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ABSTRACT 

Master of Science Thesis 

SHILLING ATTACK DESIGN AND DETECTION ON MASKED BINARY 

DATA 

 Zeynep BATMAZ 

Anadolu University 

Graduate School of Sciences 

Computer Engineering Program 

 Supervisor: Assoc. Prof. Dr. Huseyin POLAT 

2015, 83 pages 

 

Privacy-preserving collaborative filtering methods are effectual ways of 

coping with information overload problem while protecting confidential data. 

Their success depends mainly on the quality of the collected data for filtering 

purposes. Malicious entities might create fake profiles (noise data) and insert user-

item matrices of such filtering schemes. Hence, shilling attacks play an important 

role on the quality of data. Designing effective shilling attacks, developing 

methods to detect them, and performing robustness analysis of privacy-preserving 

collaborative filtering methods are receiving increasing attention. 

In this thesis, six well-known shilling attack models are modified in order to 

attack binary masked databases in privacy-preserving collaborative filtering 

methods. Three attack design approaches are proposed. The attack profiles, 

generated by such schemes, are applied to naïve Bayesian classifier-based 

collaborating filtering scheme with privacy. A novel shilling attack detection 

scheme based on classification is proposed to detect fake profiles. Attributes 

derived from user profiles are utilized for detecting shill profiles. Empirical results 

show that designing effective shilling attacks is still possible on binary masked 

data. The proposed detection method is able to successfully detect fake profiles.  

 

Keywords: Shilling Attack, Collaborative Filtering, Privacy, Binary Data, 

Detection, Robustness 
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ÖZET 

 Yüksek Lisans Tezi 

GİZLENMİŞ İKİLİ VERİLER ÜZERİNDE ŞİLİN ATAK TASARIMI VE 

TESPİTİ 

Zeynep BATMAZ 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Bilgisayar Yazılımı Anabilim Dalı 

Danışman: Doç. Dr. Hüseyin POLAT 

2015, 83 sayfa 

 

Gizliliği koruyan işbirlikçi filtreleme yöntemleri gizli verileri koruyarak 

aşırı enformasyon problemi ile başa çıkmanın etkili yoludur. Bu yöntemlerin 

başarısı filtreleme amacıyla toplanan verilerin kalitesine bağlıdır. Kötü amaçlı 

kullanıcılar bu filtreleme sistemlerinin veri tabanına sahte profil (gürültülü veri) 

ekleyebilir. Bu nedenle şilin ataklar veri kalitesi için önemli rol oynarlar. Etkili 

şilin atak tasarımı, bunların tespiti için yöntemler geliştirilmesi ve gizliliği 

koruyan işbirlikçi filtreleme algoritmalarının gürbüzlüğünün analizleri artan ilgi 

görmektedir.  

Bu tezde en çok bilinen altı şilin atak modeli gizlenmiş ikili veri tabanlarına 

saldırmak amacıyla değiştirilerek geliştirilmiştir. Bu amaçla üç şilin atak 

oluşturma tasarısı önerilmiştir. Bu ataklar basit Bayes sınıflandırıcı tabanlı 

gizliliği koruyan işbirlikçi filtreleme algoritmasına uygulanmıştır. Sahte 

profillerin tespit edilmesi için sınıflandırma tabanlı yeni bir atak tespit yöntemi 

geliştirilmiştir. Atak profillerini tespit etmek amacıyla, sınıflandırma için kullanıcı 

profillerinden türetilen özniteliklerden yararlanılmıştır. Deneysel sonuçlar ikili 

saklanmış veri üzerinde etkili şilin atak profilleri oluşturmanın mümkün olduğunu 

göstermiştir. Önerilen tespit algoritmasının başarılı bir şekilde sahte profilleri 

tespit ettiği görülmüştür.   

 

Anahtar Kelimeler: Şilin Atak, İşbirlikçi Filtreleme, Gizlilik, İkili Veri, Tespit, 

Gürbüzlük 
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1. INTRODUCTION 

 

With increasing amount of data used in everyday life, importance of 

recommender systems swells by the day. Such systems make users to reach items 

they are interested in without losing time. Thanks to produced predictions by 

recommender systems, right products are matched up with the right users. 

Recommender systems produce recommendations using three approaches as 

collaborative filtering (CF), content-based filtering, and hybrid systems. CF 

techniques fabricate predictions utilizing users’ past habits. Content-based 

filtering schemes produce predictions by utilizing contents of the items with user 

profiles. Hybrid systems are developed to utilize positive aspects of both 

recommendation systems. 

CF is one of the widely used recommendation methods, which provides 

highly accurate predictions. Those users who have vicinal experiences on past 

items are tend to agree on new items. CF schemes can be grouped as memory-

based, model-based, and hybrid systems. Memory-based methods generally work 

on entire data in order to produce predictions. Due to the highly increasing 

number of users and items especially in online systems, memory-based schemes 

have some challenges like scalability (Sarwar et al., 2001).  Model-based methods 

generate a model from original user-item matrix by utilizing some data mining 

approaches like Bayesian classifier (Miyahara and Pazzani, 2000) and dimension 

reduction (Vozalis and Margaritis, 2007). Hybrid CF schemes utilize benefits of 

memory and model-based CF algorithms (Rashid et al., 2006). 

Even though many e-commerce sites use numeric data, some of them may 

work with binary data. Some e-commerce sites that use recommender systems for 

any purpose may prefer to know who likes or dislikes products rather than how 

much users or customers like. Thus, binary data oriented recommender systems 

are developed to produce referrals from binary data. Binary attribute represents an 

attribute whose value either only 1 or 0. Providing recommendations from binary 

data is also extremely important for market basket data analysis. Binary data 

analyzing schemes can be grouped as similarity, classification, and clustering 

algorithms (Han et al., 2011). Similarity metrics such as Anderberg, Jaccard, 



 2   

 

Yule, Pearson’s Correlation, etc. can be used for calculating similarity even if data 

is binary (Senyurek and Polat, 2013).  

Classification is a form of data analysis that extracts models describing 

classes. Classification is a two-step process. In the first stage, a classification 

model is built on previously collected data called as learning phase. In the second 

stage, data is classified based on the models’ accuracy. Since class labels are 

known, classification is supervised learning. There are several approaches for 

classification like decision tree induction algorithms and the algorithms based on 

Bayes’ theorem (Anderson et al., 1986). Naïve Bayesian classification is one of 

the classification methods based on Bayes’ theorem. Assuming that there are g 

classes like C1, C2, …, Cg, the classifier predicts that a given tuple X belongs to 

the class having the highest posterior probability. P(Ci|X) determines the 

probability of given tuple X belongs to class Ci (Han et al., 2011).  

Clustering is the process of partitioning a set of data objects into subsets 

(Han et al., 2011): Each subset is called as a cluster. Objects in the same cluster 

have high intra-correlation whereas objects in different clusters have low inter-

correlation. Clustering methods are grouped as partitioning methods, hierarchical 

methods, density-based, and grid-based methods. In partitioning methods, data is 

partitioned into k groups. Each group contains at least one object and an object 

can belong to only one group. In most partitioning methods, a partitioning method 

creates an initial state. Then, it uses an iterative relocation technique for 

partitioning by moving the objects from one cluster to another one. The most 

popular partitioning algorithms are k-means and k-medoids algorithms. In 

hierarchical methods, bottom-up and top-down approaches are used. In bottom-up 

approaches, each object represents a group. The method merges the objects or 

groups close to one another until all the groups are merged into one or a 

termination condition occurs. In top-down approaches, all objects are in the same 

group. The method divides the group into sub-clusters until each object is in one 

cluster or a stopping condition occurs.  

