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ABSTRACT

DEVELOPING TECHNIQUES FOR ROBUSTNESS OF
PRIVACY-PRESERVING DISTRIBUTED COLLABORATIVE FILTERING

Burcu YILMAZEL

Department of Computer Engineering
Anadolu University, Graduate School of Science, October, 2016

Supervisor: Assoc. Prof. Dr. Cihan KALELİ

Success of collaborative filtering systems strongly depend on having adequate
data. Due to customers’ shopping habits and increasing number of e-commerce
sites, data collected for referral purposes might be distributed among various sites.
Therefore, especially for newly established companies, o↵ering recommendation ser-
vices might turn out to be a trouble, due to lack of qualified data. To overcome
this challenge, collaboration of online vendors on distributed data while preserving
privacy has become an important topic. Researchers have proposed several privacy-
preserving distributed collaborative filtering schemes, which enable collaboration of
online vendors, even the competing ones, on distributed data without jeopardizing
privacy. However, such schemes have not been evaluated in terms of robustness
against attacks. If manipulating the outcomes of privacy-preserving distributed col-
laborative filtering algorithms by injecting fake profiles is possible, shilling attacks
might be an obstacle for collaboration. Online vendors, who are unsure of being
subject to shilling attacks, might refrain from cooperation, even if they need it for
o↵ering more useful recommendation services to their customers.

In this dissertation, robustness of state-of-the-art privacy-preserving distributed
collaborative filtering schemes proposed for arbitrarily distributed data are analyzed
against shilling attacks. A new attack strategy that can be applied on arbitrarily
distributed data, and used in generation of distributed adaptations of formerly pro-
posed attack models is outlined. Empirical studies show that attacks generated
by the proposed strategy are e↵ective in manipulating predicted outcomes, hence,
despite privacy, these schemes are not resistant to attacks. The reasons of why
existing shilling attack detection methods cannot be directly employed on arbitrar-
ily distributed data are discussed. To protect these algorithms against attacks,
distributed version of a well-known classification-based attack detection method is
proposed, which can operate on arbitrarily distributed data. Real data-based experi-
ments demonstrate that the proposed detection method is able to identify distributed
attack profiles on arbitrary data with privacy. Moreover, the need for collaboration
in detection of distributed attacks is exposed with experimental analyzes.

Keywords: Robustness, Shilling Attacks, Profile Injection Attacks, Detection,
Distributed Data, Arbitrarily, Recommendation, Collaborative
Filtering, Privacy, E-commerce.
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ÖZET

GİZLİLİĞİ KORUYAN DAĞITIK VERİ TABANLI ORTAK FİLTRELEME

METOTLARININ GÜRBÜZLÜĞÜ İÇİN TEKNİKLER GELİŞTİRİLMESİ

Burcu YILMAZEL

Bilgisayar Mühendisliği Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Ekim, 2016

Danışman: Doç. Dr. Cihan KALELİ

Ortak filtreleme sistemlerinde başarıya ulaşabilmek için yeterli ve uygun veriye

sahip olmak gerekir. Internet alışverişlerindeki kullanıcı tercihleri ve e-ticaret firma-

larındaki çeşitlilikten dolayı, analiz için kullanılabilecek veri birçok farklı kaynağa

dağılmış durumdadır. Nitelikli verinin azlığı, özellikle yeni kurulan firmalar için,

öneri hizmetlerinin sağlanmasında önemli bir sorun teşkil eder. Bu sorunun çözümü

için dağıtık veri üzerinde işbirliği yapılması, bu işbirliği esnasında da gizliliğin korun-

ması önemli bir araştırma konusu haline gelmiştir. Dağıtık ortak filtreleme üzerine

yapılmış birçok çalışma bulunmaktadır. Bu çalışmalar ile online sağlayıcıların gizlilik

ilkelerini ihlal etmeden işbirliğinde bulunmaları sağlanmıştır. Fakat bu çalışmalar,

ataklara karşı gürbüzlük açısından değerlendirilmemiştir. Sahte profil enjeksiyonu

ile gizlilik koruyan, dağıtık ortak filtreleme algoritmalarının sonuçlarına müdahale

edilebilirse, shilling ataklar işbirliğine engel oluşturabilir. Shilling ataklarına karşı

sistemine güven duymayan bir online sağlayıcı, daha iyi öneri hizmeti sunabilme

fırsatına karşın işbirliğinden kaçınabilir.

Bu tezde, gizlilik koruyan dağıtık ortak filtreleme yöntemlerinin, gelişigüzel

dağıtılmış veride shilling ataklara karşı gürbüzlüğü incelenmiştir. Gelişigüzel dağı-

tılmış veri üzerine uygulanabilecek yeni bir atak stratejisi belirlenmiş ve bu strateji

daha önceki atak modellerinin dağıtık uyarlamalarının oluşturulmasında kullanıl-

mıştır. Deneysel çalışmalar, öne sürülen strateji ile oluşturulan atakların tahmin

edilen sonuçları değiştirmede etkili olduğunu, dolayısıyla da bu sistemlerin gizliliğe

rağmen saldırılara açık olduğunu göstermiştir. Mevcut shilling atak tespit yöntem-

lerinin, gelişigüzel dağıtık veride uygulanamamasının nedenleri açıklanmıştır. Bu al-

goritmaları ataklardan korumak için, çok iyi bilinen sınıflandırma tabanlı bir tespit

yönteminin dağıtık versiyonu öne sürülmüştür. Gerçek veri kullanılarak yapılan

deneyler, öne sürülen yöntemin atak profillerini gizlilik kuralları çerçevesinde tespit

edebildiğini göstermiştir. Ayrıca, dağıtık atakların tespiti için tarafların işbirliğinin

gerekliliği deneysel analizlerle kanıtlanmıştır.

Anahtar Sözcükler: Gürbüzlük, Shilling Atakları, Profil Enjeksiyon Atakları,

Bulma, Dağıtık Veri, Rastgele, Öneri, Ortak Filtreleme,

Gizlilik, E-ticaret.
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1. INTRODUCTION

The truth is incontrovertible. Malice

may attack it, ignorance may deride it,

but in the end, there it is.

–Winston Churchill

Due to the explosive use of the Internet, the amount of accessible digital in-

formation has been growing incessantly. According to business intelligence startup

Domo’s mind-blowing statistics for 2015; every minute of every day YouTube1 users

upload 300 hours of new video, Twitter2 users send more than 347,000 tweets, Face-

book3 users like more than 4.1 million posts, Amazon4 receives more than 4,310

unique visitors, and Vine5 users play more than 1 million videos (Kim, 2015).

While these statistics prove the staggering increase in online data, they also re-

veal impossibility of human processing. Although richness of data may be perceived

as valuable, actually it puzzles individuals while making decisions, and discovering

appropriate information, and thus brings the “information overload problem” with

itself (Berkovsky and Freyne, 2015). In order to cope with information overload,

and to simplify information discovery, computer-based personalized applications,

which take into account the preferences and demands of individuals, are required

(Bobadilla et al., 2013). One type of such applications that has become very popular

both in research community, and industry is recommender systems (Ekstrand et al.,

2011; Berkovsky and Freyne, 2015).

Recommender systems are emerging software tools, which provide users with

the ability to find interesting items among many alternatives (Burke, 2002; Ricci

et al., 2015). These systems are beneficial for both customers and online-vendors.

1https://www.youtube.com
2https://twitter.com
3https://www.facebook.com
4https://www.amazon.com
5https://vine.co
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Recommender systems assist customers to determine the most appropriate products

that best meet their needs among the potentially huge range of goods and services

available (O’Mahony, 2004). Many customers prefer online shopping, however, not

to lose money, waste time, and not to be unhappy by buying something they might

not like, customers ask recommendations before deciding on what to buy. In order

to help customers to identify the most relevant products with little e↵ort, and hence

to achieve high level of customer satisfaction, to promote their sales and profits, and

to attract customers’s attention, various e-commerce companies integrate recom-

mender systems into their solutions (Schafer et al., 2001). In the past two decades,

there has been a lot of research about recommender systems, and a number of

ways have been proposed to produce automated referrals including collaborative,

content-based, knowledge-based, demographic, or hybrid techniques (Adomavicius

and Tuzhilin, 2005; Ekstrand et al., 2011; Bobadilla et al., 2013).

1.1. Collaborative Filtering

Collaborative filtering (CF) is the most successful and widely used recommender

technology that has been integrated into many e-commerce and online systems for

recommendation purposes. The term CF takes place in the literature for the first

time in 1992 by the designers of Tapestry project (Goldberg et al., 1992), which

is one of the first recommender systems used for e-mail filtering. Through CF,

users can get recommendations about a film or music that they wish to buy, or a

restaurant, cafe or hotel that they want to go, or on any every day activity that a

human can provide a preference (Canny, 2002).

On the basis of the user preferences given to a variety of products, CF algo-

rithms produce desired referrals. The representation of users’ preferences on di↵erent

products may vary according to the data collection method of the system. For ex-

ample, a company may wish customers to express their preferences with numerical

values within a rating interval (e.g., 1-5 stars). Some companies consider ordinal

values as user preferences, where ordinal categories represent the possible level of
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user opinion (e.g., Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree).

Sometimes it is preferable to know whether a customer likes an item or not more

clearly, instead of knowing how much the item is liked. In this case, companies ask

for binary values (e.g., like/dislike, interested/not interested, or good/bad), where

positive opinion is represented by 1, and negative opinion is represented by 0. After

creating the preference vectors with the desired data collection method, customers

send them to service providers. For example, let’s V
A

be the preference vector of

customer A, and let’s assume that the service provider asks for customer A’s pref-

erences on six di↵erent products in a 5-point rating scale. In this case, V
A

can be

as {−,2,−,4,3,−}, where “-” represents that the user has no preferences on that

product. According to V
A

it can be stated that customer A did not much like the

second product, but she really liked the fourth one. Now, customer A can send V
A

to online shopping site to get a recommendation on whether she will like or dislike

the first product.

The basic ideas behind CF are that users who like (or dislike) similar items

in the past most probably will like (or dislike) other items similarly in the future

(O’Mahony, 2004; Goldberg et al., 2001; Yakut and Polat, 2012a), and the prefer-

ences of users remain stable and consistent over time (Jannach et al., 2010). Under

these assumptions, the main goal of CF systems is to provide referrals for a partic-

ular user u
a

, called the active user, based on the preferences of other like-minded

users (Sarwar et al., 2001). The general CF process is shown in Figure 1.1. Tradi-

tional CF systems first construct a n ×m user-item matrix from the collected data,

where n represents the number of users and m represents the number of items in

the system. Similarly, U = {u1, u2, ..., un

} and I = {i1, i2, ..., im} represent the list

of users and items in the system, respectively. Each cell of the user-item matrix is

filled with the corresponding user rating if the user has expressed an opinion about

that item. The preferences of users can be gathered in one of two ways. Preferences

may be explicitly entered by the users of the system through ratings/reviews (ex-
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plicit rating), or implicitly inferred from user activities, such as purchase history,

web logs, or URL references (implicit rating) (O’Mahony, 2004; Ricci et al., 2015;

Herlocker et al., 1999). When the active user u
a

requests a referral for a target

item (q), the most similar k users in the system are determined, and then based on

the preferences of these neighbours, CF algorithm provides one of the following two

basic functionalities (Sarwar et al., 2001; Polat and Du, 2008):

(i) Prediction - is a numerical value p
aq

showing the estimated likeliness of a target

item q for u
a

.

(ii) Recommendation - is a sorted list of items that will be liked by u
a

, denoted

as top-N recommendations.

There are three classes of approaches that are commonly used in CF: memory-

based algorithms, model-based algorithms, and hybrid approaches. Memory-based

algorithms estimate referrals over the entire user-item matrix (Herlocker et al., 1999;

Sarwar et al., 2001, 2000). On the other hand, model-based algorithms first create

a model from user-item matrix o↵-line, and then by using that model generate

referrals online (Basu et al., 1998; Breese et al., 1998; O’Connor and Herlocker,

1999; Goldberg et al., 2001). Since model-based algorithms operate over a pre-

generated model, they are faster than memory-based algorithms. However, the

accuracy of memory-based algorithms is better. Though it is di�cult to insert new

data into model-based algorithms, it is an easier task in memory-based ones’. Hybrid

approaches are proposed to avoid the limitations of memory-based and model-based

algorithms, and to improve performance (Su and Khoshgoftaar, 2009).

Memory-based algorithms are among the earliest, and most practically applied

CF algorithms, which are also referred to as neighborhood-based (Breese et al., 1998),

heuristic-based (Adomavicius and Tuzhilin, 2005) or traditional CF algorithms (Ag-

garwal, 2016b; Ning et al., 2015). In order to make referrals, memory-based algo-

rithms use the stored user-item matrix directly, and compute similarities between
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neighbours by using a variety of similarity metrics, such as Pearson Correlation (PC)

(Resnick et al., 1994), Cosine Similarity (Breese et al., 1998), Spearman Rank Cor-

relation (Herlocker et al., 1999), Mean Squared Di↵erence (Shardanand and Maes,

1995), or entropy-based uncertainty (Herlocker et al., 2002). In this point, neigh-

bours can be defined either based on users (user-based), or on items (item-based).

In user-based systems, ratings provided by similar users of a target user are used in

recommendation. Hence, to detect similar users, similarity is computed between the

rows of the user-item matrix (Aggarwal, 2016b). On the other hand, in item-based

systems, ratings of the user for similar items of a target item are used in predict-

ing the rating of that user for that target item (Ning et al., 2015). Therefore, to

detect similar items, similarity is computed between the columns of the user-item

matrix (Aggarwal, 2016b). For large scale online-vendors with huge amounts of

users and items, such as Amazon.com (Linden et al., 2003), item-based methods are

more preferable due to response speed, on the contrary, others, such as GroupLens

(Konstan et al., 1997), and Ringo (Shardanand and Maes, 1995), prefer user-based

methods due to accuracy.

Model-based algorithms are proposed to overcome the shortcomings of memory-

based approaches such as sparseness and scalability. Although model-based algo-

rithms are faster than memory-based algorithms as they run over a prototype of

the original data, they usually su↵er in terms of accuracy and it is di�cult to fine-

tune their parameters. The main idea of these algorithms is to create a summarized

model of the data o↵-line, and then generate referrals online by using that model.

The models of user preferences are constructed by utilizing the databases. During

the model building process, various data mining and machine learning techniques

such as clustering, dimensionality reduction, Bayesian classifiers, decision trees, and

association rule mining are applied (Adomavicius and Tuzhilin, 2005). The clus-

tering model approaches CF as a classification problem (Basu et al., 1998; Breese

et al., 1998; Ungar and Foster, 1998) to group similar users or items. Dimensionality
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reduction techniques including Principle Component Analysis (PCA) and Singular

Value Decomposition (SVD), are applied to project data into a reduced dimensional

space (Sarwar et al., 2000; Goldberg et al., 2001); however, they generally result in

loss of meaningful information (Russell and Yoon, 2008). The Bayesian networks

are exploited to create a probabilistic model for CF problems (Heckerman et al.,

2000). Association rule mining algorithms are used to explore association between

co-purchased items (Sarwar et al., 2000). The items are recommended based on the

strength of the association between items.

In addition to memory-based and model-based algorithms, researchers also

propose hybrid schemes to avoid the limitations of former approaches and improve

the performance. Di↵erent techniques can be combined in many ways. The Ripper

machine learning system is trained with a combination of content data and training

data to produce better recommendations (Basu et al., 1998). Content-boosted CF

algorithms generate more accurate results in recommendation (Melville et al., 2002).

Despite the fact that utilizing content-based filtering with CF increases recommen-

dation accuracy, these hybrid approaches have complexities at the implementation

phases (Pazzani, 1999; Burke, 2002). Some researchers propose methods that com-

bine memory and model-based CF algorithms. In a hybrid probabilistic approach,

memory and model-based techniques are combined to reduce complexity with decent

accuracy (Yu et al., 2004). Some combinations of memory-based and model-based

methods provide very good results in terms of accuracy (Koren, 2008).

1.2. Challenges of Collaborative Filtering

Although CF has been very successful in information filtering and take an impor-

tant role in e-commerce applications, this type of algorithms also have a number

of limitations. Main problems of CF, as outlined in O’Mahony (2004) and Su and

Khoshgoftaar (2009) are as follows:
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1.2.1. Insu�cient data

Providing accurate and reliable referrals is one of the main purposes of CF. Since

CF algorithms work entirely on ratings collected from customers on many goods

and products, in order to o↵er precise and dependable referrals, online vendors

need to have su�cient amount of data. Seeing that the quality of referrals rely on

the quantity of data, e-commerce companies, which have a lot of users, are more

likely to generate accurate recommendations than the companies with inadequate

number of users. Moreover, poor qualified results that fail to meet user expectations

adversely a↵ect sales. Customers may feel uncomfortable, and may decide not to

purchase from that vendor anymore. In order to be ahead of their competitors

and to be more preferable by users, e-commerce companies should generate more

truthful recommendations. However, for some e-companies, especially for the newly

established ones, this is not always possible due to lack of qualified data, and it

turns out to be a challenge (Kaleli and Polat, 2012b; Polat and Du, 2008).

1.2.2. Privacy of data holders

Since shopping habits of customers vary from one another, user preferences might

be distributed among two or more companies. For companies particularly having

inadequate data, collaborating with other companies might be a solution to provide

better referrals, and to relieve the challenges caused by insu�cient data. However,

privacy is the main obstacle in this cooperation. First of all, rating databases of

companies contain detailed information about buying habits and preferences of the

customers (Jannach et al., 2010). This personal information is especially valuable

in the recommender system domain, and so, companies are afraid of losing their

confidential data and capital. Privacy and legal reasons are the other issues that

hesitate such collaboration. According to reports published by the Organization for

Economic Co-operation and Development (OECD), personal data should be pro-

tected by the companies against risks such as unauthorized access, use, modification

or disclosure of data (OECD, 2000, 2005).
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Due to privacy concerns and other issues induced from these concerns, such as

financial fears, legal problems, and data control, companies might hesitate to share

their own data with each other (Bilge et al., 2013; Jeckmans et al., 2012). Therefore,

privacy is an important challenge, which must be ensured for the cooperation of the

companies.

1.2.3. Shilling attacks

The main motivation behind CF methods depends on user preferences, and therefore,

user preference vectors are very essential components for recommender systems.

However, collecting user preferences causes the main weakness that CF algorithms

might face, shilling or profile injection attacks (O’Mahony et al., 2002; Burke et al.,

2006b).

Online vendors employ CF algorithms to provide referrals to their customers,

so that they can increase their sales and profits (Güneş et al., 2013b). While online

vendors make use of CF algorithms to get ahead of their competitors, malicious users,

vendors, or rivals might try to insert fake profiles into their user-item matrices in

order to a↵ect the predicted ratings, or reduce the performance of the system on

behalf of their advantages (O’Mahony et al., 2002). For instance, a malicious vendor

who wants to increase her own products’ popularity, might create fake user profiles

and send them to the central server. Also, with the same method, a vendor might

try to decrease popularity of a competitive merchant’s products. Due to the inserted

fake profiles; quality of the data decreases, while amount of available data increases.

Moreover, low qualified or noisy data make accuracy worse, while augmented data,

due to inserted fake profiles, make online performance worse (Güneş et al., 2014).

Consequently, CF systems might be defenceless against shilling attacks and for the

overall success, it is compulsory to handle them (Burke et al., 2005a).
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1.3. Solutions for Eliminating Challenges

CF is one of the promising research fields in literature, and there are several stud-

ies e↵ort to overcome the common limitations of CF algorithms. In this section,

proposed solutions for eliminating the aforementioned challenges are explained.

1.3.1. Collaboration

Due to need for adequate user data during CF processes, collaboration of online

vendors on distributed data while preserving their privacy has become an important

topic. In order to make the cooperation of online vendors, even the competing ones,

possible on distributed data without disclosing privacy, several Privacy-Preserving

Distributed Collaborative Filtering (PPDCF) schemes have been proposed. In the

proposed studies, researchers consider collaboration of two or more parties on three

di↵erent data distribution scenarios, i.e., horizontal, vertical, and arbitrary. In hor-

izontally distributed data, di↵erent data holders gather the preferences of di↵erent

set of users for common set of items. Conversely, in vertically distributed data,

di↵erent data holders gather the preferences of common set of users for di↵erent set

of items. Unlike horizontal and vertical data distribution scenarios, in arbitrarily

distributed data (ADD), which is combination of multiple horizontal and vertical

partitioning, both the set of users and items are common for data holders.

1.3.2. Shilling attacks

There are many Internet users and these users may not be all good intentions in

terms of feedback and cooperation. For online vendors, it is not easy to distinguish

this kind of malicious users. However, for the overall success of CF algorithms, it is

crucial to cope with shilling attacks. Researchers present several studies on shilling

attacks, which can be grouped into four major classes (Güneş et al., 2014).

One group of research focuses on shilling attack strategies and generating pro-

file injection attacks against CF algorithms. The potentiality of influencing the

consequences of CF algorithms by inserting shilling attacks into the system, and the
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concept of system robustness is introduced by O’Mahony et al. (2002). While the

amount of knowledge required for the attacker to generate shilling attacks is stud-

ied by O’Mahony et al. (2005), Lam and Riedl (2004) discuss the e↵ects of shilling

attacks on di↵erent aspects, such as utilized algorithm as being recommendation or

prediction, and as preferring user-based or item-based algorithms. Moreover, sev-

eral shilling attack strategies for both memory-based and model-based approaches

are identified and designed to manipulate the systems (O’Mahony, 2004; Mobasher

et al., 2005, 2006b). Some of these include random attack, average attack, band-

wagon attack, segment attack, reverse-bandwagon attack, and love/hate attack.

Other group of research focuses on detecting shilling attacks. According to

some researchers, preventing attacks is impossible. However, e↵ects of known at-

tack models can be diminished by detecting attack profiles before generating rec-

ommendations or predictions, and hence, by applying attack detection methods,

robust CF algorithms can be obtained (Güneş et al., 2014). With this idea, many

shilling attack detection algorithms based on classification (Burke et al., 2006b;

Williams and Mobasher, 2006; Williams et al., 2007; Zhang and Zhou, 2012), clus-

tering (O’Mahony, 2004; Bhaumik et al., 2011; Chakraborty and Karforma, 2013),

variable selection (Mehta et al., 2007a), statistical approaches (Zhang et al., 2006c;

Li and Luo, 2011; Gao et al., 2014) are proposed. Among these, classification-based

methods, which make use of generic attributes, model-specific attributes, and intra-

profile attributes, are very e↵ective, since shilling attack models are designed with

respect to certain patterns (Burke et al., 2006a; Mobasher et al., 2007b; Williams

et al., 2006a).

Another group of research focuses on analyzing the robustness of various CF

algorithms with respect to shilling attacks. Since robustness analysis of CF algo-

rithms indicates how much the algorithm is resistant to shilling attacks, researchers

examine the robustness of most commonly used CF algorithms with respect to at-

tacks (O’Mahony et al., 2004a; Lam and Riedl, 2004; Burke et al., 2005a; Mobasher
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et al., 2005, 2007b). In addition to robustness analysis of numeric ratings-based

CF schemes against shilling attacks, a few researcher also analyze the robustness of

binary ratings-based CF algorithms (Long and Hu, 2010; Kaleli and Polat, 2013).

The others focus on developing robust CF algorithms against shilling attacks,

which directly incorporate the attack-profile removal step absorb into the system.

O’Mahony et al. (2004b) propose to avoid attacks through intelligent neighbour

selection. Ji et al. (2007) propose a robust architecture, which considers the trust

relationships between users in web of trust. Mehta and Nejdl (2008) demonstrate

that SVD method can be used to increase the robustness of CF algorithms. Van Roy

and Yan (2009, 2010) propose linear and asymptotically linear CF algorithms, which

are robust against attacks.

1.4. Problem Definition

CF algorithms are one of the indispensable components of e-commerce companies.

For these algorithms to produce truthful referrals, su�cient amount of data is re-

quired. However, especially for the young companies, it is di�cult and time con-

suming to obtain enough data. Due to shopping habits, user preferences on various

products might be distributed between two or more e-commerce sites. Companies

holding distributed or inadequate data might think of collaboration to diminish

the challenges caused by insu�cient data. However, privacy, legal, and financial

concerns of the companies might obstruct this collaboration. As stated before, re-

searchers propose several PPDCF solutions for collaboration of online vendors on

distributed data while guaranteeing privacy. These studies make the collaboration

of online vendors with insu�cient data possible, benefitting them by increasing the

quality of CF services without compromising privacy. Even though accuracy prob-

lems caused by insu�cient data are avoided and privacy expectations that obstacles

collaboration are established with these studies, existing PPDCF algorithms might

be vulnerable to shilling attacks.

In this dissertation, robustness of PPDCF algorithms against shilling attacks
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is questioned. Although there are numerous works on shilling attacks, so far there

is no work that examines PPDCF algorithms in terms of robustness against shilling

attacks. If manipulating the outcomes of PPDCF algorithms by injecting fake pro-

files is possible, then shilling attacks might be an obstacle for collaboration, in spite

of the benefits. While PPDCF solutions privately handle accuracy problems caused

by inadequate data, shilling attacks might take away the advantages of cooperation.

If these systems are vulnerable to attacks, malicious users, who know the collabora-

tion of online vendors, might easily e↵ect the results of PPDCF solutions on behalf

of their benefits. Due to the inserted fake profiles, the quality of referrals might be

decreased. Also, augmented data might reduce online performance of the PPDCF

algorithms. Therefore, online vendors, who are unsure of being subject to shilling

attacks, might refrain from cooperation, even they need it to o↵er more useful rec-

ommendation services to customers. Hence, the robustness of PPDCF algorithms

proposed on ADD is analyzed in this dissertation.

