits of COde geNeration...........ccooeiieiiiiiiiisisieee e 59

3.1.3 P0SSIDIE ProBIEMS ... 60

3.2 Performance IMELIICScvoiviiieiieiiiisieeeie ettt 60
3.2.1 Basic page development in app builder versus hand coding.................... 60

3.2.2 Advanced page development in appbuilder versus hand coding............... 61

3.2.3 Bug rates in basic page in appbuilder versus hand codingc......... 62

3.2.4 Bug rates in advanced page in appbuilder versus hand coding................. 63

3.2.5 Appbuilder in continuous deliVErycccccveiiiieiicce e, 64

3.2.6 Appbuilder in deVOPS ... 65

3.2.7 Appbuilder in cloud platform ..., 65

4, USER COMMENTS ..ottt ettt na s 66
4.1 USEE COMIMEBINTS ...ttt ettt et e et e san e s b e et e s e e e nneeenns 66
4.2 INSEFUCTOT COMIMENTS ...ttt et s e et et sreeenes 66
4.3 Software ENgiNeer COMMENTSccccuiiiiiiiieiesie st 66

5. CONCLUSION AND WHAT IS NEXT ..ovoioiieieiee et 68
5.1 CONCIUSION. ...ttt ettt sr e enes 68
B.2 FUTUIE WOK ...ttt sttt et esneenreeneennes 69

REFERENCES
GLOSSARY ...
RESUME

Xi

LIST OF TABLE

Table 1. Forms.1O & Appbuilder COMPAariSONccoviiiiiiniiieieieese e, 3
Table 2. Gatsby & Appbuilder COMPAriSONcccoveieiiiiieie e, 4
Table 3. Helmetrex.Com - Structor Project & Appbuilder Comparison............c.ccccceuevvvennenn. 5
Table 4. Average Times Taken in Basic Page Development...........ccccoevvveenennenenieeniennes 61
Table 5. Average Times Taken in Complex Page Development...........cccooovvininiiniicnnenn 62
Table 6. Average Bug Count in Basic Page Developmentccccccovveveieiiieie e 63
Table 7. Average Bug Count in Complex Page Development............cccccevvevveieiievnennenne 64

Xii

LIST OF FIGURES

Figure 1. FOrmS.1O deSIGNET SCIEENcui ittt 2
Figure 2. FOrmS. 1O eXPOIt SCIEENc.veivieiieiiseesieeie sttt ee st te e sre e sre e ae e sreeeeenes 3
Figure 3. Common structure of a single user's project StruCtureccoccevvvereereseeveernenn 7
Figure 4. General structure of app builder Project...........ccocvviiiiiiiiiicies e 8
Figure 5. 100K request With 1K CONCUITENCYcccueiiiiiiieiieie e 10
Figure 6. 1M request With 20K CONCUITENCYccveiieeieiieieeie e se et see s 10
FIQUre 7. LOQIN PAQGE SCIEENM....c.uiiuiiiieeieetie st eteeteste e te et e ste e te et estaesteestesseestaeseessesraenteaneesreas 25
Figure 8. Dashboard Page SCIEENcc.civiiiiiiiiieiee e 26
Figure 9. MY ProjectS PAJE SCIEENMccveviitiriertirieeieeiet ettt sttt sb bbb nee e 27
Figure 10. User dummy fileS Page SCrEEN.........cviieeiecie et 28
Figure 11. Start NeW Project PAgE SCIEEMccuvcviiieerieeieieesteeeeeteesteeeeseesreeresreesreesreaneesaes 29
Figure 12. Project 10ading PAgE SCIEENccuiiiiirieieieie sttt 29
Figure 13. Application deSigner PAgE SCIEEMNcuuiueiirierererieseeieeeeie et 30
Figure 14. Component administration Page SCIEENccvveieeiieieeriesie e esreeresrae e eee e 31
Figure 15. User management PAgE SCIEENcveieerreerueieeiteeeesteesseesesseesseessesssesseesseseesses 32
Figure 16. User project management PAgE SCIEENMcc.evveruereruerereeieiestesresiesiesiesseeseeeenes 33
Figure 17. Project management PAgE SCIEEMcuiuerreruerieriesiesiesieeeeeeseessesee s e ssesneeneenes 33
Figure 18. Template category management Page SCrEENcciureeeeriereerieriesiesesieeeeeenns 34
Figure 19. Template management PAge SCIEEN........cc.viveieeireeieciesie e eee e sre e e eeesreas 35
Figure 20. Dummy file management Page SCIEENcccvevveieiiere e 35
Figure 21. Environment management PAge SCIEEMccorerererereeieieseestesiesiesiesieeseeeenes 36
Figure 22. Highlighting COMPONENTScc.oiiiiiiiiieee e 41
Figure 23. Selecting COMPONENTS........c.cciiiieiecic et eesaeas 42
Figure 24. Property tOOID0Xciiiiiieiiiciie sttt 42
Figure 25. SOUICE file @UITON ..o 43
Figure 26. Sample application page selection and navigation............ccceeverenenennnienenn, 44
Figure 27. Sample modules tree for a sample Project.........ccccvviiieiiiiie i 48
Figure 28. Module locking and unlocKing........c.ccccveiiiiiiiii e 48
Figure 29. Main management panel (Ieft panel) ..., 50

Xiii

Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Main apPlICAION MENUceiiiiiiiiiie e 51

Component management PANEl ..o 52
NEeW page Creation MENUccueieerieeieseeseeseesee e eeesee e e ee e e sreeseesseesreeneanes 53
Dummy file SEleCtion MENUooveiiiiicie e 54
Component hierarchy Panel...........coveiiiieie e 55
Designer Mode DUITONcoviiiiieiieeee e e 55
Preview mode DULTON.........cccoiiiiiie e 56
Configurations PANELcceiieii e 56
SCreen SIZ€ SEIECTION........oiui et ne e 57
SEIECHION PANEL ... 58

Xiv

DB
DOM
ES
GUI
HMR
HTML
JS
JSON
LDAP
NPM
SPA
Ul
XML
WYSIWYG

ABBREVIATIONS

: Database

: Document Object Model

: EcmaScript

: Graphical User Interface

: Hot Module Replacement

: Hypertext Markup Language

: Javascript

: JavaScript Object Notation

: Lightweight Directory Access Protocol
: Node Package Manager

: Single Page Application

- User Interface

: Extensible Markup Language

: What You See Is What You Get

XV

1. INTRODUCTION

1.1 Comparison to Similar Systems

Code Generation is a very old topic if considered the subject on code generation, lots
of articles, applications and open source projects can be found. But when focused to code
generation on javascript applications and narrowed it down to React]S based single page
applications this project becomes unique on its kind [http-1]. The main research is not the
only code generation, but also generation after the codes modified by hand.

When code generation term used, mostly generation of the code is one way, which
means; generate the source and use it and cannot generate it again. This is one of the unique
difference that is used in this research.

The term bidirectional code generation is used to name the two-way code generation.
Two way means, users can generate the codes from scratch and they can also generate the
sources after developer coded by hand. The generated codes can be modified by developers
by hand coding and those modified sources can be loaded and generated/modified again.

1.2 Literature Review

Since bidirectional term is unique in its kind, similar systems have been focused that
exists in the community. The javascript projects are commonly open sourced and can be
examined in detail. On the next chapter, some of the code generation platforms are examined.

1.3. Similar Platforms Comparisons
There are so many code generation platforms on the web. Those are also web based
projects like appbuilder itself. The main difference is loading existing projects and start from

where the project is.

1.3.1 Forms.10

Forms.lO is a web based application generation platform, most of the features and ideas
are similar to appbuilder platform. With Forms.lO user can generate form based applications
and can gather data from those screens.

The second difference is, forms.io creates an entire project after user finishes the
design. Since the codes are generated from scratch, it lets to output a few technologies based
app like ReactJS, Angularjs etc.

w formio

u
L]
-

test » = Forms

User Login Form {son} \ ®Preview wEmbed BDaa | dAdions @Access o Launch
Tithe * Name * Display as AP Path *
o Basic Components emal
(@)
:
[| oD
®
&
* <> HTML Element
Special Components
Layout Components
Existing Resource Fields Feedback +

Figure 1. Forms.lO designer screen

As shown in the Figure 1. Forms.IO designer screen the generation layout seems
similar to each other. The side by side comparison is shown in the Table 1. Forms.IO &
Appbuilder Comparison. Plus side of appbuilder is, code generation is two ways, weak side

is Forms.10 supports for AngularJS and ReactJS as an output but appbuilder supports only
reactjs.

a* formio

test » & Building Applications on Form.io

© Upgrade Project || ©f Project Settings

-

= 1. Exploring the Form.io Portal
1. Exploring the Form.io Portal

= - B

1:Je

8

i

Libraries Libraries

« ng-app-starterkit « react-app-starterkit

. 0Grid - Data Grid
« ngFormioHelper - Application Helper

app.

This playlist shows how to use ng-app-starterkit to build an
Angular 1.x app.
I . Angular Starterkit

Videos coming soon...

=5 This video shows how to get the ng-app-

Getting started

Applications bullt using the form.io platform benefit from fast development. a unified form and API
architecture as well as instant updates within the app. We currently have full support for Angular 1.x. React
and Angular 2.x and are able to help with other front end frameworks as well. If you would like to use a
framework not currently listed as fully supported, please contact support and we'll work on a plan for you.

These tutorials and starterkit applications are great ways to start out developing with form.io. However,
they do make certain choices about 3rd party libraries such as angular-ui-router or react-router. If you
aren't sure about the best way to get started with our platform, these starterkits should make your job
much easier. However, if you already have a lot of experience and wouid like to use our basic directives and
components to bulld your own libraries using a different technology stack then our software will work very
well for that as well.

So watch the videos, Read the Help Docs, and check out these libraries to help get you going!

Libraries
« ng2-formio (Includes grid and helper libraries)

« react-formio (Includes grid and helper libraries) « ng2-admin Example App with Form.io Integration

This playlist shows how to use react-app-starterkit to build a react

Videos coming soon...

Feedback +

crararkit rann inetallad an uniir samaistar and

Figure 2. Forms.lO export screen

Table 1. Forms.lO & Appbuilder Comparison

AppBuilder

Forms.10

Each page/form can be designed from scratch or
loaded and old design.

Project loaded from its own source at start and after.
Original source can be loaded and can be allowed for
design.

Bidirectional code generation allowed.

ReactJS is supported.

Backend mocking allowed

Source can load from any git repo

Each page/form can be designed from scratch or
loaded and old design.

Project created from scratch, after creating it can be
loaded again and modified.

Only its source project definition can be loaded.
Users own source cannot.

One way code generation is supported.
Angular JS and ReactJs is supported.
Backend mocking allowed

Projects load from its own database.

Forms.l1O is a commercial product, users have to pay for each project. It is not an open

source project.

1.3.2 Gatsby app

Gatshy is an open source project for code generation and make javascript development

easy. But main problem with the gatsby system is, it is not drag & drop style designer.

It just creates a workspace and a hot loading javascript project environment to

developers and leaves it there. The main idea is also the main code generation idea, create

source code from intermediate languages like json, markdown etc.

Table 2. Gatsby & Appbuilder Comparison

AppBuilder

Forms.10

Each page/form can be designed from scratch or
loaded and old design.

Project loaded from its own source at start and after.

Original source can be loaded and can be allowed for
design.

Bidirectional code generation allowed.
ReactJS is supported.
Backend mocking allowed

Source can load from any git repo

Pages generated from source language or console. No
graphical interface.

Project loaded from its own source at start and after.

Original source can be loaded and can be allowed for
design.

One way code generation is supported.
ReactJS is supported.
Backend mocking allowed

Source can load from any git repo

Gatsby an open source project, so anybody can contribute, but it seems it is not a well-

stable project yet.

1.3.3 Helmetrex.com - structor project

Helmetrex is the start point of this study. It’s first sparkles comes from helmetrex

project. Appbuilder starts with helmetrex original source, but in time everything needs to be

changes.

The project is an open source project that is served over github.com [http-2]. The aim

of the project is to generate and design an app without coding it.

The structure and the ideas are similar as a running application with appbuilder and

helmetrex’s structor project. They both gives users a GUI for designing applications.