Effectiveness of recommender systems depends on the quality of data. 

Protecting privacy of users is extremely vital in terms of scaling up the quality of 

data. Due to the privacy risks such as government surveillance and unsolicited 
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marketing, users either give false ratings or refuse to use the recommendation 

system (Cranor, 2004). Since the given ratings do not represent the real 

preferences, the accuracy of the produced predictions will decrease. In order to 

provide highly accurate recommendations while preserving privacy, privacy-

preserving collaborative filtering (PPCF) schemes, which work with either 

numeric or binary data, can be used. Aiming to protecting privacy on numeric 

data, cryptographic (Canny, 2002), obfuscation-based (Berkovsky et al., 2012), 

and randomization-based (Polat and Du, 2005a) schemes are proposed. 

Especially, randomization-based methods are widely used in CF systems in order 

to preserve privacy. 

Randomized response techniques (RRTs) are one of the algorithms that 

provide privacy by preventing the server from learning true data about users. RRT 

was first introduced by Warner (1965) to solve the following problem. A surveyor 

wants to find out the percentage of people who have the confidential data Q. 

Respondents may not give the true information. One of the solutions to solve this 

problem is asking two related questions to the respondents instead of asking 

directly whether they have Q. The answers to the questions are opposite to each 

other. Respondents choose one of the questions by a randomizing device and reply 

it with preventing the server to know which question is answered. The 

randomizing device makes the probability of choosing the first question θ and the 

probability of choosing the second question 1-θ. Hereby, the server estimates the 

percentage of the users who have Q without knowing the answered questions. 

RRT is utilized by many researchers (Mild and Reutterer, 2001; Polat and Du, 

2005b; 2006; Kaleli and Polat, 2007).  

CF systems provide highly accurate recommendations; however, they are 

vulnerable to shilling attacks. Aiming to manipulate items’ popularities in favor of 

attackers, they generate bogus profiles and insert them into the system’s database. 

Consequently, the attackers affect the system’s reliability and fulfillment of users 

adversely. Thus, detecting shilling attacks is an effective way of dealing with 

them. In order to manipulate the produced recommendations in a numeric 

database, shilling attacks are designed (Burke et al., 2005; Bhaumik et al., 2006). 

Shilling or profile injection attacks can be designed not only for CF systems with 
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numeric data but also CF systems with binary data. Also, attack profiles can be 

redesigned to manipulate items’ popularities in disguised databases. 

Like in numerical data oriented CF systems, malicious users can attack the 

binary data oriented CF systems (Long and Hu, 2010; Kaleli and Polat, 2013). 

Long and Hu (2010) compare binary k-nn algorithm with user-based k-nn scheme 

in terms of robustness against shilling attacks. They attack both systems by 

implementing random, average, and bandwagon attacks. As a result, they show 

that binary k-nn scheme is more robust than user-based k-nn algorithm against 

shilling attacks. Kaleli and Polat (2013) design well-known attacks like random, 

average, segment, etc. based on binary ratings. 

PPCF schemes are also vulnerable to shilling attacks (Gunes et al., 2013a; 

2013b; Bilge et al., 2014a). Gunes et al. (2013a) design random and bandwagon 

attack models with privacy concerns. Bandwagon and random attack profiles are 

disguised by utilizing generated random values according to predefined 

distribution and masking parameters. Aiming to disguise a target item for a 

profile, a value is selected among positive or negative generated random numbers 

for push and nuke attack strategies, respectively (Gunes et al., 2013a). Remaining 

random numbers are added to z-scores of filler items and selected items in order to 

mask them. Gunes et al. (2013b) redesign six well-known shilling attack models 

in order to attack a disguised system. Besides attack profiles’ rated items, unrated 

items of attack profiles are also disguised in the work. The attacker decides on 

βmax and σmax values, which are known as privacy parameters. In order to disguise 

a random attack profile, the maximum value among generated random values 

according to chosen distribution is assigned to the target item and the remaining 

values are assigned to filler items. For masking an average attack profile, utilizing 

the masking parameter α, l random numbers are generated, where l is the number 

of filler items. Filler items are filled as item’s mean plus random numbers. The 

target item is filled with the maximum value of the generated numbers. Aiming to 

disguise a bandwagon profile, the top of the generated random numbers is 

assigned to the target item, the remaining top mt values are assigned to selected 

items, where mt is the number of selected items and filler items are filled with 

remaining values. A segment attack profile is disguised as bandwagon attack 
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model. For masking a love/hate attack profile, filler items are filled with the 

highest values and the target item is filled with the minimum value of the 

generated random values (Gunes et al., 2013b). Bilge et al. (2014a) perform 

robustness analyses of privacy-preserving k-means-, discrete wavelet transform-, 

singular value decomposition-, and item-based prediction algorithms against six 

well-known shilling attack models. The authors show that model-based PPCF 

methods are more resistant than memory-based ones against shilling attacks. 

Since shilling attacks have an important effect on produced predictions, 

dealing with attack profiles is extremely imperative. Detecting bogus profiles is 

one of the ways of overcoming profile injection attacks. To detect fake profiles, 

many detection schemes based on statistical methods (Zhang et al., 2006; Gao et 

al., 2014; Xia et al., 2015), clustering (O’Mahony et al., 2003; Mehta and Nejdl, 

2009; Bilge et al., 2014b; Zhang and Kulkarni, 2014; Gunes and Polat, 2015), 

classification (Chirita et al., 2005; Williams et al., 2007; Wu et al., 2012a; Cao et 

al., 2013), variable selection (Mehta et al., 2007), and other techniques (Su et al., 

2005) are proposed. Since shilling attacks are generated according to a certain 

strategy, classification-based schemes are effective methods for detecting attack 

profiles by utilizing generic attributes and model specific attributes derived from 

each separate profile. 

In the literature, there is no work on designing shilling attacks against binary 

ratings oriented PPCF schemes or robustness analysis of binary ratings oriented 

PPCF schemes. To the best of our knowledge, this dissertation is the first one, 

which designs shilling attacks against binary ratings oriented PPCF schemes and 

analyze them with respect to robustness. Also, a novel detection scheme is 

proposed in order to determine such attack profiles on masked binary ratings. 

The organization of the thesis is as follows: Related works are discussed in 

Section 2. Background information is given in Section 3. Redesigned forms of six 

well-known shilling attack models are described in Section 4. Section 5 examines 

the robustness of PPCF scheme based on naïve Bayesian classifier (NBC) under 

the proposed attack strategies. In Section 6, the proposed classification-based 

detection scheme is described and empirial results are displayed. Section 7 

presents conclusions and explains future works. 
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2. RELATED WORK 

 

Although CF approach is a successful variation of recommender systems, it 

is vulnerable to profile injection attacks. Since robustness analysis of CF schemes 

shows how much a scheme is resistant to shilling attacks, fake profiles are 

designed to attack the CF system. Many researchers design attack profiles to 

manipulate systems working with numerical undisguised data (O’Mahony et al., 

2005; Mobasher et al., 2007; Yan and Van Roy, 2009; Cheng and Hurley, 2010). 