Moreover, if the proposed PPDCF solutions are defenceless against shilling

attacks, in order to make the cooperation of online vendors on distributed data

possible, detection of shilling attacks is compulsory. As briefly stated, there are many

detection algorithms proposed for enhancing robustness of CF algorithms against

profile injection attacks. However, all the existing methods are centralized solutions,

which work on whole data. In other words, these methods make use of knowledge

about all of the user-item matrix, and whole attack detection process is in control of

a single data owner. Due to privacy constraints, in PPDCF solutions collaborating

companies can only operate on their own data, yet not on the integrated data.

Hence, existing attack detection methods cannot be directly applied to PPDCF

algorithms proposed on ADD schemes. Therefore, shilling attack profiles on ADD

cannot be identified by employing existing detection methods. Hence, providing

solutions for detecting shilling profiles on ADD without jeopardizing data owners’

privacy is another point that this dissertation focuses on.
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1.5. Contributions

Main contributions of the dissertation can be summarized in the following.

A new research problem, which is robustness of PPDCF schemes against

shilling attacks, is pointed out. PPDCF schemes, which enable collaboration of

online vendors holding insu�cient data to provide accurate referrals with privacy,

might be subject to shilling attacks. Existing PPDCF solutions have not yet been

evaluated in terms of robustness against attacks. Most of the research in shilling

attack literature focus on robustness analysis of central server-based systems against

shilling attacks, and in all the solutions centralized data is considered. Although,

there are some studies that analyze the robustness of privacy-preserving collab-

orative filtering (PPCF) algorithms against attacks, the privacy of individuals is

considered in these solutions (Güneş et al., 2013a,b; Bilge et al., 2014a). However,

in PPDCF schemes, confidentiality of data holders is essential. It is obvious that, if

online vendors are not sure about being robust against malicious users, they might

hesitate to collaborate, even if they need it. Necessity of analyzing PPDCF algo-

rithms in terms of robustness against shilling attacks is testified in this dissertation.

ADD is chosen as the focus, hence the robustness of PPDCF algorithms pro-

posed on ADD are examined. Since shilling attack strategies described in previous

studies are designed to be mounted against central server-based systems, in order to

manipulate the results of PPDCF algorithms proposed on ADD, new attack strate-

gies that can be applied on ADD are required. Strategies for designing shilling

attacks against ADD are discussed. A method that injects attacks into the system

by partitioning the attack profile between data holders, which can be employed both

for numeric and binary data, is outlined. Empirical studies show that attacks gen-

erated by the proposed method are capable of biasing the outcomes of the PPDCF

algorithms proposed on ADD.

Robustness analyzes of three state-of-the PPDCF schemes proposed on ADD
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are performed by means of shilling attacks. In the empirical studies, the proposed

shilling attack design methodology for ADD is employed while inserting the well-

known shilling attack models into these schemes. Proposed attack design strategy

prove to be successful in altering the predictions of the PPDCF algorithms on ADD

for cases of both numeric and binary data. Thus, in spite of privacy protection,

vulnerability of the PPDCF schemes proposed for ADD against shilling attacks is

disclosed in this dissertation (Yılmazel and Kaleli, 2016).

Robustness analyzes of PPDCF algorithms on ADD, also reveal the need for

defending mechanisms against attacks. Looking at the results, online vendors who

are unsure of being subject to shilling attacks might hesitate to collaborate, even

if collaboration is beneficial for them to o↵er more accurate CF services. Hence,

in order to make the cooperation of online vendors on distributed data possible,

detection of shilling attacks is compulsory. This dissertation shows that, in order to

make online vendors collaborate on distributed data, solutions to detect attacks on

ADD without jeopardizing data owners’ privacy are required as PPDCF solutions

are defenceless against shilling attacks.

In this dissertation, the reasons of why existing shilling attack detection meth-

ods cannot be directly employed in PPDCF algorithms on ADD are discussed in

details. Moreover, the need of new or distributed versions of the existing attack de-

tection solutions, which can be employed on ADD without jeopardizing data owners’

privacy, is explained. Even though there are many solutions proposed for enhancing

robustness of CF algorithms against attacks, all the existing methods are for the

case where data is collected in one center. Hence, existing attack detection meth-

ods work on centralized data, and whole detection process is controlled by a single

data holder, who owns all data. Unlike existing methods, when data is arbitrarily

distributed between two parties, each party can only operate on her own data, due

to privacy constraints. Therefore, existing detection methods cannot be directly ap-

plied on distributed data, and shilling attack profiles on ADD cannot be identified.
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New detection algorithms, or distributed versions of the existing attack detection

solutions are required.

To protect PPDCF algorithms proposed on ADD against attacks, distributed

version of a well-known classification-based attack detection method, which can op-

erate on ADD while preserving privacy, is provided through this dissertation. Private

protocols are developed to calculate the desired classification attributes collabora-

tively between two parties. To achieve confidentiality, homomorphic encryption,

and random filling techniques are utilized. Empirical analyzes show that with the

proposed method, it is still possible to detect attacks on ADD e↵ectively without

jeopardizing data owners’ privacy.

The need for collaboration in detection of distributed attacks is also exposed.

With empirical analyzes it is shown that even if collaborative parts have their own

detection mechanisms working on their own sides based on their own data, dis-

tributed attacks, which are injected by the proposed attack generation strategy for

ADD, cannot be detected. Hence, in order to identify distributed shilling attacks

profiles on ADD, collaboration is required.

1.6. Outline of the Dissertation

The remainder of this dissertation is organized in the following manner:

• InChapter 2 relevant background and preliminaries about shilling attacks are

presented. A comprehensive review of shilling attack studies on major research

fields are described. Basic shilling attack models subject to many research are

briefly explained. In particular, a classification-based shilling attack detection

method, and descriptions of required classification attributes are described,

which are used in later chapters.

• In Chapter 3 relevant background on PPDCF algorithms is reviewed. Data

partitioning scenarios in PPDCF schemes are described. The definition of pri-

vacy, considered in this dissertation, is explained. Privacy protection methods
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utilized to ensure the declared privacy constraints are discussed.

• In Chapter 4 state-of-the-art PPDCF schemes proposed for ADD are de-

scribed.

• In Chapter 5 a new research problem, which is robustness of PPDCF schemes

against shilling attacks, is introduced. Despite privacy, vulnerability of the

schemes described in Chapter 4 against shilling attacks is discussed. For in-

jecting attack profiles on ADD, an attack strategy that can be used in gen-

eration of distributed adaptations of formerly proposed attack models both

for numeric and binary data is proposed. E↵ects of the attacks injected by

applying the proposed attack strategy on PPDCF schemes proposed for ADD

are analyzed.

• In Chapter 6 distributed version of the classification-based shilling attack de-

tection method described in Chapter 2 is developed to defend PPDCF schemes

proposed for ADD against shilling attacks injected by the attack strategy in-

troduced in Chapter 5. The need for collaboration in attack detection on ADD

is empirically exposed.

• In Chapter 7 concluding remarks and recommendations for further research

are discussed.
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2. SHILLING ATTACKS

In this chapter, a comprehensive review of shilling attack studies on major research

directions are given. Then, the general form of attack profiles are discussed. The

most popular and well-known shilling attack models subject to many research, are

briefly explained. Finally, a classification-based shilling attack detection method,

which is chosen to work on, is described. Descriptions and formulas of all the

required classification attributes, which need to be computed, are presented.

2.1. Shilling Attack Studies

The possibility of manipulating the outcomes of CF algorithms by injecting mali-

cious profiles into the system database is introduced by O’Mahony et al. (2002).

Since then, a lot of research in di↵erent aspects are studied on “shilling” or “profile

injection attacks”, which are grouped as shilling attack strategies and generating

profile injection attacks against CF algorithms, detecting shilling attacks, analyzing

the robustness of existing CF algorithms, and developing robust algorithms that are

intrinsically resistant to attacks (Güneş et al., 2014; Burke et al., 2015; Aggarwal,

2016a).

Shilling Attack Strategies & Generating Profile Injection Attacks

against CF Algorithms: Initially, O’Mahony describes several shilling attack

strategies toward CF systems in his doctoral dissertation, in which attacks are gen-

erated by inputting bogus data through the normal system interface, and no direct

access to database is assumed (O’Mahony, 2004). The experimental results obtained

in his dissertation show up the noteworthy vulnerability of the commonly used class

of CF algorithms, and the necessity of some domain knowledge for generating suc-

cessful attacks. Then, O’Mahony et al. (2005) examine the extent of such domain

knowledge and discover that even when a small amount of such knowledge is avail-

able, it is possible to implement successful attacks. Lam and Riedl (2004, 2005)
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introduce two basic attack models, namely random and average attacks, and try to

explore the answers of four open questions related to the e↵ectiveness of shilling at-

tacks. Burke et al. (2005d) outline major issues in building secure CF systems, and

introduce several other attack models, including the consistency, segmented, and

bandwagon attacks. Moreover, Burke et al. (2005a) examine the success of band-

wagon and popular item attacks against CF systems. Later, Burke et al. (2005b,c)

propose the segment attack model, which concentrates on a targeted set of users

with similar tastes. In addition to these, reverse bandwagon and love/hate attack

models are introduced by Mobasher et al. (2007b) as nuke attacks. Attack mod-

els described up to this point are for memory-based CF algorithms. Cheng and

Hurley (2009) discuss the design of e↵ective attack strategies targeting model-based

CF algorithms, and propose diverse and obfuscated attacks. For reputation-based

recommender systems copied-item injection attack is presented by Oostendorp and

Sami (2009).

Detecting Shilling Attacks: Since bogus data injected into the system

reduce the quality of CF data, and cause to produce unsatisfactory referrals, which

will lead user dissatisfaction; for the overall success of the CF system, it is important

to cope with attacks. Recently, detection of attack profiles has become a very

popular research topic, and several attack detection algorithms have been proposed,

which can be categorised as supervised, unsupervised, or semi-supervised techniques.

Some researchers model attack detection as a classification problem, and apply

supervised learning methods, which try to discriminate “Attack” profiles from “Au-

thentic” ones based on the detection attributes calculated for each profile. Burke

et al. (2006a,b) introduce a set of classification attributes derived based on the ex-

pected characteristics of attack profiles, including both generic attributes, several of

which are extended from attributes originally proposed by Chirita et al. (2005), as

well as model-specific ones. Mobasher et al. (2006b) introduce two more classifica-

tion attributes, Weighted Degree of Agreement and Filler Mean Target Di↵erence,
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which are particularly e↵ective at detecting segment attacks. By using the mix of

known classification attributes with some additional ones, Williams and Mobasher

(2006) examine their combined e↵ectiveness at defending against shilling attacks.

The e↵ectiveness of these studies in attack detection is evaluated generally with the

well-known supervised classification algorithms, such as simple nearest-neighbour

classification using kNN, decision-tree learning using C4.5, and Support Vector Ma-

chine (SVM) (Burke et al., 2006a,b; Mobasher et al., 2006b, 2007b; Williams et al.,

2006a; Williams and Mobasher, 2006). Later, He et al. (2010) classify and detect

shilling attacks with rough set theory. Zhang and Zhou (2012) apply the ensemble

learning approach in attack detection, where the underlying idea of the approach is

to improve predictive ability based on relearning the existing knowledge. They pro-

pose a meta-learning-based detection algorithm, which contains two training phases,

namely base-level training and meta-level training, and uses SVM as the basic learn-

ing method in both phases. This method e↵ectively detects profile injection attacks,

but su↵ers from low precision particularly when the attack size is small. Zhang and

Zhou (2014) also propose an online method, HHT-SVM, for attack detection based

on Hilbert-Huang transform (HHT) and SVM. The crucial point of the algorithm

is the HHT-based feature extraction method, which makes it operate online. Only

limitation of the method is that the SVM classifier needs to be re-trained o✏ine

when new attack types are generated. To improve the performance of attack de-

tection, Morid et al. (2014) applied a kNN supervised classification method to the

influential users, instead of the whole user set. Zhang and Zhou (2015) propose an

ensemble detection model (EDM) by introducing back-propagation neural network

and ensemble learning technique to detect profile injection attacks through selecting

and integrating parts of the base classifiers using voting strategy. In an other work,

Zhang and Chen (2016) illustrate the e↵ectiveness of ensemble method for detecting

shilling attacks based on ordered item sequences (EMDSA-OIS), which uses simple

majority voting strategy to combine the predictive results of multiple C4.5-based

classifiers. Yang et al. (2016) apply a variant of Boosting algorithm, called the re-
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scale AdaBoost (RAdaBoost) as an attack detection method, which is very e↵ective

in some hard scenarios as imbalanced classification.

There are also several studies focus on detecting shilling attacks using unsuper-

vised approaches. O’Mahony (2004) utilizes clustering approach in attack detection

as a neighbourhood selection scheme. Su et al. (2005) introduce a similarity spread-

ing algorithm to detect and prevent group shilling. Mehta et al. (2007a) present

a simple variable selection algorithm using Principle Component Analysis (PCA),

which can be used as a pre-step in any CF algorithm to filter out groups of spam

users that are highly correlated. Later, this approach is utilized in Mehta (2007)

and Mehta and Nejdl (2009), and a PCA-based and Probabilistic Latent Seman-

tic Analysis (PLSA)-based clustering algorithms are presented for attack detection,

among which PCA-based one provides better performance. Bryan et al. (2008)

propose the UnRAP algorithm, which also uses clustering in separating fraudu-

lent attack profiles from genuine users, and builds on the strength of H
v

-score as

its principal metric. Bhaumik et al. (2011) describe an attribute-based k -means

clustering approach to identify attack profiles. Lee and Zhu (2012) adopt a mul-

tidimensional scaling approach to identify distinct behaviours, and propose to dis-

criminate attackers with clustering-based methods. Zhang et al. (2013) propose two

algorithms, CLUTR (clustering by using “trust” to filter out suspicious fake users)

and WCLUTR (clustering with weighed similarities derived from “trust”), to com-

bine clustering with trust among users, and show that both are much more robust

than traditional user-based CF algorithm against average attacks. Chakraborty and

Karforma (2013) consider the problem of attack detection as a problem of outlier

detection in the user rating database, and use Partition around Medoid (PAM) clus-

tering algorithm in detecting attack profiles. Bilge et al. (2014b) utilize the idea of

bisecting k -means clustering in shilling attack detection, which is very successful at

detecting bogus profiles generated from basic attack models. Zhang and Kulkarni

(2014) utilize a spectral clustering algorithm in shilling attack detection.
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Beyond clustering, statistical approaches are also applied in detecting anoma-

lies arise from doubtful ratings. Zhang et al. (2006c) develop a probabilistic ap-

proach built on a Singular Value Decomposition (SVD)-based algorithm, where a

low-dimensional linear model that describes the rating matrix is competed by max-

imizing the log-likelihood of ratings. Hurley et al. (2009) propose to use Neyman-

Pearson statistical detection in order to identify attack profiles. Li and Luo (2011)

build a probabilistic model for attack detection in the framework of probabilistic

generative model. An unsupervised detection algorithm based on beta probability

distribution, Beta-Protection (�P), is proposed by Chung et al. (2013), which fol-

lows the characteristics that an ideal algorithm should have: strives to identify as

many attackers as possible while keeping as many normal users intact as possible,

easy to understand and immune to missing values. Zou and Fekri (2013) develop a

probabilistic inference framework, which utilizes the Belief Propagation algorithm

for inference, and exploits the target items for attack detection. Zhou et al. (2014b,

2015c) study the use of statistical metrics in detecting rating patterns of attackers,

and propose the unsupervised statistical RD-TIA (Target Item Analysis) approach,

which finds the set of suspicious attack profiles using the chosen metrics, and then

refines the set by target item analysis. The authors also adapted this approach for

group attack detection, which is named as DeR-TIA (Zhou et al., 2014a). Bhaumik

et al. (2006) introduce an item-based approach, which aims to identify what items

may be under attack based on the rating activities of the item. They present two

Statistical Process Control techniques; X-bar control limit and Confidence Interval

control limit, for detecting items under attack, and a time-series technique for de-

tecting time intervals. Assuming that rating distributions of items over time can

reveal the presence of attacks, Zhang et al. (2006a) propose a time series based at-

tack detection method, which uses sample average and sample entropy to construct

time series that are appropriate for attack detection. Tang and Tang (2011) present

an attack detection method that takes into account the time attributes of user be-

haviours, namely span, frequency, and mount, which are called as time SFM factors.
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Gao et al. (2014) propose a revised bottom-up discretized approach based on two

common features of all attack models (item abnormality, and attack promptness),

and time intervals. Moreover, they utilize the chi square distribution (�2) to detect

abnormal intervals. Their approach concerns only the ratings of the target item, in-

stead of user profiles; hence it has no correlation with attack models and needs low

computational cost. However, they use a fixed time window, which is an e↵ective

determinant on the detection rate. To overcome the problems of this method, the

same authors propose a dynamic partitioning for time series method based on im-

portant points followed by applying �2 to find abnormal time intervals (Gao et al.,

2015). Zhou et al. (2015b) present the TS-TIA algorithm, which first determines the

suspicious profiles by constructing time series approach proposed by Zhang et al.

(2006a), and then applies TIA method proposed by Zhou et al. (2014b) to detect

anomalies. This algorithm examines the suspected rating segments instead of the

whole rating matrix, which makes it less time consuming and complex at detect-

ing items under attacks in big datasets. Xia et al. (2015) present a dynamic time

interval segmentation technique based item anomaly detection approach that can

detect any attack regardless of the specific attack type through evidence of changes

in rating distribution. Zhang and Kulkarni (2013) propose a graph-based detection

strategy, where the problem is formulated as finding a maximum sub-matrix in the

similarity matrix, which is discovered by transforming the problem into a graph and

merging nodes by heuristic functions or finding the largest component.

To be able to benefit from both supervised and unsupervised learning methods,

some researchers apply semi-supervised learning approaches in attack detection with

an aim of detecting di↵erent attack types simultaneously. Wu et al. (2011) and Cao

et al. (2013) propose a Semi-supervised learning based Shilling Attack Detection

algorithm (Semi-SAD), which first trains a Näıve Bayes Classifier (NBC) on a small

set of labeled users as the initial detector, and then incorporates unlabelled users

with augmented expectation maximization (EM-�) to improve the initial classifier.
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Wu et al. (2012) present a Hybrid Shilling Attack Detector (HySAD), which in-

troduces MC-Relief to select e↵ective detection metrics, and Semi-supervised Näıve

Bayes (SNB
�

) to precisely separate random-filler model attackers and average-filler

model attackers from normal users. There are also some hybrid detection algorithms

that combine two or more base detection methods (Burke et al., 2015). Zhou and

Zhang (2012) propose a hybrid unsupervised approach based on two unsupervised

detection algorithms, namely PCA-based and UnRAP, to detect profile injection

attacks. In Huang et al. (2012), a hybrid decision approach based on modified

versions of two features proposed by Chirita et al. (2005) and UnRAP algorithm

is illustrated. To overcome the class unbalance problems in SVM-based detection

methods, Zhou et al. (2015a, 2016) propose the SVM-TIA detection method con-

sisting of two stages; classification based on Borderline-SMOTE method used to

alleviate the class unbalance problem of SVM classifier, and target item analysis

(Zhou et al., 2014b) to reduce the false positive rate.

Analyzing the Robustness of Existing CF Algorithms: The concept

of system robustness is introduced by O’Mahony et al. (2002) as an additional per-

formance measure for recommender systems. O’Mahony et al. (2004d) examine the

robustness of memory-based CF systems by means of generally used neighbourhood

formation schemes and similarity measures. Burke et al. (2005d) show the vulner-

ability of widely used k -nearest neighbour algorithm. The e↵ects of attack models

in the context of user-based CF, and item-based CF are analyzed, respectively by

Burke et al. (2005a) and Mobasher et al. (2005). Some studies focus on the ro-

bustness of model-based algorithms, and demonstrate the relative robustness and

stability of model-based algorithms over the memory-based approaches (Mobasher

et al., 2006a; Sandvig et al., 2008). However, Cheng and Hurley (2009) argue that

the robustness observed in these studies is due to the fact that the proposed attacks

are not targeting the model-based algorithms, and suggest to design attack strategies

specific for model-based algorithms. Sandvig et al. (2007) look at the robustness
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of association rule mining based CF algorithm, and show that Apriori algorithm

is more robust compared to kNN, k -means, and PLSA approaches. Robustness

of trust-based CF algorithms, and linear CF algorithms are also studied using real

data-based experiments (O’Donovan and Smyth, 2006; Fug-uo and Sheng-hua, 2007;

Van Roy and Yan, 2010).

As well as the robustness of numeric ratings-based CF algorithms, a very few

researcher study the robustness of binary ratings-based CF algorithms. Long and

Hu (2010) compare the robustness of user-based kNN and binary kNN algorithms

under multiple types of profile injection attacks on large dataset. Their empirical

results show that binary CF is more robust than actual ratings based CF against

attacks. Kaleli and Polat (2013) present the binary forms of basic shilling attack

models, and propose a new metric, ratio shift, to assess the success of binary attacks.

Real data-based experiments indicate the possibility of manipulating the prediction

outcomes of NBC-based CF algorithm with the proposed binary versions of the

attack models.

A few studies investigate the robustness of PPCD schemes with respect to

shilling attacks (Güneş et al., 2013a,b; Bilge et al., 2014a). In order to examine

the e↵ects of inserting maliciousness into PPCF databases, Güneş et al. (2013a)

present the modified versions of random and average attack models, and investigate

the robustness of a memory-based privacy-preserving kNN CF scheme in respect

of shilling attacks. In another study, Güneş et al. (2013b) extend this work, and

describe design methodologies to revise six well-known attack models, so that they

can be implemented in privacy-preserving environments. They analyze the robust-

ness of two memory-based PPCF algorithms, kNN and correlation threshold-based

methods, against the revised attack models, and discover that these systems are also

vulnerable to attacks, similar to traditional CF schemes. Bilge et al. (2014a) inves-

tigate the robustness of four well-known model-based PPCF schemes with respect

to shilling attacks. In a more recent work, a hybrid PPCF scheme is tested in terms
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of robustness against shilling attacks (Güneş and Polat, 2015).

Developing Robust CF Algorithms: Researchers also study on devel-

oping robust algorithms, which are intrinsically resistant to attacks. O’Mahony

et al. (2004b,c) propose an intelligent neighbourhood formation and similarity weight

transformation schemes for CF systems, which are secure against malicious attacks.

Matrix factorization approaches based on SVD are applied in several studies as a

robust CF solution (Mehta et al., 2007b; Mehta and Nejdl, 2008; Cheng and Hurley,

2010). Resnick and Sami (2007) present the influence limiter algorithm that is prov-

ably manipulation-resistant. Ji et al. (2007) propose a robust architecture, which

considers the trust relationships between users in web of trust. Linear and asymptot-

ically linear CF algorithms are developed by Van Roy and Yan (2009, 2010), which

are robust against attacks. In more recent works, least median squares estimator

based (Zhang and Sun, 2014), kernel function and Welsch reweighted M-estimator

based robust CF algorithms are introduced (Zhang et al., 2015). A robust rec-

ommendation method based on suspicious user measurement and multidimensional

trust is developed by Yi and Zhang (2016). More detailed research on development

of robust algorithms can be found in literature (Mehta and Hofmann, 2008; Güneş

et al., 2014; Burke et al., 2015; Aggarwal, 2016a).

2.2. Shilling Attack Models

A profile injection attack or shilling attack against a recommender system aims to

shift the recommendation results of the system with regard to a single target item

by inserting a set of attack profiles (Burke et al., 2006a). In general, the intend of

shilling attacks is either to “push” or “nuke” the desired target item. The purpose

of push attacks is to promote or increase the popularity of the target item, in order

to make it look like a good recommendation, when actually it is not (Burke et al.,

2015). Contrarily, nuke attacks aim to demote or reduce the popularity of the target

item, when in reality it is a good option for the customer (Burke et al., 2015). For

instance, an attacker might compel the system to give poor referrals regarding the
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Figure 2.1. General Form of an Attack Profile *(Güneş et al., 2014)

competing products, while aiming to bring forward her own product by adding nuke

and push attacks to the system, respectively.

To manipulate the results of any CF system, an attacker can inject attack

profiles, whose general form is defined by Bhaumik et al. (2006), and consist of m-

dimensional vector of ratings, where m is the total number of items in the system.

These ratings contracting the attack profile can be divided into four parts as depicted

in Fig. 2.1. i
t

is the single target item, whose popularity is manipulated by giving

a rating as determined by the rating function �. Generally, this rating is either the

maximum (r
max

- for push attack) or minimum (r
min

- for nuke attack) possible

rating in the system depending on the intend of the attack model. I
S

is the set of

selected items with specific characteristics decided by the attacker to make the attack

profile similar to those of users who prefer these special group of items (Williams

and Mobasher, 2006). This set receives ratings as determined by the rating function

�, where as for some attack models it is empty. I
F

is the set of filler items typically

chosen randomly to complete the attack profile, and to make it more di�cult to

detect, whose ratings are provided by the rating function �. The remaining items

that have not been rated compose the null portion of the attack profile indicated as

IØ. The thing that gives the characteristics of an attack model, and distinguishes

attack models from each other is the strategy used for identifying the set of items in
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I
S

and I
F

, and the way the ratings assigned to each of these sets of items, besides

the target item; hence the rating functions �, �, �.

From the attacker’s point of view, some amount of knowledge about the recom-

mender system attempted to attack is required in order to perform an attack, such

as knowledge about the algorithm, users, items, and ratings (Lam and Riedl, 2004).

While a high-knowledge attack requires a detailed knowledge of the ratings distribu-

tion in the system’s database, a low-knowledge attack requires system-independent

knowledge (Mobasher et al., 2007b). The most popular and well-known shilling at-

tack models, which are subject to many research, can be briefly explained as follows

(Bhaumik et al., 2006; Mobasher et al., 2007a; Bilge et al., 2014a; Burke et al., 2015;

Aggarwal, 2016a):

Random attack: In random attack model, the filler items are chosen ran-

domly, and assigned ratings distributed around the system overall mean, which is

the mean of all ratings across all items in the user-item matrix. In this attack, the

set of selected items is empty, and the target item is set to the maximum possible

rating, r
max

, or the minimum possible rating, r
min

, whether the intend of the at-

tacker is push or nuke, respectively. In most of the systems, it is not very di�cult

to determine the system overall mean by an outsider, thus knowledge required to

mount this attack is quite minimal. However, this attack is often not very e↵ective.