But the main difference between the appbuilder and the structor project is like all the
others, code generation is bidirectional on appbuilder, but in structor, each project is

generated from json source files. So, code generation is one way.

Table 3. Helmetrex.Com - Structor Project & Appbuilder Comparison

AppBuilder Forms.10

Each page/form can be designed from Pages generated from source language (JSON).
scratch or loaded and old design.

Project loaded from its own source at start Project loaded from its own database, not original source,

and after. only its own project types can be loaded.

Original source can be loaded and can be Only special project type to itself can be loaded and
allowed for design. designed.

Bidirectional code generation allowed. One way code generation is supported.

ReactJS is supported. ReactJS is supported.

Backend mocking allowed Backend mocking allowed

Source can load from any git repo Source can load from any git repo

There is a general idea on code generation on projects and articles related to them, there
is a source language and a target language. Generation is one way from source to destination,
for designer perspective, designing creates the source language files, the generation engine
creates the target sources files from those source files.

Like all the similar projects inspected above, each project has its own source generation
files to create / generate target source code. There comes the main difference between
appbuilder project and the others. Appbuilder uses directly source files themselves to create

New ones.

2. METHODOLOGY, TECHNOLOGIES AND ARCHITECTURE

2.1. Summary and Used Technologies

It is every software team’s goal to design applications by just drag and dropping
application items. The idea starts with “Code Generation” or the term “Rapid Application
Development”. To decrease cost of production, most of companies believe code generation
may be a solution.

In most code generation techniques, there are a pre-stage of the codes that generated
from a second language like XML or JSON. That makes the code generation one way, which
means users can generate the sources from second language to target one. But cannot reload
current/latest source code and redesign it, or it is very difficult. Because their development
team has already changed the sources, and most of the case, those codes cannot be
decompiled back to source code generation language.

Solution is the keywords above. If users can combine them all together, it is possible
to create sources from nothing (there is no second language), users can reload their current /
latest source code from source versioning tool and start designing / code generating (For
specific programming languages).

Sources taken from version control system (git/tfs etc.), generated-designed with a
WYSIWYG (what you see is what you get) editor, and committed back to source control.
This technique told in this document (thesis) will be called Application Builder later on.

Application Builder framework provides each user a webpack sandboxed execution
unit. Clients directed to the chain of webpack middleware during the design stage of their
projects [http-3].

Users create/modify/manage their pages, modules and components within their project
and webpack sandboxed unit provides a transparent passage from server to the Ul. The
transparency involves [http-4]:

-Server-in-memory packaged ReactJS based Single Page Application (SPA) Project

-Hot module replacement (HMR) to inject updated modules into the active runtime

-Preserve DOM and React component state when components are saved

-Record Compilation timings and status

Webpack Sandboxed Execution Unit for a
particular client and particular feature

WEBPACK BUILDER MIDDLEWARE

Socket.io interaction for the webpack build outcome
(Build errors & completed event)

WEBPACK HOT MIDDLEWARE

Webpack hot-reloading
attached to the server

WEBPACK DEV MIDDLEWARE
Serves and bu

REACT HOT LOADER

Providers React Hot
Boilerplate

Figure 3. Common structure of a single user's project structure

Webpack sandboxed execution unit provides a chain of 4-layer middleware
infrastructure. At the top, there is the Webpack Builder Middleware provides a websocket
connection to the client based on the immediate HMR compilation status. Build errors and
succeeded changes are published to the clients through websocket.

Webpack Builder middleware wraps the HMR middleware as the next layer in the build
pipeline. HMR middleware provides the underlying mechanism for replacing Javascript
modules on the fly.

Webpack hot middleware wraps the dev-middleware. Webpack dev-middleware

provides an in-memory bundling the target SPA Project. It splits the files into chunks,

separates the vendors and parallelize the build process to improve immediate builds triggered
by client changes.

Webpack dev-middleware wraps the react-hot-loader layer deepest in the hierarchy.
This layer attempts to build on top of Webpack HMR and preserve DOM and React

component state when components are saved.

USER 1 USER 2 USER 3
Featurel / 7 <\ Feature 2
. /o \ . Feature 1 Feature 3
Session \ Session J T !
wf A \ Session Session
e 2/ ~~— ~ Application Builder
Express Server

1 a I 1

Webpack Sandbox
Exeution Unit for
User 1 and Feature 1

Webpack Sandbox
Exeution Unit for
User 1 and Feature 2

Webpack Sandbox
Exeution Unit for
User 2 and Feature 1

Webpack Sandbox
Exeution Unit for
User 3 and Feature 3

Application Builder

. . Git Integration
Git Repository

Figure 4. General structure of app builder project

Webpack dev-middleware wraps the react-hot-loader layer deepest in the hierarchy.
This layer attempts to build on top of Webpack HMR and preserve DOM and React
component state when components are saved.

Each user login to App Builder, open a Project feature session. Users can have multiple
feature sessions allocated to them. Webpack Sandbox execution units are spawned through
the system as an isolated mini server providing a transparent gateway to the target project
feature. Project features changed are published to their target repository through Application
Builder.

By combining applicable technologies together, it is possible to create an application
builder platform, which can build applications while they are even running on the browser.

In this thesis, every step will be defined clearly [http-3].

2.1.1 Node.JS

Node.JS is the core system that lies on everything and enables the whole project
possible. All components on the project runs on the Node.JS infrastructure. Node.JS is an
asynchronous event driven Javascript runtime that runs on Google V8 engine. It uses a very
light ware and efficient event driven non-blocking 1/0 model. Node.JS also has a big open
source package library ecosystem inside (npm).

NPM is a part of the Node.JS platform. Developers can share libraries over npm and
also use other libraries that is shared by others before. At first, npm is used to share Javascript
code blocks for Node.JS projects, but today, any kind of code can be shared over npm.

The first use of Node.JS to run Javascript code on server side over network. But it goes
furthermore and users can create large scaled network apps with high performance today.

Node.JS platform is completely open source based over GitHub. Anybody can
contribute to project. Currently more than 250 people is contributing to project and this

number is increasing over time. With Node.JS it is very easy to create web applications;

http = require('http’);
http.createServer(function(req, res) {
res.writeHead (200, {'Content-Type': "text/ntml'});
res.write('<p>Hello World</p>");

res.end();

These 5 lines of code is enough to create a simple web application that says hello. Only
Node.JS is needed to run this app, not even need a web server is needed. If these lines
compared to PHP it‘ll be written down;

<?php
echo '<p>Hello World</p>";

7>

These lines above. For example, if those two lines compared for performance [http-5];

For about 100.000 request with 1000 concurrency, the results below have accuired.

9

CPU Usage [%)]

70

CPU Usage [%)

dstat CPU Usage (100k requests, 1k concurrent requests)

node: user

100

90

80

70

60

50

30

20

10

Time
Figure 5. 100K request with 1K concurrency

dstat CPU Usage (1M requests, 20k concurrent requests)

node: user
node: system

ache: system

gaghe: user ——

Time

Figure 6. 1M request with 20K concurrency

10

With higher values, users can see the node performance more clearly. Users can find
many performance tests that is done by users on the internet [http-5].

With Node.JS there is a second subject called ECMAScript. ECMAScript is the
language library version of javascript. It is also called as ECMAScript (ES). Currently there
are ES5, ES6 and ES7 versions of ECMAScript. Standard browsers are all supporting ES5,
ES6 is partially supported, and ES7 is the future [http-6]. This thesis uses version ES6 and
ES7 which will be described later [http-7].

2.1.2 React.JS

React JS is a javascript library that makes custom web components possible. Users can
create even custom html tags and attributes as if they really exist.

React makes it painless to create interactive Uls. Design simple views for each state in
applications and React will efficiently update and render just the right components when data
changes. In general, react components, will be executed and run on client side (web
browsers), but with combining Node.JS, react can be execute also on server side.

React.JS creates a copy of DOM (called virtual DOM), at first, creates the operations
(changes in HTML) on the virtual DOM, calculates the differences to the real DOM on the
browser, makes only the necessary changes with the smallest change. DOM operations cost
much for browsers (performance perspective), thus, making small changes on DOM makes
React.JS a better JS library [http-1].

2.1.3 Redux.JS

Redux is a predictable state container for JavaScript apps. It helps users to write
applications that behave consistently, run in different environments (client, server, and
native), and are easy to test [http-8]. On top of that, it provides a great developer experience,
such as live code editing combined with a time traveling debugger.

Javascript applications (client or server), needs a structure, a living data structure that
data can be stored, and notified when changed to listeners. This called generally “state”.

Redux javascript library’s goal to achieve that with perfection.

11

The state of whole application is stored in an object tree within a single store. This
makes it easy to create universal apps, as the state from server can be serialized and hydrated
into the client with no extra coding effort.

In Redux, state object has to be read only, and can only be modified with actions. This
ensures that neither the views nor the network call backs will ever write directly to the state.
Instead, they express an intent to transform the state. Therefore, Redux can tell the state
listeners that data is changed.

Changes are made with pure functions. To specify how the state tree is transformed by
actions, pure reducers needed. Reducers are just pure functions that take the previous state
and an action, and return the next state. Remember to return new state objects, instead of
mutating the previous state. User can start with a single reducer, and as app grows, split it off
into smaller reducers that manage specific parts of the state tree. Because reducers are just
functions, user can control the order in which they are called, pass additional data, or even

make reusable reducers for common tasks such as pagination.

2.1.4 Webpack

Webpack is a module bundler system for javascript applications. Users can combine
and bundle javascript codes together into single or partitioned files. Multiple file formats are
also supported. Which means, user can bundle images into javascript applications is also can
be done [http-3].

Not only javascript or image files supported, it is possible to bundle any kind of file by
writing an appropriate loader for it. Existing module bundlers are not well suited for big
projects. The most important property of webpack is Code Splitting. Users can split bundles

into small pieces that have been decided.

The main goals of webpack project are;

Split the dependency tree into chunks loaded on demand
Keep initial loading time low

Every static asset should be able to be a module

Ability to integrate 3rd-party libraries as modules

o B~ w0 DD

Ability to customize nearly every part of the module bundler

12

6. Suited for big projects

In the heart of this thesis, webpack means a lot for bundling modules (javascript code
blocks). The most important spec of webpack for this thesis is the hot loading ability of
webpack.

Webpack HMR, is a great technology that can create an interactive bundle mechanism,
that can be modified at run time. This means, users can change the source of their bundle
while running.

The idea of hot loading makes this project possible. If the project that can change source
files at runtime, Webpack HMR can serves them live. This is the core of the App Builder

technology.

2.1.5 Webpack hot module replacement - HMR

Webpack has an embedded specification called HMR. Webpack adds a small HMR
runtime to the bundle, during the build process, that runs inside the application. When the
build completes, Webpack does not exit but stays active, watching the source files for
changes.

If Webpack detects a source file change, it rebuilds only the changed module(s).
Depending on the settings, Webpack will either send a signal to the HMR runtime, or the
HMR runtime will poll webpack for changes. Either way, the changed module is sent to the
HMR runtime which then tries to apply the hot update. First it checks whether the updated
module can self-accept. If not, it checks those modules that have required the updated
module. If these too do not accept the update, it bubbles up another level, to the modules that
required the modules that required the changed module. This bubbling-up will continue until
either the update is accepted, or the app entry point is reached, in which case the hot update
fails.

This hot loading mechanism enables us to create the real-time app builder mechanism.
At the overall hierarchy, a hot loader structure was set up over source code, after that, build
a project that can modify the source code with technique what you see is what you get kind
and finally webpack HMR does the rest, it directly compiles the code and displays on the

browser.

13

2.1.6 ES5/ES6/ES7

With the technology advancing in programming languages, some new titles occurred
in literature. For example, javascript had started a versioning like .NET or any other library.
And also, these versions welcomed and accepted by the w3 consortium [http-9].

Currently there is 3 major versions on javascript. The supported by every browser and
what users have known till now is the version ES5. For recent years, new coding techniques
are added to the standard and it was called ES6. End the next coming version is called ES7.
On this project, ES7 level code is used for the latest abilities.

2.1.7 Babel JS

The ES5, ES6, ES7 which are the core versions of the javascript, are not supported by
all of the browsers yet. ES5 is covered by all of current browsers, ES6 is mostly covered,
ES7 is the least covered version.