Also, shilling attack models are redesigned in order to manipulate predictions with 

binary ratings (Long and Hu, 2010; Kaleli and Polat, 2013). Long and Hu (2010) 

compare binary k-nn and user-based k-nn algorithms with respect to robustness 

against shilling attacks by attacking both systems. Kaleli and Polat (2013) 

redesign six well-known attack types in order to attack a binary ratings oriented 

system. The authors apply their attack strategies to NBC-based CF algorithm and 

their results show that the algorithm is not robust against profile injection attacks. 

Since privacy is a substantial point for recommender systems in order to 

supply quality data, classical attack strategies are redesigned aiming to play an 

effective part on produced predictions (Gunes et al., 2013a; 2013b; Bilge et al., 

2014a). Gunes et al. (2013a) generate new forms of random and bandwagon 

attack models for attacking a system with numeric private data by utilizing 

randomization techniques. In the study proposed by Gunes et al. (2013b), six 

well-known shilling attack models are redesigned for attacking a disguised 

numeric ratings oriented system. The authors attack memory-based PPCF 

schemes with new versions of the attack models in order to determine how much 

they are robust against shilling attacks. Bilge et al. (2014a) apply redesigned 

attack profiles to some model-based PPCF algorithms and their experiments show 

that model-based PPCF schemes are more robust than memory-based ones. Even 

though lots of study perform attacks to CF algorithms in order to measure the 

algorithms’ robustness, our dissertation redesigns six well-known attack models 

for attacking a system with binary disguised data and performs robustness 

analysis of NBC-based PPCF scheme against redesigned attacks.  
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Robustness term is presented by O’Mahony et al. (2002) as a metric 

measuring performance of a recommender system. O’Mahony et al. (2004) show 

the effects of generally used neighborhood formation schemes and similarity 

measures on recommender system performance in terms of robustness. 

Robustness analyses of CF method based on probabilistic latent semantic analysis 

(PLSA) and k-means clustering approach are performed for comparing 

performance of model-based CF schemes under shilling attacks with the memory-

based scheme’s performance (Mobasher et al., 2006). Long and Hu (2010) 

compare binary k-nn algorithm with user-based k-nn scheme in terms of 

robustness against random, average, and bandwagon attack models. Their 

empirical results show that binary k-nn scheme is more robust than user-based k-

nn algorithm against shilling attacks. Kaleli and Polat (2013) generate binary 

forms of previously defined well-known attacks like random, average, segment, 

etc. and apply them to NBC-based CF scheme in order to measure how robust the 

scheme is. Besides unmasked data, robustness analysis of PPCF schemes with 

numeric masked data are performed by Gunes et al. (2013a; 2013b) and Bilge et 

al. (2014a). In (Gunes et al., 2013a), privacy forms of random and bandwagon 

attack models are proposed to perform robustness analysis of privacy-preserving 

k-nn memory-based CF algorithm under shilling attacks. In another study, Gunes 

et al. (2013b) redesign six well-known shilling attack models in order to attack 

memory-based privacy-preserving recommendation algorithms. In the work 

proposed by Bilge et al. (2014a), robustness analysis of different model-based 

PPCF algorithms against six well-known shilling attack models are performed. 

There is no work measuring performances of PPCF schemes on binary masked 

data under shilling attacks. In this thesis, redesigned shilling attack profiles are 

applied to NBC-based PPCF scheme in order to show its performance on binary 

masked data under profile injection attacks.  

Since effectiveness of a recommender system depends mostly on the quality 

of data, dealing with shilling attacks is extremely significant. Detecting bogus 

profiles is one of the influential ways of coping with profile injection attacks. In 

the literature, there are many detection schemes based on statistical methods, 

classification, clustering, variable selection, and other techniques (Gunes et al., 
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2014). In (Zhang et al., 2006), detection of fake profiles is performed by utilizing 

time series of items’ ratings. In order to observe time series, the authors group 

sequential ratings of items into separate windows and they calculate sample 

average and entropy for each window. Fake profiles can be detected by revealing 

anomalies caused by attack profiles by utilizing statistical anomaly detection 

method (Bhaumik et al., 2006). Hurley et al. (2009) point out that obfuscated 

forms of attacks are not detected by many detection schemes. Thus, supervised 

and unsupervised Neyman-Pearson detectors are designed in order to detect attack 

profiles even if they are obfuscated. A bottom-up discretized scheme based on 

time intervals and two common features for all attack types are designed to detect 

abnormal items by comparing ratings distribution in different time intervals (Gao 

et al., 2014). Xia et al. (2015) propose a technique based on a dynamic time 

interval segmentation, which is used for detecting shilling attacks. 

Shilling attacks resemble to each other. Hence, clustering-based schemes are 

proposed by many researchers for detecting attacks (O’Mahony et al., 2003; 

Mehta and Nejdl, 2009; Bilge et al., 2014b; Zhang and Kulkarni, 2014). In 

(O’Mahony et al., 2003), a neighborhood selection scheme based on clustering in 

reputation reporting systems is proposed to detect bogus profiles. Two methods, 

based on PLSA and principal component analysis (PCA), are proposed for 

detecting shilling attacks (Mehta and Nejdl, 2009). PLSA provides to calculate 

probabilistic distribution over clusters and PCA, which is a linear dimensionality 

reduction model, provides to select dimensions. In (Zhang and Kulkarni, 2014), a 

spectral clustering-based detection scheme is proposed by utilizing high 

correlation between attack profiles. Spectral clustering algorithm is applied to find 

the maximum sub-matrix of user-user correlation matrix, where the sub-matrix 

contains shill profiles. Bilge et al. (2014b) propose a bisecting k-means clustering 

algorithm in order to detect shill profiles. A binary decision tree is derived from 

the given user-item matrices, and intra-cluster correlation values are calculated for 

each sub-cluster. Then, utilizing the intra-cluster correlation values, the clusters 

containing shill profiles is specified depending on the fact that shill clusters have 

high intra-cluster correlation values and sub-clusters of a parent cluster, which 

contains fake profiles cannot differ diversely from the parent in terms of intra-
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cluster correlation. Also, in order to detect shill profiles on numeric masked data, 

Gunes and Polat (2015) propose a detection method based on hierarchical 

clustering. They cluster profiles utilizing their similarity weights on masked data.  

Due to the certain generation strategies of shilling attack models, some 

generic attributes derived from profiles such as rating deviation from mean 

agreement, standard deviation, degree of similarity, etc. are used to detect bogus 

profiles. Chirita et al. (2005) utilize generic attributes derived from each 

individual profile to determine whether a profile is genuine or not. Besides generic 

attributes, model specific attributes such as filler mean variance for average attack 

model and filler mean target difference for segment attack model are utilized for 

detecting fake profiles (Williams et al., 2007). Burke et al. (2006) utilize generic 

attributes and model specific attributes like filler average correlation for random 

attack model to classify a profile. Model specific and generic attributes are also 

utilized in order to detect obfuscated attack profiles (Williams et al., 2006). Wu et 

al. (2012a) use two classification-based methods, NBC and k-nn classifier, to 

detect profile injection attack profiles. Similarly, Wu et al. (2012b) propose a 

hybrid shilling attack detector based on NBC for detecting random filler model 

and average filler model attack profiles. A semi-supervised learning-based 

detection scheme is proposed by utilizing two schemes like NBC for labeled users 

and EM-λ for unlabeled users in order to improve NBC (Cao et al., 2013). 