Average attack: The only di↵erence between the average attack and the

random attack is in the way ratings assigned to the filler items. In average attack

model, filler items are assigned ratings corresponding either exactly or approximately

to the mean rating for that specific item, across all the users, who have rated that

item in the database. As in random attack, the set of selected items is empty, and

the target item is assigned either to the maximum possible rating value, r
max

or the

minimum possible rating value, r
min

, depending on the intend. Similar to random

attack, filler items are selected randomly; but di↵erent from random attack, average

attack uses each item’s mean, rather than the system overall mean. Since mean
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of each filler item needs to be known, average attack requires a greater amount of

knowledge than the random attack, thus it is harder to implement.

Bandwagon attack: In order to increase the chance of the injected fake

profiles being similar to the existing user profiles, a small number of popular items

are used as the set of selected items in bandwagon attack model. The term of popular

items actually refers to the items that are likely to be rated by a large number of

users in a positive manner, such as bestseller books, blockbuster movies, or widely

used textbooks. If an attacker always rates these popular items in the fake user

profile, the predicted ratings of the target user are more likely to be biased by the

attack. Hence, in bandwagon attack, selected items and the target item are assigned

the maximum possible rating value, r
max

. In addition to selected items, a set of filler

items is also used, which are selected randomly, and given rating values distributed

around the system overall mean as in random attack. Even though to mount a

bandwagon attack some knowledge about the popularity of the items is required to

be known, this knowledge is not system dependent; alias it is a public knowledge,

and in general, it is not vey di�cult to determine the most popular items of any

item space. Therefore, it is easy to implement this attack model. Besides, in despite

of less knowledge requirements, bandwagon attack can perform as well as average

attack.

Segment attack: Segment attack model is designed as an attack model

against item-based CF algorithms, which generates neighbours of similar items,

instead of neighbours of similar users. The basic idea of segment attack is to push

an item to a targeted group of users with specific interest. Particularly in this attack,

the aim of the attacker is to promote the target item, not to all users, but to likely

buyers, who have liked items that are in similar segment with the target item in the

past. In order to mount segment attack, a set of segment items that are presumably

to be well-liked by the projected target group of users, needs to be determined. These

segment items, and the target item are given the maximum possible rating, r
max

.
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Additionally, a set of filler items are chosen randomly, and assigned the minimum

possible rating, r
min

, in order to obtain maximum e↵ect. Corresponding segment of

an item is usually a common knowledge, thus as in bandwagon attack, it is not hard

to predict the most popular items of a user segment.

Reverse bandwagon attack: Reverse bandwagon attack model is a varia-

tion of bandwagon attack model, which is especially designed to nuke items. In this

attack model, selected items are chosen from unpopular or widely disliked items,

which are the items poorly rated by many users. These items are assigned row rat-

ings together with the target item, in order to increase the probability of generating

low predicted ratings for the nuked item. Similar to bandwagon attack, a set of

filler items are selected randomly, and given ratings within a rating scale centered

on system overall mean. As in the case of bandwagon attack, it is not so di�cult to

determine these unpopular items outside the system, hereby it does not require any

system dependent knowledge.

Love/hate attack: Love/hate attack model is a very simple attack model,

which is particularly designed to be a nuke attack with no knowledge requirements.

In this attack, there are no selected items. The target item is set to the minimum

possible rating value, r
min

, whereas the randomly chosen filler items are set to the

maximum possible rating value, r
max

. Despite the ease, it is an extremely e↵ective

nuke attack model against item-based CF algorithms.

Attack profiles of these attack models relating to the general attack profile

given in Fig. 2.1 are summarized as shown in Table 2.1 (Yılmazel and Kaleli, 2016).

Table 2.1. Attack Profile Summary *(Bilge et al., 2014a)

Attack Type I
S

I
F

IØ i
t

Items Rating Items Rating

Random - - Randomly chosen System mean I − I
F

r
max

/ r
min

Average - - Randomly chosen Item mean I − I
F

r
max

/ r
min

Bandwagon Popular items r
max

Randomly chosen System mean I − (I
F

∪ I
S

) r
max

Segment Segmented items r
max

Randomly chosen r
min

I − (I
F

∪ I
S

) r
max

Reverse BW Unpopular items r
min

Randomly chosen System mean I − (I
F

∪ I
S

) r
min

Love/Hate - - Randomly chosen r
max

I − I
F

r
min
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2.3. Classification-based Shilling Attack Detection Approach

Some researchers treat attack detection as a traditional pattern classification prob-

lem in which they work toward to classify profiles as matching known attack mod-

els by applying supervised learning methods (Burke et al., 2006a; Williams et al.,

2006b,a; Mobasher et al., 2007b; Williams et al., 2007). This classification learning

based approach aims to learn to label each profile as either being part of an attack

or as coming from an authentic user by using attributes derived from each individ-

ual profile (Burke et al., 2006a). For this approach, training data is created as a

combination of a number of genuine profiles from an attack-free dataset and attack

profiles are generated using the attack models described in Section 2.2 (Williams

and Mobasher, 2006). Each profile is labeled as either being part of an attack or

as coming from a genuine user (Williams et al., 2007). A binary classifier is then

created based on this set of training data using a number of classification attributes

(Mobasher et al., 2007b).

In general, these attributes come in three diversities: generic, model-specific,

and intra-profile. Generic attributes are the basic descriptive statistical features that

try to capture the characteristics that make an attacker’s profile look di↵erent from

an authentic user profile. Attack model-specific attributes are generated to detect

the characteristics of a profile, especially associated with a specific attack model.

Di↵erent from generic and model-specific attributes, intra-profile attributes concen-

trate on intra-profile statistics, in turn they are designed to detect concentrations

across profiles.

The reasons for choosing this method to work on through this dissertation

are: one of the earliest proposed methods, taken as the baseline algorithm in many

studies (Mehta and Nejdl, 2009), the defined attributes are used as they are or with

some modifications in many other detection methods (Morid et al., 2014; Zhou et al.,

2014a), compared with many other detection methods in several papers (Mobasher

et al., 2007b), and concluded to be an e↵ective method. The details of these clas-
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sification attributes are given in the following subsections based on several studies

in literature (Burke et al., 2006b,a; Mobasher et al., 2007b; Williams et al., 2006a;

Williams and Mobasher, 2006; Williams et al., 2007).

2.3.1. Generic attributes

The underlying assumption behind generic attributes is that the overall statistical

signature of an attack profile will diverge significantly from that of an authentic

profile. The rating given to the target item, and the distribution of ratings among

the filler items are the informers that cause this di↵erence (Mobasher et al., 2007b).

As many researchers have postulate (Lam and Riedl, 2004; Chirita et al., 2005;

O’Mahony et al., 2004a; Mobasher et al., 2005), it is improbable for an attacker to

have complete knowledge of the ratings in a real system. Thus, profiles generated

by malicious users often di↵er from rating patterns of authentic users. That’s why

an attribute that captures these irregularities can be descriptive in detecting attack

profiles. There are a number of generic attributes proposed in literature for profile

classification (Chirita et al., 2005; Burke et al., 2006b; Williams et al., 2006b,a;

Mobasher et al., 2007b; Williams et al., 2007).

2.3.1.1 Rating deviation from mean agreement

Chirita et al. (2005) introduce the Rating Deviation from Mean Agreement (RDMA)

attribute, which is designed to identify attackers through examining the profile’s

average deviation per item, weighted by the inverse of the number of ratings in the

system for that item. The RDMA attribute can be computed as in Eq. 2.1:

RDMA
u

=
N

u∑
i=0
�r
u,i

−r
i

�
R

U,i

N
u

(2.1)

where N
u

is the number of items user u rated, r
u,i

is the rating given by user u

to item i, U is the universe of all users, R
U,i

is the total number of ratings in the

system provided for item i by all users, and r
i

is the average rating of item i across
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all users.

2.3.1.2 Weighted degree of agreement

Weighted Degree of Agreement (WDA) attribute introduced by Burke et al. (2006a)

is a variant of RDMA attribute, which uses only the denominator of the RDMA

equation. This attribute captures the sum of the di↵erences of the profile’s ratings

from the item’s average rating divided by the item’s rating frequency. It is computed

as in Eq. 2.2:

WDA
u

= N

u�
i=0
�r
u,i

− r
i

�
R

U,i

(2.2)

2.3.1.3 Weighted deviation from mean agreement

Weighted Deviation from Mean Agreement (WDMA) attribute introduced by Burke

et al. (2006a) is strongly based on RDMA attribute, but provides higher information

gain. WDMA attribute is designed to identify anomalies, and places a high weight on

rating deviations for sparse items. While calculating the WDMA attribute, in order

to reduce the weight interrelated with items rated by many users, the number of

ratings for an item is squared in the denominator inside the sum of RDMA equation.

This attribute can be computed as in Eq. 2.3:

WDMA
u

=
N

u∑
i=0
�r
u,i

−r
i

�
R

U,i

2

N
u

(2.3)

2.3.1.4 Degree of similarity with top neighbours

Degree of Similarity with Top Neighbours (DegSim) attribute introduced by Chirita

et al. (2005) is based on the average similarity of a profile’s top k nearest neighbours,

which is calculated as in Eq. 2.4:
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DegSim
u

=
∑

v∈neighbours(u)Wu,v

k
(2.4)

where v is the set of top k similar users, which are the nearest neighbours of user u,

k is the size of this set, in other words, the number of top neighbours, and W
u,v

is

the similarity between user u and v calculated via Pearson Correlation.

2.3.1.5 Degree of similarity with co-rated factor

Degree of Similarity with Co-Rated Factor (DegSim’) attribute introduced by Burke

et al. (2006a) is slightly di↵erent from DegSim attribute, and takes into account the

number of co-rated items between users in similarity calculation. Let’s assume that

I
u,v

be the set of items i, such that both user u and user v are given ratings. More

specifically, for each item in i user u’s rating (r
u,i

) and user v’s rating (r
v,i

) are
defined, hence not null. �I

u,v

� is the size of this set, and d is a pre-defined constant.

Similar to DegSim, profile’s top k nearest neighbours are detected, however DegSim’

discounts the similarity if the neighbour shares fewer than d ratings in common. In

this case, the similarity between users u and v is adjusted and DegSim’ attribute is

calculated as in Eq. 2.5:

W
′
u,v

=
�������������
W

u,v

× �Iu,v �
d

, if �I
u,v

� < d
W

u,v

, otherwise

(2.5)

DegSim
u

′ =
∑

v∈neighbours(u)W
′
u,v

k
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2.3.1.6 Length variance

Burke et al. (2006a) introduce the Length Variance (LengthVar) attribute, which

measures how much the length of a given profile varies from the average length of all

profiles in the system, where length indicates the number of total ratings. LengthVar

attribute is computed as in Eq. 2.6:

LengthV ar
u

= �#ratings
u

−#ratings�
N∑
i=0 �#ratings

i

−#ratings�2 =
�N

u

−N �
N∑
i=0 �Ni

−N�2 (2.6)

where #ratings
u

is the total number of ratings in the system provided by user u,

which is same as N
u

used in the previous equations. #ratings (or, N) is the average

number of ratings across all users, and N is the total number of users in the system.

2.3.2. Model-specific attributes

Researchers have shown that when the profiles are small - containing fewer filler

items - generic attributes are insu�cient to distinguish a true attack profile from

eccentric, but authentic profiles, which results with large false positive rate in classi-

fication (Burke et al., 2006a; Mobasher et al., 2006b). In order to reduce the success

of shilling attacks, in addition to generic attributes, Williams et al. (2007) propose

the use of model-specific attributes, which are designed to detect attack profiles by

comparing the similarity of a profile with known attack models.

As mentioned before, attacks can be characterized based on the characteristics

of the attack profile partitions: i
t

(targeted item), I
S

(set of selected items), and I
F

(set of filler items). By looking at Table 1, one can easily state the key distinguishing

aspects among the attack models. For instance, apart from the others, there is an

I
S

part in bandwagon, segment, and reverse bandwagon attacks. Specifically, these

attack models have a group of items (I
S

∪ i
t

) that are common across all profiles,

whereas in the rest of the attack models only the target item i
t

is the guaranteed

common item. Bandwagon and reverse bandwagon attacks are variants of each
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other, such that bandwagon is used as a push attack, where as reverse bandwagon

is used as a nuke attack. Random and average attacks di↵erentiate in the ratings

given to filler items. Moreover, the only di↵erence between random and bandwagon

attacks is the use of I
S

partition in bandwagon. This is also true for segment and

love/hate attacks, but with the ratings of the I
F

and i
t

items reversed (Williams

and Mobasher, 2006).

Model-specific attributes aim to capture the distinctive signature of specific

attack models. These attributes are based on partitioning each user profile somehow

to maximize the profile’s similarity with the one created by a particular attack

model. This partitioning can be modelled by splitting each user profile into three

sets. The set P
u,T

contains all the items in user u’s profile that are suspected to be

targets. According to the intent of the attack, suspected target items are the items

that get either the profile’s maximum rating (r
max

for push attack), or the profile’s

minimum rating (r
min

for nuke attack). The set P
u,F

contains all other ratings in

user u’s profile that are suspected to be filler items. The unrated items in user u’s

profile form the set P
u,Ø. The purpose is for P

u,T

to approximate {i
t

} ∪ I
S

, for P
u,F

to approximate I
F

, and P
u,Ø will be equal to IØ. Hence, the statistical features of

these partitions can be used for generating the model-specific detection attributes.

Williams et al. (2007) introduce several measures for detecting the distinctive

signatures of attack models.

2.3.2.1 Average attack model-specific attributes

Average attack model divides the user profile into three partitions, such that the

target item given an extreme rating, the filler items given other ratings, and the

unrated items. Mainly the model just needs to select an item as the target and all

other rated items turn into fillers. According to the definition of average attack,

each filler item will get ratings around the individual mean of that filler item. Thus,

except for the single item chosen as the target, a shilling profile generated by an
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average attacker expected to display a high degree of similarity between its ratings

and the average ratings for each item. In other words, there will be a high correlation

between the filler items and the item averages.

For finding the optimal partitioning the formalization of this idea is to iterate

through all the highly-rated items (depending on the intend of the attack either

the highly rated items, or the opposite), select each in turn as the possible target,

in this case the rest of the rated items become the filler or non-target items for

that partitioning, and compute the mean variance between the non-target items

and the average ratings for that items (Williams and Mobasher, 2006). The optimal

partitioning is the one where the mean variance is minimized, and the magnitude of

the variance is a clue of confidence.

Let P
u

be the profile of user u, and P
u,target

be the set of potential tar-

get items in P
u

, which are given r
max

(or r
min

according to the intend of the

attack). Mean Variance (MeanVar) metric needs to be computed for each pos-

sible target item (p
target

) of the P
u,target

set as shown in Eq. 2.7. More for-

mally, first the set of items that are potential targets are defined, which is the

set P
u,target

= �p
target

∈ P
u

, such that r
u,p

target

= r
max

� for push attacks. Then, iter-

atively, by taking one of the p
target

item from the P
u,target

set as suspected target,

and assigning rest of the rated items as filler items, MeanV ar(u, p
target

) value of

the p
target

item is calculated.

P
u,target

= �p
target

∈ P
u

, such that r
u,p

target

= r
max

�

MeanV ar(u, p
target

) =
∑

i∈(P
u

−(p
target

∪P
u,Ø))
(r

u,i

− r
i

)2
�P

u

− P
u,Ø� − 1 =

∑
i∈P

u,F

(r
u,i

− r
i

)2
�P

u,F

� (2.7)

where r
u,i

is the rating given by user u to item i, and r
i

is the mean rating of item

i across all users. �P
u

− P
u,Ø� − 1 describes the number of rated items in user profile

P
u

, which is actually the N
u

value, minus 1 to exclude the suspected target item.
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In other words, the denominator of the equation is in fact same as the size of the

filler item set, �P
u,F

�. Among the calculated MeanV ar(u, p
target

) values, whichever
yields the lowest value is considered as the optimal partitioning, and p

target

item

that generates this minimum value is selected as the target item t. Thus, based on

this optimal partitioning, the item t becomes the set P
u,T

, and all other rated items

in P
u

becomes P
u,F

, which is actually equal to P
u

− (p
target

∪P
u,Ø). The partitioning

sets P
u,T

and P
u,F

are used to create the following attributes:

• Filler Mean Variance (FMV): This is the minimum MeanV ar(u, p
target

)
value that gives the optimal partitioning, which is discovered above.

• Filler Mean Di↵erence (FMD): This feature gives the average of the

absolute value of the di↵erence between the user’s ratings, and the mean rating

of the filler items. FMD attribute is calculated as shown in Eq. 2.8.

FMD
u

=
∑

i∈(P
u

−(p
target

∪ P

u,Ø))
�r
u,i

− r
i

�
�P

u

− P
u,Ø� − 1 = ∑i✏P

u,F

�r
u,i

− r
i

�
�P

u,F

� (2.8)

• Profile Variance (ProfileVar): Attack profiles generated by an average

attacker are likely to have similar ratings for the filler items, but an extreme

rating for the target item. Hence, these profiles need to have very similar

within-profile variances. ProfileVar attribute shown in Eq. 2.9 captures the

variance associated with the profile itself.

ProfileV ar
u

= ∑i∈P
u,T

∪P
u,F

(r
u,i

− PMean)2
�P

u,T

∪ P
u,F

� ,

where PMean = ∑i∈P
u,T

∪P
u,F

r
u,i

�P
u,T

∪ P
u,F

� (2.9)

MeanV ar metric needs to be computed twice; ones for push attack, where

the set P
u,target

contains items having rating r
max

, and ones for nuke attack, where
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the set P
u,target

contains items having rating r
min

. Hence, these three attributes,

FMV, FMD, and ProfileVar, need to be calculated correspondingly according to the

optimal partitioning obtained for push and nuke versions of the average attack.

2.3.2.2 Random attack model-specific attributes

Similarly, random attack is also a partitioning attack, which tries out to divide a

user profile into the same three partitions discussed in average attack, in which the

target partition contains a single rating. However, unlike average attack, the filler

items in random attack are assigned values generated randomly within the rating

scale with a distribution centered around the mean for all user ratings across all

items (Burke et al., 2005a). As in average attack, among all possible choices the

optimal partitioning needs to be selected. Williams and Mobasher (2006) propose

to use the correlation between a profile and the rating average for each item as a

metric to discriminate random attackers. According to the definition of random

attack, since the ratings of filler items are generated randomly, low correlation is

expected between filler items and the real item means, which is opposite of what is

expected for average attack.

First of all, depending on the aim of the attack, the set of potential target

items, P
u,target

, which are either the highly rated items (for push attack - r
max

), or

the lowly rated items (for nuke attack - r
min

) are determined. Iteratively, each item

in the set is selected as the suspected target item, (p
target

), and rest of the rated

items (P
u

− (p
target

∪ P
u,Ø)) are considered as the filler items, or the P

u,F

partition

of the profile. Then, the correlation between the ratings in the profile given to filler

items in P
u,F

set, and the overall rating for each item is calculated. The p
target

item,

which gives the minimum correlation is selected as the most likely target t. Hence t

forms the partitioning set P
u,T

, and all other rated items in P
u

forms the set P
u,F

,

which is expected to be the optimal partitioning. Obtained minimum correlation

is called the Filler Average Correlation (FAC), and used as a classification
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attribute in detecting random attackers (Burke et al., 2006b).

The other classification attribute used in random attack detection is the FMD

attribute (Burke et al., 2006b). By using the optimal partitioning sets P
u,T

, and P
u,F

discovered above, FMD attribute is calculated as in Eq. 2.8.

Same as in average attack, FAC and FMD attributes need to be computed

twice based on the optimal partitioning obtained for push and nuke versions of the

random attack.

2.3.2.3 Group attack model-specific attributes

Group attack model-specific attributes are proposed for detecting attacks that aim to

increase the distinction of a targeted group of items (i
t

∪I
S

), and the filler items (I
F

),
which is the case in bandwagon and segment attack models. Therefore, in group

attacks partitioning of a user profile is done di↵erently from average and random

attacks. In group attack partititoning, all items in P
u

that are given the maximum

rating (or the minimum rating for nuke attack) in user u’s profile are placed in the

target partition, P
u,T

, and all other rated items in P
u

form the set P
u,F

, which is

the filler partition. Hence, model-specific attributes for detecting both bandwagon

and segment attack models are calculated based on this partitioning, which is given

in Eq. 2.10 (Williams et al., 2007).

P
u,T

= {i ∈ P
u

, such that r
u,i

= r
max

} (2.10)

P
u,F

= P
u

− (P
u,T

∪ P
u,Ø)

For bandwagon attacks, investigation of the filler ratings is identical to the

random attack model. As in random attack, FAC and FMD attributes are need

to be generated, but in this case group attack partitioning given in Eq. 2.10 is used

in calculations.
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For segment attacks, Filler Mean Target Di↵erence (FMTD) attribute,

which intends to capture the di↵erence between the average of the ratings in the

target partition and the average of the ratings in the filler partition, is introduced.

FMTD attribute is computed as in Eq. 2.11.

FMTD
u

=
��������������
���
∑

i∈P
u,T

r
u,i

�P
u,T

�
��� −
���
∑

k∈P
u,F

r
u,k

�P
u,F

�
���
��������������

(2.11)

where i represents the items in target partition, or the set P
u,T

. r
u,i

is the rating

given by user u to item i, and �P
u,T

� is the length of the P
u,T

set. Similarly, k

represents the items in filler partition, or the set P
u,F

. r
u,k

is the rating given by

user u to item k, and �P
u,F

� is the length of the P
u,F

set. The overall average FMTD

value (FMTD), calculated among all user profiles is then subtracted from FMTD
u

as a normalizing factor.

Group Filler Mean Variance (GFMV) is an other attribute used for

detecting segment attacks. GFMV is the variance of the filler items identified by

the group attack partitioning, and is calculated as shown in Eq. 2.12.

GFMV
u

=
∑

i∈P
u,F

(r
u,i

− r
i

)2
�P

u,F

� (2.12)

where P
u,F

is the set of items in the profile of user u that have been partitioned as

filler items, r
u,i

is the rating user u has given to item i, r
i

is the average rating of

item i across all users, and �P
u,F

� is the length of the P
u,F

set.

2.3.3. Intra-profile attributes

All of the classification attributes mentioned so far have concentrated on inter-

profile statistics, which take into consideration characteristics within a single profile

(Williams et al., 2007). In fact, a single profile cannot actually e↵ect the recom-

mender system, and for this reason attackers need to inject multiple shilling pro-

files in order to cause a significant bias (Williams and Mobasher, 2006). Williams
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et al. (2006a) introduce the Target Model Focus (TMF) attribute focusing on

statistics across profiles, specifically concentrated on intra-profile statistics. Most

probably, when a system is attacked, there will be several attack profiles that tar-

get the same item. Hence, TMF examines the density of target items. Since the

partitioning associated with the model-specific attributes described above identifies

the set of suspected targets for each user profile, using these partitions the TMF

attribute calculates the degree to which the partitioning of a given user profile fo-

cuses on items common to other attack partitions, and thus measures a consensus

of suspicion regarding each user profile (Mobasher et al., 2007b).

TMF
u

=max
j∈P

T

F
j

, where

F
i

= ∑u∈U ⇥u,i

∑
u∈U �Pu,T

� , and (2.13)

⇥
u,i

=
�������������
1, if i ∈ P

u,T

0, otherwise

To calculate TMF attribute of a user profile, first F
i

, which is the degree of

focus on a given item i, is defined. Then, among the target set of a user profile,

the item that has the highest focus is selected, and its focus value is used as a

classification attribute. TMF attribute is computed as in Eq. 2.13.
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3. PRIVACY-PRESERVING DISTRIBUTED

COLLABORATIVE FILTERING

In this chapter, data partitioning scenarios proposed in privacy-preserving distributed

collaborative filtering works are explained. Then, studies in literature on privacy-

preserving distributed collaborative filtering are described. The definition of pri-

vacy that has been followed all through the suggested methods in this thesis is

given. Finally, privacy protection methods, which are utilized to achieve privacy,

are explained.

3.1. Data Partitioning in Distributed Data

Success of a CF system strongly depends on having adequate number of user data.

Otherwise, accuracy of the produced referrals might not satisfy customers’ expec-

tations, and as a result, reputation of such systems can decrease. Conversely, it is

not always possible to collect su�cient amount of customer preferences. Especially

newly established e-companies might have trouble to o↵er recommendation service

to their customers due to lack of qualified data (Kaleli and Polat, 2012b). In or-

der to overcome this challenge, online vendors, who own limited number of ratings,

may decide to collaborate with other online vendors to produce better referrals. By

sharing their customers information with other vendors, they may produce more

truthful and dependable referrals, which cause them to be more preferable by the

customers. Hence, joint data is beneficial for online vendors to increase their sales.

Due to customers’ unique shopping routines, they may prefer to buy di↵erent

products from di↵erent sites. On account of this, preferences of users on some items,

and values given to items by some users might be split among multiple sites. Data

collected for referral purposes might be distributed between two or more parties, and

the distribution of data among these parties can be horizontal, vertical or arbitrary.
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Figure 3.1. Horizontally Distributed Data

Horizontally Distributed Data (HDD): Since there are a lot of e-commerce

sites, and a specific product can be sold in more than one site, customers have the

opportunity to buy products from di↵erent online vendors they preferred. HDD is

such a data distribution that, two or more di↵erent companies hold disjoint sets of

users’ ratings for the same items. An example of HDD between three companies,

which are marketing exactly the same set of products, namely Item 1, 2, ..., m, but

owning completely di↵erent sets of customers, is given in Fig. 3.1. For instance, for

Item 2 it can be observed that, while user A2 prefers to buy Item 2, from Company

A, user B2 choses to buy the same product from another site, namely Company B.