To solve this support problem, a platform called Babel JS has been created. Babel JS
is a javascript compile engine, that converts ES6 and ES7 code into ES5, which is
understandable for every browser.

Because ES6 and ES7 is new, they are not supported by every browser. Babel fixes this
problem for us. The compile engine used in this project is Babel JS. It is not enough just
compiling and converting the code for the browsers. If the browser has not the functionality
to support ES6 or 7 features at all, it has to be poly filled. Polyfilling is also done by Babel
JS.

2.1.8 NPM

Node Package Manager (NPM), is the package management for javascript projects. All
the packages used in this project are publicly deployed to npm and they are used from there
in this project.

Npm comes with Node JS (embedded), by installing Node JS , users can start to use
npm from their computer's console. It is possible to search the packages through its web
portal [http-10] and easy to install whatever needed. Like components ReactJS, Redux JS,

Babel and etc. all packages are retrieved from npm network.

14

2.2 Project Structure

App builder project has two main parts, one is the backend part and one is the front-
end part, both parts have significant contribution to the project. Backend part does the most
work like pulling project code from version tool, package and bundle the code, serve the
project like a web site, do the code generation and at the and push back the code to the version
tool (Git/ TFS Etc.).

Frontend part is a SPA (single page application), written in reactjs, has two main roles,
first role, displaying the designing project inside itself like a sub-application, second role,
create a user interface for building and generation. This generator interface is a second layer
above the designing project and they seem as a whole project. But in reality, there are two
projects running on the browser (as called front end).

2.2.1 Project architecture
As displayed in Figure 3. Common structure of a single user's project structure, app
builder project has some layers and modules inside. Both backend and frontend parts have a

substructure inside them.

2.2.1.1 Project backend structure

App builder backend is written in Node JS in ecmascript 5 the technology mentioned
in 2.1.6 ES5/ ES6 / ES7 section. This project has several modules inside that does’ different
jobs for the main goal.

The backend project is a Node JS Application. Because, Node JS applications
becoming very popular in recent years. With the improvements on the cloud computer
systems, creating and serving nodejs apps are very easy today. To create and run a Node JS
app, only Node JS library is needed installed on target PC/Server. As already mentioned in
2.5.1.1 Node.JS section, NodeJsS is an easy to use platform.

NodeJS applications are generally web-based (runs on the browser) kind applications.
But it is possible to create console applications too. In fact, with nodejs users can only create
console applications right now, because Node JS is not a web server or does not include a
web server technology, it only executes and outputs the javascript sources on console. App
builder backed also is just like this [http-10].

15

To make NodeJS a fully capable web application, users need express package. As
mentioned in 2.1.8 NPM, users can install it from NPM. Express package is one of the mostly
used package on Node JS applications. It makes node JS to behave like a web server, users
can serve web pages or web services by node JS with express.

Express package is the core part that makes app builder to behave like a web server
and serve backend services. The backend projects can be summarized as submodules below.

2.2.1.1.1 Core module
Core module is the main module of the backend part. This module keeps everything

together and it also includes the express module. Core Module creates a web server and a
web service, from those, the app builder user interface served and generator commands are
executed.

Core modules also boots up the app builder project and does what need to be done at
project start. It boots up the database if it is not running, it reads the start-up parameters, it
executes the update process, and starts the web server for serving user interface and also it

starts the web service layer for listening user interface for commands.

2.2.1.1.2 Database manager

This module is responsible for database and database storage operations. By default,
app builder project has its own database inside mongodb. If there is no database configured
externally it boots up its own database and start to use it.

Database manager module also has business functions for database operations like
select, insert, update and delete. Currently app builder is working with mongodb, but buy
using alternative database drivers, it is also possible to use other databases like Microsoft
SQL server or Oracle Database, but users also need to update the database functions inside
the module (select, insert, update, delete).

App builder project does its most of the job on the source files, so database operations
aren't that much, just a few database tables are using to keep things organized like user logins,

project names and definitions. There are no code generational database tables at all.

16

2.2.1.1.3 Bidirectional middleware compiler

As shown in Figure 3. Common structure of a single user's project structure javascript
(webpack) middleware compilation on the hot is very important for this project. As
mentioned in 2.1.5 Webpack Hot Module Replacement (HMR) section, thanks to webpack
javascript files can know be replaced and reloaded while they are executing. This module
creates the webpack hot loader middleware layer for each designer project and puts it to the
express located in the core module, so that updates on the source javascript files can be sent
to the user interface over express from javascript sockets.

Each manipulation on source javascript files creates an update on the webpack
middleware compiler, those updates sent to the client (which is the user interface runs on the
browser on users) over socket. Socket called websocket in general term, is a live connection
between backend and frontend layers that communicates several things. Webpack hot

middleware changes is one of them.

2.2.1.1.4 Dummy service manager

The designing projects may have backend connections. For example, the project that
will be designed in the app builder may have a login page, in app builder the designing
application is running on the browser while it is designing, so it may not be possible to log
the user inside the app while it was designing.

For such those cases, users need to simulate the backend that the designing application
uses. The simulation of the backend is called dummy service or in general term “Mocking”.

This module does the backend service mocking of the designing application. It is
possible to create mock/dummy service calls from app builder project. For example, user can
create a fake reply for login feature. It is possible to make fake replies to all the backend calls

that the designing application makes.

2.2.1.1.5 Export manager

App builder project can download source files for the designing project from its source
control system, and can commit back to the result. Today there are some highly common
source control system like Git or TFS. App builder is currently works with Git versioning

system. But it is possible to make it work with other source control systems easily.

17

This module does the commit back the changed files to source control system. App
builder makes changes to all files to make the real time designing happen. But, when source
codes need to commit back to source control system unnecessary changes needed to remove
(the changes that app builder does for itself). At the result, there must be only changes that
the user designed.

This module does the cleaning of the source files to original and makes the commit
back operation. It also creates a new branch from the original branch and does the commit

over that branch. In Git, it is very important to work in branches.

2.2.1.1.6 File format module

This modules formats (beautify) the generated source files. Mostly generated files
won't seem nice. The indentation may be bad, this module uses esformatter npm package to
format the generated source files.

After formatting files, they will look like they will have written by hand on a nice IDE.
The rules of the formatting can be modified and told to the esformatter. Current settings for
the formatter are the general rules in the literature on the javascript. Here is the configuration

for the formatting source files;

/1 this is the section this plugin will use to store the settings for the jsx formatting
"jsx™: {
I/ by default, is true if set to false it works the same as esformatter-jsx-ignore
"formatJSX": true,
I keep the node attributes on the same line as the open tag. Default is true.
/I Setting this to false will put each one of the attributes on a single line
"attrsOnSameLineAsTag": false,
/l how many attributes should the node have before having to put each
/[attribute in a new line. Default 1
"maxAttrsOnTag": 2,
/I if the attributes are going to be put each one on its own line, then keep the first
I/ on the same line as the open tag

"firstAttributeOnSameLine": true,

18

// align the attributes with the first attribute (if the first attribute was kept on the
same line as on the open tag)
"alignWithFirstAttribute™: true,
"spacelnJSXExpressionContainers™: ™ ",
"htmlOptions™: { // same as the ones passed to jsbeautifier.html
"brace_style": "collapse",
"indent_char™: " ",
/lindentScripts: "keep”,
"indent_size": 4,
"max_preserve_newlines": 2,
"preserve_newlines": true
/lunformatted: ["a™, "sub”, "sup”, "b", "i", "u"],

/lwrapLineLength: 0

As it seemed on the configuration lines, it is possible to create very clean and good-

looking source files while generating them.

2.2.1.1.7 File manager
While code generation, there are so many file operations, like read file, save file,
modify file and etc. This module contains the file operations inside it. To keep the project

files clear (app builder itself), file operations are gathered together on this module.

2.2.1.1.8 File parser
Appbuilder supports ReactJS as Ul javascript library. ReactJS has its own file/coding
syntax. So, a special parser for those files needed. Parsing javascript source files to javascript

objects for processing is done in this module.

19

2.2.1.1.9 Generator manager / template manager

Appbuilder project can create file or file groups together with a given template files.
This is used to create pages in designing apps. ReactJS applications may need more than one
file while creating a page in the application.

This can change designing applications structure. For complex projects that contains
multiple subpages, there may need to create several files to create a single page to the project.
If Redux JS used as application state, these files also need to be created for that too.

In appbuilder administration pages, users can define page outline (template)
definitions, so that appbuilder can use those definitions and creates files. Those modules do
the page generation operations that users have created as templates. While creating source

files the defined parameters in the template definition are gathered from the user.

2.2.1.1.10 Git manager

Appbuilder project can download project from version tool (Current supported
versioning tool is Git. After downloading the project, it builds the source code and runs it.
So that user can start designing To do that, users need a running and a hot loading
supported reactjs web application in Git repository. After the designing and code generation
finished, appbuilder also can put (commit) back the generated files to its original versioning
tool. Those code downloading and uploading (pull & push in Git Terms) operations done in

this module.

2.2.1.1.11 Index manager

In ReactJS, web components will become very popular term. In reactjs projects every
item in project (objects) called as “Component”. So, users can create whatever they need as
component and use them as much as they want.

Appbuilder can use those web components as design items in the project. Users can
define their components to appbuilder as design items and appbuilder can identify those items
on source files and can modify them. The identification of source files (finding component

definitions) is done on this module.

20

2.2.1.1.12 Login manager

Appbuilder can be integrated with different authentication mechanisms, users can
integrate it with LDAP or oAuth, currently a regular authentication is used and auth info
stored in local database. The authentication functions and logic stored in this module.

2.2.1.1.13 Npm manager
In ReactJS applications, most of the libraries are on npm. So, users need features for
installing and removing npm packages to their designing project. NPM operations like

install and remove are stored in this module.

2.2.1.1.14 Socket manager

Appbuilder can run multiple project designers at the same time. Different user can log
in and start different projects concurrently. Each project creates a separate workspace and
works standalone.

But each workspace needs its own and private socket connection between appbuilder
and client browser to communicate. As mentioned in 2.3.1 Webpack Hot Module
Replacement (HMR), when javascript sources changed and files compiled, client browser is
notified over socket connection. If there are multiple socket connections at the same time,

users need to manage them and keep them separate, this is done by Socket Manager module.

2.2.1.1.15 Export manager

Appbuilder can download and upload project source files from source versioning tool
in addition to that it can also create a compressed single file that contains every file on the
project, and give it to the user - by a browser file download. To do that, app builder needs
some processing on files, after processing all the files compressed together and sent to user

browser. This operation done in export manager module.
2.2.1.1.16 State manager

Appbuilder project has its own application storage called state manager. State means

something different in ReactJS applications but since appbuilder is a nodejs application, it

21

also needs a space to put settings and global variables somewhere. State manager module
stores and handles the changes application wide variables and settings.

2.2.1.1.17 Storage manager

As mentioned in 2.2.1.1.8 File Parser section, ReactJS has its own file structure and
syntax. So, users need special functions to parse, add and remove lines from source files.
ReactJS source specific parsing and manipulations functions stored in storage manager

module.

2.2.1.1.18 Webpack builder middleware

As mentioned in 2.1.5 Webpack Hot Module Replacement (HMR), when javascript
source files changed, webpack hot module replacement module creates some update
operations, those operations created some events, appbuilder use those events to feed the
frontend project. Webpack hot module configuration and management operations done in

this module.

2.2.1.2 Project front end structure

Appbuilder projects frontend part is a single page application written in reactjs. Mainly,
it creates a user interface for users, for administering appbuilder itself and let the projects can
be designed.

It creates a WYSIWYG (what you see is what you get) style builder interface while
user is in designer mode. Designing application is running on an inside frame, appbuilder
puts a hidden layer above it, with this layer it can give to user designer capabilities.

This frontend ReactJS application has some modules and folder structures inside
described below. Frontend project codes are located on the static folder at the root of the

project.
2.2.1.2.1 API files

Frontend needs specific functions like searching through designer components,
creating Ul overlays etc. are located inside api directory.

22

2.2.1.2.2 Static files

Every web application uses some css files, font files, external javascript libraries. Those
files that are not written or maintained by this project are located under static folder.
Generally, they were published directly to workspace (project output), without doing extra

process like bundling.