All of the detection schemes proposed to date work with numeric 

undisguised ratings oriented systems. In this dissertation, six well-known shilling 

attack models are redesigned by utilizing three proposed shilling attack generation 

schemes in order to attack binary masked data. To measure the successes of the 

proposed attack models and the robustness of NBC-based PPCF scheme, the 

regenerated attack profiles are applied to the system. Also, a classification-based 

detection scheme is proposed to detect shilling attack profiles in databases 

including binary masked data. To the best of our knowledge, this work is the first 

one generating successful shilling attack profiles for binary masked data and 

detecting them. 
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3. PRELIMINARIES 

 

3.1. Shilling Attacks 

 

CF systems overcome information overload problem by making people to 

reach information they are looking for. For reliability and continuity of CF 

systems, accuracy and trusted predictions are highly important. Revealing 

accurate estimations for users provides that users trust the system. Especially, e-

commerce sites utilize CF systems for increasing their sales thanks to accurate 

outcomes of CF systems. Aiming to increase or decrease popularities of target 

items, some malicious users or competitive firms can create fake profiles and 

insert them into the system’s database. Thus, the malicious users or competitives 

manage to manipulate the outcomes on behalf of their advantages. 

Profile injection or shilling attacks jeopardize reliability of CF systems. To 

deal with shilling attacks, probing their structures is extremely considerable. 

Shilling attack profile is defined by Bhaumik et al. (2006), as shown in Fig. 3.1. In 

such figure, IS determines the characteristic of the attack, IF is chosen randomly 

and obviates the detectability of the attack, IΦ is the set of unrated items, it is the 

target item whose popularity is manipulated. 

 

 

 

Figure 3.1. General form of an attack profile 

 



 11   

 

Shilling attacks vary according to their intends, required knowledge, targets, 

cost, algorithm, and detectability (Burke et al., 2005). Shilling attacks are 

categorized as push and nuke attacks according to their intend. While push attacks 

aim to increase popularity of a target item, nuke attacks have goal to decrease it. 

Also, shilling attacks can be grouped as high knowledge required attacks and low 

knowledge required attacks according to required knowledge. High knowledge 

required attacks are efficient but need confidential information about a system, 

such as items’ means. However, low knowledge required attacks need public 

information about a system like system mean. The most well-known six attack 

types are described as follows (Burke et al., 2005): 

Random attack (RA): For random attack model, filler items are chosen 

randomly and filled around system mean. Rating of the target item is chosen as 

the maximum or minimum vote in the rating interval depending on the intend of 

the attacker. Remaining items are unrated. Random attacks are low knowledge 

required attacks.  

Average attack (AA): Filler items are chosen randomly and rated around 

the corresponding item’s mean. The target item is voted with the maximum or 

minimum rating in the rating interval depending on the intend. Since items’ means 

are not public information, average attack model is high knowledge required 

attack. 

Bandwagon attack (BA): For banwagon attack model, popular items are 

chosen as selected items and rated with the maximum vote in the rating interval. 

Filler items are chosen randomly and voted around system mean. Target item is 

voted as the maximum rating in the rating interval. Bandwagon attacks are low 

knowledge required push attacks. 

Segment attack (SA): Segment attack is designed for a group of users 

interested with the target item. Utilizing that an item with related users will 

increase the sales of the item, selected items are chosen as popular items for 

segmented users and rated with the maximum vote in the rating interval. Filler 

items are chosen randomly and voted with the minimum rating in the interval. 

Target item is filled with the maximum rating value in the interval. Segment 

attacks are low knowledge required push attacks. 
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Reverse bandwagon attack (RB): Reverse bandwagon attack model is a 

variation of bandwagon attack model in order to decrease popularity of a target 

item. Since reverse bandwagon attacks are nuke attacks, unpopular items are 

chosen as selected items and rated with the minimum vote in the rating interval. 

Filler items are chosen randomly and filled as bandwagon attack model. Target 

item is rated with the mininmum vote in the rating interval. Reverse bandwagon 

attacks are also low knowledge required attacks. 

Love/hate attack (L/H): Love/hate attacks are designed for nuking. Filler 

items are chosen randomly and filled with the maximum rating value in the rating 

interval. Target item is voted with the minimum rating in the interval. Love/hate 

attacks are low knowledge required attacks. 

 

3.2.  Binary Ratings Oriented Shilling Attacks 

 

Although many e-commerce sites work with numeric data, there are some 

sites that prefer to know who likes or dislikes products rather than how much a 

user likes a product. Thus, binary data oriented CF schemes are proposed in order 

to provide accurate referrals from binary data.  

Kaleli and Polat (2013) generate binary forms of the attacks by grouping 

them into two groups as attack models with or without selected items set. Besides, 

they propose a new evaluation metric called ratio shift in order to measure the 

success of binary shilling attacks. The proposed metric quantifies the proportion 

of 1s before and after the attack. Also, they perform robustness analysis of NBC-

based CF algorithm under binary profile injection attacks. Their results show that 

NBC-based CF algorithm is not a robust algorithm against binary shilling attacks. 

Shilling attack models with selected items set against NBC-based CF algorithm 

are designed as follows (Kaleli and Polat, 2013): 

 For all attack types in the group except segment attack model, each filler 

item is filled with 1 if generated random number is greater than 0.5, 

otherwise it is filled with 0. For segment attack model, each filler item is 

filled with 0. 
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 All of the selected items are filled with 1, 1, and 0 for bandwagon, segment, 

and reverse bandwagon attack models, respectively. 

 Target item is rated as 1 for bandwagon attack, 1 for segment attack, and 0 

for reverse bandwagon attack. 

Shilling attack models without selected items set against NBC-based CF 

algorithm are designed as follows (Kaleli and Polat, 2013): 

 For random attack model, each filler item is filled with 1 if generated 

random number is greater than 0.5, otherwise it is filled with 0. For average 

attack model, each filler item is filled with its mode value. For love/hate 

attack model, each filler item is filled with 1. 

 Target item is filled with 0 for love/hate attack model. Target item for 

random and average attack models is filled with 1 for pushing and 0 for 

nuking. 

 

3.3. Privacy-preserving Collaborative Filtering on Binary Data 

 

Quality of data is one of the serious factors of enhancing or protecting 

accuracy of recommender systems. Preserving privacy is one of the efficacious 

ways of increasing quality of data. Due to privacy risks, users either avoid to  give 

true ratings or give up using the recommender system (Cranor, 2004). 

Accordingly, the quality of data worsens and the recommender system produces 

low accurate predictions. Thus, users become unsatisfied. In order to produce 

highly accurate predictions while preserving privacy, PPCF schemes are 

proposed, which work with either numeric or binary data.  