Yet, another user, C2, likes better to buy this same item, Item 2, from Company

C. Thus, in horizontal partitioning, di↵erent companies gather the preferences of

di↵erent users for the same products.

Vertically Distributed Data (VDD): VDD is such a data distribution

that, two or more di↵erent companies have disjoint sets of items’ ratings collected
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from the same users. An example of VDD between three companies, which are owing

exactly the same set of customers, namely Alice, Bob, ..., Mary, but marketing in

di↵erent business sectors, so owning completely di↵erent sets of products, is given

in Fig. 3.2. Let’s assume that Alice is a user, who mostly prefers shopping from

these three companies. However, Alice usually buys her clothes from Company A,

her shoes from Company B, and for electronic goods Alice prefers shopping from

Company C. As Alice, other users may also have similar routines, hence preferences

of some specific users on di↵erent products might be distributed among various sites.

Thus, in vertical partitioning, di↵erent companies gather preferences of same users

about di↵erent set of products.

Arbitrarily Distributed Data (ADD): ADD is a special case, which can

be seen as a combination of multiple horizontal and vertical partitionings. As Ja-

gannathan and Wright (2005), who introduced the idea of ADD, have stated, unlike

HDD and VDD, in ADD, there is no simple pattern of how data is distributed be-

tween two parties. Each rating can belong to either same or disjoint set of users
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for either same or disjoint set of items (Yakut and Polat, 2012a). That is to say,

di↵erent disjoint portions are held by di↵erent parties in ADD. Two online vendors,

Company A and Company B, might end up with ADD as exemplify in Fig. 3.3. As

can be seen, the referrals given by the same users to a set of items that are common

in both companies forms ADD. The only assumption in ADD is that there are no

overlapping ratings, which means, a user can rate an item either in Company A or

Company B, but not in both. It is not rational for a user to give preferences for

all items in the system, for that reason there are also unrated cells, as in VDD and

HDD. ADD is a more general case than HDD and VDD, and this makes it better

suited to real-word settings. Moreover, protocols produce for ADD can be put into

practical use for horizontal and vertical partitioning cases (Jagannathan and Wright,

2005).
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Combining data horizontally, vertically or arbitrarily has several advantageous

for both customers and online-vendors. First of all, with joint data better recom-

mendation services can be o↵ered, since joint data can solve the insu�cient data

problem. Hence, it is more likely to provide truthful predictions from combined

data than the results calculated from split data sets alone. For online vendors to

be able to make more money, it is very important to produce accurate referrals to

their customers, thus, combined data is beneficial for them.

3.2. Privacy-Preserving Distributed Collaborative Filtering

Studies

Although collaboration is advantages for online vendors, due to privacy, legal, and

financial reasons they may not want to collaborate. Collected data are considered

as companies’ confidential data, and they add value to the online shopping site on

the market place, thus, is very valuable, and should not be lost to a competitor site.

Moreover, according to regulations about online shopping, customer data should

only be under the control of the site that holds it, and it should not be shared with

third parties without the users’ or agencies’ knowledge, thus transferring them may

cause legal problems. Because of these, even if online sites have insu�cient customer

data, without privacy guarantee they refrain to collaborate with similar vendors.

If privacy measures are provided, online vendors can feel more comfortable

and collaborate. Providing privacy measures is essential to perform referrals on

joint data. Privacy is also important for customers point of view. Without privacy

protection, they do not want to provide their true preferences, or refuse to provide

data at all, but the quality and the amount of data collected are significant for the

overall success of the CF system. Researchers propose PPDCF methods enabling

data holders’ collaboration without jeopardizing their privacy (Kaleli and Polat,

2012a; Yakut and Polat, 2012a). As previously mentioned, data distribution scenar-

ios might be horizontal, vertical and arbitrarily in PPDCF systems, and data can
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be distributed between two or more parties.

Studies based on distribution of data between two parties include the follow-

ing. Polat and Du (2005c) present a scheme that makes it possible for two parties

to produce binary ratings-based top-N recommendations with decent accuracy on

HDD without greatly jeopardizing data owners’ privacy. Same authors also focus

on VDD, and provide a solution for two parties to conduct filtering services using

combined numerical data without violating confidentiality (Polat and Du, 2005b).

Kaleli and Polat (2007a) discuss how to provide CF services using Näıve Bayesian

Classifier-based CF algorithm on horizontally or vertically distributed binary data

between two parties with privacy. The provision of recommendations based on dis-

tributed data while protecting data owners’ privacy has been investigated for the

first-time by Polat and Du (2008). Their solution enables two data holders to pro-

duce binary rating based top-N recommendations on HDD or VDD, while making it

possible to find an equilibrium among accuracy, privacy, and e�ciency. Yakut and

Polat (2010) examine how to provide singular value decomposition-based referrals

on HDD or VDD while guaranteeing privacy, and introduce a model-based PPDCF

scheme. Researchers also o↵er solutions for arbitrarily distributed case, which is

more general and common than horizontal or vertical distribution of data. The first

work for providing predictions on ADD while preserving data owners’ privacy is pro-

posed by Yakut and Polat (2012a), in which they apply item-based CF techniques

on ADD between two parties. In another work, Yakut and Polat (2012b) o↵er a

privacy preserving Näıve Bayesian Classifier (NBC)-based CF solution to produce

binary referrals on ADD. Yakut and Polat (2012c) introduce a special and much

simpler case of ADD, which they named as cross distributed data. They exam-

ine the applicability of hybrid CF-based approach to produce predictions for single

items having numerical rating values on CDD focused on data owners’ privacy, and

prediction quality.

Researchers also introduce various solutions that allow collaboration of more
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than two parties in order to produce more accurate referrals from distributed data.

Hsieh et al. (2008) introduce an EIGamal homomorphic encryption-based algorithm

to merge recommender systems’ databases without disclosing customer privacy.

Later, Hsieh (2011) propose a cryptographic method for securely joining recom-

mender systems, which adopts scalar product protocol. To solve confidentiality

problem of data holders Zhan et al. (2008) employ scalar product protocol to pro-

duce recommendations from distributed data. In another work, Zhan et al. (2010)

address how to avoid privacy disclosure in cooperation of online vendors on HDD.

They compare the major cryptology approaches, and propose an e�cient scalar

product protocol based privacy-preserving method. Basu et al. (2011a,b) present a

privacy-preserving item-based CF scheme through the use of an additively homomor-

phic public-key crypto-system on the weighted Slope One predictor. They show its

applicability on both HDD and VDD between multiple parties. Basu et al. (2012a)

show the feasibility of privacy-preserving prediction services on a cloud platform.

They implement and analyze the proposed PPDCF scheme on real cloud platforms

(Basu et al., 2012c, 2011c, 2013). Kaleli and Polat (2012a,b) introduce solutions for

providing self-organizing map clustering-based predictions for HDD or VDD among

multiple parties without greatly exposing data holders’ privacy. A trust-based multi-

party solution for VDD is also introduced by Kaleli and Polat (2011). Same authors

also study how to make binary rating-based referrals using Näıve Bayesian Classi-

fier, when data is distributed among multiple parties without jeopardizing privacy

(Kaleli and Polat, 2015).

3.3. Privacy Definition

Privacy is a concept, which is hard to be defined exactly, and complicated to put

into certain boundaries. In the context of CF, it has various meanings according to

di↵erent viewpoints. In this thesis, privacy is defined as follows: The parties should

not be able to learn the true rating values and the rated and/or unrated items held

by each other during collaborative work. Hence, actual rating values and the rated
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items are considered as confidential. True rating values are actually the opinions of

the users’ on commercial products, and they can be used to profile the customers.

Therefore, for the collaborating companies true ratings are intimate. Furthermore,

the products rated by the customers’ are also considered as the private data of the

company, because price discrimination and special advertisements can be made for

unrated ones. E-companies do not want to disclose their confidential data to others

while producing collaborative tasks. Di↵erent from the true ratings and the rated

items held by a company, user and item IDs are regarded as public data, thus sharing

them does not contravene privacy. Moreover, collaborative companies are assumed

to be semi-honest, which means that they obey the protocols properly, but they may

try out to gather as much private data as possible by resolving the inputs and the

outputs. Besides, it is also assumed that non-overlapping ADD occurs between two

companies, which means any user can vote any item only once and only on one of the

sides, but not on both. Consequently, proposed protocols should enable cooperative

work on ADD within boundaries of the specified confidentiality constraints.

3.4. Privacy Protection Methods

In order to achieve privacy in CF schemes, several privacy protection methods are

introduced (Bilge et al., 2013). Among all, Randomization and Cryptographic Tech-

niques are two major methods, which are mostly applied. Private protocols proposed

through this thesis, also utilize Random Filling (RF) method, which is one type

of randomization technique, and Homomorphic Encryption (HE).

Randomization is actually a privacy protection technique used for hiding or

masking confidential data. Randomization methods attempt to preserve privacy

either by perturbing original ratings, or by masking unrated item cells. The well-

known types of perturbation-based randomization methods applied, respectively, in

numeric, and binary ratings-based PPCF schemes, are Randomized Perturbation

Techniques (RPT) (Zhang et al., 2006b; Bilge and Polat, 2011, 2012; Gong, 2011;

Basu et al., 2012b), and Randomized Response Techniques (RRT) (Polat and Du,
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2006; Kaleli and Polat, 2007b), which hide true ratings by adding random numbers

to original data. Besides perturbing real data, in some cases masking the unrated

item cells is also crucial for privacy. Random filling is such a randomization method,

which is commonly employed in PPCF schemes with an aim of masking the unrated

item cells by inserting some noise (Bilge et al., 2013). In RF method, collabora-

tive companies selectively or uniformly randomly choose some of their empty cells,

and fill them with fake or default ratings. There are several ways for fake rating

determination. One of them is filling the unrated item cells with random numbers

(Polat and Du, 2005d,a, 2007; Dokoohaki et al., 2010). Personalized ratings, such as

user mean or item mean, or non-personalized ratings, like system mean can also be

used to fill the empty cells (Kaleli and Polat, 2012b, 2010; Yakut and Polat, 2010,

2012c,a).

Secure two-party computation enables two parties to jointly compute any func-

tion on their inputs without divulging to either party anything no more than the

correct output (Yao, 1982; Lindell and Pinkas, 2009). In order to perform secure

computations on ADD, cryptographic techniques, especially homomorphic encryp-

tion, are utilized when ever required in the thesis. Paillier (1999)’s crypto-system

is preferred for protecting data holders’ confidential data. The underlying reason

is Paillier crypto-system provides faster encryption and decryption algorithms com-

pared to its alternatives, and forestalls many of the drawbacks of the earlier homo-

morphic crypto-systems (Pedersen et al., 2007).

Paillier crypto-system is additively homomorphic over plain-texts, and also

allows for multiplication of plaintext by a constant. Suppose that ⇠ is an encryption

function, D is a decryption function, and K is a public key. Plain-texts, x and y,

are the private data values that will be encrypted, hence, ⇠
K

(x) and ⇠
K

(y) are the
cipher-texts of them, respectively. According to Paillier crypto-system, the product

of two cipher-texts will decrypt to the sum of their corresponding plain-texts as in

Eq. 3.1.
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D �⇠
K

(x) × ⇠
K

(y) mod n2� ≡ x + y mod n (3.1)

Moreover, each cipher-text can be homomorphically multiply with a plaintext as in

Eq. 3.2.

D �⇠
K

(x)y mod n2� ≡ xy mod n (3.2)

In addition to these, Paillier crypto-system has self-blinding property, which is the

ability to change one cipher-text into another without a↵ecting the plaintext. This

can be accomplished by multiplying the cipher-text with RN , where R is a random

integer value and N is modulus of the operated public crypto-system (Memiş and

Yakut, 2014), as in Eq. 3.3.

D �⇠
K

(x) ×RN mod n2� ≡ x (3.3)

Overtime, researchers proposed various extensions to Paillier’s crypto-system,

and described several cryptographic sub protocols for di↵erent operations, such as

equality/inequality comparison, division by a constant, absolute value, subtraction

and negation (Damg̊ard and Jurik, 2001; Parkes et al., 2008). In a more recent

work, Dahl et al. (2012) proposed two new protocols for solving the problem of

secure integer division, which is performed on a single party where the numerator

and the denominator are encrypted values. This secure integer division protocol is

also employed, when required in the private protocols proposed through the thesis.
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4. PRIVACY-PRESERVING DISTRIBUTED

COLLABORATIVE FILTERING SOLUTIONS ON

ARBITRARILY DISTRIBUTED DATA

In this chapter, three state-of-the-art PPDCF schemes proposed on ADD, which can

be categorized as the one focused on private collaboration of parties, when data is

numeric, or when data is binary on ADD, besides when data is numeric, but data

distribution is a special case of ADD, are briefly explained.

4.1. Arbitrarily Distributed Data-Based Recommendations

with Privacy

Yakut and Polat (2012a) propose a privacy-preserving scheme to provide predictions

for a single item on ADD. They utilize the item-based algorithm proposed by Sarwar

et al. (2001). An overview of their proposed method including o↵-line and online

phases is given in Figure 4.1.

At the beginning of the o↵-line phase, firstly, the parties mask their data by

filling some of the unrated item cells in their database with fake ratings in order to

protect their own privacy. As a second step, the parties employ private mean esti-

mation and length estimation protocols. Item similarities are estimated with private

adjusted cosine estimation protocol and a neighbourhood model is constructed by

determining a threshold value for similarities.

Online phase is triggered when a sends her ratings vector and q to one of

the parties which acts as master party during collaboration. After masking and

normalizing a’s preferences, master party collaborates securely with the other party

to provide prediction by utilizing constructed model.
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Figure 4.1. An Overview of the Proposed Scheme *(Yakut and Polat, 2012a)

Yakut and Polat (2012a) analyze their scheme in terms of privacy, accuracy,

and performance. They show that their scheme can be used to provide accurate

item-based recommendations e�ciently on ADD while providing data owners’ con-

fidentiality.

4.2. Privacy-Preserving Hybrid Collaborative Filtering on

Cross Distributed Data

In another study, Yakut and Polat (2012c) introduce Cross Distributed Data (CDD)

concept, which is a special and simpler case of ADD. The authors assume that there

can be some special conditions for ADD, where ratings of a user are partitioned as

in vertical partitioning scenario, which they named as CDD. CDD is schematized

in Figure 4.2 in which, company A has the ratings of the users from 1 to n1 for the

items from 1 to m1, which is the upper left part of the user-item matrix, named as

D1, and also the ratings of the users from n1 + 1 to n for the items from m1 + 1 to

m, which is the lower right part of the matrix, named as D4. Company B has the
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Figure 4.2. Cross Distributed Data *(Yakut and Polat, 2012c)

remaining ratings, which are the upper right and lower left parts of the user-item

matrix, namely D2 and D3 in the figure, respectively.

In this study, Yakut and Polat (2012c) examine applicability of hybrid version

of nearest neighbour CF approach and focus on protecting data owners’ confiden-

tiality while producing accurate recommendations. The proposed solution consists

of two stages, which are o↵-line model construction and online prediction estima-

tion. In o↵-line model construction process, necessary computation functions, such

as mean, deviation from mean normalization, and the cosine similarities between

items, are computed privately on CDD. Then, based on the computed similarity

values, best similar items to each item are required to be chosen to construct a

model. Likewise, in the online prediction estimation process, user similarities are

computed using cosine measure in a secure manner. Then, the neighbours of the

active user is determined. Finally, a referral is estimated by using a prediction

algorithm.

Their experiments confirm that the proposed scheme produces accurate pre-

dictions e�ciently while maintaining data owner’s privacy. Besides, online extra
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costs due to privacy concerns are negligible for the proposed schemes, which makes

it preferable for online vendors.

4.3. Estimating NBC-Based Recommendations on

Arbitrarily Partitioned Data with Privacy

Instead of numeric ratings, some recommender systems collect binary votes, since

for some applications it is more important to know whether a user liked or disliked

an item, rather than knowing how much the product it liked by that user. Apart

from the above studies, which allow collaboration of parties on ADD having numeric

ratings, Yakut and Polat (2012b) also focus on private collaboration of parties having

binary ratings.

Yakut and Polat (2012b) introduce protocols that enables NBC-based binary

predictions on ADD. In order to improve online e�ciency, the construction of NBC-

based prediction model is carried out o↵-line. For model generation, two arguments,

likelihood and priori probabilities, are required to be computed without jeopardizing

data owners’ confidentiality. Therefore, the authors propose Numerator of Likeli-

hood Computation Protocol and Denominator of Likelihood Computation Protocol

for estimating the likelihood probabilities in a secure manner, and also Privately

Priori Estimation Protocol for determining priori values, while satisfying confiden-

tiality requirements of the parties. In the online phase, parties collaborate securely

by using the proposed Online Recommendation Estimation Protocol for providing

predictions to their customers.

Experiments of the study prove that proposed scheme provides accurate pre-

dictions e�ciently on partitioned data without violating confidentiality. Hence, this

study makes the collaboration of online-vendors with binary ratings possible for

suppling better CF services with privacy.
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5. ROBUSTNESS ANALYSIS OF ARBITRARILY

DISTRIBUTED DATA-BASED RECOMMENDATION

METHODS

In this chapter, a new research problem is pointed out, which is the robustness of

PPDCF schemes against shilling attacks. ADD is chosen as the focus of the study,

hence the robustness of the methods proposed for PPCF on ADD (PPCFADD) are

considered. First, an attack strategy that can be applied by an attacker in generation

of distributed adaptations of formerly proposed attack models both for numeric and

binary data, in order to insert malicious attack profiles on PPCFADD methods is

proposed. Then, the robustness of the PPCFADD methods against the proposed

distributed versions of the six well-known shilling attack models are analyzed. Next,

the empirical studies are described, and the outcomes that prove the vulnerability of

these schemes against shilling attacks, are demonstrated. Moreover, the reasons of

why existing shilling attack detection methods cannot detect malicious user profiles

in distributed data, and why new detection methods or the distributed versions of

the existing attack detection methods need to be implemented, are discussed.

5.1. Introduction

Due to di↵erent shopping routines of people, rating preferences of many customers

might be distributed among e-companies. Since two di↵erent e-companies might

sell products from same range to identical set of customers, the type of data dis-

tribution between these e-companies is called arbitrary. In ADD, it is a challenge

to produce accurate referrals for those customers, because their ratings are split.

Therefore, researchers propose methods for enabling collaboration of data holders.

In this scenario, privacy becomes a deterrent barrier for collaboration, accordingly,

the introduced solutions include private protocols for protecting data holders’ confi-

dentiality. Although, private protocols encourage data holders to collaborate, they
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introduce a new drawback for partnership. Since, whole data is distributed and col-

laborating parties do not have full control of data, any malicious user, who knows

that two parties are in collaboration, can easily insert shilling profiles to system

by partitioning the fake profile between data holders. Parties may have trouble to

find such profile injection attacks by employing existing detection methods, due to

arbitrary distribution of data. Since profile injection attacks can easily performed

on arbitrarily distributed data-based CF systems, quality, and reliability of such

systems can decrease, and this may cause unhappy customers. It is obvious that, if

e-companies are sure about being robust against malicious user attacks, they might

hesitate to collaborate with other parties, even if, they need it. Therefore, in this

chapter, aforementioned problems with arbitrarily distributed data-based CF sys-

tems are investigated, and a new research direction, robustness of PPDCF schemes

against shilling attacks, is figured out.

5.2. Designing Shilling Attacks Against Arbitrarily

Distributed Data

On one hand, as explained in Chapter 2, there are many studies on profile injection

attacks against CF schemes, including attack profile generation, attack strategies,

and attack detection methods. On the other hand, as described in Chapter 4, there

are three state-of-the-art PPDCF schemes proposed on ADD, which are presented to

o↵er reliable predictions, while guaranteeing privacy. However, shilling attack prob-

lem is not considered in the proposed privacy-preserving schemes. Even though,

data holders can overcome insu�cient data problem by employing private proto-

cols, PPDCF schemes proposed on ADD should also be evaluated with respect to

robustness against shilling attacks, since, despite privacy, they might be subject to

attacks. In order to analyze robustness of PPCFADD schemes, modified versions

of attack generation methods are required. Therefore, the focus of this section is

the design strategies of shilling attacks against PPCFADD schemes, and then, the

robustness of these schemes is investigated.
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In previous studies on shilling attacks, whole user preferences are owned by

one data holder. Accordingly, to manipulate the results of the system, malicious

users are required to insert the fake profiles into a single center. Moreover, all the

proposed detection methods are developed for the case, where data is centralized and

data holder has the control of all data. However, when data is arbitrarily distributed

between two companies, due to privacy concerns, the collaborating companies do

not have full control of distributed data. Since user preferences in ADD are not in

control of a single company, attackers must decide how to insert attack profiles into

PPCFADD schemes.

Possibility of inserting fake profiles into the database of one of the collaborating

companies may be thought. However, in this case, since companies are producing

referrals with collaboration, attacks cannot achieve the desired intend. Furthermore,

data holder, which fake profiles are injected, can eliminate these profiles by employ-

ing any shilling attack detection algorithm proposed for centralized data. Thus, in

order to be successful, and not to be detected, instead of inserting the malicious

profiles in one part, malicious users, who know the collaboration of two parties,

can insert shilling profiles to the system by partitioning the profiles between data

holders. The left side of Figure 5.1 shows how to insert an attack on centralized

data, and the right side shows how to insert an attack having numeric ratings into

PPCFADD schemes.

In the left hand side of Figure 5.1, an example of a push attack favouring the

target item Item6 is shown (Mobasher et al., 2007b). In this example, system uses

a simplified user-based CF approach, where the predicted ratings for Alice on Item6

will be obtained by finding the closest neighbour to Alice. Before the attack profiles

are injected to the system, the most similar user to Alice would be User6, thus the

prediction for Item6 would be 2, which means Alice will probably disliked this item.

However, after the attack, the most similar user to Alice will be Attack1, and the

predicted rating for Item6 will be 5, which is opposite of what would be predicted
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before inserting the attack profiles. Hence, attacker reaches her goal in this example

(Mobasher et al., 2007b).

The same example, but this time in distributed manner, is shown in the right

hand side of Figure 5.1. In the figure, there are two e-commerce, Part A and Part

B, who desire to utilize one of the PPCFADD solutions provided by Yakut and

Polat (2012a,c) for numeric datasets. Any malicious user, who knows collaboration,

can insert an attack by partitioning the ratings of the attack profile between these

two parties. For instance, Attack1 inserts the rating vector {5,−,3,−,2,5} into the

centralized data in the left hand side of Figure 5.1. In the case of ADD, attacker can

distribute the attack profile between two sides, thus Attack1 is inserted as the rating

vector {5,−,−,−,2,−} to Part A, and the rating vector {−,−,3,−,−,5} to Part B, as

seen in right hand side. In fact, in both cases, the attacker inserts the same attack

profile to CF system, but in the in the left hand side of Figure 5.1, attack profile

is inserted directly into the centralized data, and in the right hand side of Figure

5.1, it is inserted into ADD by partitioning the ratings of the attack profile between

Part A and Part B. Since, Part A and Part B will provide recommendations to their

customers on their integrated data, attacker will again succeed, and will be able to

push the ratings of Item6. Although parties increase their recommendation quality

by employing PPCFADD solution, an attacker who knows their cooperation can

easily manipulate predictions. Moreover, since introduced shilling attack detection

methods works on centralized data, the parties in collaboration cannot detect fake

profiles. Consequently, data holders in collaboration becomes more vulnerable to

shilling attacks.

Similarly, Figure 5.2 shows inserting a binary attack profile into the proposed

NBC-based PPCFADD scheme (Yakut and Polat, 2012b). The numeric ratings in

the example shown in Figure 5.1 are converted into binary ratings. If the given

rating is bigger than 3, it is replaced with 1, otherwise it gets 0 rating. When data

is centralized, attacker inserts binary rating vector {1,−,0,−,0,1} into the system
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to push the predicted rating of Item6. On the other hand, when data is arbitrarily

distributed, attacker can split up the ratings in the attack profile between Part A,

and Part B. Thus, the attacker knowing the collaboration of these two parts can

insert the binary rating vector {1,−,−,−,0,−} to Part A, and the binary rating

vector {−,−,0,−,−,1} to Part B. In spite of the private collaboration, attacker will

succeed and will be able to turn this cooperation to her advantage.

By utilizing the proposed method, six well-known shilling attack models can

be inserted into PPCFADD schemes. Hence, state-of-the-art privacy-preserving

schemes on ADD are scrutinized in term of robustness against distributed versions

of these shilling attack models. Four of these attacks are push attacks, which aim

to make a target item more likely to be recommended. Distributed versions of ran-

dom, average, segment, and bandwagon attack models are used as push attacks.

Conversely, distributed versions of love/hate and reverse bandwagon attack mod-

els are used as nuke attacks, which aim to make a target item less likely to be

recommended.

5.3. Experimental Evaluation

Real data-based experiments are performed to evaluate the e↵ectiveness of six well-

known shilling attack models on the three PPCFADD schemes. In the experiments,

e↵ects of two controlling parameters, filler size (FS) and attack size (AS), are

analyzed. FS is the percentage of empty cells chosen to be filled with fake ratings

in the attacker profiles (Mehta and Nejdl, 2008; Güneş et al., 2014). For example,

FS value as 10% corresponds to 150 filler ratings in an attack profile for a system

having 1500 rateable items. AS is the number of injected attack profiles, and can

be measured as a percentage of the pre-attack user count (Mobasher et al., 2007b).