2.2.1.2.3 Components

As mentioned in 2.2.1.1.11 Index Manager section, appbuilder frontend application has
some components that used inside its own pages. Those components are located in
components directory.

2.2.1.2.4 Middleware
Redux JS library has a middleware property, means that users can hook every change
operation in redux data store. In appbuilder, middleware is used to do some Ul specific

modifications while redux storage items are modifying.

2.2.1.2.5 Appbuilder pages
Appbuilder project frontend applications has some pages itself. Those pages are

divided into two main categories.

2.2.1.2.5.1 Administration pages

Appbuilder project needs some definitions to run. For example, the definition of the
source control system or the definition of users and may be the most important part is the
definition of designing components. Appbuilder administration pages stored in pages

directory.

2.2.1.2.5.2 User Pages

Appbuilder project has some pages to run the designer process and gives an output to
user what was done before. Those pages will be described in detail later and they are stored
in pages folder.

23

2.2.1.2.6 Redux files

Redux JS has a specific folder structure, users need to define some sub files and objects
to run it smoothly. In appbuilder, redux needed files stored under redux folder.

As described in 2.1.3 Redux.JS section, redux has some layers inside it. Files are

created related to those layers.

2.2.1.2.7 Route definitions

ReactJS applications are single page applications as described in 2.1.2 React.JS section.
They are called single page but this doesn’t mean they contain only single page inside it.
ReactJS applications may contain multiple pages inside like appbuilder frontend.

If there are multiple files, some routing information needed to define which page is

which route. Those route information’s are stored in rotes folder.

2.2.1.2.8 Configuration files
Every ReactJS application need some configuration for webpack bundling, ecmascript
execution and npm package management. Those files are located at the root folder of frontend

project.

2.2.2 User interface and usage guide

Appbuilder has an easy to use user interface for both system administrators and users.
Node JS server-side application serves the user interface Ul. This Ul is a single page
application web application.

The Ul interface connects to the backend by JSON backend calls. User commands like
insert/update/delete operations done on the Node JS backend application. Ul pages can be
separated into two parts. User Pages and Administration Pages.

User pages are the regular pages to design applications. Appbuilder users logs in and
create workspaces for designing applications. Administration pages helps to define and

modify system parameters that appbuilder needs to run.

24

2.2.2.1 User pages
Appbuilder application has its own authentication system. The system cannot be used

without authorization and permission. Users can only use the approved projects that
administrators give to them.

2.2.2.1.1 Login page
Both admin and user level users use the same login screen. This is a simple login
only uses username and password. Login can be integrated with LDAP services easily for
commercial or corporate usage.
Login connects to backend NodeJS app. NodeJS app checks the login and if it is valid
user redirected to dashboard screen. Users are defined by system administrator, which is
another application user defined with admin role. The screen outline is shown in Figure 7.

Login page screen.

Welcome to App Builder

Please login with your username/password.

Figure 7. Login page screen

2.2.2.1.2 Dashboard page
Both admin and user level users redirected to dashboard page after successful login.
This screen is a summary screen that contains the previous work of the users. The screen

layout shown in Figure 8. Dashboard page screen.

25

There is a navigation menu for each page that user can navigate. The menu is changed
to the authorization level of the user. Administration pages shown if user has admin role.

DASHBOARD

MY PROJECTS

MY DUMMY FILES
Work1 Work2
CCOMPONENT MANAGEMENT Last Access: 10/2/2017 12:54:23 PM Last Access: 10/2/2017 12:56:42 PM
USER MANAGEMENT
USER PROJECT MANAGEMENT
PROJECT MANAGEMENT
TEMPLATE CATEGORIES
TEMPLATE MANAGEMENT
DUMMY FILES

ENVIRONMENTS

NEW PROJECT

SIGN OUT

Figure 8. Dashboard page screen

2.2.2.1.3 My projects page
Dashboard page has only quick access/start to user’s previous projects. User can
manage their projects (delete operation) in My Projects Page. Users can also delete the
project in this page and can see additional information about their previous works.
My Projects page shown in Figure 9. My projects page screen. Users can create as
much as project they want, with the physical server limitations and what permission they

have.

26

DASHBOARD My Projects

MY PROJECTS

————
YYou can create new workspace via click| ADD NEW PROJECT

MY DUMMY FILES
Start Workspace Name Proje Collection Git Repository Create Date Last Access Date

COMPONENT MANAGEMENT 0 Work1 DefaultCollection Weblndigo 10/2/2017 12:54:23 PM 10/2/2017 12:54:23 PM
M MANACEMENT 1 Work2 DefaultCollection Weblndigo 10/2/2017 12:56:42 PM 10/2/2017 12:56:42 PM
USER PROJECT MANAGEMENT

PROJECT MANAGEMENT

TEMPLATE CATEGORIES

TEMPLATE MANAGEMENT

DUMMY FILES

ENVIRONMENTS

]v NEW PROJECT ‘

[sanour ‘

Figure 9. My projects page screen

2.2.2.1.4 User dummy files page
ReactJS single page web applications communicate backend with JSON requests. It

can be said those requests are “Backend Calls”. While designing an application on
appbuilder, those backend calls needs to be simulated. Because it may not always possible
to run backend of the designer application.

Simulating backend calls is named service mocking. Service mocking needs dummy
responses to run. They need to what to reply while giving a fake reply to request.

Users can load their own fake backend replies as JSON format from this User Dummy
File Screen. Both admins and users can access and use this page. User Dummy Files page

shown in Figure 10. User dummy files page screen.

27

DASHBOARD User Dummy File Administration

MY PROJECTS You can add/remove dummy files to your projects from this screen.
|' ADD NEW DUMMY FILE ‘

MY DUMMY FILES [—

¢ Dummy File Name Project

COMPONENT MANAGERENT. 0 Test DefaultCollection\ReDirekt\Weblndigo

USER MANAGEMENT

USER PROJECT MANAGEMENT

PROJECT MANAGEMENT

TEMPLATE CATEGORIES

TEMPLATE MANAGEMENT

DUMMY FILES

ENVIRONMENTS

‘, NEW PROJECT ‘

] SIGN OUT ‘

Figure 10. User dummy files page screen

2.2.2.1.5 Start new project page

To start a new application design, users select the source branch to load initial project
and gives a name to work. Project name also Git repository branch name. So, naming
convention has to be like Git branching name (No empty or blank characters).

This screen is working by user permissions. Administers give users to access projects.
Appbuilder can support to design different projects at the same time. Unless they are in
reactjs web application that has some configuration in it, appbuilder can start a designing
project from its source control.

When user clicks to the ENTER button, the project will be downloaded from its original
version control system and appbuilder navigate to the loader screen. On that loader screen,
some outputs displayed to the user. While waiting the user in that screen, project will be
initialized in the background. Since it is a javascript application the project is bundled, npm
packages will be installed and all those outputs displayed to the user at that time.

When the initialization ends, the designer page will show up. Start new page shown in
Figure 11. Start new project page screen. After this screen, project loading screen showed in

Figure 12. Project loading page screen.

28

OASHBOARD Start New Project

MY PROJECTS You can start a new project from this screen.

MY DUMMY FILES Team Project Collection (7 ReDirokt / Webindigo / dev

COMPONENT MANAGEMENT

Project Name (7 NewProject

USER MANAGEMENT

USER PROJECT MANAGEMENT

PROJECT MANAGEMENT

TEMPLATE CATEGORIES

TEMPLATE MANAGEMENT

DUMMY FILES

ENVIRONMENTS

NEW PROJECT

Figure 11. Start new project page screen

CANCEL LOADING AND GO TO DASHBOARD

CURRENT STATUS:

Figure 12. Project loading page screen

2.2.2.1.6 Application designer page
After loading project, the designer screen displayed to the user. This screen is the most
important Ul screen and everything is done here. Users can see what components are installed

in app builder, they can add new pages, modify current ones.

29

This page, creates a hidden layer onto the designing application inside. While users
moving the cursor above the screen, the components on the designing application is
highlighted and can be selected.

Application designer screen shown in Figure 13. Application designer page screen.

This page will be described in detail.

Deginer Area

Figure 13. Application designer page screen

2.2.2.2 Administration pages
Appbuilder has a dynamic format structure. It can be used in any kind of reactjs web

application. It just needs some meta descriptions to identify the applications structure to
design. Each definition needed for appbuilder can be managed over administration pages.

2.2.2.2.1 Component management page

The most important part of the appbuilder designer property is to define and identify
components in the designing application. To do that, appbuilder needs the definitions of the
components. Those are mainly the name of the package (npm package name), the object
name of the component, a category information for displaying the component in the

component toolbox, and finally the definition of the properties.

30

These component metadata is managed in component management page. Each
definition needed can be defined here. Component Management page is shown in Figure 14.

Component administration page screen.

DASHBOARD Component Administration

MY PROJECTS ‘You can add/remove design components from this screen.

ADD NEW COMPONENT |
MY DUMMY FILES %
DisplayName ObjectName Package Category

COMPONENT MANAGEMENT pagesection PageSection @component/pagesection 20 /Layouts/pagesection

USERAANCEMERTE tablefooter TableFooter @component/tablefooter 0. IMables/tablefooter

USER PROJECT MANAGEMENT

Te text it
PROJECT MANAGEMENT textbase [extBase ‘@component/textbase /BaseComponents/textbase

TEMPLATE CATEGORIES loginpagetitie LoginPageTitle @component/loginpagetitie [Mexts/loginpagetitie
TEMPLATE MANAGEMENT

inputamount InputAmount @component/inputamount /inputs/inputamount
DUMMY FILES

ENVIRONMENTS transferorderiteration TransferOrdertteration ‘@component/transferorderiteration /Lists/transferorderiteration

managetransferorderitern ManageTransferOrderitem @component/managetransferorderitem /Lists/managetransferorderitern

\‘ NEW PROJECT ‘

transferorderinfoitem TransferOrderinfoltem @component/transferorderinfoitem Iists/transferorderinfoitem
| sienour ‘ =
\) accountdetailbutton AccountDetailButton ‘@component/accountdetailbutton /Buttons/accountdetailbutton
accountitem Accountitem ‘@component/accountitem /Uists/accountitem
money Money @component/money [Texts/money

tablecell TableCell @component/tablecell 0 [Mables/tablecell

transferitem Transferitem @component/transferitem 3 [Lists/transferitem

Figure 14. Component administration page screen

2.2.2.2.2 User management page

Appbuilder currently has a built in simple user and permission manageOment. This
management can be improved with LDAP like services if needed.

User are defined and permissions are granted in this screen. Each user login information
and project specific permissions given here. User management screen shown in Figure 15.

User management page screen.

31

DASHBOARD User Administration

MY PROJECTS

ADD NEW Ut

MY DUMMY FILES R
Userld _

COMPONENT MANAGEMENT N52873
USER MANAGEMENT 20012281
USER PROJECT MANAGEMENT
PROJECT MANAGEMENT
TEMPLATE CATEGORIES
TEMPLATE MANAGEMENT
DUMMY FILES

ENVIRONMENTS

|-NEW PROJECT-‘

| SIGN oUT ‘

Figure 15. User management page screen

2.2.2.2.3 User project management page

Appbuilder has a permission based workspace system. Each user can access only their
projects (workspaces). But as an admin user, all of the active projects can be displayed and
deleted if needed.

ReactJs web applications has may have so many files (like node_modules directory)
inside. So, deleting old projects keeps the server clean. User project administration page

shown in Figure 16. User project management page screen.

32

DASHBOARD User Project Administration

MY PROJEGTS ——

ReDireks
MY DUMMY FILES
COMPONENT MANAGEMENT

USER MANAGE

USER PRO.

PROJECT MANA(
TEMPLATE CATEGORIES
TEMPLATE MANAGEMENT
DUMMY FILES

ENVIRONMENTS

NEW PROJEGT

SIGN OUT

Figure 16. User project management page screen

2.2.2.2.4 Project management page

Appbuilder can download projects from their own version control system. Each project
needs some definition for that.

By default, Git is used for projects, so Git repository and branch name is required for
each project. There can be multiple projects and multiple repositories at the same time.

Project definitions are managed in project management page. Project management page

is shown in Figure 17. Project management page screen.