RRT is one of the algorithms that provides privacy on binary data by 

preventing the server from learning true data about users. PPCF scheme on RRTs 

can be described as follows (Polat and Du, 2006; Kaleli and Polat, 2007): 

One-group scheme: In one-group scheme, all ratings of items are reversed 

together or all of them remain the same. The accuracy gained from perturbed data 

is as high as the accuracy gained from original one for this scheme. Even though 

accuracy is high, the privacy level is low. If the server learns the true rating for 
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any item, it can easily estimate the true ratings of other items. One-group scheme 

can be defined as followed: 

 In order to mask a user profile 

 Each user u generates a random number r using uniform distribution over 

the range [0, 1].  

 If r is smaller than or equal to the masking parameter θ (θ is determined 

by the server), the user sends true ratings; otherwise, she reverses 1s to 0s 

and 0s to 1s and sends reversed ratings to the server. 

 The server produces accurate predictions without learning whether ratings 

are true or false utilizing the fact that the user sends true ratings with 

probability θ and sends false ratings with probability 1-θ. 

Multi-group scheme: In multi-group schemes, items are partitioned into 

groups and each group is processed independently. The server chooses θ and each 

user selects a random number for each group and sends true or false data 

depending on selected random numbers and θ. Thus, even if the server learns true 

rating for an item in a group, it can estimate only true ratings of the other items in 

the same group. Remaining items in the other groups continue to protect their true 

ratings. In multi-group scheme, number of groups is represented by M, where 1 < 

M < m (m is the number of items). With increasing M values, privacy increases 

but accuracy decreases due to randomness.  

Full Privacy: Preventing the server from learning the rated items is as 

important as preventing it from learning the true ratings. Hereby, besides 

disguising true ratings, each user u finds number of rated items, mut, and randomly 

creates a number, mur, which is in the range of (1, mut). Then, the user selects mur 

unrated items and fills randomly mur/2 items’ values with 1 and the remaining 

unrated items with 0 (Polat and Du, 2006). In (Kaleli and Polat, 2007), privacy is 

provided similarly; however, in order to provide full privacy, each user selects mur 

over the range (1, γ). The user calculates the number of unrated items will be 

filled f, where f = mut × mur / 100. Then, the user fills randomly f/2 items’ values 

with 1 and the remaining unrated items with 0. In this dissertation, the scheme 

proposed by Kaleli and Polat (2007) is used as disguising scheme both in 

detection and designing attack profiles. 
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4. DESIGNING SHILLING ATTACK PROFILES FOR BINARY 

DISGUISED DATABASES 

 

Binary data can be disguised using RRTs (Du and Zhan, 2003; Polat and 

Du, 2006; Kaleli and Polat, 2007). In this dissertation, data is disguised with 

RRTs as described in Section 3.3. The six well-known attack models are modified 

in the thesis in order to manipulate produced predictions from binary masked data. 

For this purpose, some values like modes of items, which are required for 

generating attack profiles are calculated as the server does in RRT with one-group 

scheme. The modified attack models can be applied to binary data disguised with 

RRT according to one-group and multi-group schemes with/without full privacy. 

A general procedure for generating shilling attack profiles on binary data is 

described in Section 3.2. As the modified shill profiles can be applied to the 

system, they can be disguised with RRT according to one- or multi-group 

schemes in order to obstruct detection of them. This time, even though effect of 

disguised modified attack models on binary masked data is lower than their 

undisguised versions, detection of them will get harder. The general shilling attack 

design scheme for one- and multi-group versions of RRT is described in Section 

4.1. Furthermore, to obstruct detectability of disguised attack profiles, unrated 

items of the shill profiles are filled as genuine users. The mentioned procedures 

are described in Section 4.2 and 4.3.  

  

4.1. Generating Shilling Attacks against Binary Data Disguised with RRTs 

 

For generating attacks against binary masked data, understanding RRT with 

one-group scheme is important. Items’ modes are used for generating average 

attack model, and popular and unpopular items are specified for bandwagon and 

reverse bandwagon attack models, respectively. For one- and multi-group 

schemes, ratings of items are true with probability θ or false with probability 1-θ. 

Thus, the estimated mode approaches its real value depending on pre-determined 

value of θ. If θ is 1, true data is sent. If θ is 0, all binary ratings are reversed and 

thus, false data is sent. For both situations, real values of items’ modes can be 
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calculated. For other values of θ, if θ closes to 1 or 0, estimated modes of items 

increasingly approach to their real values. When θ is 0.5 or closes to 0.5, the worst 

results are gained because ratings are either true or false with probabilities near to 

each other. Mode of an item, Mr, is estimated as follows: 

 

𝑀𝒓 =
((−𝟏)∗𝜽∗𝑴 + (𝟏−𝜽)∗𝑴̅)

𝟏−𝟐𝜽
,                                            (4.1) 

 

where, M represents the mode of the item gained from the ratings’ vectors in the 

system, and  𝑀̅ represents the mode of the item gained from the reversed ratings. 

 

4.1.1. Random attack model 

 

Random attack model can be applied as proposed by Kaleli and Polat 

(2013). The procedure is described as follows: 

 Number of filler items and number of attack profiles are determined by the 

attacker. 

 The attacker chooses a random number r for each filler item chosen 

randomly and fills with 1 if r is larger than 0.5; otherwise, she fills with 0. 

 The attacker fills the target item with either 1 or 0 for intend of pushing or 

nuking, respectively.  

 

4.1.2. Average attack model 

 

Average attack model can be modified in order to manipulate produced 

predictions from binary masked data as follows: 

 Number of filler items and number of attack profiles are determined by the 

attacker. 

 The attacker estimates modes of filler items using Eq. (4.1). She fills each 

filler item with its estimated mode. 

 The target item is filled with either 1 or 0 for push or nuke attacks, 

respectively. 
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4.1.3. Bandwagon attack model 

 

Bandwagon attack model is modified as follows: 

 Number of filler items, number of selected items, and number of attack 

profiles are determined by the attacker. 

 The attacker estimates modes of items using Eq. (4.1). Then, she estimates 

the number of ratings for each item and sorts the items in descending order 

depending on number of ratings. The attacker chooses top number of 

selected items from the ranked item list, where mode of the item is 1. 

 After choosing the selected items, the attacker fills them with 1. 

 The attacker chooses a random number r for each filler item chosen 

randomly and fills with 1 if r is larger than 0.5; otherwise, she fills with 0. 

 Target item is filled with 1. 

 

4.1.4. Segment attack model 

 

Segment attack model can be applied as proposed by Kaleli and Polat 

(2013). The steps are listed in the following: 

 Number of filler items, number of selected items, and number of attack 

profiles are determined by the attacker. 

 Selected items are filled with 1. 

 The attacker chooses a random number r for each filler item chosen 

randomly and fills with 1 if r is larger than 0.5; otherwise, she fills with 

0. 

 Target item is filled with 1. 

 

4.1.5. Reverse bandwagon attack model 

 

Reverse bandwagon attack model is redesigned as follows: 

 Number of filler items, number of selected items, and number of attack 

profiles are determined by the attacker. 
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 The attacker calculates modes of items using Eq. (4.1). Then, she 

calculates the number of ratings for each item and sorts the items in 

descending order depending on the number of ratings. The attacker 

chooses top number of selected items from the ranked item list, where 

mode of the item is 0. 