For a system having initially 1000 users, AS value 1% means that the number of

attack profiles inserted to the system is 10. Di↵erent sets of trials are conducted

to show how shilling attacks e↵ect PPCFADD solutions with varying values of the

controlling parameters. Hence, 1%, 3%, 5%, 10%, 15%, and 25% values are set for
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FS, and AS on each attack model. For each of the PPCFADD schemes, privacy-

preserving parameters are set according to the best results obtained by the authors

(Yakut and Polat, 2012c,a,b).

5.3.1. Data set and evaluation criteria

In the experiments, a well-known publicly available MovieLens 100K1 dataset is

employed. The data set is collected by the GroupLens research project at the Uni-

versity of Minnesota, and it contains 100,000 ratings from 943 users on 1,682 movies,

such that at least 20 movies are rated by each user. Within the dataset, all ratings

are integer values between 1 and 5, where 1 indicates the lowest rating (disliked),

and 5 indicates the highest rating (most liked).

In order to measure the e↵ectiveness of the applied shilling attack models,

prediction shift metric, which measures the change in the predicted rating of an

item before and after the attack is applied (O’Mahony et al., 2004a; Burke et al.,

2005a). Prediction shift is the most commonly used metric in measuring the success

of an attack, but it works on only numerical ratings (Kaleli and Polat, 2013). Thus,

to assess the success of shilling attacks on binary data, ratio shift metric proposed

by Kaleli and Polat (2013) is employed. Ratio shift measures the ratio of 1’s in

prediction results before and after the attack, and can be formulated as follows:

RatioShift = RatioOf1s
afterAttack

−RatioOf1s
beforeAttack

(5.1)

where RatioOf1s
beforeAttack

, and RatioOf1s
afterAttack

, represent the percentage of 1’s

predicted for a target item before and after the system has been attacked, respec-

tively. For a successful attack, if i
t

is aimed to be pushed, then the value of ratio

shift should be positive, where as, if the attacker’s goal is to nuke an item, then

ratio shift should be negative for that item (Kaleli and Polat, 2013).

1http://www.grouplens.org/datasets/movielens
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5.3.2. Experimental methodology

During the experiments, all-but-one experimentation methodology is followed. Ac-

cording to this methodology, one of users is chosen as a for each iteration, and all

the remaining users treated as the training set. For push and nuke attack model

generation, two di↵erent sets of 50 target movies is created (Bilge et al., 2014a).

These movies is chosen randomly within di↵erent ranges of ratings to represent the

characteristics of the original dataset. Moreover, since trying to push the prediction

of a popular item or to nuke the prediction of an unpopular item is unreasonable,

Bilge et al. (2014a) formed these push and nuke attack sets so as to contain movies

having average rating within the range of 1 to 3, and 3 to 5, respectively. Statistics

of the selected target movies for push and nuke attacks are presented in Table 5.1.

Table 5.1. Statistics of Target Movies *(Bilge et al., 2014a)

Total rating count Number of pushed movies Number of nuked movies

With average rating
1-2

With average rating
2-3

With average rating
3-4

With average rating
4-5

1 - 50 30 15 12 18
51 - 150 - 3 5 6
151 - 250 - 1 2 3
>250 - 1 1 3

To asses e↵ects of binary shilling attacks on ADD, numerical ratings firstly is

transformed into binary format. If the rating of a movie is bigger than 3, in other

words 4 or 5, they are labeled as one (like), otherwise they are assign to zero rating

value (disliked) (Kaleli and Polat, 2013). To constitute push and nuke item sets to

be attacked in binary data, the methodology conducted by Kaleli and Polat (2013)

is followed. Initially, ratio of 1’s and 0’s for each movie are analyzed. Then, two

distinct sets of 50 target movies are randomly selected for binary push and nuke

attacks. Additionally, target movies in binary push attack sets are selected from the

ones having zero ratings more than ones; on the contrary, target movies in binary

nuke attack sets are chosen from the movies having mostly ones.

Throughout the experiments, all target movies are attacked individually for all

test users. Predictions are estimated before and after inserting the attack profiles.
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Thereafter, the prediction shift values are calculated to examine the relative change

in predicted values for each di↵erent attack models. In binary attack experiments,

for all items in both target item sets, predictions are produced for all users who do

not have a rating for those items. 1’s ratio values for each of the target items are

computed. All target items are attacked individually for all users in the system.

Ratio shift values for each item are estimated, and overall averages are presented.

5.3.3. Empirical results

Two groups of experiments are performed to investigate the e↵ects of shilling at-

tacks on PPCFADD schemes. One group of experiments are conducted to examine

the e↵ects of shilling attacks on numerical data-based solutions (Yakut and Polat,

2012a,c), and the other group of experiments are conducted to investigate the e↵ects

of binary shilling attacks (Yakut and Polat, 2012b). In the next subsections, the

empirical results obtained for both push and nuke attacks with respect to varying

controlling parameters are presented.

5.3.3.1 E↵ects of shilling attacks on arbitrarily distributed numeric

data

In order to demonstrate e↵ects of push and nuke attack models on numeric PPC-

FADD schemes, firstly, experiments are performed with varying FS values. This is

the number of ratings for the filler items added to fill out the attack profile, and thus

is directly related to the power of the attack (Mobasher et al., 2007b). During the

FS experiments, AS is set to 15%, and FS is varied from 1% to 25%. Prediction

shift values across all push and nuke attack models, which obtained for the numeric

PPCFADD schemes (Yakut and Polat, 2012a,c) are demonstrated in Figure 5.3, and

Figure 5.4, respectively.

As shown in Figure 5.3, and Figure 5.4, the most e↵ective attacks against

PPCFADD schemes are segment and bandwagon attacks. The bandwagon attack

achieved a maximum prediction shift of 1.23 and 1.49 on the results of proposed
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Figure 5.3. Prediction Shift with Varying Filler Size on Privacy Preserving Scheme
Proposed by *Yakut and Polat (2012a)
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Figure 5.4. Prediction Shift with Varying Filler Size on Privacy Preserving Scheme
Proposed by *Yakut and Polat (2012c)
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privacy preserving schemes on ADD and CDD, respectively. The segment attack is

somewhat more successful, and achieved a maximum prediction shift of 1.32 and 1.79

on the results of privacy-preserving scheme for ADD and CDD, respectively, when

FS and AS are set to 15%. This prediction shifts are considered to be significant

on a five-star scale. Though not as successful as segment and bandwagon attacks,

average attack achieved a prediction shift of 0.97 on ADD, and 1.26 on CDD. On

the other hand, random attack could not be e↵ective, and obtained approximately

0.2 prediction shift on both of the proposed privacy-preserving schemes. When the

e↵ects of nuke attacks on PPCFADD schemes are compared, it is seen that the

love/hate attack is quite e↵ective, and can reduce the predicted rating of a highly

rated movie 1.87 points on ADD, and 1.94 points on CDD with 15% filler size.

The reverse bandwagon attack also performed e↵ectively, and reached a maximum

nuke prediction shift of 1.59, and 1.97 on the results of proposed privacy-preserving

schemes on ADD and CDD, respectively. If the obtained results are compared by

considering the two schemes, it might be stated that both push and nuke attacks are

more e↵ective on the proposed scheme on CDD than the solution for ADD. Since

ADD solution employs item-based algorithm, it is reasonable that it is more robust

than CDD-based scheme. On both of the schemes, e↵ects of the attacks increases

up to the optimum value of FS is reached. After the optimum value, since change of

being in a’s neighbourhood for an attack profile decreases, increasing in FS decreases

the e↵ectiveness of the attacks for all push and nuke attack models. Also, once the

optimum value is exceeded, the balance between coverage and generality is broken,

and profile becomes dissimilar to any given user (Mobasher et al., 2007b).

Secondly, another set of experiments are conduced with varying AS to examine

the e↵ects of the number of injected attack profiles on prediction shift. During AS

experiments, AS is varied from 1% to 25%, and FS is fixed at 15%. The results

of push and nuke attacks for various AS values on ADD and CDD are presented

severally in Figure 5.5, and Figure 5.6. Similar to the previous experiments, the
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Figure 5.5. Prediction Shift with Varying Attack Size on Privacy Preserving Scheme
Proposed by *Yakut and Polat (2012a)
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segment and the bandwagon attacks are the most successful push attacks against

both schemes. The segment attack achieved a maximum prediction shift of 1.41,

and 1.78, and the bandwagon attack achieved a maximum prediction shift of 1.24,

and 1.52 on ADD and CDD, respectively. As in the FS experiments, random attack

could not achieve significant prediction shift values for varying attack sizes in both

schemes. However, unlike random attack, average attack achieved a prediction shift

of 0.98 on ADD, and 1.26 on CDD. When considering the e↵ects of nuke attacks with

varying AS values, it can be concluded that both reverse bandwagon and love/hate

attacks are very successful in manipulating the predictions, especially for FS being

15%. The love/hate attack scaled down the predictions by 1.87 points on ADD, and

1.94 points on CDD. Likewise, the reverse bandwagon attack reduce the predictions

1.59 and 1.97 points on ADD and CDD, respectively. These negative shifts might be

considered highly significant in a five-star rating scale, since these values are enough

to drop an average rated movie to the end of the scale. Looking at the impact

of push and nuke attacks on both schemes, attacks appear to be more e↵ective on

CDD than ADD, as in the previous experiment. Furthermore, as AS increases the

prediction shift also rises for all push attack models, until the attack size reached

the optimal size. After this point, increasing AS drops o↵ the prediction shift on

both schemes. This is also same for nuke attacks. Hence for nuke attack models,

lower prediction shift values are achieved with greater values of attack size.

These experimental findings indicated that malicious users can manipulate the

results of PPCFADD schemes for numeric datasets. Except random attack model,

all push attacks significantly e↵ect recommendation results. The most successful

push attack models on both schemes are segment, bandwagon, and average attacks,

respectively. On the other hand, both love/hate, and reverse bandwagon attack

models achieved considerable negative prediction shift values, thus they are very

e↵ective on the results of proposed privacy-preserving schemes on ADD and CDD.
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5.3.3.2 E↵ects of shilling attacks on arbitrarily distributed binary data

To investigate the e↵ects of binary push and nuke attack models on the privacy

preserving scheme proposed to estimates NBC-based predictions on ADD (Yakut

and Polat, 2012b), last set of experiments are performed. In order to examine ratio

shift values across all binary push and nuke attack models with respect to FS, AS

is fixed at 15% while FS is varied from 1% to 25%. The acquired ratio shift values

are presented in Figure 5.7.
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Figure 5.7. Ratio Shift Values for Varying Filler Size on Privacy Preserving Scheme
Proposed by *Yakut and Polat (2012b)

As seen in Figure 5.7, average and segment binary push attacks are significantly

e↵ective to manipulate recommendation system. Binary forms of such push attacks

accomplished 58.50% and 52.45% ratio shift values when both FS and AS values

are set to 15%. These values indicates that when an attacker aims to push a target

movie having 1’s ratio of 30%, she can increase 1’s ratio to 88.50% and 82.45% with

employing binary average attack and binary segment attack, respectively. Hence,

with both attacks she might successfully push the predicted values of the target

movie. The binary bandwagon attack are slightly less successful, however still very

e↵ective by achieving a maximum ratio shift of 46.85% on the results. On the

other hand, the impact of binary random attacks are comparably smaller than the
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other push attack models. Binary random attacks achieved a maximum ratio shift of

14.22%, hence, in case of 5% or less attack sizes, random attack is even not successful

at all. If e↵ects of binary nuke attacks are compared, it is seen that binary love/hate

attack is the most successful attack type for nuking a movie. Love/hate attack

reached a maximal negative ratio shift of 42.76%, which connotes that 1’s ratio of

a target movie will be decreased to 47.24% from 90% when nuked. Besides, binary

reverse bandwagon attacks can also be employed for nuking. However, their success

ratio is lightly smaller than love/hate attacks. If binary reverse bandwagon attack is

chosen to nuke a movie, negative ratio shift of 33.52% can be achieved. Similar to the

e↵ects of shilling attacks on arbitrarily distributed numeric datasets, as FS increases

success of both binary push and nuke attacks also increases. For smaller FS values,

improvements in ratio shift are noticeable. However, after reaching optimum value,

increase in FS decreases the e↵ects of the attacks.

Secondly, e↵ects of binary push and nuke attacks are tested with varying at-

tack sizes on the NBC-based private scheme proposed for ADD. By keeping FS as

constant at 15%, and varying AS from 1% to 25%, ratio shift values are obtained

against whole binary push and nuke attack models. Figure 5.8 shows the results of

these experiments. Similar to the FS experiments on binary data, except random

attack, push attacks can significantly manipulate the popularity of a movie. While

average attack achieved a maximum ratio shift of 58.50%, segment attack reached

55.90%, and bandwagon attack obtained 47.83% maximal ratio shift values. Refer-

ring to these obtained ratio shift values, it can be concluded that an attacker might

successfully push the predicted rating of a movie with both attacks. Binary random

attack achieved a maximum ratio shift of 13.67%, which is not enough to change

the predicted value of a movie. Furthermore, for small AS values, binary random

attack exactly fails. When e↵ects of binary nuke attacks on NBC is analyzed, it is

clearly seen that both love/hate and reverse bandwagon attacks are pretty success-

ful. Binary love/hate attack can reduce the 1’s ratio of a target movie by 40.48%,
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Figure 5.8. Ratio Shift Values for Varying Attack Size on Privacy Preserving Scheme
Proposed by *Yakut and Polat (2012b)

otherwise if binary reverse bandwagon attack is applied to nuke a movie, negative

ratio shift of 34.76% can be succeeded. For both binary push and nuke attacks,

increasing the AS increases the impact of attacks. However, this condition remains

until the AS reached its optimal value. Thereafter, enhancing the AS reduces the

influence of binary attacks.

These experimental results indicates that malicious users can change the out-

comes of NBC-based PPCFADD scheme. Similar to the results of the experiments

on numeric datasets, all push attack models significantly e↵ect the results, but ran-

dom attack model. However, the success order of the push attack models on binary

data are di↵erent from numeric data. While the most successful attack model on

numeric data is segment attack, on binary data the most successful attack model is

average attack. This is followed by segment, and bandwagon attacks, respectively.

As on numeric data, both love/hate, and reverse bandwagon attacks achieve con-

siderable negative ratio shift values on the results of NBC-based privacy-preserving

scheme.

5.3.4. Discussion

In this section, robustness of three studies enabling data holders private collabora-

tion on ADD are analyzed against well-known six shilling attack models. According
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to the experimental findings, it can be claimed that PPCFADD schemes for nu-

meric and binary data can be subjected to shilling attacks. Although these schemes

allow two parties to collaborate to o↵er more useful CF services without violating

confidentiality, malicious users who knows the collaboration can insert shilling pro-

files to disrupt the results. There are several techniques proposed to detect attacks

in recommender systems having numeric data. However, these existing methods

work on centralized data. When data is arbitrarily distributed between two parties,

each party can operate on only its own data. Therefore, by employing the existing

detection methods on ADD, they cannot find the distributed attack profiles.

Question that should be explained is “why existing attack detection methods

cannot reveal shilling profiles on PPCFADD schemes”. For instance, to apply the

classification-based detection approaches, classification attributes should be gener-

ated based on the entire dataset. The underlying assumption behind the generic

attributes proposed by Mobasher et al. (2007b) is that overall statistical signature

of an attack profile will diverge significantly from a genuine profile. However, when

data is distributed, both data of genuine profile, and the attack profile will also be

distributed between the parts. Thus, parties cannot discover the statistical di↵er-

ence between genuine and attack profiles while working on their private data. This is

same for the model-specific attributes, which are designed to detect the attack pro-

files by comparing the similarity of a profile with known attack models (Mobasher

et al., 2007b). Since, some ratings of an attack profile are on one side, and the

rest of the ratings are on the other side, parts individually cannot compute this

similarity by having part of the attack profile at hand. Hence, current feature-based

algorithms, which aim to select users with the maximum impact in attributes used,

cannot be applied when data are distributed.

The defined challenge for classification-based attack detection methods is also

case for other attack detection methods. The intuition behind time series-based

attack detection approach proposed by Zhang et al. (2006a) is that each attack

74



model may a↵ect the rating distribution of target or possibly other items over time.

Thus, to detect suspicious behaviour, changes in sample average and sample entropy

values are analyzed within a period of time. Hence, to employ this method on ADD,

sample average property which captures the change in an item’s popularity, and

sample entropy which captures the distributional change in an item’s ratings need

to be computed (Zhang et al., 2006a). However, since data is arbitrarily distributed

between two parties, the ratings of items are also split between them. With partial

data, parties cannot construct the time series of ratings for items. Therefore, they

need to collaborate to figure out the attack profiles.

Researchers also applied statistical anomaly detection method as an alterna-

tive approach in attack detection, which relies on item average values. One such

technique proposed by Bhaumik et al. (2006) is based on statistical control process,

which used to monitor items as they are under attack, by observing the change in

item’s mean rating over time. However, in the case of ADD, the half of the item

ratings will be in the other part, hence monitoring the item mean rating looking at

the partial data will not be truthful.

Clustering based attack detection algorithms attempt to distinguish clusters

of malicious users from clusters of real users. The method proposed by Mehta

(2007) bases on the intuition that clusters containing profiles of malicious users

will be tighter, in the sense that these profiles will be very similar to each other.

However, when data is arbitrarily distributed, attacker will insert the attack profile

by distributing the ratings in the profile between two parts. Thus, the similarity

among the attack profiles can vary, and thereby, it may not be possible to distinguish

the clusters of attack profiles from the clusters of authentic users.

Consequently, according to experimental results, introduced PPCFADD meth-

ods are not robust for shilling attacks. Although researchers propose solutions for

enhancing robustness of non-private and private centralized data-based CF algo-

rithms against profile injection attacks, these solutions cannot be directly applied to

75



PPCFADD schemes. Also, there is no proposed attack detection methods for binary

shilling profiles. If robustness of the privacy-preserving distributed CF algorithms

not guaranteed, e-companies having insu�cient data may hesitate to collaborate

with other data owners. Therefore, it is essential to discover the attack profiles,

and to do this new detection methods, which can work on distributed data, or the

distributed versions of the existing detection methods should be implemented.

5.4. Conclusions

In this chapter, robustness of privacy-preserving collaborative filtering schemes against

shilling attacks is investigated. Shilling attack problem on arbitrarily distributed

data-based collaborative filtering systems are explored. In order to insert shilling

profiles into arbitrarily distributed numeric and binary data, a method, which can be

applied in generation of the well-known shilling attack models on distributed data, is

proposed. Three state-of-the-art privacy-preserving schemes proposed for arbitrarily

distributed data are analyzed exposed to profile injection attacks, which are injected

by the proposed attack strategy. Real data-based experiments are performed to ex-

tensively evaluate the robustness of these schemes against six well-known shilling

attack models. Empirical results show that privacy-preserving schemes proposed for

arbitrarily distributed data are defenceless against shilling attacks, despite privacy

protection. The reasons of why existing detection methods proposed in the litera-

ture against malicious users cannot be directly applied on are discussed. Need for

more intelligent and expert attack detection methods for arbitrarily distribute data

is emphasised.
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6. DETECTING SHILLING PROFILES PRIVATELY ON

ARBITRARILY DISTRIBUTED DATA

In this chapter, distributed version of the classification-based shilling attack de-

tection method described in details in Chapter 2 is developed to defend privacy-

preserving collaborative filtering schemes proposed for arbitrarily distributed data

against shilling attacks. To derive the required classification attributes collabora-

tively between two data holders, private protocols, which utilize homomorphic en-

cryption and random filling methods, are proposed for secure computations. More-

over, the need for collaboration in attack detection on arbitrarily distributed data

is experimentally shown up.

6.1. Introduction

According to the studies in literature, insu�cient data problem might be accom-

plished by employing private protocols, which allow cooperation of data holders

while preserving privacy. On the other hand, there also exist centralized solutions

for shilling attack problem, and by utilizing the proposed methods it is possible to

detect shilling attacks. However, as shown empirically in Chapter 5, shilling attack

problem is also valid for PPDCF solutions (Yılmazel and Kaleli, 2016). PPDCF

solutions proposed on ADD are defenceless against shilling attacks, hence malicious

users, who know the collaboration, might insert distributed attack profiles into ADD

to disrupt the results of these systems. Looking at the results, e-companies who are

unsure of being subject to shilling attacks might refrain from cooperation even they

need it to o↵er more useful CF services to their customers. Therefore, it is essential

to detect the shilling profiles in PPDCF systems.

Even though there are many solutions proposed for enhancing robustness of

CF algorithms against profile injection attacks, existing methods work on centralized

data, and these solutions cannot be directly applied to PPCF algorithms proposed
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on arbitrarily distribute data (PPCFADD) (Yılmazel and Kaleli, 2016). When data

is arbitrarily distributed between two parties, each party can operate on only its own

data. However, existing attack detection methods utilize information about user-

item matrix and a data owner controls whole attack detection process. Therefore, by

employing the existing detection methods on ADD, they cannot find the distributed

attack profiles. As a result, more intelligent and expert attack detection methods

for ADD are required.

In nutshell, this chapter is focused on detecting shilling profiles in PPCFADD

systems. Distributed version of a well-known classification-based attack detection

method is proposed to defend PPCFADD schemes against shilling attacks that are

injected by the attack strategy introduced in Chapter 5. Besides, it is empirically

shown that even if parts have their own defending mechanisms based on their own

data, distributed attack profiles on ADD might not be detected without collabora-

tion.

6.2. Private Protocols for Finding Classification Attributes

Required for Shilling Attack Detection on Arbitrarily

Distributed Data

In this section, steps in deriving the required classification attributes privately be-

tween two data holders are described. First, the data masking that should be applied

by the data holders to mask their own private data before the collaborative works

is specified. Then, the Revised Private Mean Estimation Protocol that is designed

to compute some essential primitive values, which are compulsory in calculation of

the classification attributes, especially the generic ones, is defined. Finally, the pri-

vate protocols, which are built up to derive the required generic and model-specific

classification attributes for each distributed profile collaboratively between two data

holders, are represented.
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6.2.1. Data masking using random filling method

Before collaboration, collaborating parts, namely, Part A and Part B, need to mask

their own data, in order to protect the confidentiality of their data sets. For data

disguising, parts can use the method proposed by Yakut and Polat (2012a) for ADD,

whose steps are described as follows:

i. As an initial step, each part determines the density of users’ in their own

databases, which is the number of rated items in a user profile.

ii. Next, each part uniformly randomly selects ✓ percent of their empty cells,

where ✓ is determined as stated by Yakut and Polat (2012a).

iii. Then, parts fill such cells with fake ratings, and obtain their masked databases.

Fake ratings can be determined by following one of the strategies specified by

Yakut and Polat (2012a).

6.2.2. Revised private mean estimation protocol

After masking private databases by using fake ratings, parts need to calculate the

classification attributes necessary for shilling attack detection by collaborating with

each other. However, in order to calculate some of these classification attributes, a

number of basic primitives, which are the crucial values in some essential calcula-

tions, namely mean rating of a user, and an item, or the total number of ratings in

the system provided by a user, or provided for an item, need to be known. Let’s

first explain how necessary building blocks can be estimated without violating data

owners’ privacy.

Since data is arbitrarily distributed between Part A and B, parties need to

collaborate with each other to estimate the user mean ratings and the item mean

ratings, without deeply jeopardizing their privacy. In general, arithmetic mean, or

simply mean or average, can be computed as the sum of all the numbers in the series

divided by the count of all numbers in that series. Hence, mean = sum�count is an
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example of algebraic measure that can be calculated by applying division function

to distributive measures sum and count. More specifically, sum and count can be

computed by partitioning the data into smaller sets, computing each measure for

each subset, and finally merging them to obtain the final value (Yakut and Polat,

2012a). Let’s look at the calculations of user mean ratings and item mean ratings

distributively on ADD.

The mean of ratings provided for item i by all users, which is represented as

r
i

, can be computed in distributive manner between Part A and B as follows:

r
i

= ∑u✏U

i

r
u,i

R
U,i

= ∑u✏U

i

PartA

r
u,i

+∑
u✏U

i

PartB

r
u,i

R
U,i

PartA

+R
U,i

PartB

= sum
PartA

+ sum
PartB

count
PartA

+ count
PartB

(6.1)

where, U
i

is the set of users who have given rating for item i. r
u,i

is the rating given

by user u to item i, where u✏U
i

, and U
i

PartA

∪U
i

PartB

= U
i

. R
U,i

is the total number of

ratings in the system provided for item i by all users, which is especially the size of

the set U
i

. The total number of ratings held by Part A and B is shown by R
U,i

PartA

and R
U,i

PartB

, respectively for item i.

Similarly, the mean of ratings provided by user u across all items, which is

represented as v
u

, can be computed distributively between Part A and B as follows:

v
u

= ∑j✏I

u

v
u,j

N
u

= ∑j✏I

u

PartA

v
u,j

+∑
j✏I

u

PartB

v
u,j

N
u

PartA

+N
u

PartB

= sum
PartA

+ sum
PartB

count
PartA

+ count
PartB

(6.2)

where, I
u

is the set of items that user u provided a rating. v
u,j

is the rating given

by user u to item j, where j✏I
u

, and I
u

PartA

∪ I
u

PartB

= I
u

. N
u

is the total number of

ratings in the system provided by user u, which is especially the size of the set I
u

,

whereas N
u

PartA

and N
u

PartB

show the total number of ratings held by Part A and

B, respectively for user u.

As can be seen from Eq. 6.1 and 6.2, calculation of both user and item mean

ratings can be obtained in similar manners only by changing the input. While cal-

culating the user mean rating, the user profile or the row of the user-item matrix
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need to be considered, on the other hand, while calculating the item mean rating,

the ratings given by all the users to a specific item or the column of the user-item

matrix is needed. Since calculation of both user and item mean ratings can be ob-

tained similarly by changing the input vector, we revised Yakut and Polat (2012a)’s

Private Mean Estimation Protocol, which is designed for estimating the user average

ratings on ADD, to calculate both user and item mean ratings. Moreover, with some

additional steps, it becomes possible to store some intermediate count values, which

are necessary in calculation of the classification attributes.