DASHBOARD
MY PROJEGTS
Edit Project

MY DUMMY FILES

Team Project Collection (7) DefaultCollection
ReDirekt

Weblndigo
TEMPLATE MANAGEMENT
DUMMY FILES

ENVIRONMENTS

NEW PROJECT

SIGN OUT

‘Team Project Collection

Figure 17. Project management page screen

33

2.2.2.2.5 Template category management page

Appbuilder can create multiple files concurrently at in a project. This means, users can
define some file creation templates (also the body of the files), so that users can create and
add to their projects.

With this technique, user can add new pages at the same time. React JS web
applications with are using redux framework for state management, may need multiple files
to add just a page.

For a big project, there can be several types of template definitions, so they need to be
categorized. The templates categories are defined in template category management page.
Template category management page is shown in Figure 18. Template category management

page screen.

DASHEOARD Template Category Administration

You can add/remove template categories from this scresn.

MY DUMMY FILES

ANAGEMENT

Figure 18. Template category management page screen

2.2.2.2.6 Template management page

As described in 2.2.2.2.5 Template category management page section, appbuilder has
need template definitions for file creation operations. Each project has their own file
structures and types. So for each project there has to be some template definitions. Template
definitions done in template administration page and shown in Figure 19. Template

management page screen.

34

DASHB0ARD Template Administration

MY PROJECTS You can add/remove templates from this screen.

Edit Template

MY DUMMY FILES
Tempiate Type (7) module

GOMPONENT MANAGEMENT
USER MANAGEMENT

General Modules
USER PROJEGT MANAGEMENT
PROVECT MANAGEMENT
TEMPLATE CATEGORIES Template Name (7 Standard Module
TEMPLATE MANAGEMENT
DUMMY FILES

ENVIRONMENTS

NEW PROJECT

SIGN OUT

Figure 19. Template management page screen

2.2.2.2.7 Dummy files management page

As described in 2.2.2.1.4 User dummy files page section, designing projects need
dummy file definitions. Those dummy definitions can be done by each user for themselves
only and also there can be definitions that applies to all users. These dummy files that can be
used by all users and defined in dummy file management admin page. Dummy file

management page shown in Figure 20. Dummy file management page screen.

DASHEOARD Dummy File Administration
MY P CTS You can addiremave dummy fies to projects from this screen.

[Aoonewoumwy FiLe

Dummy File Name Project

[] system defauits DefauttCollection\ReDirakfi\Wabindigo

DUMMY FILES

ENVIRONMENTS

NEW PROJECT

SIGN OUT

Figure 20. Dummy file management page screen

35

2.2.2.2.8 Environment management page

Each single page web application has a backend to process operations. For example, to
log in users to system applications needs to verify the data entered. Bu single page web
applications runs in client’s browsers, so it can’t do database operations or transactions.

Those operations done in server side and this server side application called backend in
generally. In big projects or in big corporates there can be several environments of the same
application platform. Those environments generally called “testing environment”,
“production environment” and etc. This means, there are several backends to the application.

These environment definitions done in environment management page. Appbuilder can
change environments of the running application while designing it. Environment

management page shown in Figure 21. Environment management page screen.

DASHECARD Environment Administration

MY PROJECTS You can plate categories from this screen.
MY DUMMY FILES

GOMPONENT MANAGEMENT
USER MANAGEMENT

USER PROJECT MANAGEMENT
PROJECT MANAGEMENT
TEMPLATE CATEGORIES
TEMPLATE MANAGEMENT
DUMMY FILES

ENVIRONMENTS

NEW PROJECT

SIGN OUT

Figure 21. Environment management page screen

2.3 Project methodology
Appbuilder platform has a unique technique that differs than others. The approach
makes the application building phase can be done at run time (while designing application is

already running).

36

At a summary ReactJS library is modified a little bit, that components on the running
application can be identified. Each file in the project is processed and every component is
tagged with some meta data.

Since ReactJs is a %100 component based library, every component in the designing
application needs to be tagged. After tagging components in the project, modifications on
them can be made.

2.3.1 Webpack hot loading

As mentioned in 2.1.5 Webpack Hot Module Replacement (HMR) section, webpack
javascript bundling library, has hot module replacement feature. This means, if users bundle
together some files (in reactjs applications this means entire application source codes), when
user change any source file in the bundle, webpack automatically updates the javascript
bundle output with the changes that user have made.

This hot loading feature is one of the main concepts in appbuilder. With the technique
that will be told later, source reactjs application files are modified, after sources modified, (a
webpack hot loading mechanism already being setup) webpack does the rest and updates the
rest of the work.

But for react js applications it is not the only thing for hot loading source files, in react
Js applications users also need a special package for updating the Ul. Webpack only updates
the bundle files, it did not update the Ul, to do that users have to reload the browser.

ReactJS has react-hot-loader package for dynamically updating the Ul when webpack
updates occurs. If users do not use this package, they have to refresh the Ul every time. This
might be a problem if application uses application state, for example user can lost their login
session and start from login again. Especially for application state using reactjs applications,
-for example application needs login for operations if users don’t have hot loading,
developers need to login and may be move across a few pages before what they have coded.

With Webpack Hot Loading and React Hot Loader module together, developers can
open their project, runs the hot loader, they code and test together at the same time
simultaneously. This speed up the development process very much. In appbuilder, webpack
hot loader and react hot loader modules are used in after code generation step to display to

user chat changes are made.

37

2.3.2 Changing source files

The entire code generation operations are done in code generation steps. Appbuilder
platform processes every file in the designing project while loading. In this process step,
every component definition is found and identified.

ReactJs applications has a component driven architecture. Every Ul items are
components and have to be like that. So, identifying them is easy. The JSX structure is
simple.

After project loaded in appbuilder, it knows every page and every item (component) in
it. So changing them (source files) can be done easily. For example, app builder modifies the
code below [http-1].

Source Code Sample Original:
<Box context={this.state.context} clearfix style={{ paddingTop: '15px’ }}>
<Text context={this.state.context} text={this.lang.MainCardNo}
typo="standardBodyCopy' style={{ float: 'left' }} />
<Text context={this.state.context} text={this.CardDetail.MainCardNumber}
typo="standardBodyCopyBlack' style={{ float: 'right', textAlign: 'right' }} />

</Box>

Source Code Sample Processed:

<Box uuid="box-10705-tw866hfclk"
pageid="/Users/emr550m/Documents/Templates/N52973_ Work1/src/modules/cards/cardd
etails/virtualcarddetail.js" context={this.state.context} clearfix style={{ paddingTop: "15px’
1=

<Text uuid="text-10982-6¢cslwm4rdb"
pageid="/Users/emr550m/Documents/Templates/N52973 Work1/src/modules/cards/cardd
etails/virtualcarddetail.js" context={this.state.context} text={this.lang.CardExpiryDate}
typo="standardBodyCopy' style={{ float: 'left' }} />

<Text uuid="text-11308-a7lwxqgjmf"
pageid="/Users/emr550m/Documents/Templates/N52973 Work1/src/modules/cards/cardd

38

etails/virtualcarddetail.js" context={this.state.context} text={this.CardDetail.ExpireDate}
typo="standardBodyCopyBlack' style={{ float: 'right', textAlign: 'right' }} />

</Box>

As shown in the code samples above, each file is processed while loading the
application. In source code that is processed, each component definition has 2 extra properties
after processing. One called uuid and the second called pageid. UUID property is a unique
value for every component in the entire project. PAGEID property is the physical file that
stores the component source code.

Appbuilder injects those property values into their objects in the browser. So when user
selects a Ul component, appbuilder knows where is the definition of the component (which
file and line number in the file).

It is just basic string operations to modify files after knowing the location of the change.
It is possible to add new properties, modify current ones, insert new components. Regular

code generation operations can be easily done.

2.3.3 Running designing application

Appbuilder enables users to run the designing application at the same time while
designing (code generating) it. Each project workspace creates a working directory identical
to developers local working (project) directory and they have their own webpack and hot
loader modules separately. Those separate projects served under a core express web server.
Each project has its own route under express. These routes added dynamically to express
server when user creates a project workspace.

For example, appbuilder is running in address http://localhost, when a user creates a
project, appbuilder downloads its sources and creates a web project for it. When appbuilder
finishes starting project, an address available for viewing the project like
http://localhost/userl_Projectl.

The designer page described in 2.2.2.1.6 Application designer page section, this url is
shown inside the designer as an inline frame. So that, appbuilder displays the designing app

while users designing it.

39

2.3.4 Parsing designing application

As described in 2.3.2 Changing source files section, each file in the designing project
Is processed and parsed before the designer starts. While parsing the javascript source files
in the project a JSX parser library is used. This library called astparser and a running sample
[http-11].

Ast is a meta description file that stores data about source files and its structures.
Appbuilder uses ast definitions of javascript source files (compilers also use ast files in
compilation). Esprima-fb package is used to get ast definitions of source files.

Example ast structures can be shown in astexplorer.net’s web site. Source code files
described as parsed objects. For appbuilder perspective, these parsed objects are very
important to identify the source files (pages in the designing application). By extracting ast
(parser) definitions from source files, appbuilder can identify components, variables or any

other definitions in the sources [http-1].

2.3.5 Identify components & component selection

As mentioned in 2.1.2 React.JS section reactjs based applications are coded
completely from components. Like object oriented programming languages, reactjs is
component oriented programming language.

Every Ul element in a reactjs application has to be in reactjs component object. In
reactjs, those components used in JSX language syntax. As mentioned 2.3.4 Parsing
designing application section source jsx files are parsed and as mentioned in 2.3.2 Changing
source files section each parsed source files items are tagged with metadata.

By using injected metadata in the source files, appbuilder identifies the components
displayed to user. This done by modifying the reactjs source itself.

In reactjs source code, the rendering components to dome part is modified a little bit.
Normally, ReactJS did not cares what is included dynamically to components. Because
components don’t have these two properties in their definitions (injected properties
mentioned in 2.3.2 Changing source files section). What is changed in reactjs source itself is
reading those extra two properties and inject them to the DOM at the runtime.

40

This modification makes us to know which component is on the Ul at any time.
Because inside the browser's Ul object (DOM), our component meta descriptions are also
included.

Now the components at the source code is well known, also the objects at the Ul, so it
Is easy to match them together. Appbuilder has a feature highlighting Ul component while
user moves the mouse over them at the designer.

Because what was inside the DOM is already known, there is a hidden layer above the
designing application, appbuilder gives a colour to it, makes its boundaries equal to the
components boundaries. So, user feels like the component is highlighted. When user clicks
to this coloured layer, it is already known which component is related to this layer, so a
callback to appbuilder backend is made and the metadata is retrieved from backend. That's

how the selected components information displayed to the user at the properties window.

2.3.6 Modifying pages & components

As described in 2.3.5 Identify components & component selection section, each
component rendered to Ul on the designing application is known. They are also known where
they are on the Ul, what is the sizes etc.

Figure 22. Highlighting components shows a sample form application running on the
appbuilder. When user moves the cursor above elements, the components highlighted.

Sifre Sanal Klavye aaa

Sifremi Unuttum

Figure 22. Highlighting components

41

If user selects (clicks) a highlighted item, component is selected as shown in the Figure

23. Selecting components. The allowed operations displayed above the selection highlight.

x | <inputnumeric> v | ® o2

Miisteri / TC Kimlik No (?) ’
|

Sifre () Sanal Klavye =ia

Sifremi Unuttum

When a component selected, users can modify it. The property toolbox window can be

Figure 23. Selecting components

opened from main left bar as shown in the Figure 24. Property toolbox.

{this.pageld + '_InputNumeric1'}

maxlength

{this.lang.CustomerOrTCldNoLabel}

onChange
{this.handleMbbNoEntry}

onBlur
{this.checkCaptchaRequirement}

Figure 24. Property toolbox

42

When users change a value in property toolbox and click save button, the requested
operation sent to backend with a backend call, because it is already known which component
is selected, it is also known where is the file and which lines in the source file (from metadata
that was inserted before). With simple text and string manipulation operations, the

modification is done. Because reactjs uses JSX syntax it is easy to parse and modify.