 After choosing selected items, the attacker fills them with 0. 

 The attacker chooses a random number r for each filler item chosen 

randomly and fills with 1 if r is larger than 0.5; otherwise, she fills with 

0. 

 Target item is filled with 0. 

 

4.1.6. Love/hate attack model 

 

Love/hate attack model can be applied as proposed by Kaleli and Polat 

(2013). The procedure is described as follows: 

 Number of filler items and number of attack profiles are determined by 

the attacker. 

 The attacker fills each filler item with 1. 

 The attacker fills the target item with 0. 

 

4.2. Disguising Modified Attack Models  

 

The modified attack models mentioned in Section 4.1 are effective on 

produced predictions. However, since they are not disguised, detectability of them 

might be high. Thus, the disguising scheme presented in (Du and Zhan, 2003; 

Kaleli and Polat, 2007) can be used for masking attack profiles as genuine users.  

 

4.2.1. Disguising modified attack models with one-group RRT 

 

The disguising procedure for one-group scheme is as follows (Du and Zhan, 

2003; Kaleli and Polat, 2007): 

 The server selects θ over the range [0, 1] and lets each user know. 
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 The attacker generates attack profiles as in Section 4.1. 

 The attacker uniformly randomly chooses a number α over the range [0, 

1] for each modified attack profile. If α is larger than θ, she reverses 0s to 

1s and 1s to 0s; otherwise, the attacker sends true ratings. 

 

4.2.2. Disguising modified attack models with multi-group RRT 

 

The attack profiles can be disguised for multi-group scheme (Kaleli and 

Polat, 2007). The procedure is as follows: 

 The server selects θ over the range [0, 1], determines number of groups 

M, and lets each user know them. 

 The attacker generates attack profiles as in Section 4.1. 

 The attacker divides items into M groups. 

 The attacker uniformly randomly generates M random numbers like r1, 

r2,…, rM for each attack profile. For each group of a profile, if the group’s 

random number is larger than θ, she reverses 0s to 1s and 1s to 0s; 

otherwise, the attacker sends true ratings. 

 

4.3. Disguising Modified Attack Models with Full Privacy  

 

The best results with privacy-preserving NBC-based CF algorithm are 

gained in terms of privacy level and accuracy when the group number is three and 

data is masked with full privacy (Kaleli and Polat, 2007). In order to improve 

privacy level, the server does not learn how many or which items a user rated. 

Thus, the unrated items are filled using random filling  (Kaleli and Polat, 2007). 

Hence, aiming to obstruct detection of the modified attack profiles, the unrated 

items can also be disguised. The procedure to disguise attack profiles for one- and 

multi-group schemes is as follows: 

 The server selects θ over the range [0, 1], determines number of groups 

M, specifies the percentage d, which is used for disguising unrated items, 

and lets each user know them. 

 The attacker generates attack profiles as in Section 4.1. 
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 The attacker selects mur over the range (1, f) and calculates the number of 

rated items mut for each profile. The attacker calculates the number of 

unrated items will be filled d, where d = mut × mur / 100. Then, the 

attacker fills randomly d/2 items’ values with 1 and the remaining 

unrated items with 0. 

 The attacker disguises attack profiles as in Section 4.2. 
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5. ROBUSTNESS ANALYSIS OF NBC-BASED PPCF SCHEME 

 

A privacy-preserving CF scheme based on NBC with binary masked data is 

proposed by Kaleli and Polat (2007). Their empirical results show that NBC-

based PPCF scheme still provides accurate recommendations while ensuring 

reasonable privacy level. Although the scheme is able to preserve privacy and 

provide precise predictions, it might be subjected to shilling attacks. Its robustness 

against well-known profile injection attacks is not scrutinized. Hence, a 

robustness analysis is performed to show how effective the proposed modified 

shilling attack models on binary data against the NBC-based PPCF scheme 

proposed by Kaleli and Polat (2007).  

To perform such analysis, six modified shilling attack models are utilized. 

Different sets of experiments are conducted using real data. Several experiments 

are performed for evaluating the effectiveness of the proposed modified attack 

models on NBC-based PPCF scheme. The data set and the evaluation criteria used 

in the experiments are described in Section 5.1. Empirical outcomes are presented 

in Section 5.2. 

 

5.1.  Data Set and Evaluation Criteria 

 

Various experiments are conducted using a benchmark data set in order to 

measure the effectiveness of the proposed shilling attack generation schemes on 

NBC-based PPCF scheme. Publicly available data set MovieLens Public (MLP) is 

used for experiments, which includes 100,000 ratings in a 5-star rating scale from 

943 users for 1,682 movies. Ratio shift is used as an evaluation criteria in order to 

measure how the proposed schemes are effective on produced predictions. The 

measure can be described as follows (Kaleli and Polat, 2013): 

 

𝑅𝑎𝑡𝑖𝑜 𝑆ℎ𝑖𝑓𝑡 = 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 1𝑠 𝑎𝑓𝑡𝑒𝑟 𝑎𝑡𝑡𝑎𝑐𝑘 − 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 1𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑡𝑡𝑎𝑐𝑘    (5.1) 
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Eq. (5.1) is proposed for push attacks. In order to measure the success of a 

nuke attack, instead of ratios of 1s, ratios of 0s before and after attacks are 

calculated. 

 

5.2.  Experimental Results 

 

To show how much the proposed schemes are affected by varying values of 

different control parameters, various sets of experiments are performed. There are 

some privacy parameters. Moreover, filler size and attack size are two control 

parameters affecting the success of shilling attacks (Gunes et al., 2014). Filler size 

is related to number of filled cells in the attack profiles. Attack size is the ratio of 

the attack profiles to number of profiles. The proposed schemes are applied to 

NBC-based PPCF algorithm disguised with one-group scheme, multi-group 

scheme and their full privacy versions. In (Kaleli and Polat, 2007), empirical 

outcomes show that θ = 0.7 gives the best results for both one- and multi-group 

schemes in terms of accuracy and privacy level. According to the results, for 

multi-group scheme, M = 3 gives the best results with respect to accuracy and 

privacy level. Therefore, to specify how the proposed schemes perform according 

to varying filler size and attack size values, θ is chosen as 0.7 for both schemes 

and M is chosen as 3 for multi-group scheme. Also, some experiments are 

performed to show influences of varying M, f, and θ values on success of the 

proposed schemes. Each experiment is performed for 50 nuke items and 50 push 

items. In all of the experiments, to calculate average ratio shift, the ratio shift 

values for each user in the data set is calculated for 50 push or nuke items. For all 

of the experiments, one user is selected as an active user and the others are 

selected as train users. This procedure is repeated for all users in the data set.  

 

5.2.1. One-group scheme without full privacy 

 

Some experiments are performed in order to specify how varying filler size, 

attack size, and θ values affect the success of the proposed attack models on NBC-

based PPCF scheme. θ is first chosen as 0.7 while varying filler size and attack 
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size values. Attack size is set to 15 while filler size values are varied from 1 to 15. 

Then, filler size is set to 15 while varying attack size values from 1 to 15. 

Morever, to show how varying θ values impact the performance of the proposed 

schemes, finally, filler size and attack size are set to 15 while varying θ from 0.51 

to 1.  