Hence, the parties can estimate r
i

values for all items, i = 1,2, ..., n (or v
u

values for all users, u = 1,2, ..,m), in a distributive manner, as follows:

i. Part A and B compute partial sum and count values based on their own

databases for all items (or users). Hence, while Part A computes ∑
u✏U

i

PartA

r
u,i

(or ∑
j✏I

u

PartA

v
u,j

) and R
U,i

PartA

(or N
u

PartA

), Part B computes ∑
u✏U

i

PartB

r
u,i

(or ∑
j✏I

u

PartB

v
u,j

), and R
U,i

PartB

(or N
u

PartB

).

ii. Then, Part A sends estimated sub-aggregates, which are sum and count, cal-

culated for the items (or users) with odd indices to Part B, and Part B sends

estimated sub-aggregates calculated for the items (or users) with even indices

to Part A. By this way, parts exchange sub-aggregates for half of the items (or

users).

iii. Next, by using the sub-aggregates that they own, and the other part sends,

Part A and B estimate item (or user) mean ratings for even and odd indexed

items (or users), respectively.

For this calculations, Part A will perform the following steps:

- Part A finds sum and count values of even indexed items (or users), which

are ItemSum
even

(or UserSum
even

), and R
U,i

even

(or N
u

even

) in the rest of

the equations.
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- Part A stores R
U,i

even

(or N
u

even

) value that will be used in the rest of the

protocols.

- Part A estimates the mean ratings’ of items (or users) with even indices,

which is r
i

even

(or v
u

even

).

Similarly, Part B will perform the following steps:

- Part B finds sum and count values of odd indexed items (or users), which

are ItemSum
odd

(or UserSum
odd

), and R
U,i

odd

(or N
u

odd

) in rest of the

equations.

- Part B stores R
U,i

odd

(or N
u

odd

) value that will be used in the rest of the

protocols.

- Part B estimates the mean ratings’ of items (or users) with odd indices,

which is r
i

odd

(or v
u

odd

).

iv. Finally, parts exchange the estimated item (or user) mean ratings. Thus, at

the end of this protocol, each part ends with the r
i

(or v
u

) values for all items

(or users).

Distributed computations require data sharing between the parties, thus the impor-

tant issue is exchanging as few as possible amounts of data. With this protocol each

part sends data to the other part for half of the items (or users). Therefore, the

companies cannot figure out the sum of the ratings and the values given to such

items (or users) during the protocol (Yakut and Polat, 2012a).

Parties need to apply Revised Private Mean Estimation Protocol twice, ones

for estimating the item mean ratings, and ones for the user mean ratings. At the

end, each part will have the following information about the data: Part A and B

both learns r
i

values for all items, and v
u

values for all users. While Part A has

a knowledge about R
U,i

even

, and N
u

even

, B knows R
U,i

odd

, and N
u

odd

. These values

will be used in the calculation of the classification attributes necessary for shilling

attack detection.
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6.2.3. Private estimation of RDMA, WDMA, and WDA attributes

Generic attributes RDMA, WDA, and WDMA, whose equations are given in Eq.

2.1, 2.2, 2.3, can be calculated in distributed manner between Part A and B as

shown in Eq. 6.4, 6.3, 6.5, respectively.

WDA
u

= N

u�
i=0
�r
u,i

− r̄
i

�
R

U,i

= N

uPartA�
i=0

�r
u,i

− r̄
i

�
R

U,i

+N

uPartB�
i=0

�r
u,i

− r̄
i

�
R

U,i

= WDA
uPartA + WDA

uPartB

(6.3)

RDMA
u

= ∑
N

u

i=0 �ru,i−r̄i�
R

U,i

N
u

= ∑
N

uPartA
i=0 �r

u,i

−r̄
i

�
R

U,i

+ ∑N

uPartB
i=0 �r

u,i

−r̄
i

�
R

U,i

N
u

= WDA
uPartA + WDA

uPartB

N
u

(6.4)

WDMA
u

= ∑
N

u

i=0 �ru,i−r̄i�
R

U,i

2

N
u

= ∑
N

uPartA
i=0 �r

u,i

−r̄
i

�
R

U,i

2 + ∑N

uPartB
i=0 �r

u,i

−r̄
i

�
R

U,i

2

N
u

= WDMA
uPartA + WDMA

uPartB

N
u

(6.5)

To compute these three attributes, first of all each part should find �r
u,i

− r̄
i

�.
Since each of them knows the item means, r̄

i

, and the items the user rated on their

sides, along with the given rating value, they can compute this absolute di↵erence

by themselves. According to the formulas of RDMA, WDA, and WDMA; this

calculated absolute di↵erence value, �r
u,i

− r̄
i

�, should be divided by R
U,i

, or R
U,i

2.

However, Part A only knows R
U,i

even

, in other words, the counts of even indexed

items. Hence, for each user Part A can find ∑N

u

i=0 �ru,i−r̄i�
R

U,i

, and ∑N

u

i=0 �ru,i−r̄i�
R

U,i

2 value for

even indexed items by herself. However, for the odd indexed items she should

collaborate with Part B. This is same for Part B. Since, Part B only knows R
U,i

odd

,

the counts of odd indexed items, for each user Part B can find ∑N

u

i=0 �ru,i−r̄i�
R

U,i

, and

∑N

u

i=0 �ru,i−r̄i�
R

U,i

2 value for odd indexed items by herself. Whereas, for the even indexed
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items she should collaborate with Part A. Let’s rewrite Eq. 6.3 and Eq. 6.5 according

to R
U,i

even

, and R
U,i

odd

, as shown in Eq. 6.6 and Eq. 6.7, respectively.

Looking at the equation of WDMA attribute, it can be stated that the compu-

tation of numerator of the WDMA attribute is similar to the computation of WDA

attribute, only di↵erence is that there is a square in R
U,i

. Thus, WDA and WDMA

attributes can be calculated by applying similar steps.

i. Each part find �r
u,i

− r̄
i

� values by themselves.

ii. Then, each part find the required partial sum values according to the data

they have.

- Part A knows the counts of even indexed items, R
U,i

even

, hence for each

user Part A can find the following values by herself:

• For WDA calculation: ∑N

u

PartA

even

i=0 �r
u,i

−r̄
i

�
R

U,i

even

=WDA
u

PartA

even

.

• For WDMA calculation: ∑N

u

PartA

even

i=0 �r
u,i

−r̄
i

�
R

U,i

even

2 =WDMA
u

PartA

even

.

- Similarly, Part B knows the counts of odd indexed items, R
U,i

odd

, hence

for each user Part B can find the following values by herself:

• For WDA calculation: ∑N

u

PartB

odd

i=0 �r
u,i

−r̄
i

�
R

U,i

odd

=WDA
u

PartB

odd

.

• For WDMA calculation: ∑N

u

PartB

odd

i=0 �r
u,i

−r̄
i

�
R

U,i

odd

2 =WDMA
u

PartB

odd

.

iii. Since the counts of odd indexed items, R
U,i

odd

, are known by Part B, for Part

A to calculate the remaining partial sum values (which are WDA
u

PartA

odd

and

WDMA
u

PartA

odd

), she should collaborate with Part B. Hence, Part A encrypts

each �r
u,i

− r̄
i

� value that she calculated for the odd indexed items, and sends

these encrypted values to Part B.

iv. Knowing the R
U,i

odd

values, Part B can get 1�R
U,i

odd

, and 1�R
U,i

odd

2 exponent

of the encrypted values, which are equal to "
K

� x

R

U,i

odd

�, and "
K

� x

R

U,i

odd

2� as

shown in Eq. 6.8, and Eq. 6.9, where x is the absolute di↵erence �r
u,i

− r̄
i

� that
Part A encrypted before sending to Part B.
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v. Moreover, now Part B has the encrypted "
K

� �ru,i−r̄i�
R

U,i

odd

�, and "
K

� �ru,i−r̄i�
R

U,i

odd

2� values
of each user, so she can multiply these encrypted values respectively to obtain

their sum, again in encrypted form, which are "
K

�∑N

u

PartA

odd

i=0 �r
u,i

−r̄
i

�
R

U,i

odd

� and

"
K
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i

�
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2� values.
vi. Then, Part B sends "

K

�∑N

u

PartA

odd

i=0 �r
u,i

−r̄
i

�
R

U,i

odd

� and "
K

�∑N

u
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odd

i=0 �r
u,i

−r̄
i

�
R

U,i

odd

2� values
that she computed for each user back to Part A.

vii. Part A decrypts them, and hence obtains WDA
u

PartA

odd

, and WDMA
u

PartA

odd

values. Besides, adds these values to the partial sum values that she already

have for the even indexed items.

- Part A will add WDA
u

PartA

even

computed in step ii, and WDA
u

PartA

odd

values to get WDA
u

PartA

.

- Part A will addWDMA
u

PartA

even

computed in step ii, andWDMA
u

PartA

odd

values to get WDMA
u

PartA

.

viii. Now step iii through vii should be repeated ones more by switching the roles

between the parts to compute WDA
u

PartB

, and WDMA
u

PartB

.

So far, for each user half of WDA
u

attribute (WDA
u

PartA

), and half of the

numerator of WDMA
u

attribute is known by Part A (WDMA
u

PartA

), and the

other halves are known by Part B. For instance, if parts sum up the partial values
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WDA
u

PartA

, and WDA
u

PartB

, they can obtain WDA
u

value of each user. However,

how should they share these partial WDA
u

values without violating privacy? Note

that RDMA
u

attribute is calculated as RDMA
u

= WDA

u

PartA

+WDA

u

PartB

N

u

= WDA

u

N

u

,

but Part A knows the even indexed users’ N
u

values (N
u

even

), and Part B knows the

odd indexed users’ N
u

values (N
u

odd

). If both parts learn the WDA
u

and RDMA
u

values, then Part A may conclude N
u

odd

, and Part B may infer N
u

even

. To prevent

this, let’s share the WDA
u

values such that Part A will know the WDA
u

values

of even indexed users, also since Part A knows N
u

even

, she can easily calculate the

RDMA
u

values of that users; and Part B will know theWDA
u

values of odd indexed

users, also since Part B knows N
u

odd

, she can easily calculate the RDMA
u

values

of that users. By the same way WDMA
u

attribute can also be calculated. Hence,

private protocol for estimating RDMA, WDMA, WDA classification attributes con-

tinues as follows:

ix. Part A sends WDA
u

PartA

, and WDMA
u

PartA

values of odd indexed users to

Part B, and Part B sends WDA
u

PartB

, and WDMA
u

PartB

values of even in-

dexed users to Part A.

x. Now, as shown in Eq. 6.3, Part A sums up WDA
u

PartA

values that she has for

the even indexed users with the WDA
u

PartB

values that Part B has send in the

previous step to obtain WDA
u

values of even indexed users. Similarly, Part

B sums up WDA
u

PartB

values that she has for the odd indexed users with the

WDA
u

PartA

values that Part A has send in the previous step to obtain WDA
u

values of odd indexed users.

The numerator of the WDMA
u

attribute shown in Eq. 6.5, can be computed

in the same manner. Each part add up the the partial numerator value that

the other part sends with the partial value that she has. Thus, Part A can

sum up WDMA
u

PartA

values that she has for the even indexed users with

the WDMA
u

PartB

values that Part B has send to obtain the numerator of
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the WDMA
u

attribute of even indexed users. Likely, Part B will have the

numerator of the WDMA
u

attribute of odd indexed users. According to the

formula of the WDMA
u

attribute, this numerator should be divided by N
u

.

Thus, each part can compute the WDMA
u

attribute for her part. Part A

knows the numerator of the WDMA
u

attribute of the even indexed users, and

the N
u

even

, Part B knows the numerator of the WDMA
u

attribute of the odd

indexed users, and the N
u

odd

. Hence, Part A can calculate WDMA
u

even

, and

Part B can compute WDMA
u

odd

by dividing the numerator values by the N
u

values they own.

Hence, at the end of this step, even indexed users WDA and WDMA attributes

are known by Part A (WDA
u

even

, WDMA
u

even

), and odd indexed users WDA

and WDMA attributes are known by Part B (WDA
u

odd

, WDMA
u

odd

). In

other words, half of the attribute values are known by one part and the other

half is known by the other.

xi. Now on, since each part knows half of the usersWDA
u

and N
u

values, they can

compute these users RDMA
u

attributes by themselves. The RDMA attribute

shown in Eq. 6.4 can also be written as WDA
u

�N
u

. Part A knows WDA
u

even

and N
u

even

, so for the even indexed users, Part A can calculate RDMA
u

even

by dividing WDA
u

even

by N
u

even

, where RDMA
u

even

= WDA

u

even

N

u

even

. Likely, since

Part B knows WDA
u

odd

and N
u

odd

, for the odd indexed users Part B can calcu-

late RDMA
u

odd

by dividing WDA
u

odd

by N
u

odd

, where RDMA
u

odd

= WDA

u

odd

N

u

odd

.

At the end of this step, even indexed users RDMA attributes are known by

Part A (RDMA
u

even

), and odd indexed users RDMA attributes are known by

Part B (RDMA
u

odd

).

6.2.4. Private estimation of DegSim attribute

DegSim attribute is based on the average similarity of a profile’s top k nearest

neighbours. In order to calculate this attribute, as a first step, similarity values
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between a user and each of the remaining users need to be calculated. Then, from

these similarity values highest k of them should be chosen. In this study, user

profiles are arbitrarily distributed between two parties, thus similarity computation

between two users should be perform privately on ADD. For similarity computation,

the Private Similarity Computation Protocol (PrivateSims) proposed by Memiş and

Yakut (2014), which is designed for distributed Pearson similarity calculation on

ADD between two parts, without jeopardizing privacy, is employed. With PrivateS-

ims protocol, each part privately computes components of a similarity value (w
u,a

),

and end up with half of the total values between user u and each of the remaining

users a (Memiş and Yakut, 2014). Hence, at the end, each part will have half of

the similarities. Then, in order to calculate DegSim attribute, each part need to

find top k similar users, in other words, highest k similarity values in that part, by

using the w
u,a

values that they own, since one part might possess all the highest

k values. Thereafter, one part might send her top k similarity values to the other

part, which will only learn the value of the similarities, not the corresponding users.

The part that receives all the highest 2k similarity values, finds highest k of them,

and calculates the DegSim attribute of user u.

For each user u the following is performed:

i. PrivateSims protocol will be applied. Half of the similarities will be known by

Part A, and the others will be known by Part B.

ii. Each part finds highest k similarity values that she owns.

iii. Now to calculate DegSim
u

attribute parts need to collaborate. Hence if the

user is an even indexed user;

- Part A sends her k highest similarity values to Part B.

- Part B merges the similarity values that she owns with the ones that Part

A sends.
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- Among all, Part B choses the highest k value, adds them up, and divides

the sum by k to obtain the DegSim
u

attribute.

iv. For the remaining users by switching roles, step iii will be repeated, and Part

A will have the DegSim
u

attribute of the odd indexed users.

v. Finally, each part will have DegSim
u

attribute for half of the users.

Di↵erent from DegSim attribute, DegSim’ attribute, which is equation is shown

in Eq. 2.5, takes into account the number of co-rated items between two users. By

modifying PrivateSims protocol this attribute can be calculated by following the

steps of the above protocol. However, finding co-rated items of two users whose

ratings are distributed between two parts is costy, and more than that this calcu-

lation might disrupt privacy. Since privacy is the main concern, we give up this

classification attribute.

6.2.5. Private estimation of length variance attribute

For to calculate the LengthVar attribute for each user, the #ratings (or, N) value

shown in Eq. 2.6 should be computed first. At the end of the Revised Private Mean

Estimation Protocol, Part A learns the total number of ratings given by the even

indexed users N
u

even

(or, count
even

), and Part B learns the total number of ratings

given by the odd indexed users N
u

odd

(or, count
odd

). First of all, the average number

of ratings in the system, N , should be calculated, which is distributed calculation can

be formulated as below, and after then, parts can calculate the LengthVar attribute.

N =
N∑
i=0Nu

N
= ∑u✏N

u

even

N

u

+∑
u✏N

u

odd

N

u

N
= count

even

+ count
odd

N
(6.10)

i. Each part can add the number of ratings that they have. Hence, by adding

the even indexed users N
u

even

values, Part A will have the count
even

value,

which is the sum of the total number of ratings in the system given by even

indexed users, and by adding the odd indexed users N
u

odd

values, Part B will
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have count
odd

value, which is the sum of the total number of ratings in the

system given by odd indexed users.

ii. Then, parts exchange these count values. Part A sends count
even

value to Part

B, and Part B sends count
odd

value to Part A.

iii. Since both parts knows N , by adding the count values count
even

+ count
odd

,

and dividing this sum to N , each part compute the N value.

iv. By knowing all the even indexed users N
u

even

values, Part A can calculate

�N
u

−N � di↵erence for even indexed users, likewise, by knowing all the odd

indexed users N
u

odd

values, Part B can calculate this absolute di↵erence for

odd indexed users by herself.

v. According to Eq. 2.6, �N
u

−N � di↵erence should be divided by
N∑
i=0 �Ni

−N�2.
This denominator can be calculated partially by each part. Thus, Part A can

calculate partial sum for even indexed items, and Part B can calculate the

partial sum for odd indexed items.

vi. Then, parts can exchange these partial sum values. Hence, Part A sends
N

even∑
i=0 �Ni

−N�2 value to Part B, and Part B sends
N

odd∑
i=0 �Ni

−N�2 value to Part

A.

vii. By adding the partial sum value the part has with the partial sum value

the other part sends, each part can find the denominator of the LengthVar

attribute, on other words each part will have the
N∑
i=0 �Ni

−N�2 value.

viii. Then, by dividing the �N
u

−N � di↵erences that they calculated to the
N∑
i=0 �Ni

−N�2
value, Part A will have the LengthVar

u

attribute of the even indexed users,

and Part B will have the LengthVar
u

attribute of the odd indexed users.

6.2.6. Private estimation of average attack model-specific attributes

To find the average attack model specific attributes, namely FMV, FMD, and Profile

Variance, described thoroughly in Section 2.3.2, first of all we need to find the
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optimal partitioning, which is the one where the mean variance is minimized, and

calculated as in Eq. 2.7.

For each user u the following steps will be performed:

i. Each part can create her own possible target item set by herself.

- By examining user u’s profile that she owns, Part A constructs the set of

possible target items (P
u,T

A

) from the rated items in the profile having

maximum rating (r
max

).

- Similarly, Part B constructs the set of possible target items (P
u,T

B

) for

her own part.

ii. Now, each part need to calculate the MeanVar (u, p
target

) attribute for each

of the items in their possible target item sets’ iteratively. Through Revised

Private Mean Estimation Protocol both parts know the average rating of each

item, thus the r
i

values. According to Eq. 2.7, parts need to calculate the

square of the di↵erence of the filler ratings, but some of the filler ratings are in

one part, and the other are in the other part. Hence, Eq. 2.7 can be calculated

in distributed manner as follows:

MeanV ar (u, p
target

) = ∑i✏P

u,F

A

(r
u,i

A

− r
i

)2 +∑
i✏P

u,F

B

(r
u,i

B

− r
i

)2
�P

u,F

A

� + �P
u,F

B

� (6.11)

Thus, for calculating the MeanVar values of the possible target items in P
u,T

A

,

Part A should consider all the rated items in Part B along with the ones

that were rated in her side except the chosen target item as her filler item

set, P
u,F

A

; and similarly Part B should consider all the rated items in Part A

along with her P
u,F

B

set as her filler items in calculating the MeanVar values

of the possible target items in P
u,T

B

. By looking at all the rated items they

have, parts needs to compute ∑
i✏P

u,F

(r
u,i

− r
i

)2 value for their part, and then,

exchange these values with each other.
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- Part A computes∑
i✏P

u,F

A

(r
u,i

A

−r
i

)2 value, let’s name asMeanVarNumerator
A

,

and sends to Part B.

- Part B computes∑
i✏P

u,F

B

(r
u,i

B

−r
i

)2 value, let’s name asMeanVarNumerator
B

,

and sends to Part A.

iii. Iterating through the possible target item set’s, each part calculates the nu-

merator of the MeanV ar (u, p
target

) values’ in her part.

(a) For each of the elements in P
u,T

A

, iteratively take one of them as the

suspected target item, and find the numerator of the MeanVar (u, p
target

)
values’.

- Construct the P
u,F

A

, which is the rest of the rated items in user u’s

profile own by Part A, plus the ones in Part B.

- Calculate ∑
i✏P

u,F

A

(r
u,i

A

−r
i

)2, which will be the MeanVarNumerator
A

value for the corresponding suspected target item.

- Add the obtained MeanVarNumerator
A

with MeanVarNumerator
B

value that Part B send in step ii, where the result will be the numer-

ator of the MeanVar (u, p
target

) value of the suspected target item.

(b) Among the calculated values choose the minimum one as the optimal

partitioning according to Part A. Even though only the numerator of the

MeanVar (u, p
target

) values’ are known, since the denominator is same for

all, the minimum numerator value will also be the minimum MeanVar

value.

(c) Steps (a), (b) will repeated by Part B. So at the end of these steps Part

B also learns the optimal partitioning according to Part B.

iv. Now, there are two values for optimal partitioning. Among these the one

having the minimum value is the optimal partitioning for user u. So, parts

exchange these values, and both learn if the optimal partitioning is in her part
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or the other. The part which has the optimal partitioning, increases by one

the TMF value of the target item that gives this partitioning.

v. Now optimal partitioning is in which part is known. However, actual MeanVar

attribute is not calculated yet. Only the numerator is obtained. To obtain

the MeanVar value, this numerator should be divided by the size of the filler

items, �P
u,F

A

� + �P
u,F

B

�. This is actually equal to the total number of items

rated by the user in both Part A, and Part B, which is the N
u

value that we

calculated in the Private Mean Estimation Protocol, minus 1, indicating the

target item. However, at the end of this protocol, Part A knows N
u

value of

the even indexed users, and Part B knows N
u

value of the odd indexed users.

- If optimal partitioning is in Part A, and the working user is an odd

indexed user:

• For calculating FMV
u

attribute, Part A sends the numerator value

she has to Part B. Part B already knows the N
u

value of the user,

hence calculates the FMV
u

of the user. Part B cannot know which

item is the possible target, can only learn the value of the attribute.

- If optimal partitioning is in Part B, and the working user is an even

indexed user:

• For calculating FMV
u

attribute, Part B sends the numerator value

she has to Part A. Part A already knows the N
u

value of the user,

hence calculates the FMV
u

of the user. Part A cannot know which

item is the possible target, can only learn the value of the attribute.

- If optimal partitioning is in Part A, and the working user is an even

indexed user:

• For calculating FMV
u

attribute, since Part A already knows the N
u

value of the user, she calculates the FMV
u

of the user.

- If optimal partitioning is in Part B, and the working user is an odd
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indexed user:

• For calculating FMV
u

attribute, since Part B already knows the N
u

value of the user, she calculates the FMV
u

of the user.

FMD and Profile Variance are the other attributes that need to be computed

based on the optimal partitioning, which is found in step iv of the above protocol.

These attributes can also be computed in distributed manner. Eq. 2.8 can be

written as follows:

FMD
u

= ∑i

A

✏P

u,F

A

�r
u,i

A

− r
i

� +∑
i

B

✏P

u,F

B

�r
u,i

B

− r
i

�
�P

u,F

A

� + �P
u,F

B

�

= ∑i

A

✏P

u,F

A

�r
u,i

A

− r
i

� +∑
i

B

✏P

u,F

B

�r
u,i

B

− r
i

�
N

u

− 1

(6.12)

In Eq. 2.9, PMean is the average of ratings provided by a user across all

items in both parts. This is actually the v
u

value that we have calculated in the

Revised Private Mean Estimation Protocol. At the end of this protocol, each part

learns the v
u

values of all users, hence each part already knows PMean. Moreover,

i ∈ P
u,T

∪ P
u,F

means all the items that have rated in the profile, both in Part A,

and B. Hence, unlike the formula of FMD, and MeanVar, in Profile Variance the

possible target item is also take into consideration. So, i ∈ P
u,T

∪ P
u,F

is same as

i ∈ P
u

−P
u,Ø. �Pu,T

∪ P
u,F

� in the denominator is actually �P
u,F

� + �P
u,T

�. Since, �P
u,T

�
is 1, it turned to be �P

u,F

� + 1, which is equal to N
u

value. As stated above, Part A

knows even indexed users N
u

value, and Part B knows odd indexed users N
u

value.

Eq. 2.9 can be written in distributed manner as follows:

ProfileV ariance
u

=

�
i

A

∈P
u

A

−P
u,Ø

A

(r
u,i

A

−PMean)2 +
�

i

B

∈P
u

B

−P
u,Ø

B

(r
u,i

B

−PMean)2
N

u

(6.13)
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These two attributes can also be computed concurrently while calculating the

FMV
u

attribute of the user. In the final step of the above private protocol, we can

also calculate FMD
u

and Profile Variance
u

attributes.

- If optimal partitioning is in Part A, and the working user is an odd indexed

user:

• For calculating FMD
u

attribute, Part A calculates ∑
i

A

✏P

u,F

A

�r
u,i

A

− r
i

�
value for her filler item set, which include all the items that have rating

on Part A except the target item, and sends this value to Part B. Part B

calculates ∑
i

B

✏P

u,F

B

�r
u,i

B

− r
i

� value for her filler item set, which include

all the items that have rating on Part B. Part B adds up these partial

sums, and then divides by N
u

− 1 to obtain the FMD
u

attribute.

• For calculating Profile Variance
u

, Part A calculates∑
i

A

∈P
u

A

−P
u,Ø

A

(r
u,i

A

−PMean)2
value for all the rated items that she has, including the target item, and

sends this value to Part B. Part B calculates∑
i

B

∈P
u

B

−P
u,Ø

B

(r
u,i

B

−PMean)2
value on all the rated items in her part. Part B adds up these partial

sums, and then divides by N
u

to obtain the Profile Variance
u

attribute.