Document

fimport React from 'react';
import PropTypes from 'prop-types';
import Box from '@component/box’;
import Panel from '@component/panel’;
import If from '@component/if’;
import InputNumeric from '@component/inputnumeric';
import InputPassword from '@component/inputpassword’;
import InputKeypad from '@component/inputkeypad’;
import InputCaptcha from '@component/inputcaptcha’;
import PrimaryButton from '@component/primarybutton’;
import Link from '@component/link';
import { BasePage, store } from '@component/redirekt-core’;
= import {

clearLoginErrorMsg,

clearLoginStateValues,

makeCaptchaControlRequest,

makeCaptchaRefreshRequest,

makelLoginFirstRequest,

setMbbNo,

isloadingState
} from '../../../redux/actions/login’;
import login from '../../../redux/reducers/login';
import * as LoginConstants from '../../../redux/constants/login';
import * as Constants from '../../../utils/consts’'
import * as Utils from "../../../utils’

Cancel Save changes

Figure 25. Source file editor

Appbuilder has an embedded source file editor. The editor itself is an open source npm

package called ACE editor. When user select an item on the Ul and click the source button “

La v, appbuilder finds the target file from the meta definition and opens up the ace editor
with the target files source in it.

Users can modify the source files if needed. This is an advanced mode for appbuilder.
The main idea in appbuilder project is to generate source code, not modifying the source by
hand. But if users are a software engineer and they know what they are doing, it is okay to

change the source and examine the output directly.

43

In a single page web application, there can be multiple pages in the app. So, user need
to navigate to those pages while application is running. Because appbuilder can design and
modify the current page (what is rendered to the user screen).

Because the app is physically running inside the appbuilder, users can navigate to the
page that they want to modify by using applications menu or flow. Bu when they create a
new page from scratch, there are no links to their page. That's why appbuilder has a routing

table and users can navigate to any page they want.

Page Administration Screen

=7 Navigate
() /guest Navigate

[+ /dashboards Navigate

) fauth Navigate

() fauth/settings Navigate

[#) /auth/settings/changeusername Navigate

(# /auth/accounts Navigate

@ fauth/transfers Navigate

@ /auth/investments Navigate

(#) /auth/products Navigate

(# fauth/cards Navigate
[/logout Navigate
(G2 Navigate

Figure 26. Sample application page selection and navigation

As shown in the Figure 26. Sample application page selection and navigation,
appbuilder identifies what pages application has and can navigate the screen to that page.

But in most cases, applications have built in authentication mechanisms, this means
users can't navigate directly to these pages. So, they may need to use mocking operations or
they many need to login their application while it is running.

Every design option also available when users navigate to another page. Because
metadata is injected to every page while loading the project from source control and they
have been modified the reactjs source control, when a new page will be displayed, all
metadata will be injected to the new page while it will be rendered to UI.

44

2.3.7 Communication between backend and frontend applications

Appbuilder has two main parts in the project. First part is a nodejs applications and the
second part is a Ul application served from that nodejs backend part.

Since there is a 2-layered structure there has to be a communication between them.
There are two types communication between these two parts. One is a live connection
between the nodejs backend, one is a callback type not alive connection.

Live connection between Ul and the nodejs backend is called socket connection and
based on socket.io framework. This socket framework used for sending webpack hot loader
messages to the Ul. This has to be alive because at any time there can be change occurs on
the source files.

Callback communications are used to send commands from Ul application to backend.
These are generally code modification request. They are one-time operations that sends a
command gets a reply type. These callbacks are not keep alive kind calls, they ‘Il expire and
timeout if they take too much time to execute. So, they have to be quick while using those
callbacks.

For example, the webpack bundling at the project designing start takes between 1 to 4
minutes depends on the project, for that time they can't hold a backend call because it will
timeouts and terminates the call. For that kind of call backs, socket infrastructure is used, and
data sent over socket without timeouts. Because socket is open all the time and won’t close

until the project closed [1].

2.3.8 Modify Reactjs source code for appbuilder

As mentioned before, reactjs libraries original source code is modified to the code
generation two way (from generated to hand coded, hand coded to generated). The
modification is so simple in the reactjs library, a few lines added to it to magic happen.

In the source file ReactCompositeComponent.js;

if(inst.props.uuid) {
var domNode = findDOMNode(inst);
if(domNode) {
var idMap = -1;

45

var targetuuid = null;
do {
idMap = idMap + 1;
targetuuid = idMap == 0 ? inst.props.uuid : inst.props.uuid + " _" + idMap;
} while(window.uuidHashMap[targetuuid]);
window.uuidHashMap[targetuuid] = true;
domNode.setAttribute('data-uuid’,targetuuid);
domNode.setAttribute('data-pageid’,inst.props.pageid);
if(inst.props["data-locked"]) {
domNode.setAttribute(‘data-locked',inst.props[*data-locked™]);
}
}
}

These code block injects the metadata inside to the real DOM object. There is an index
of injected meta data also created for easy access and use in the Ul. For module definitions,

there is also a special lock metadata inserted that will described later.

2.3.9 Modules, components and more

In reactjs, every item is called components. But in projects, users may need some
complex components that may be contains a few components together and they may need to
use this complex component item more than once.

Those items called “modules” in appbuilder. Users can create modules and use them
as much as they want in their pages.

Pages are also having special meaning in appbuilder. Pages are also reactjs components
but appbuilder has to say something page to allow users to design it.

So as an hierarchy, appbuilder can be summarized into three main concepts. Pages,
Modules and Components. As described in 2.2.2.2.1 Component management page section,
components can be managed by appbuilder administration page. But for modules and pages

they are not common for every project and they cannot be administered.

46

When appbuilder loading a project, it scans every file for page and module definition.
There is a static rule on these. Page definitions are extracted from reactjs applications route
definitions. Module definitions are extracted from modules folder.

Each project has a folder structure inside. Appbuilder expects there is a modules folder
inside the project and every component definition inside it called and indexed as module.
Just like the components as administered from appbuilder, module list is sent to Ul for using
in designer purposes.

As shown in Figure 27. Sample modules tree for a sample project figure, module
definitions extracted from designing project listed to the user. When user selects one of these
modules, it can be inserted to any location on any page.

By using modules, each project can create their project specific parts, declare them,
design once and reuse everywhere. These modules also can be created in appbuilder. An
empty module can be created with the Create New Module section shown in Figure 27.
Sample modules tree for a sample project figure.

As mentioned in 2.2.2.2.6 Template management page section, the modules code
structure can be defined to use here. Each module template definition is displayed in the new
module section, users can create a module just giving the module path and module name.

After adding the module, it automatically added to the list and user can select and insert to
any page.

47

Insert From Existing
V¥ B modules

p BB accounts
p Ba cards
p BB common

p B8 investments
VY B8 login
V¥ W stepl
B Stepl

p BB step?2
p B products

p B8 transfers

Create New Module

P modules

Figure 27. Sample modules tree for a sample project

When user inserts a module to a page, by default it is locked for modification. Because
modules can be used on many pages, modifying a module by accidently, cause every usage
in the project to fault.

So, user need to unlock a module in the page before modifying it. This is done the lock
and unlock button at the top of the highlight frame as shown in the Figure 28. Module locking
and unlocking.

Bireysel Giris

Miisteri / TC Kimlik No

S Sanal Klavye EEE

Figure 28. Module locking and unlocking

48

Just like appbuilder does for the components, for modules their source files metadata
injected to its DOM object. So, when user modifies something in it, it changes on its very

own source.

2.4 Multiple User Interface
Appbuilder is a multi-user project. Multiple users can use at the same time. There is no
limit about that. By default, regular login is used. User definitions stored in its own database

[2].

2.4.1 Multiple user support
Each user can login concurrently to the appbuilder and can start their own project.

And also, a single user can create multiple users at the same time too [3].

2.4.2 Multiple project support
Appbuilder can create multiple hot loading units at the same time as mentioned before.
As mentioned in 2.1 Summary and Used Technologies section, each designer unit has a big
infrastructure inside it (Figure 3. Common structure of a single user's project structure).
With multiples running at the same time concurrent designing tasks can done at the
same time. This is limited with the physical limitations of the server that runs the appbuilder.

Multi user structure shown in the Figure 4. General structure of app builder project.
2.5 Designer/Code Generator Page Details
Most of the project operations occurs on the appbuilder designer page. It is the core of

the project. Users do the code generation and appbuilder operations on this page [4].

2.5.1 Management panel
Main code generation operations done in the left main panel.

49

Figure 29. Main management panel (left panel)

This management panel has these features on it.

2.5.1.1 Main application menu

The main application menu contains (Figure 30. Main application menu)
Export Project: This creates a single zip files that contains the designer applications entire
source. This export feature is described before.
Publish Project: This feature publishes (commit back) the sources that generated in the
project to the source control.
Go to Dashboard: This feature ends the designing session and navigates user to the
dashboard screen.

Sign Out: Signs out the user from appbuilder.

50

Environment: Choost

if Export project '

& Publish project l

@ Go To Dashboard

& Sign Out

Figure 30. Main application menu

2.5.1.2 Component management panel

Components that are defined for designing operations are displayed and selected for
adding to the project from here. The plus sign (+) displayed in Figure 31. Component
management panel figure.

Components are displayed in categories in this panel. That category information is
extracted from component definitions or can be administered from by component
administration pages.

When user selects a component in the selection bar the selected components name
appears and user understands that he/she can insert this item to the Ul wherever he/she wants.

Component items also can be dragged and dropped to any place.

51

Layouts

M Tables

tablefooter

tablecell

tableheader

T

<>
tablecaption

tablebody

tablerow

table

BaseComponents

Texts

Inputs

Lists

Buttons

Visuals

DropDowns

Conditions

Checkboxes

Figure 31. Component management panel

2.5.1.3 Module management panel

As already described in 2.3.9 Modules, components and more section identified
modules are displayed in modules panel (opens with M icon in the Figure 29. Main
management panel).

Like shown in the Figure 27. Sample modules tree for a sample project figure, new
modules also can be added to the application from here. Selected modules inserted to the
project just like components. When a module is selected, it will be displayed in the selection
bar and the user can insert it any place on the project. Module items also can be dragged and
dropped to any place.

52

2.5.1.4 Page management panel
Appbuilder has the ability to add new pages to the project. Those pages created
from template definitions that described in 2.2.2.2.6 Template management page section.
Each template definition has its own parameters that prompted to the user while

creating the page. These parameters like the page name, page route or back route information.

Insert New Page

Fl Page Temlates
V pages

V¥ default
Static Finance

V¥V Transactions
1 Step Trans:
2 Step Trans:
3 Step Trans:
4 Step Trans:

V¥V Dashboards
SimpleDashb:i

V¥V LandingPages

Figure 32. New page creation menu
2.5.1.5 Dummy files management panel

Dummy files may be needed for some backend using applications while designing the

application.

53

Dummy Data Selection
¥ Dummy Responses

V¥ @ System Files

V¥ @ system defaults
V @ User Files

V ® Test

o 4

Figure 33. Dummy file selection menu

As described in 2.2.2.2.7 Dummy files management page and 2.2.2.1.4 User dummy
files page files page sections, there can be several dummy definitions for backend calls. There
can be even more than one definition for the same service. Because there can be several
scenarios on the same screen. Users selects the active dummy files from this screen, the
selected dummy files are served from node js backend if the application is running on dummy

mode.

2.5.1.6 Component hierarchy panel

When appbuilder parsing every file at start, it is also possible to create a component
hierarchy tree for selecting items in the screen. React JS is a component base language and
components can be structured nested form in pages.

Some components may not have a width or height or some components may not even
display in the screen. For example, there can be If, Select or Loop components (logic
components). Those components do not have a volume on the screen so it cannot be selected
on the screen.

With the component hierarchy tree window, users can select any component for

modification. Hierarchy panel is shown in Figure 34. Component hierarchy panel figure.

54

Figure 34. Component hierarchy panel

2.5.1.7 Properties management panel

Properties windows can be opened with the properties button in the main menu. The
opening toolbox is shown in the Figure 24. Property toolbox. This toolbox is one of the most
important panel on the application.

2.5.1.8 Designer mode button

Appbuilder has the capability to design the application at the run time. Users can
modify the pages while it was actually running on the browser. So there is a switch needed
between designer mode and preview (running) mode. These options are on the main panel.
As shown on the Figure 35. Designer mode button figure, user can switch between designer

and preview mode.