Table 5.1 shows the effects of varying attack size values on overall 

performances of shilling attack profiles generated using the scheme in Section 4.1. 

Empirical outcomes indicate that modified average, bandwagon, reverse 

bandwagon, and love/hate attack models are effective on NBC-based PPCF 

scheme with one-group scheme. It is obvious that increasing attack size values 

improve the effectiveness of attack profiles on produced predictions. 

Impacts of varying filler size values on performances of shilled profiles 

designed in Section 4.1 are shown in Table 5.2. As it is seen from Table 5.2, 

incremental values of filler size enhance influences of the proposed attack profiles 

on produced recommendations. In Table 5.1 and 5.2, the empirical results indicate 

that the most successful attack model is average attack model when θ = 0.7. The 

only factor that affects the success of random  attack model is filler size. Since 

filler  items  are  filled with either 1 or 0 according to chosen α value, the success 

of random attack model changes according to given ratings on filler items. The 

random attack profiles may or may not look like the genuine profiles. 

 

Table 5.1. Effects of varying attack sizes on performance (no masking, one-group w/o full 

privacy)  

 

Attack Size (%) 1 3 6 10 15 

RA (Push) -1.673  -0.617  0.867 1.060 2.197 

AA (Push) 22.721  43.866 53.722 57.858 59.457 

BA 8.163  20.530 31.071 38.344 42.261 

SA 1.775 9.315 12.940 14.747 15.678 

RA (Nuke) 1.697  4.477  6.694 8.144 9.898 

AA (Nuke) 25.580  41.116 47.671 50.609 51.843 

RB  5.616  13.599 18.929 23.027 25.773 

L/H  12.609 20.157 23.357 24.683 25.493 
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Table 5.2. Effects of varying filler sizes on performance (no masking, one-group w/o full privacy) 

 

Filler Size (%) 1 3 6 10 15 

RA (Push) 0.475 0.522  0.456 0.920 2.197 

AA (Push) 18.662  35.519 46.110 54.286 59.457 

BA 32.293  36.842 39.875 41.733 42.261 

SA 8.473 12.723 14.672 15.287 15.678 

RA (Nuke) 20.229  19.811 16.580 12.454 9.898 

AA (Nuke) 34.371  43.533 48.263 50.596 51.843 

RB 17.090 26.282 28.240 27.599 25.773 

L/H 23.128 24.734 25.275 25.379 25.493 

 

Also, to show how the disguising parameter θ affects performance of the 

proposed attack models on NBC-based PPCF masked with one-group using RRT, 

some experiments are performed. The results are displayed in Table 5.3.  

 

Table 5.3. Effects of varying θ values on performance (no masking, one-group w/o full privacy) 

 

θ 0.51 0.6 0.7 0.85 1 

RA (Push) 2.197 2.810  2.197 2.727 2.81 

AA (Push) 6.045  56.301 59.457 60.814 61.097 

BA 28.185  41.597 42.261 44.117 43.792 

SA 15.678 15.805 15.678 15.792 15.805 

RA (Nuke) 8.774  9.022 9.898 9.022 9.9 

AA (Nuke) 3.133  50.630 51.843 53.109 53.287 

RB  -11.211  19.453 25.773 25.756 25.701 

L/H  25.533 25.557 25.493 25.557 25.557 

 

As it is shown in Table 5.3, average attack model is affected by θ more than 

other attack models. With decreasing values of θ from 1 to 0.51, the successes of 

the attack profiles are less except random attack model. When θ approaches to 1 

or 0, the proposed attack models except some attack models become more 

effective on produced predictions. Since attack size and filler size values are set to 

15 and enough large while varying θ values, love/hate and segment attack models 

are not affected so much by θ. Even if θ is 0.51, at least half of the attack profiles 
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look like each other, the ratio shift values of them will be similar with the values 

when θ is 1. Also, success of the random attack model is independent of varying 

values of θ. Since filler items of random  attack  model  are randomly filled and 

filler items are only factor on success of the attack model, the disguised genuine 

profiles may resemble random attack profiles more than their original forms 

depending on the given ratings to the filler items. Although filler items are filled 

with the same strategy of random attack model for bandwagon and reverse 

bandwagon attack models, selected items are dependent on θ. As it is seen from 

Table 5.1, Table 5.2, and Table 5.3, most of ratio shift values of the proposed 

attack models are efficient when attack size and filler size values are small and θ 

is close to 0.51.  

 Also, shilling attack profiles are generated according to the scheme 

described in Section 4.2. In other words, shilling attack profiles are generated and 

disguised like as genuine users according to one-group RRT without full privacy. 

Since the disguised and undisguised forms of attack profiles give the same results, 

the experimental outcomes are not repeated. Even if both undisguised and 

disguised forms of shilling attack profiles for one-group scheme are evenly 

successful, disguised forms of them are detected less than their undisguised ones.  

 

5.2.2. One-group scheme with full privacy 

 

Some trials are performed to specify how varying filler size, attack size, θ, 

and f values (note that f is percentage of unrated items will be filled) affect the 

successful of the proposed shilling attack generation schemes described in Section 

4 on NBC-based PPCF scheme with full privacy provided one-group RRT. θ and f 

are chosen as 0.7 and 50, respectively while varying filler size and attak size 

values. To show how varying θ values impact the performance of the proposed 

schemes, filler size and attack size are set to 15 while varying θ from 0.51 to 1. 

Moreover, to demonstrate effects of varying f values on the proposed scheme, 

filler size and attack size values are set to 15 while varying f from 100 to 10. First, 

attack profiles are generated utilizing the scheme described in Section 4.1 and 

applied to the NBC-based PPCF scheme disguised with one-group RRT with full 
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privacy. Then, attack profiles are generated utilizing the schemes described in 

Section 4.2 and 4.3. Since the attack profiles generated by the schemes in Section 

4.1 and 4.2 have the same impacts on the produced predictions, the empirical 

results are shown in the same tables. 

Table 5.4 shows effects of varying attack size values of the proposed 

schemes described in Section 4.1 and 4.2 on produced predictions. As it is seen in 

Table 5.4, even if data is disguised utilizing one-group RRT scheme with full 

privacy, NBC-based PPCF scheme is still vulnerable to shilling attacks. Even 

though regenerated attack models are disguised with one-group RRT, they are 

effective as much as their undisguised versions on the produced predictions. The 

full privacy provided for NBC-based PPCF makes ratio shift values of average 

attack model to decrease. The attack models whose filler items are filled randomly 

may increase completely depending on the randomly filled items. Table 5.4 shows 

that increasing attack size values improve effects of the proposed attack models.  

 

Table 5.4. Effects of varying attack sizes on performance (no masking, one-group w/o full 

privacy) 

 

Attack Size (%) 1 3 6 10 15 

RA (Push) 0.267  0.804  2.337 3.803 4.942 

AA (Push) 14.093  35.459 48.861 55.321 57.902 

BA 5.972  17.926 30.889 39.268 43.902 

SA 3.869 10.829 14.392 16.244 17.442 

RA (Nuke) 0.838  1.979  3.033 3.440 5.525 

AA (Nuke) 18.069  33.302 40.554 43.917 47.179 

RB  3.268  8.747 13.413 16.969 21.196 

L/H  7.676 14.598 17.644 18.825 21.253 

 

To obstruct detection of the proposed attack profiles described in Section 

4.1, they are disguised utilizing the scheme in Section 4.3 like as genuine users. 