- If optimal partitioning is in Part B, and the working user is an even indexed

user:

• For calculating FMD
u

attribute, Part B calculates ∑
i

B

✏P

u,F

B

�r
u,i

B

− r
i

�
value for her filler item set, which include all the items that have rating

on Part B except the target item, and sends this value to Part A. Part A

calculates ∑
i

A

✏P

u,F

A

�r
u,i

A

− r
i

� value for her filler item set, which include

all the items that have rating on Part A. Part A adds up these partial

sums, and then divides by N
u

− 1 to obtain the FMD
u

attribute.

• For calculating Profile Variance
u

, Part B calculates∑
i

B

∈P
u

B

−P
u,Ø

B

(r
u,i

B

−PMean)2
value for all the rated items that she has, including the target item, and

sends this value to Part A. Part A calculates∑
i

A

∈P
u

A

−P
u,Ø

A

(r
u,i

A

−PMean)2
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value on all the rated items in her part. Part A adds up these partial

sums, and then divides by N
u

to obtain the Profile Variance
u

attribute.

- If optimal partitioning is in Part A, and the working user is an even indexed

user:

• For calculating FMD
u

attribute, Part B calculates ∑
i

B

✏P

u,F

B

�r
u,i

B

− r
i

�
value for her filler item set, which include all the items that have rating on

Part B, and sends this value to Part A. Part A calculates∑
i

A

✏P

u,F

A

�r
u,i

A

− r
i

�
value for her filler item set, which include all the items that have rating

on Part A except the target item. Part A adds up these partial sums,

and then divides by N
u

− 1 to obtain the FMD
u

attribute.

• For calculating Profile Variance
u

attribute, Part B calculates

∑
i

B

∈P
u

B

−P
u,Ø

B

(r
u,i

B

−PMean)2 value for all the rated items that she has,

and sends this value to Part A. Part A calculates∑
i

A

∈P
u

A

−P
u,Ø

A

(r
u,i

A

−PMean)2
value on all the rated items in her part, including the target item. Part

A adds up these partial sums, and then divides by N
u

to obtain the

Profile Variance
u

attribute.

- If optimal partitioning is in Part B, and the working user is an odd indexed

user:

• For calculating FMD
u

attribute, Part A calculates ∑
i

A

✏P

u,F

A

�r
u,i

A

− r
i

�
value for her filler item set, which include all the items that have rating on

Part A, and sends this value to Part B. Part B calculates∑
i

B

✏P

u,F

B

�r
u,i

B

− r
i

�
value for her filler item set, which include all the items that have rating

on Part B except the target item. Part B adds up these partial sums,

and then divides by N
u

− 1 to obtain the FMD
u

attribute.

• For calculating Profile Variance
u

attribute, Part A calculates

∑
i

A

∈P
u

A

−P
u,Ø

A

(r
u,i

A

−PMean)2 value for all the rated items that she has,

and sends this value to Part B. Part B calculates∑
i

B

∈P
u

B

−P
u,Ø

B

(r
u,i

B

−PMean)2
97



value on all the rated items in her part, including the target item. Part

B adds up these partial sums, and then divides by N
u

to obtain the

Profile Variance
u

attribute.

As well as learning the FMV
u

attribute, parts also learn the value of FMD
u

,

and Profile Variance
u

attribute for half of the users. This protocol needs to be

computed twice; ones for push attack, where the set P
u,target

contains items having

rating r
max

, and ones for nuke attacks, where the set P
u,target

contains items having

rating r
min

. Thus, by choosing the minimum ratings of the profile as the target set,

these metrics need to be computed ones more. Hence, the above protocol written

for calculating the average attack model-specific attributes can be used to find the

corresponding attributes for nuke attacks.

6.2.7. Private estimation of bandwagon attack model-specific attributes

As in random attack, FAC, and FMD attributes need to be generated, but di↵erent

from random attack, the partitioning shown in Eq. 2.10 will be used in calculations.

Hence, all items in P
u

that are given the maximum rating (or the minimum rating

for nuke attack) in user u’s profile are placed in the target partition, P
u,T

, and all

other rated items form the set P
u,F

, which is the filler partition. After forming these

partitions, FAC, and FMD attributes need to be calculated privately in collaboration

of both parts.

FAC attribute captures the correlation between the ratings given to filler items

and the average ratings of these items. Since average ratings of items is known by

both parts, this correlation value can be calculated distributively between two parts,

as shown in Eq. 6.14.

FAC
u

= X ⋅ Y√
X2 ⋅√Y 2

= X
A

⋅ Y
A

+X
B

⋅ Y
B�

X
A

2 +X
B

2 ⋅�Y
A

2 + Y
B

2
(6.14)

where, X
A

, and X
B

are the vectors having the ratings given to filler items in Part

A, and B, respectively. Whereas, Y
A

, and Y
B

are the vectors containing the average
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ratings of the corresponding items, in order of Part A, and B.

Calculation of the FAC attribute, which is distributed equation is given in Eq.

6.14 can be obtained privately for bandwagon attack model as follows:

For each user u the following steps will be performed:

i. Looking at their own data, each part constructs the filler item and target item

sets of user u.

- Part A forms the set P
u,F

A

, and Part B forms the set P
u,F

B

.

- The ratings given by user u to the items in P
u,F

A

is actually the X
A

vector, and similarly the ratings given to items in P
u,F

B

is the X
B

vector.

Hence, parts form X
A

, and X
B

vectors by themselves.

- Each part increases the TMF value of the items in her target item list by

one.

ii. Since parts already knows the item means, they can form Y
A

, and Y
B

vectors,

which will contain the corresponding item mean values of the filler items in

that part.

iii. Now, by knowing X
A

and Y
A

, Part A can calculate X
A

⋅ Y
A

, X
A

2, and Y
A

2.

Similarly, Part B calculates X
B

⋅ Y
B

, X
B

2, and Y
B

2.

If the user is an even indexed user, then the following steps are obeyed.

iv. Part A sends the value of Y
A

2 to Part B. By using Y
B

2 value that she has,

Part B can calculate
�
Y
A

2 + Y
B

2.

v. Part B sends the value of X
B

2 to Part A. By using X
A

2 value that she has,

Part A can calculate
�
X

A

2 +X
B

2.

vi. Part B encrypts the
�
Y
A

2 + Y
B

2 value that she obtained in step iii with her

key, and sends ⇠ ��Y
A

2 + Y
B

2� to Part A.
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vii. According to Eq. 6.14, the denominator of FAC
u

is the product of
�
X

A

2 +X
B

2

and
�
Y
A

2 + Y
B

2. Part A knows the value of
�
X

A

2 +X
B

2. Moreover, in

the previous step Part B send the encrypted value of
�
Y
A

2 + Y
B

2, which is

⇠ ��Y
A

2 + Y
B

2� to Part A. Hence, Part A can get the
�
X

A

2 +X
B

2 exponent

of this encrypted value to obtain the encrypted value of their product, which

is the denominator.

⇠
K

��Y
A

2 + Y
B

2��
�
X

A

2+X
B

2�
mod n2 ≡ ⇠

K

��X
A

2 +X
B

2 ⋅�Y
A

2 + Y
B

2� mod n

(6.15)

viii. According to Eq. 6.14, the numerator of FAC
u

is the sum of X
A

⋅ Y
A

and

X
B

⋅ Y
B

. However, X
A

⋅ Y
A

is known by Part A, and X
B

⋅ Y
B

is known by Part

B. Hence, Part B encrypts the X
B

⋅ Y
B

value that she obtained in step i with

her key, and sends ⇠ (X
B

⋅ Y
B

) to Part A.

ix. Part A encrypts the value ofX
A

⋅Y
A

, and multiplies ⇠ (X
A

⋅ Y
A

) with ⇠ (X
B

⋅ Y
B

)
in order to obtain their encrypted sum, which is ⇠ (X

A

⋅ Y
A

+X
B

⋅ Y
B

).
x. Now Part A has both the numerator and denominator value of the FAC

u

at-

tribute in encrypted format. Thus, by using Secure Division Protocol (Dahl

et al., 2012), Part B can divide ⇠ (X
A

⋅ Y
A

+X
B

⋅ Y
B

) to ⇠
K

��X
A

2 +X
B

2 ⋅�Y
A

2 + Y
B

2�,
and send the result to Part B.

xi. Part B decrypts the result, and gets the FAC
u

attribute of the even indexed

users.

xii. By changing places in step iv to xi, Part A can calculate the FAC
u

attribute

of the odd indexed users (If the user is an odd indexed user, then this step is

obeyed.).

Calculation of the FMD attribute, which is distributed equation is given in

Eq. 6.12 can be obtained privately for bandwagon attack model as follows:
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For each user u the following steps will be performed:

i. Each part constructs her filler item and target item sets according to her own

data.

- By constructing the filler sets, each part also learns the size of their filler

set. Thus, Part A forms the set P
u,F

A

, and learns �P
u,F

A

�. Similarly, Part

B forms the set P
u,F

B

, and learns �P
u,F

B

�.
- Each part increases the TMF value of the items in her target item list by

one.

ii. Parts calculate ∑
i

A

✏P

u,F

A

�r
u,i

A

− r
i

�, and ∑
i

B

✏P

u,F

B

�r
u,i

B

− r
i

� values by them-

selves based on their own filler item set’s.

iii. According to Eq. 6.12 partial sum values need to be add up, and then divided

by the sum of the size (count) of the filler item sets, �P
u,F

A

�+ �P
u,F

B

�. Hence, if
the user is an even indexed user;

(a) Part A encrypts the partial sum value obtained from ∑
i

A

✏P

u,F

A

�r
u,i

A

− r
i

�,
and the size of her filler item set, �P

u,F

A

�. Then, sends these encrypted

values to Part B.

(b) Part B encrypts her partial sum value obtained from ∑
i

B

✏P

u,F

B

�r
u,i

B

− r
i

�,
and the size of her filler item set, �P

u,F

B

�.
(c) Part B multiplies these encrypted partial sum values, and obtains sum of

them in encrypted form. Similarly, by multiplying the encrypted count

values, Part B obtains the sum of the counts in encrypted form.

(d) By using Secure Division Protocol (Dahl et al., 2012), Part B can divide

encrypted sum to encrypted count, and send the result to Part A.

(e) Part A decrypts the result, and gets the FMD
u

attribute of the even

indexed user.
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iv. By changing places in step iii, Part B can calculate the FMD
u

attribute of the

odd indexed users.

By choosing the minimum ratings of the profile as the target set, FAC, and

FMD attributes need to be computed ones more. Hence, the above protocol written

for calculating the bandwagon attack model-specific attributes can be used to find

the corresponding attributes for nuke attacks.

These same protocols can be used for calculating the required random attack

model-specific attributes. The only di↵erence is the target and filler item sets that

is operated on. Hence, these protocols need to be computed in a loop, and the

partitioning which gives the minimum FAC value needs to be chosen as the optimal

partitioning. FAC, and FMD attributes of the corresponding partitioning is taken

as the random attack model-specific attributes.

6.2.8. Private estimation of segment attack model-specific attributes

For segment attacks, FMTD, and GFMV attributes needs to be generated based on

the partitioning shown in Eq. 2.10, as in bandwagon attack. The FMTD attribute,

which intends to capture the di↵erence between the average of the ratings in the

target partition and the average of the ratings in the filler partition, is calculated

as given in Eq. 2.11. The formula of GFMV attribute is given in Eq. 2.12. These

attributes can also be calculated in distributed manner between Part A and B.

FMTD
u

=
���������������
����
∑

k

A

∈P
u,T

A

r
u,k

A

+ ∑
k

B

∈P
u,T

B

r
u,k

B

�P
u,T

A

� + �P
u,T

B

�
���� −
����
∑

i

A

∈P
u,F

A

r
u,i

A

+ ∑
i

B

∈P
u,F

B

r
u,i

B

�P
u,F

A

� + �P
u,F

B

�
����
���������������

(6.16)

GFMV
u

=
∑

i

A

∈P
u,F

A

(r
u,i

A

− r
i

)2 + ∑
i

B

∈P
u,F

B

(r
u,i

B

− r
i

)2
�P

u,F

A

� + �P
u,F

B

� (6.17)
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For each user u the following steps will be performed:

i. Each part constructs her filler item and target item sets according to her own

data.

ii. Each part increases the TMF value of the items in her target item list by one.

iii. Parts calculate some necessary partial sum values looking at their own data.

- For calculating FMTD
u

attribute, Part A calculates∑
k

A

∈P
u,T

A

r
u,k

A

, �P
u,T

A

�,
∑

i

A

∈P
u,F

A

r
u,i

A

, �P
u,F

A

�. Part B calculates∑
k

B

∈P
u,T

B

r
u,k

B

, �P
u,T

B

�, ∑
i

B

∈P
u,F

B

r
u,i

B

,

�P
u,F

B

�.
- For calculatingGFMV

u

attribute, Part A calculates∑
i

A

∈P
u,F

A

(r
u,i

A

− r
i

)2,
and Part B calculates ∑

i

B

∈P
u,F

B

(r
u,i

B

− r
i

)2.
iv. Now these partial sums need to be added up, and then divided by some count

value according to the equations of the attributes (If the user is an even indexed

user, then the following steps are obeyed.).

- For calculating FMTD
u

attribute, Part A encrypts∑
k

A

∈P
u,T

A

r
u,k

A

, ∑
i

A

∈P
u,F

A

r
u,i

A

,

�P
u,T

A

�, and �P
u,F

A

� values.
- For calculating GFMV

u

attribute, Part A encrypts ∑
i

A

∈P
u,F

A

(r
u,i

A

− r
i

)2.
v. Part A sends these encrypted values to Part B.

vi. Part B encrypts her own values, namely ∑
k

B

∈P
u,T

B

r
u,k

B

, ∑
i

B

∈P
u,F

B

r
u,i

B

, �P
u,T

B

�,
�P

u,F

B

�, and ∑
i

B

∈P
u,F

B

(r
u,i

B

− r
i

)2.
vii. According to Eq. 6.16, and 6.17, Part B performs the following computations.

- For calculating FMTD
u

attribute,

(a) Part B multiplies " �∑
k

A

∈P
u,T

A

r
u,k

A

� with "�∑
k

B

∈P
u,T

B

r
u,k

B

�, and ob-

tains " �∑
k

A

∈P
u,T

A

r
u,k

A

+∑
k

B

∈P
u,T

B

r
u,k

B

�.
(b) Part B multiplies " (�P

u,T

A

�) with " (�P
u,T

B

�), and obtains " (�P
u,T

A

� + �P
u,T

B

�).
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(c) Part B multiplies " �∑
i

A

∈P
u,F

A

r
u,i

A

� with "�∑
i

B

∈P
u,F

B

r
u,i

B

�, and ob-
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i
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∈P
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r
u,i
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+∑
i

B

∈P
u,F

B

r
u,i

B

�.
(d) Part B multiplies " (�P

u,F

A

�) with " (�P
u,F

B

�), and obtains " (�P
u,F

A

� + �P
u,F

B

�).
(e) By using Secure Division Protocol (Dahl et al., 2012), Part B divides

encrypted sum that she obtains in step (a) to encrypted count value

that is found in step (b), and obtains "�∑k

A

∈P
u,T

A

r

u,k

A

+∑
k

B

∈P
u,T

B

r

u,k

B

�P
u,T

A

�+�P
u,T

B

� �.
(f) By using Secure Division Protocol (Dahl et al., 2012), Part B divides

encrypted sum that she obtains in step (c) to encrypted count value

that is found in step (d), and obtains "�∑i

A

∈P
u,F

A

r

u,i

A

+∑
i

B

∈P
u,F

B

r

u,i

B

�P
u,F

A

�+�P
u,F

B

� �.
(g) Part B subtracts the value obtained in step (f) from the value ob-

tained in step (e), by first multiplying the result in step (e) with

-1, and then multiplying with the result in step (f) to get their sum

(Parkes et al., 2008). Hence, obtains

"�∑k

A
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A

r
u,k

A

+∑
k

B
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B

r
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B�P
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B

� − ∑i
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r
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+∑
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∈P
u,F

B

r
u,i

B�P
u,F

A

� + �P
u,F

B

� �

(h) Then, Part B sends this result to Part A.

(i) Part A decrypts the result and obtains FMTD
u

attribute of the user.

- For calculating GFMV
u

attribute,

(a) Part B multiplies "�∑
i

A

∈P
u,F

A

(r
u,i

A

− r
i

)2� by " �∑
i

B

∈P
u,F

B

(r
u,i

B

− r
i

)2�,
and obtains their encrypted sum.

(b) Part B multiplies " (�P
u,F

A

�) by " (�P
u,F

B

�), and obtains " (�P
u,F

A

� + �P
u,F

B

�).
(c) By using Secure Division Protocol (Dahl et al., 2012), Part B divides

the encrypted value that she obtains in step (a) to " (�P
u,F

A

� + �P
u,F

B

�),
which is obtained in step (b).

(d) Then, Part B sends the result to Part A.

(e) Part A decrypts the result and obtains GFMV
u

attribute of the user.
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viii. By changing places in step iii, Part B can calculate the FMTD
u

and GFMV
u

attributes of the odd indexed users (If the user is an odd indexed user, then

this step is obeyed.).

6.3. Classification Approach for Detection of Shilling

Attacks on Arbitrarily Distributed Data

One of the challenges that separates attack classification from traditional classifi-

cation problems is stated by Williams et al. (2007) as follows: ”The exponential

number of combinations of attack types, possible attack targets, and selection of

segment and filler items makes it infeasible to enumerate a training set using the

ratings profiles alone”. Hence, in order to generalize the idea of an authentic or

attack profile beyond the raw ratings data, Williams et al. (2007) try to capture the

statistical features together with some other detection attributes that describe the

signature of a profile. Therefore, their detection model is based on the construction

of detection attributes that are calculated for each profile in the database, which are

then used to build a classifier by using supervised learning methods (Burke et al.,

2006a).

In order to apply this shilling attack detection approach on ADD, the derived

classification attributes, which are described in details in Section 2.3, should be

calculated collaboratively between two parties without revealing privacy. However,

in calculation of some of these attributes, especially the generic attributes, at first,

some of the basic primitives, such as user and item mean, should be known by the

collaborative parts. Due to privacy constraints, parts primarily mask their own

data by using the RF method. After that, they compute these basic primitives by

applying the Revised Mean Estimation Protocol. As a result, even indexed users’

and items’ primitive values are known by Part A, and the odd ones are known by

Part B. All the necessary detection attributes are then generated for each user profile

distributively on ADD by performing each private attribute estimating protocol
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consecutively. These private protocols do not compromise on security, since secure

computations based on homomorphic encryption techniques are used. At the end,

some of the classification attributes calculated for a user are obtained by one part,

and the remaining attributes are acquired by the other part. According to the

chosen classifier learning algorithm, which is k -NN in this study, the classifier model

is constructed by exchanging the attributes. In this point, since all the attributes

are known by both parts, they can build the model individually. Even though both

parts will have the model, in order to classify a new instance, collaboration between

the parties is essential. In other words, for parts to use the model to test for new

instances, they must collaborate, and calculate these classification attributes for

those instances by applying the private protocols, which were used in training.

6.4. Experimental Evaluation

Real data-based experiments are presented to evaluate the performance of the clas-

sification based attack detection method, which utilizes the proposed private proto-

cols for finding the required classification attributes, in identification of distributed

shilling attacks privately on ADD. Moreover, the need for collaboration in attack

detection on ADD is shown up empirically.

6.4.1. Data set and evaluation criteria

In the experiments, publicly available MovieLens 100K1 dataset, which has been used

in most research on attack detection, is applied. This dataset consists of 100,000

ratings on 1,682 movies by 943 users, such that at least 20 movies are rated by each

user. Within the dataset, all ratings are integer values between one and five, where

one is the lowest rating (disliked) and five is the highest (most liked).

In the literature, there are various measures that are used to compare di↵erent

detection algorithms (Burke et al., 2015). Among all, for measuring the classification

performance of the classifiers, standard measurements of Recall and Precision, which

1http://www.grouplens.org/datasets/movielens
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Table 6.1. Confusion Matrix

Actual Condition
Attack Authentic

Predicted
Condition

Attack TP FP
Authentic FN TN

Recall ≡ Sensitivity = TP

TP +FN (6.18)

Precision ≡ PPV = TP

TP +FP (6.19)

are commonly used performance measures in information retrieval area, are chosen.

Since Recall and Precision metrics enable the comparison of any two classifiers

having the same target output, comparison of the obtained results with the ones

in the literature become possible. The interest in shilling attack detection is how

well the classification algorithms detect attacks, therefore both of these metrics are

utilized with respect to attack identification (Burke et al., 2006a). More specifically,

in attack detection while taking a “positive” classification means labelling a profile as

an Attack, taking a “negative” classification means labelling a profile as an Authentic

(Burke et al., 2015). Table 6.1 shows the corresponding confusion matrix. In the

confusion matrix, True Positive (TP) shows the profiles that are correctly classified

as Attack, whereas True Negative (TN) shows the profiles that are correctly classified

as Authentic. Similarly, False Positive (FP) shows the profiles that are incorrectly

classified as Attack, and False Negative (FN) shows the profiles that are incorrectly

classified as Authentic.

On the basis of the confusion matrix shown in Table 6.1, the equations of

Recall, and Precision can be given as in Eq. 6.18, and Eq. 6.19, respectively. As

can be seen from the equations, Recall, and Precision are used for measuring the

performance of the classifier in identifying attack profiles.

Recall metric, which is also called as Sensitivity, measures the number of at-
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tack profiles correctly classified as a fraction of the total number of actual attacks

in the system. Precision metric, which is also named as the Positive Predictive

Value (PPV), measures the number of attack profiles correctly classified as a frac-

tion of the total number of profiles labelled as attack.

6.4.2. Experimental methodology

Currently, there exists no arbitrarily distributed data available in the literature.

MLP is also a centralized dataset. Hence, in order to obtain an arbitrarily distributed

data, this dataset is separated into two parts. During the partitioning process, a

random number (r) is selected for each user. According to this number, r of the user

ratings are put into first part (Part A), and the remaining ones are put into the other

part (Part B). Consequently, all the users and all the items of MLP dataset take

part in both of the obtained datasets. Hence, from the centralized 943×1,682 MLP

dataset consisting of 100,000 ratings, two 943×1,682 datasets having totally 100,000

ratings, are obtained. This approach yields randomly distributed data between Part

A and Part B. In all the experiments, this partitioning is used.

6.4.2.1 Experimental setup 1: Can collaborating parties detect

distributed attacks alone?

In this experiment, it is assumed that Part A and Part B are collaborating on

ADD to provide predictions for their customers, and one of the proposed PPDCF

schemes for ADD is employed between them. For attack detection, it is assumed

that Part A and Part B are not collaborating, instead they have their own detection

mechanisms with respect to their own data. As a defence to shilling attacks, each

part utilizes one of the existing detection methods proposed for centralized data,

where classification-based attack detection method introduced by Williams et al.

(2007) is considered in the following experiments.

Under these circumstances, the question is whether Part A and Part B can

detect the distributed attack profiles on ADD individually. More specifically, if
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distributed attack profiles are injected into the system by a malicious user who

knows the collaboration of the parts, whether the detection algorithm of Part A can

detect the distributed attack profiles by herself. Similarly, whether the detection

algorithm of Part B, which is trained based on only Part B’s data, can be successful

in detecting distributed attacks.

In order to make comparisons, outcomes of the classification-based attack de-

tection method introduced by Williams et al. (2007) is chosen as the baseline. In the

baseline case, alias in the experiments executed by Williams et al. (2007), data is

centralized and all attack detection process is under control of a single data holder.

To replicate the baseline, experimental methodology similar to the one conducted by

the authors is employed on all MLP dataset (MLP). Same train and test processes

are applied to MLP as the authors, thus all the classification attributes are derived

based on whole data.

For the case of baseline, the following methodology is employed on MLP

dataset. In order to have distinct training and test sets for attack detection and

response experiments, one-third of the user profiles in the MLP dataset are chosen

as test profiles, and the remaining as train profiles. User profiles chosen for training

are used to create training data of the Baseline classifier. For each test the second

part of the data, which is chosen for testing, is injected with attack profiles. Then

run through the Baseline classifier that had been trained on the augmented first

part. The training data of the Baseline classifier is created by inserting a mix of

the attack models for both push and nuke attacks at various filler sizes that ranged

from 3 to 100% and attack sizes between 0.5 and 1%. The attacked movies in the

training set is chosen at random from movies that had between 80 and 100 ratings.

Specifically the training data is created by inserting the first attack at a particular

filler size, and generating the detection attributes for the authentic and attack pro-

files. This process is repeated 21 more times for additional attack types and/or filler

sizes, and generating the detection attributes separately. For all these subsequent
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Figure 6.1. Experimental Setup 1: Can Collaborating Parties Detect Distributed
Attacks Alone?

attacks, the detection attributes of only the attack profiles are then added to the

original detection attribute dataset. Approximately same results are obtained as

Williams et al. (2007), which are named as “Baseline” in the empirical results given

in Section 6.4.3.1.

The same experimental methodology is also employed separately for Part A’s

and Part B’s data, which are the ADD case of MLP and obtained by random parti-

tioning of MLP dataset as explained at the beginning. Fig. 6.1 demonstrates train

and test processes carried out by each part, namely Part A and PartB. Part A’s

dataset is shown as MLP-A and Part B’s dataset is shown as MLP-B in Fig. 6.1.
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MLP-A and MLP-B are the arbitrarily distributed version of MLP dataset between

Part A and Part B. Similar to the experimental methodology employed in baseline,

each part builds her own model; however di↵erently from baseline, not based on all

data, but based on her own data. Hence, Part A constructs Model A and Part B

constructs Model B by employing same train process with the baseline, which are

indicated as “Part A” and “Part B” in the empirical results given in Section 6.4.3.1,

respectively.