Switch to edit page mode

Figure 35. Designer mode button

2.5.1.9 Preview mode button

When user clicks the preview mode, appbuilder designer add-ons (hidden layer to
highlight components) removed above the project. Because the application is also running
inside the appbuilder, the rest after the layer removing is the application itself. So it can be

said that preview mode is running the application (Figure 36. Preview mode button).

55

Switch to view page mode

Figure 36. Preview mode button

2.5.2 Configurations panel

If an application is running on a web browser, it needs so many extra features except
its own business. For example, web browsers run on any device, any size of screen, so
application needs to be responsive in the browser.

There are also different platforms that uses the web. Like mobile phones, tablets and
thousands of types computers. Designer application may be needed to be different on each
platform.

Appbuilder has the ability to change the platform (by simulating it), it can simulate
variety of screen sizes while designing the application. For example, user can see the app in

a mobile size (320 pixel) width if they want.

Environment: Choosev 100% ~» Desktop v classictheme v Page Info Reload Undo

Figure 37. Configurations panel

From configurations panel, there are several options can be changed:
Environment Choose: As mentioned before, designing application can have multiple
backend environments like, production, testing etc. Users can define and select the running
applications environment from this menu. Dummy mode also enabled from this section.
Screen Size Selection: Users can change the running applications screen size to some
predefined screen sizes. Various screen sizes supported for testing the applications screen.

From here as shown in the Figure 38. Screen size selection.

56

!v ‘100% ~ | Desktop = | classict

| |
100%
1800px
1200px
1100px
1000px
900px
770px
640px n ‘

480px
340px

Figure 38. Screen size selection

Platform Selection: There are mobile, tablet and desktop mode simulation selected from
here. Appbuilder acts as if is running inside the selected platform.

Theme Selection: If the components supports theming option, it can be integrated and
changed from that option.

Page Info: The routes and pages defined in the designing application is displayed from here.
User can navigate to any page from the routing menu (Figure 26. Sample application page
selection and navigation).

Reload: Sometimes users need to reload the application runs inside the appbuilder (The
designing application). Reload button reloads the application and the appbuilder metadata
operations done again.

Undo: Each code modification done in appbuilder can be undone with this button. Every step
Is saved in a designing session. Each step can be undone one by one. When user closes the

session undo buffer cleans out. This means users can’t undone the previous design sessions.

2.5.3 Selection panel

In appbuilder designer screen, selection on the running designing application and
selection from the components tree has special meanings. The selection panel displays what
is currently selected. So, users can do different operations on what is selected. On the lower
line the selected component on the Ul is displayed. On the upper line, the selected

components tree is displayed. The selection panel is shown in Figure 39. Selection panel.

57

pagetitlemodule

Figure 39. Selection panel

2.5.4 Properties panel
Properties panel also shown in Figure 24. Property toolbox, is used to modify what is
already inserted to the application. Current values also displayed to user and user can modify

them too.
2.5.5 Page component tree panel

As mentioned in 2.5.1.6 Component hierarchy panel section, the component tree is

used to select and summarize the page’s component hierarchy.

58

3. SCIENTIFIC FACTS AND RESULTS

3.1 Scientific Facts

In this section, why this technique is needed described with facts.

3.1.1 Why this technique is needed

In software development lifecycle, development phase is the most expensive and time
consuming one. Everything that is done for speeding up the development phase, speeds up
the projects.

Most of the corporates that does products for themselves or their customers, has similar
business development steps. First development need or job comes from business line or
management. After main product described by them, details are outlined by analysis people
or product owners. By having a described task, developers can do their job. But all that
procedure has circular repeat over and over again because job needs may change, or business
line changes opinions after what they seen that coded.

To speed up those procedures, this appbuilder platform can generates the Ul of the
project easily by any level of people, even managers, analysis people or product owners. Job
can be seen and examined even before it will be coded. So mostly repeated coding sessions
can be skipped that way.

3.1.2 Benefits of code generation

For developer side of code generation, most repeating tasks can be done in seconds.
Every project has repeating patterns inside. For example, each unit function has same
outline or template as said. First, code generation saves too much time for repeating tasks
or codes.

With code generation technique, also mistakes and bugs are decreased tremendously.
Because there is no handwriting error, only mistakes can be occurred from false definitions.
If users can define the templates correct for once, there won't be any mistakes any time after
that.

59

For DevOps, code generation also can be used. If users can generate source codes, they
can also generate unit tests too. That means, for continuous integration steps users can take

benefit too.

3.1.3 Possible problems

It is not always easy to generate every code or page in applications. To generate codes
without having hard time, users need to keep things simple and clear. If they have complex
architecture in their applications generation may be convert their life more complex.

In ReactJS based applications and for appbuilder platform, pages must be declaratively
written in render block. If pages are generated by javascript blocks and executions,

appbuilder platform cannot identify the component blocks and it won't’ run correctly.

3.2 Performance Metrics

To proof what have done so far, side by side comparison handwriting and code
generation that is done by appbuilder is needed. To do that, a sample 20 people (they need to
be developers, so that they can write the same task) is selected. Each 20 people does the same
task with handwriting and by using the appbuilder. Each test subject also has the ability to
write in reactjs and they know to use appbuilder platform. There are several tasks from easy

to hard. Each task is examined below;

3.2.1 Basic page development in app builder versus hand coding

In this test, test subjects were asked to create a simple page that has two inputs on it.
Users first do the job by handwriting and after by appbuilder; on the same project and starting
at the same point. Each test iteration page was asked to developers with different input names

and types but same amount number two.

60

Table 4. Average Times Taken in Basic Page Development

Average Time Taken Number of Users in Iteration

< App Builder 5.6 min 3
.E .

2 Handwriting 12.4 min 3
< App Builder 7.8 min 5
.E N

2 Handwriting 16 min 5
c App Builder 6.3 min 15
.g -

e Handwriting 14.7 min 15

As shown in Table 4. Average Times Taken in Basic Page Development number of
development count used in tests did not makes changes too much the average times. For a
basic page, it can be said that nearly %50 of time saved while developing with appbuilder
platform.

This happens because page templates defined in appbuilder and users can create the
page outlines just in seconds. The time taken in giving the properties of the inputs. This

means, more detailed templates give more generated codes.

3.2.2 Advanced page development in appbuilder versus hand coding

In this test, test subjects were asked to create a complex page that has two subpages on
it. Each subpage has 5 inputs in it. Users first do the job by handwriting and after by
appbuilder; on the same project and starting at the same point. Each test iteration page was

asked to developers with different input names and types but same amount of inputs.

61

Table 5. Average Times Taken in Complex Page Development

Average Time Taken Number of Users in Iteration
< App Builder 12.2 min 3
.g .
2 Handwriting 35.3 min 3
~ App Builder 15.2 min 5
S
© . .
E Handwriting 42 min 5
< App Builder 16.1min 15
.g -
e Handwriting 39.4 min 15

As shown in Table 5. Average Times Taken in Complex Page Development number of
development count used in tests did not makes changes too much the average times. For a
complex page, it can be said that nearly %65 of time saved while developing with appbuilder
platform.

This happens because page templates are defined in appbuilder and users can create the
page outlines just in seconds. The time taken in giving the properties of the inputs. This
means, more detailed templates give more generated codes.

It is understood that when codes or pages becomes complex, the time that users have
gained increases. But there is a break point for that, if things gone very complex appbuilder

loses the generation ability and times changes and loses the gain over handwriting.

3.2.3 Bug rates in basic page in appbuilder versus hand coding

Each test iteration was evaluated (code reviewed) after developers finishes their work.
Bug’s called miss-writings or malfunctioning on the code. Since appbuilder generates the
codes by itself and the templates defined for those pages are bug clear, users do only
definition errors. But in hand coding, users define and writes everything and this also reflects

the bug counts.

62

Table 6. Average Bug Count in Basic Page Development

Average Bug Count Number of Users in Iteration
- App Builder 1 3
c
2
© -
b Handwriting 3 3
< App Builder 2 5
.g N
2 Handwriting 4 5
< App Builder 2 15
.g -
2 Handwriting 5 15

As shown in Table 6. Average Bug Count in Basic Page Development, appbuilder

decreases bug/error very much (Two or three times better).

3.2.4 Bug rates in advanced page in appbuilder versus hand coding
When coding becomes complex, the rate of bugs increases. But in appbuilder, the only
difference is the definitions are more. So, the amount of bug increases both sides. But

appbuilder also a winner here.

63

Table 7. Average Bug Count in Complex Page Development

Average Bug Count Number of Users in Iteration

c App Builder 3 3
2

T

2 Handwriting 14 3
< App Builder 5 5
E N

2 Handwriting 16 5
< App Builder 4 15
.g o

2 Handwriting 15 15

3.2.5 Appbuilder in continuous delivery

Since continuous delivery is a hot topic these days, every step that users have done for
it makes development life clear and fast. Continuous delivery means, they have a running
application or software and users are adding new features to it without breaking its working
and doing the development process seamlessly. Seamless means, any part of the development
procedure did not become an anchor. For example, bad coding makes the testing phase
longer, poor analysis makes turn backs from coding etc. If users can define a perfect
environment for all their development lifecycle that any phase did not blocks the procedure
this means they have a continuous delivery ecosystem.

Where appbuilder can used in continuous delivery is all its users choice. Users can use
the appbuilder in design or analysis phase to get clear definitions, they can use appbuilder in
development phase to get perfectly written codes or pre-written unit tests that checks users
coding.

The base idea in appbuilder to generate codes but it can be use in different areas. So,

users can use the appbuilder in multiple steps of continuous delivery.

64

3.2.6 Appbuilder in devOPS
In recent years a new term is created, DevOPS. That word means development

operations. This term is used to define every step together that users have done for
continuous delivery. Most of the work in dev-ops done in build mechanisms or in source
control mechanisms like TFS or Git.

In projects, to keep things clear and well, some methodologies used like test driven or
behaviour driven developments. Writing tests is the main idea on those concepts and running
those tests while modifying the project source itself. Since it is possible to generate unit tests

by appbuilder platform, it can be said that it is also useful in devOPS ecosystem.

3.2.7 Appbuilder in cloud platform

Cloud platform is a hot topic in recent years. Since appbuilder is a web based
application, it is very possible to run and use appbuilder in cloud platform.

Because appbuilder may need computer power to do multiple designing sessions in
parallel, it is ideal to run it on cloud platform. It can be easily scaled over many servers on

cloud platform. To use appbuilder in cloud, all users need is node js as described before.

65

4. USER COMMENTS

In this section, user’s opinions are gathered and summarized. Users are divided into
two section, developers and users. As software developer perspective things and opinions
may differ than regular users. Appbuilder can be used by both regular users and software

developers.

4.1 User Comments

Onder Akar - General Manager of VOLT Bilisim A.S.: There are several problems
on the business software development process. Some of these uses infrastructures that helps
to write less code to adapt changes fast. While trying to manage these criteria, both
software companies and companies that use business applications are faced with projects
that are not able to meet the needs properly and dragged to chaos in time. For this reason,
some frameworks automatically generate code blocks and screens. Those auto generated
codes has some standards but they are not able to modify by hand and in time
inconsistencies occurred. Bidirectional code generation may help to answer the quickly

changing needs in time easily and may help the projects can go live fast.

4.2 Instructor Comments

Assoc. Prof. Dr. Ozgiir YILMAZEL: For big enterprises, it will always be a dilemma
to use or not use code generation techniques. Because, in most cases, generated codes are
become useless or will be modified too much in time. Since the code generation is done
from a source language most of the time, those source files will deprecate in time.
Described Bidirectional code generation pattern, may be a solution for this problem.

Since the latest source codes used for code generation as start, there won’t be any
deprecating source files for code generation. The idea of code generation after manual coding

on the same source may be the key point of the work and what makes it valuable.
4.3 Software Engineer Comments

Ilhan Erikci - Software Architect - Digital Banking Applications - AKBANK T.A.S.:
In 1990s and early 2000s we had WY SIWYG editors to build web pages. These editors

66

gave us the comfort of seeing the effects of the changes we were making. In fact, the page
was being built in design mode by drag'n drop.

While new technologies and new patterns arose, developers lost this comfort. Now
designers and coders work separately, merge their work after finishing and hope to run
smoothly.

A real-time application builder is the solution for this complexity. With such an
application developer can drag and drop existing "components™ and see the effects like the
way WY SIWYG editors provided them before. This is a huge step for web development.

Alper Sogukpinar - Senior Consultant — Microsoft: In large applications, page
development time is long and business needs are taking long time to come up. There may
thousands of pages in an institutional application. Therefore, reducing this page development
time will be a significant gain in terms of cost and speed of development.

Although page templates, design, and design rules for such large applications are
developed manually, these pages can easily become a non-standard structure. At the point
where the pages, components are out of the standard, the user experience is difficult and the
ease of using the application is lost. On the other hand, pages and components are not
standard, but they are problematic in maintenance in the future. In practice, when a radical
design change is made, it is necessary to change all the pages one by one.

The code generation tools will speed up code development and make possible future
maintenance easier and faster, since the pages and components used are standardized. Initial
generation of pages with one-time code generation will be fast, but after development, code
generation will be disabled. With the two-way code generation, the corresponding tool will
continue to be used for further development of the pages.

Finally, this tool allows the design and creation of static pages to be done by analysts,
possibly future text changes, etc. it could also be done by analysts. With such a tool, all these
changes will need to be made by the developers, which will extend both the development
cost and the duration

67

5. CONCLUSION AND WHAT IS NEXT

5.1 Conclusion

Appbuilder methodology, is a code generation and designer tool that is presented in
this thesis. This tool uses NodeJS, ReactJS and some side technologies together to generate
sources from a graphical user interface. The designing application is running inside the web
browser while user designing and generation sources in it. So, users can see whatever they
design directly.

This appbuilder tool aims for non-developer users at first. But developers can also use
and do hand coding it together with appbuilder. The purpose of this tool is to speed up
development life cycle. Analysis and design step of a software can be done quickly in
appbuilder. The output of the work directly converts to source codes. Developers can take
the source codes from there and do the rest. They can also use the appbuilder for hand coding
or they can use their own development tool. Since appbuilder is embedded with version tool,
either way it is supported.

The appbuilder tool was examined under dimensions “coding quality”, “speed”,” error
/ bug rate”. A people of 20 selected for measurements. They all know good knowledge for
reactjs. Since the generated sources in reactjs they all need to know hand coding on it.

After doing different iterations with different number of groups on variety of designs,
it was measured that the time efficiency on appbuilder is at least %50 better than hand coding.

The average bug rate that is done by developers decreased by two or three times with
appbuilder. The codes are computer generated, the bug rates become user input mistakes,
since users gives less inputs for code generation, bug counts decreases.

The code generation standards are given to system as templates, so each code
generation makes the same output. So, it can be said that the quality and the standard of the
code is always the same. But in hand coding, each user does their own style, so the output
differs, and the quality is not the same.

Appbuilder currently do design kind (User Interface) code generations, so this means
backend or business execution algorithms needs to be done by developers. If those algorithms

have standard structures they can also be generated but mostly they are not.

68

Appbuilder mostly suitable for huge or big web applications that always in progress or
new functionalities added frequently. Since the productivity in software development is

increased, the production speed and rate increase with it.

5.2 Future Word

Appbuilder uses very recent technologies like ReactJS or NodeJs. That means, things
will change and grow super-fast. For example, each library releases at least 2 version per
month. So appbuilder needs to be updated all the time. If users are using those technologies,
they have one static task is to keep up to date.

It will be a great service that serve appbuilder over cloud platform and keep it open
source. More users that uses appbuilder, more ideas and requirements will come.

For functional perspective, appbuilder generates Ul currently. Javascript based code
generations and designer parts can be added. For example, managing global state like Redux
on designing applications can be a great plus.

Appbuilder currently generates Ul only, but it will be great if also backend services can
be generated too. For a Node JS based backend, it will also be possible to create backend
services on the fly.

As described before, appbuilder has many useful usages. But for my perspective, it will
be a best usage by non-developer kind people. Because, idea is to generate codes, it will be
meaningless to generate codes with developers. Developers can do that already, to gain
speed, if other people uses like business line or analysis people, development phase speeds
up because, developers get pre-coded sources and start the job with a boost.

Since now, appbuilder get the sources, generate new ones, and commit back them to
the source control back. But it will be great if appbuilder has publisher mechanisms
embedded. So that generated codes can be published and tested on its original environment.
Simple publisher structure can be added that works with the cloud system automatically, that

publishes the application to its original serves.

69

REFERENCES

[http-1] GitHub, Inc. https://github.com/facebook/react (Date of access: 04.09.2015)
[http-2] GitHub, Inc. https://github.com/ipselon/structor (Date of access: 08.10.2016)
[http-3] GitHub, Inc. https://github.com/webpack (Date of access: 18.09.2016)

[http-4] GitHub. https://webpack.github.io (Date of access: 01.02.2015)

[http-5] Benchmarking Node.js - basic performance tests against Apache + PHP.
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php (Date
of access: 14.01.2015)

[http-6] Can | use ES6 ? https://caniuse.com/#search=ES6 (Date of access: 24.05.2016)
[http-7] Node.js Foundation. https://nodejs.org/en/ (Date of access: 01.06.2015)

[http-8] Redux. https://redux.js.org/ (Date of access: 03.02.2016)

[http-9] W3C. http://www.w3.0rg (Date of access: 04.11.2017)

[http-10] NPM. https://www.npmjs.com/ (Date of access: 14.08.2016)

[http-11] AST Explorer. http://astexplorer.net (Date of access: 23.10.2016)

[1] Lara, J. A., Lizcano, D., MartiNez, M. A. & Pazos, J. (2013). Developing front-end Web
2.0 technologies to access services, content and things in the future Internet, Future
Generation Computer Systems, v.29 n.5, p.1184-1195, July.

[2] Comai, S., & Mazza, D. (2012). A model-driven methodology to the content layout
problem in web applications. ACM Transactions on the Web (TWEB), 6 (3), 10.

[3] Basta, M. & Willer, M. (2017). Adaptive Determination of Dynamically-Composited Web
Page Elements in A Web Application, US 20170132185 ALl. California. BOX, INC.

[4] Leece, M. (2013). Declarative show and hide animations in html5, US 20130346851 Al.
Washington. Microsoft Corporation.

[http-12] GitHub. https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is (Date of
access: 17.05.2016)

[http-13] W3C. https://www.w3.0rg/ (Date of access: 06.02.2017)

[http-14] GitHub. https://github.com/jquery/jquery (Date of access: 15.10.2016)

[http-15] MongoDB, Inc. www.mongodb.com (Date of access: 08.12.2016)

[http-16] Node.js. https://github.com/expressjs/express (Date of access: 24.10.2017)
[http-17] NPM. https://www.npmjs.com/ (Date of access: 04.12.2017)

70

https://github.com/facebook/react
https://github.com/ipselon/structor
https://webpack.github.io/
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
https://caniuse.com/#search=ES6
https://nodejs.org/en/
https://redux.js.org/
http://www.w3.org/
https://www.npmjs.com/
http://astexplorer.net/
https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
https://www.w3.org/
http://www.mongodb.com/
https://www.npmjs.com/

[http-18] The PHP Group. http://php.net/ (Date of access: 14.11.2017)

71

http://php.net/

GLOSSARY

Ace Editor: Ace editor is an open source project that creates a web based source file
formatter and editor.

Ast: Ast is a meta description format of source code files. Compilers used those ast format
to compile and identify the source files.

Babel JS: BabelJs is an open source platform that converts an compiles ES6, ES7 to ES5
javascript. It can be found on https://babeljs.io

Branch: A branch in git is a very widely used term that has a big definition [http-12].

CSS: Cascading Style Sheets is the general term of styling web applications. In can be
independent “.css” files or can be written directly inside html files.

DevOPS: DevOPS is the shortest term for developer operations, which means the complete
cycle for software development, like testing automating, building deploying and etc.
Recent years, importance of devOps is increases very fast.

DOM (Document Object Model): The Document Object Model (DOM) is a programming
API for HTML and XML documents. It defines the logical structure of documents and
the way a document is accessed and manipulated. In the DOM specification, the term
"document™ is used in the broad sense - increasingly, XML is being used as a way of
representing many different kinds of information that may be stored in diverse systems,
and much of this would traditionally be seen as data rather than as documents.
Nevertheless, XML presents this data as documents, and the DOM may be used to
manage this data [http-13].

ECMAScript: ECMAScript is the subset / version of javascript that started used in terms
recently. Currently there is ECMAScript version 5, 6 ,7 are defined. It is very possible
to released some more soon.

Es-Formatter: This is a npm package to format (beautify) source files visual structure. Not
the code itself, only the visual appearances.

Esprima-FB: This library is the extension for ast decoders to understand jsx source files.

Express Package: Express is an npm package and an open source project, that developers

can create web servers easily with it on node js [http-16].

72

https://babeljs.io/

Github.com: GitHub is an open source project platform and it also gives free code storage
repository to developers.

Git Pull-Push Operations: Sending codes to central code repository is called push, taking
latest codes from central code repository means pull operation in Git.

Git / TFS Code Share Tools: Code version tools are used for team collaboration when a
group of people codes a software all together. A centralized code repository is located
on the server and each client (developer) pulls the code from there and pushes their
codes back. TFS and Git are the mostly used ones.

Hot module replacement: HMR is a feature in webpack, to inject updated modules into the
active at runtime. This means, users can update source codes at run time [http-14].

JSON: JSON is a format for storing and exchanging data. It is mostly used in javascript. It
can be said it is invented for javascript needs, but used very widely.

JSX: JSX is the language syntax of react js library that used to define custom web
components.

LDAP: Lightweight Directory Access Protocol, is an Internet protocol that email, and other
programs use to look up information from a server. It mostly used in companies for
authentication mechanisms.

Mocking: Mocking term in computer science means, simulating or replicating some code
execution. Mostly in backend services, mocking term is used. In unit testing
environments, mocking has huge importance.

Mongodb: MongoDB is a document database with the scalability and flexibility that users
want with the querying and indexing that they need. It has both open source and
licenced parts [http-15].

NodeJs: Nodejs is a built in javascript runtime that runs javascript codes in console. It is also
an open source project.

Npm: Npm is the package manager of NodeJS platform. Developers can share codes or
libraries over npm. It is free to use platform and can be used in enterprises locally with
licensing [http-17].

oAuth: OAuth (Open Authorization) is an open standard for token-based authentication and

authorization on the Internet.

73

PHP: PHP is a widely used, open source project, that is especially used for web development
purposes. It is a server-side web programming language [http-18].

Polly Filling: Polyfilling term is used when a web browser did not support a new javascript
functionality, users need a simulation code for this on that browser. That simulation
codes are generally called polyfills.

Pure Javascript Function: The pure function is always returns the same result for same
arguments passed in. It does not depend on any state, or data, change during a
program’s execution. It must only depend on its input arguments. Pure functions do not
produce any observable side effects such as network requests, input and output devices,
or data mutation.

Pure Reducers: Reducers written as pure functions called pure reducers.

React Component: A re-usable code block called component for web applications built with
ReactJS library.

React Hot Loader: React JS libraries webpack hot module replacement plugin extension.
Used to hot load reactjs applications.

React JS: ReactJs is a javascript library for building User Interfaces. It is owned by Facebook
and it is also open source project.

Redux JS: Redux is a predictable state container for JavaScript apps. It is an open source
project.

Responsive: Responsive is a common term used for applications supporting multiple screen
sizes at the same time. It is used mostly for web and mobile applications.

Single Page Application: The term “single-page application” (or SPA) is usually used to
describe applications that were built for the web. These applications are accessed via a
web browser like other websites, but offer more dynamic interactions resembling
native mobile and desktop apps. The difference is all the application is on just single
html file.

Socket: Socket is a common term that is used to name the connection between 2 applications.

Socket.io: Socket.io is an open source project for giving applications a web socket
infrastructure.

Webpack: Webpack is a static module bundler for modern JavaScript applications. It’s an

open source project.

74

W3 Consortium: W3 org is the consortium that defines the standards of web. The World
Wide Web Consortium (W3C) is an international community that develops open

standards to ensure the long-term growth of the Web.

75