ForMLP-A andMLP-B datasets the following methodology is employed. Sim-

ilar to Baseline, one-third of the user profiles are chosen as test profiles, and the re-

maining as train profiles for both of the datasets. MLP-A and MLP-B forms ADD

case, in other words, the profiles in these datasets are distributed user profiles that

are partitioned between Part A and Part B. Therefore, users that are chosen for

test are same for both parts. Similarly, train users are also same. As can be seen

from Fig. 6.1, Part A divides MLP-A dataset as MLP-A Train and MLP-A Test.

Similarly, Part B divides MLP-B dataset as MLP-B Train and MLP-B Test. As the

training process, both parts separately employ same methodology with the baseline,

however base on their own data. For instance, user profiles in MLP-A Train are

used by Part A to create training data of the Model A classifier. Part A’s training

data is created by inserting a mix of the attack models for both push and nuke

attacks at various filler sizes that ranged from 3 to 100% and attack sizes between

0.5 and 1% based only on Part A’s data, which is MLP-A. The attacked movies

in the training set of Part A are selected at random from movies that had average

ratings according to the data distribution of Part A. Similar to baseline, the training

data of Part A is created by inserting the first attack at a particular filler size, and

generating the detection attributes for the authentic and attack profiles, where this

process is repeated 21 more times for additional attack types and/or filler sizes, and

generating the detection attributes separately. For all these subsequent attacks, the

detection attributes of only the attack profiles are then added to the original detec-
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tion attribute dataset. The training process described for Part A is also employed

individually by Part B to construct the Model B classifier. Di↵erently from the

baseline, the test profiles are generated based on MLP dataset, not on partial data,

and then distributed between the parts. Hence, for each test, data is injected with

distributed attack profiles injected by the proposed design strategy for ADD in Part

A and PartB. Then run through corresponding classifier, either Model A or Model

B classifier. In order to compare the results with the baseline, full attack profiles

are generated, and distributed between the parts so that while some amount of the

profile is injected to Part A, the remaining is injected to Part B. By this way, an

attack profile with 10% filler size is injected to Part A, and the remaining, which is

an attack profile with 90% filler size, is injected to Part B. Experimented filler size

pairs in the trials for PartA%-PartB% are 3%-97%, 5%-95%, 10%-80%, 15%-75%,

20%-80%, 30%-70%, 40%-60%, 50%-50%, 60%-40%, 70%-30%, 80%-20%, 75%-15%,

80%-10%, 95%-5%, 97%-3%.

As Williams et al. (2007), for training the classifiers, 25 detection attributes

are used:

• 6 Generic Attributes: WDMA, RDMA, WDA, LengthVar, DegSim (k = 450),

and DegSim’ (k = 2, d = 963)

• 6 Average Attack Model-Specific Attributes (3 for push, 3 for nuke): FMV,

FMD, ProfileVar

• 4 Random Attack Model-Specific Attributes (2 for push, 2 for nuke): FMD,

FAC

• 4 Group Attack Model-Specific Attributes for Bandwagon Attack (2 for push,

2 for nuke): FMD, FAC

• 4 Group Attack Model-Specific Attributes for Segment Attack (2 for push, 2

for nuke): FMTD, GFMV
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• 1 Target Detection Model-Specific Attribute: TMF

The empirical values applied by Williams et al. (2007) are used in all the

experiments to make the results comparable with the results reported by the authors.

Hence, in order to classify unseen profiles with k -NN, the detection attributes of

the profiles are used to find 9 nearest neighbours in the training set to determine

the class using one over Pearson correlation distance weighting. All classifiers and

classification results are created using Weka (Witten and Frank, 2005).

In generating the segment attack profiles, which focus on a particular group of

items that are similar to each other and likely to be popular among a similar group

of users, movies with Harrison Ford as a star (Harrison Ford segment) are used for

attack training, whereas for attack testing popular horror movies (Horror segment)

are used.

6.4.2.2 Experimental setup 2: Classification-based attack detection on

arbitrarily distributed data with privacy

In this experiment it is assumed that Part A, and Part B are collaborating both

for providing predictions to their customers, and detecting shilling attacks on ADD.

For shilling attack detection, parts are employing the distributed version of the

classification-based detection algorithm proposed for ADD, as shown in Fig. 6.2.

Before collaboration, each part masks her own data by applying Random Fill-

ing. Then, similar to Williams et al. (2007)’s methodology, to obtain separate train

and test sets for attack detection and response experiments, one-third of the dis-

tributed user profiles are chosen as test profiles, and the other half for train profiles.

Distributed user profiles in the first part is used to create training data for the

proposed attack detection algorithm. For each test the second part of the data is

injected with distributed attack profiles, injected by the proposed design strategy,

and then run through the classifier, namely Model C in Fig. 6.2.
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Figure 6.2. Experimental Setup 2: Classification-Based Attack Detection on Arbitrarily
Distributed Data with Privacy

The detection attributes are generated collaboratively between two parts, by

employing the proposed private protocols, and a class attribute, as either “Au-

thentic” or “Attack”, is added. For these experiments, all the detection attributes

proposed by Williams et al. (2007) is employed, except DegSim’ and WDA, whose

calculations might cause privacy issues.

6.4.3. Empirical results

Two groups of experiments are conducted to evaluate the classification performance

of the classifiers. First group of experiments are aimed to show that parts alone
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Figure 6.3. Recall vs. Filler Size for 1% Average Nuke Attacks on Part A, Part B, and
Baseline
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Figure 6.4. Recall vs. Filler Size for 1% Average Push Attacks on Part A, Part B, and
Baseline
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cannot detect distributed attack profiles, and the second group of experiments are

demonstrated the performance of the distributed version of the classification-based

detection algorithm on ADD.

6.4.3.1 Experiment 1: Can collaborating parties detect distributed

attacks alone?

By employing one of the existing detection methods for centralized data, which is

k -NN for this study, each part builds her own classifier model based on her own

dataset as explained in Section 6.4.2.1. A malicious user, who knows that two

parts are collaborating on ADD to produce referrals, is injecting distributed attack

profiles into the system. The question that needs to be answered in the following

experiments is that can collaborating parts detect the distributed attack profiles on

ADD by themselves. In other word, can the classifiers trained by each part identify

the distributed attacks as accurately as the baseline, which is the work proposed

by Williams et al. (2007). Their experiments are repeated, and similar results are

obtained as the Baseline.

In order to demonstrate performance of the three classifiers, Recall versus

Filler Size graphs of the attack models for 1% attack size are examined. Fig. 6.3

and Fig. 6.4 show the classification performance of PartA, Part B, and Baseline for

Average Nuke and Average Push attack models, respectively. As can be seen from

the figures it is very di�cult for Part A and Part B to detect distributed average

nuke and push attacks for filler sizes smaller than 15%. While the Recall value of

the Baseline algorithm is 72% for average nuke attacks with 3% filler size, Part A

and Part B cannot detect distributed average nuke attacks with the classifiers that

they build based on their own datasets for this filler size.

Fig. 6.5 and Fig. 6.6 show the classification performance of PartA, Part B,

and Baseline for Random Nuke and Random Push attack models, respectively. Even

for small filler sizes Baseline classifier detects random nuke and push attacks with
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Figure 6.5. Recall vs. Filler Size for 1% Random Nuke Attacks on Part A, Part B, and
Baseline
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Figure 6.6. Recall vs. Filler Size for 1% Random Push Attacks on Part A, Part B, and
Baseline
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Figure 6.7. Recall vs. Filler Size for 1% Reverse Bandwagon Attacks on Part A, Part
B, and Baseline
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Figure 6.8. Recall vs. Filler Size for 1% Bandwagon Attacks on Part A, Part B, and
Baseline
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90% Recall value. Filler size of 10% is a critical value for random nuke and push

attack models for the Baseline. For filler sizes equal to or greater than 10%, Baseline

classifiers detect random nuke and push attacks with a 100% Recall. However, this

is not the case for Part A and Part B. As can be seen from the figures up to 15% it is

di�cult for Part A and Part B to detect distributed random nuke and push attacks.

Results obtained for Part A and Part B reach approximately 100% Recall when the

filler size is equal to or greater than 20%. Up to this filler size, Part A and Part B

cannot detect distributed random attack profiles as successful as the Baseline.

Fig. 6.7 and Fig. 6.8 indicate the classification performance of PartA, Part

B, and Baseline for Reverse Bandwagon Nuke and Bandwagon Push attack models,

respectively. Compared to Average and Random attack models, Part A and Part

B achieve better Recall results for small filler size values, when Reverse Bandwagon

Nuke and Bandwagon Push attack models are considered. However, these Recall

values are below the Baseline results, since even for 3% filler size Baseline reaches

91% Recall. Similar to Baseline results, Part A and Part B reach approximately

100% Recall when the filler size is equal to or greater than 15%.

Classification performance of PartA, Part B, and Baseline for Love/Hate nuke

attack model is given in Fig. 6.9. The Recall value of the Baseline classifier starts

with 55% for 3% filler size, increases to 88% for 5% filler size, and reach 100% for

filler sizes equal to or greater than 10%. When the Recall results obtained for Part

A and Part B are examined, it can be stated that while one part, which is Part B

in Fig. 6.9, detects distributed Love/Hate attack profiles with a 100% Recall value,

which means more successfully than the Baseline for small filler sizes, the other

part, which is Part A in the figure, cannot detect them as successfully as Part B and

Baseline up to filler size of 10%. Hence, for distributed Love/Hate attacks on ADD,

while one part might find the attack profiles, the other part might not find them

for same filler size values. This may be due to random distribution of the generated

Love/Hate attack profiles between the parts.
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Figure 6.9. Recall vs. Filler Size for 1% Love/Hate Attacks on Part A, Part B, and
Baseline
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Figure 6.10. Recall vs. Filler Size for 1% Segment Attacks on Part A, Part B, and
Baseline
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Fig. 6.10 shows the classification performance of PartA, Part B, and Baseline

for Segment Attack model, which aims to push an item to a targeted group of

users with specific interest. As can be seen from the figure, the results obtained for

Segment Attack model are significantly di↵erent from the Recall results obtained for

other attack models. When the Recall results obtained by the Baseline classifier for

various filler sizes are analyzed, it can be stated that while 82% Recall is achieved

for 3% filler size, for filler size values equal to or greater than 5% Recall of 100% is

provided. For Part A and Part B to achieve this Recall value the filler size has to

be equal or greater than 40%, which is too high for distributed attack profiles. For

smaller filler size values, while one part can detect the distributed attack profiles,

the other part almost cannot detect the attacks. There are three critical filler size

values for Part A and Part B, which are 10%, 20% and 30%. Up to 20% filler size,

while Recall of Part A shows a decreasing behaviour, Part B’s Recall results are

increasing. Between 20% and 30% filler sizes Recall of both Part A and Part B are

increasing, and these results reach Baseline classifier when filler size is 40%.

When the above Recall results are compared among each other, results ob-

tained for Part A and Part B are seen as successful as the Baseline for Bandwagon

and Love/Hate Attack models. However, Precision is particularly a problem for Part

A and Part B classifiers, especially for these attack models. Fig. 6.11 compares Pre-

cision results for PartA, Part B, and Baseline for Bandwagon Push Attack on various

filler size values. As the figure indicates Precision values obtained for Part A and

Part B are far below the Baseline case even for large filler sizes. Hence, many false

positive identifications are made by Part A and Part B compared to Baseline, which

means that classifiers on Part A and Part B label significant amounts of authentic

profiles as an attack. This outcome is also true for Love/Hate Attack model. In

Fig. 6.12 Precision results obtained for PartA, Part B, and Baseline forLove/Hate

Attack model on di↵erent filler size values are shown. Precision results of Part B

are far below the Baseline. Even though the Precision values obtained by Part A
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Figure 6.11. Precision - PPV vs. Filler Size for 1% Bandwagon Attacks on Part A, Part
B, and Baseline
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Figure 6.12. Precision - PPV vs. Filler Size for 1% Love/Hate Attacks on Part A, Part
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are better than Part B, these results still cannot reach the Baseline. Therefore, Part

A and Part B classifiers misclassify some authentic profiles, and label them as an

attack.

Classification results obtained for several push and nuke attack models indi-

cate that classifiers built by parts alone are not as successful as the baseline. Even

if collaborating parts have their own detection mechanisms, since these classifiers

are trained based on partial data, and not on all data, they cannot detect dis-

tributed shilling attacks. Therefore, collaboration of parts is necessary in detecting

distributed shilling attacks on ADD without jeopardizing privacy.

6.4.3.2 Experiment 2: Classification-based attack detection on

arbitrarily distributed data with privacy

Since for parts to detect distributed shilling profiles by employing centralized de-

tection methods based on their own dataset is not possible, collaboration of parts

for detecting attacks, as well as providing predictions on ADD is studied in the fol-

lowing experiments. For shilling attack detection, the proposed classification-based

shilling attack detection method for ADD is employed between Part A and Part B.

A variety of experiments are conducted to investigate whether both confidentiality

and classification accuracy can be achieved simultaneously by utilizing the proposed

classification-based shilling attack detection method for ADD.

For detecting distributed shilling attacks on ADD without revealing privacy,

parts need to mask their own data by selectively or uniformly randomly choosing

some of their empty cells, and filling them with fake or default ratings. Hence, e↵ects

of di↵erent methods for determining fake ratings, and the level of perturbation on

classification accuracy should be analyzed. Non-personalized ratings, personalized

ratings and rating distribution are the three major methods that have been proposed

for fake rating determination. Yakut and Polat (2012a) experimentally show that

for MLP dataset, user mean and overall mean methods give slightly better results
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compared to other methods. Similarly, experiments conducted through this study

also indicate that among user mean, item mean, overall mean and user rating dis-

tribution methods, user mean is the one which gives best results for shilling attack

classification. Therefore, user mean method is chosen to determine fake ratings.

To capture the balance between privacy and classification accuracy, the number of

filled cells is an important matter to be considered. Even though as this number

increases privacy of each part also increases, in fact actual data is also corrupted.

Thus, increasing this amount definitely a↵ects accuracy (Yakut and Polat, 2012a).

In order to explore the e↵ects of number of unrated cells to be filled on classi-

fication accuracy, trials are done using di↵erent level of perturbation values, where

user mean method is utilized for determining fake ratings. d�4, d�2, d, 2d, and 0

(which indicates the base case where there is no data masking) are the perturbation

values that are assessed, where d represents the density of the user. Fig. 6.13 and

Fig.6.14 show Perturbation Amount versus Recall graphs of nuke and push attack

models with 5% filler size and 1% attack size, respectively. Looking at Fig. 6.13,

it can be seen that for nuke attack models with 5% filler size, adding small amount

of noise, which is the case in d�4, increases Recall results of the classifier compared

to the base results. When the level of perturbation increases to d�2, except for the
Love/Hate attack models, which is still better than the base case, but slightly worse

than the results obtained with d�4, Recall of the classifier for all the nuke attack

models become better. The negative e↵ect of noise on the classification results are

begin to appear slightly after d�2, and exactly after d. Even though increase in the

perturbation amount from d�2 to d decreases the classification performance with a

certain extent compared to base case, perturbation amount of d still gives acceptable

Recall values for nuke attack models with 5% filler size. However, after d, increase

in perturbation amount completely worsen the Recall results, as seen in 2d. Similar

outcomes can be inference for push attack models with 5% filler size as shown in

Fig.6.14. When the perturbation amount is chosen as d�4, Recall results of the clas-
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Figure 6.13. Perturbation Amount vs. Recall for Nuke Attack Models with 5% Filler
Size and User Mean
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sifier for Segment and Average Push attack models become slightly better, where

as for Bandwagon and Random Push attack models Recall results become slightly

worse compared to base results. For all of the push attack models best Recall re-

sults are achieved when the level of perturbation increases to d�2. Like the nuke

attack models, the negative e↵ect of adding noise on obtained Recall values for push

attack models appears to be seen after d�2, and becomes worse at 2d. Even though

Recall results of push attack models are not as good as the ones of nuke attacks for

perturbation amount of d, depending on the need of the privacy level, it can also be

chosen. Results established from nuke and push attack models with 5% filler size

present that it is possible to achieve both confidentiality and classification accuracy

by utilizing d�4 or d�2 as level of perturbation.

Fig. 6.15 and Fig.6.16 show Perturbation Amount versus Recall graphs of

nuke and push attack models with 10% filler size and 1% attack size, respectively.

Due to large filler size, all base case Recall results of the classifier for all attack

models have 100% as the initial value. Looking at Fig. 6.15, it can be seen that

adding small amount of noise slightly decrease the Recall results of the classifier

compared to the base results, as the case in d�4, yet these results are still accurate

for nuke attack models with large filler size. Best Recall results with some noise

are obtained when the level of perturbation increases to d�2 for nuke attack models.

Even though increasing the level of perturbation from d�2 to d, decreases Recall

of the classifier for nuke attack models with 10% filler size, these Recall results are

acceptable compared to base case, especially if the privacy level needs to be high. On

the other hand, after d, increase in perturbation amount worsen the Recall results,

as seen in 2d, especially for Reverse Bandwagon and Average Nuke attack models.

Recall versus perturbation amount results of push attack models indicates similar

outcomes as the nuke attack models with 10% filler size. As seen in Fig.6.16, initial

Recall for all nuke attack models is 100%. Adding some noise slightly decrease the

initial results as shown for perturbation amount of d�4. While Segment and Average
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Figure 6.15. Perturbation Amount vs. Recall for Nuke Attack Models with 10% Filler
Size and User Mean
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Push attack models are not e↵ecting by this noise, Bandwagon and Random Push

attacks are slightly e↵ecting. As the case for nuke attack models, when the level

of perturbation set to d�2, best Recall results for nuke attack models are obtained,

which are very close to base results. The negative e↵ect of adding noise on obtained

Recall values for push attack models appears to be seen after d�2, and becomes

worse at 2d. Even though Recall results of push attack models are not as good as

the ones of nuke attacks for perturbation amount of d, depending on the need of

the privacy level, d can also be chosen. As Recall results obtained at 2d indicates,

increase in perturbation amount worsen the classification specifically for Bandwagon

and Average Push attack models. Results established from nuke and push attack

models with 10% filler size present that it is possible to achieve both confidentiality

and classification accuracy by utilizing d�4 or d�2 as level of perturbation, which is

identical to the results obtained for attack models with 5% filler size.

These empirical results demonstrate that equilibrium between privacy and

classification accuracy can be assured for well-known shilling attack models with

both small and large filler sizes. Besides by utilizing the proposed classification-

based attack detection method for ADD, it is possible to detect distributed shilling

attacks on ADD e↵ectively, without jeopardizing data owners’s privacy.

6.5. Conclusions

In this chapter, in order to protect privacy preserving distributed collaborative filter-

ing algorithms against shilling attacks, and to keep up collaboration of online ven-

dors on arbitrary data, distributed version of a classification based attack detection

method, which can operate on arbitrarily distributed data while preserving pri-

vacy, is presented. Private protocols are proposed to derive the required generic

and model-specific classification attributes for each distributed profile collabora-

tively between two parts. For secure computations, homomorphic encryption and

random filling techniques are utilized in the protocols for protecting confidentiality

of data holders. By operating the proposed private attribute estimation protocols
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consecutively, classification attributes are derived o↵-line among the parts. At the

end, half of the derived attributes are known by each part. Then, by exchanging

the attributes the classification model is constructed with k-NN algorithm. At this

point, even though both parts have the model, collaboration between parties is re-

quired for testing and classifying a new instance. In order to generate the required

classification attributes for the new instance, parts need to apply the same process

collaboratively. Empirical analyzes show that with the proposed method it is still

possible to detect attacks on arbitrarily distributed data e↵ectively, without jeopar-

dizing data owners’s privacy. Moreover, it is also experimentally shown that even if

collaborative parts have their own detection mechanisms working on their own sides

based on their own data, distributed attacks, which are injected by the proposed at-

tack generation strategy for arbitrarily distributed data, cannot be detected. Hence,

for detecting shilling profiles on arbitrarily distributed data, collaboration of parts

is required, and with experimental studies the need for collaboration in detection of

distributed shilling attacks on arbitrarily distributed data is exposed.
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7. CONCLUDING REMARKS

This dissertation has focused on shilling attacks against privacy-preserving dis-

tributed collaborative filtering algorithms. In this final chapter, results attained

in the work are summarized, and some directions in which this research might be

extended in the future are highlighted.

7.1. Conclusions

In this dissertation, privacy preserving distributed collaborative filtering algorithms

proposed on arbitrarily distributed data are investigated in terms of robustness

against shilling attacks. Attack strategies developed so far are designed for central

server-based systems, hence cannot be directly employed for arbitrarily distributed

data-based recommender systems. For such recommender systems, data distribution

is an another weakness which must be considered by an attack designer. Therefore,

in order to manipulate the outcomes of privacy preserving distributed collaborative

filtering algorithms proposed on arbitrarily distributed data, a new attack strategy,

which injects fake profiles into these systems by partitioning the profile between

data holders, is developed. Introduced attack strategy is used in generation of dis-

tributed adaptations of formerly proposed six-well known shilling attack models for

cases of both numeric and binary data. Real data-based experiments confirm that

attacks generated by the proposed strategy are capable of biasing the outcomes of

the state-of-the-art privacy preserving distributed collaborative filtering schemes on

arbitrarily distributed data, hence possibility of mounting successful attacks against

privacy preserving distributed collaborative filtering algorithms proposed on arbi-

trarily distributed data are shown. Empirical outcomes also proven the vulnerability

of these algorithms against shilling attacks.

Robustness analyzes of preserving distributed collaborative filtering algorithms

proposed on arbitrarily distributed data, are also revealed the need for defending
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mechanisms against attacks. Even though these algorithms are beneficial for online

vendors to o↵er more accurate and reliable collaborative filtering services without

jeopardizing privacy, being subject to shilling attacks run the risk of turning these

systems into promotion tools for malicious users, vendors, or retailers. Hence, for

online vendors to continue to collaborate on distributed data, detection of shilling

attacks is essential.

In literature there are several solutions proposed for detection of shilling at-

tacks; however existing solutions are for the case where data is collected in one

center. In other words, existing attack detection methods work on centralized data,

and whole detection process is controlled by a single data holder, who knows all

the statistics of the data. On the other hand, when data is arbitrarily distributed

between two parties, due to privacy concerns, parts cannot have the control of all

data, but can only operate on their own parts. Because of these reasons, existing

attack detection methods cannot be directly employed on distributed data. New

attack detection algorithms, or distributed versions of the existing attack detection

solutions, which can be employed on arbitrarily distributed data with privacy, are

required.

To protect privacy preserving distributed collaborative filtering algorithms

against shilling attacks, and to keep up collaboration of online vendors, distributed

version of a well known classification based attack detection method which can oper-

ate on arbitrarily distributed data while preserving privacy, is presented. In order to

derive the required generic and model-specific classification attributes for each dis-

tributed profile collaboratively between two parties, private protocols are developed.

Homomorphic encryption, and random filling techniques are used in achieving con-

fidentiality of the parties. By employing the proposed private protocols o↵-line, half

of the derived attributes are known by each part. Then according to the classifier

learning algorithm that is decided, which is k-nn for this dissertation, the classifier

model is constructed by exchanging the attributes. In this point, even though both
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parts learn the model, in order to test and classify a new instance, collaboration be-

tween parties is essential. In order to generate the required classification attributes

for the new instance, parts need to apply the same process collaboratively. Empirical

analyzes show that with the proposed method it is still possible to detect attacks on

arbitrarily distributed data e↵ectively, without jeopardizing data owners’ privacy.

Moreover, it is also experimentally shown that even if collaborative parts have

their own detection mechanisms working on their own sides based on their own data,

distributed attacks, which are injected by the proposed attack generation strategy

for arbitrarily distributed data, cannot be detected. More specifically, if a malicious

user, who knows the collaboration of two parts, injects distributed attack profiles into

the system, it is not easy for parts to identify these attack profiles by themselves, even

so, parts have their own detection mechanisms based on one of the existing attack

detection methods. Hence, for detecting shilling profiles on arbitrarily distributed

data, collaboration of parts is required, and with experimental studies the need for

collaboration in detection of distributed shilling attacks on arbitrarily distributed

data is exposed.

7.2. Directions for Future Research

In this dissertation, robustness analyzes of binary ratings based privacy preserving

distributed collaborative filtering algorithm proposed on arbitrarily distributed data

is also shown to be subject to shilling attacks with experimental studies. To keep

collaboration of the online vendors on arbitrarily distributed binary data, new detec-

tion methods are required. In fact, almost there is no binary shilling attack detection

algorithm in literature (Batmaz, 2015). Hence, shilling attack detection methods on

binary data both for central server-based systems, and distributed systems are need

to be investigated.

There are numerous shilling attack detection algorithms proposed in literature,

hence distributed versions of these methods, which can operate on arbitrarily dis-

tributed data while preserving privacy, can be presented. For some clustering based
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detection algorithms, private protocols provided in this dissertation can be utilized

in deriving the required attributes.

In this dissertation, it is assumed that there are no overlapping ratings. How-

ever, in real life scenarios, overlapping ratings are inevitable, therefore e↵ects of

overlapping ratings can be studied.

In order to enhance cryptographic techniques-based solutions, new secure-

multi party computation protocols might be suggested.

Developing robust privacy preserving distributed collaborative filtering algo-

rithms for arbitrarily distributed data, which are intrinsically resistant to attacks,

might also be an interesting research topic.

Besides arbitrarily distribution, data might be distributed horizontally or ver-

tically between multiple parties, and there are several privacy preserving schemes

proposed for these cases. Robustness analyzes of the proposed privacy preserving

collaborative filtering schemes for vertically and horizontally distributed data among

multiple parties against shilling attacks are need to be studies. In order to analyze

the robustness of these systems, the proposed attack strategy might be adapted,

or new attack strategies can be proposed for vertically and horizontally distributed

data. Furthermore, if these systems are also vulnerable to attacks, detection algo-

rithms, which can operate on these cases of data distributions with privacy, might

be investigated.
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