Table 5.5 shows how varying attack size values influence success of the proposed 

generation scheme described in Section 4.3 on NBC-based PPCF masked utilizing 

the one-group RRT scheme with full privacy. Table 5.5 remarks that increasing 

attack size values enhance ratio shift values of the proposed attack models. 
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Table 5.5. Effects of varying attack sizes on performance (one-group with full privacy) 

 

Attack Size (%) 1 3 6 10 15 

RA (Push) 0.612  1.283  3.120 4.651 5.871 

AA (Push) 11.985  32.316 47.126 55.003 58.199 

BA 5.622  16.825 29.650 38.45 43.548 

SA 1.864 8.280 13.290 15.813 17.389 

RA (Nuke) 0.405  0.933  1.472 1.548 3.283 

AA (Nuke) 14.282  29.690 38.085 42.664 46.848 

RB  2.772  7.858 12.106 15.739 19.915 

L/H  4.284 9.646 13.285 15.718 19.461 

 

Table 5.6 shows impacts of varying filler size values on the proposed 

generation schemes described in Section 4.1 and 4.2. The empirical outcomes 

demonstrate that increasing filler size values mostly enhance ratio shift values of 

the attack models. As it is mentioned before, the attack models whose filler items 

are filled randomly, may increase or decrease with increasing filler size values 

depending on the votes given to the filler items. As it is seen from Table 5.7, 

increasing filler size values generally improve effectiveness of the proposed attack 

models whose filler items are not filled randomly. Since f is enough smaller for 

mentioned attack models, they are still effective with higher filler size values. 

 

Table 5.6. Effects of varying filler sizes on performance (no masking, one-group w/o full privacy) 

 

Filler Size (%) 1 3 6 10 15 

RA (Push) 2.216 1.934  2.284 3.432 4.942 

AA (Push) 17.654  34.611 45.502 52.887 57.902 

BA 35.319  39.695 42.528 43.902 43.902 

SA 9.703 14.431 16.271 16.961 17.442 

RA (Nuke) 14.978  14.187 10.636 7.584 5.525 

AA (Nuke) 26.598  35.701 40.874 43.533 47.179 

RB 11.847  20.817 22.352 20.999 21.196 

L/H 16.937 19.001 19.502 19.690 21.253 
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Table 5.7. Effects of varying filler sizes on performance (one-group with full privacy) 

 

Filler Size (%) 1 3 6 10 15 

RA (Push) 2.341 2.954  3.495 4.989 5.871 

AA (Push) 16.295  33.960 45.843 53.285 58.199 

BA 42.392  43.321 44.049 44.112 43.549 

SA 15.217 16.626 17.083 16.982 17.389 

RA (Nuke) 10.867 9.338  6.967 4.487 3.283 

AA (Nuke) 23.707  33.966 39.432 43.001 46.684 

RB 22.078  21.601 20.733 19.459 19.915 

L/H 13.326 15.116 15.758 16.937 19.461 

 

Table 5.8 demonstrates how varying θ values affect performances of the 

attack profiles generated by the schemes in Section 4.1 and 4.2. Table 5.9 

represents how effectively the attack profiles generated as in Section 4.3 perform 

with varying θ values. When θ closes or equals to 1, the number of masked 

profiles decrease and reach to 0. Thus, the best results are gained for most of the 

attack models for three schemes, as it is shown in Tables 5.8 and 5.9.    

 

Table 5.8. Effects of varying θ values on performance (no masking, one-group w/o full privacy) 

 

θ 0.51 0.6 0.7 0.85 1 

RA (Push) 4.861 5.692  4.942 5.277 5.277 

AA (Push) 7.690 52.657 57.902 61.644 62.333 

BA 28.229  42.797 43.902 45.186 45.186 

SA 18.354 18.375 17.442 18.403 18.403 

RA (Nuke) 3.676 3.578  5.525 3.720 3.569 

AA (Nuke) -4.598  38.299 47.179 45.533 45.569 

RB  -15.909  11.648 21.196 18.424 19.975 

L/H  18.348 18.420 21.253 18.269 18.330 
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Table 5.9. Effects of varying θ values on performance (one-group with full privacy) 

 

θ 0.51 0.6 0.7 0.85 1 

RA (Push) 5.722 6.242  5.871 6.244 6.244 

AA (Push) 7.858 53.139 58.199 62.151 62.950 

BA 28.314  42.592 43.548 44.944 44.944 

SA 18.511 18.454 17.389 18.424 18.424 

RA (Nuke) 1.359 1.466  3.283 1.510 1.729 

AA (Nuke) -5.684  37.067 46.848 45.415 45.468 

RB  -16.136  10.687 19.915 17.005 18.373 

L/H  16.125 16.034 19.461 15.947 15.924 

 

Table 5.10 shows how the number of filled items impresses the 

effectiveness of the proposed shilling attack generation schemes. When f is varied, 

the ratio shift values of attack models change depending on θ, f, and the votes 

given to the randomly filled items. When θ is large enough, ratio shift values are 

supposed to decrease with incresing f values. 

 

Table 5.10. Effects of varying f values on performance (no masking, one-group w/o full privacy) 

 

f (%) 100 50 25 10 

RA (Push) 4.399 3.616  4.276 2.717 

AA (Push) 60.702 59.612 60.002 58.766 

BA 44.308  43.578 43.557 42.577 

SA 18.464 17.166 17.186 16.049 

RA (Nuke) 4.345 5.525  7.584 7.877 

AA (Nuke) 44.348  47.179 43.533 49.824 

RB  18.607  21.196 20.999 23.302 

L/H  18.672 21.253 19.690 23.958 

 

Disguising both data and attack profiles with full privacy will change the 

effectiveness of the proposed shilling attack generation scheme in Section 4.3 on 

NBC-based PPCF disguised by utilizing one-group RRT scheme with full 

privacy. Table 5.11 shows effects of varying f values on performances of the 

attack profiles generated as in Section 4.3. Filling unrated items of random, 
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bandwagon, and reverse bandwagon attack models equals to increasing filler size 

of them. Therefore, as it is mentioned before, the ratio shift values of mentioned 

attack models may increase or decrease with incremental filler size values  

depending on the votes given to the filler items. Since MLP data is sparse, the 

number of filled items is low even if f is 100. If the data set is dense or filler size 

is much more than 15, the value of f will be more effective on the successes of the 

average, segment, and love/hate attack models. 

 

Table 5.11. Effects of varying f values on performance (one-group with full privacy) 

 

f (%) 100 50 25 10 

RA (Push) 5.186 4.462  5.092 2.717 

AA (Push) 61.283 60.125 60.193 58.766 

BA 43.438  43.363 43.497 42.577 

SA 18.354 17.173 17.071 16.049 

RA (Nuke) 1.031 3.283  4.488 7.270 

AA (Nuke) 43.699  46.848 43.001 49.796 

RB  16.443  19.915 19.459 22.865 

L/H  15.871 19.461 16.937 23.671 

 

When NBC-based PPCF scheme is masked utilizing one-group RRT 

scheme with full privacy, it is still possible to manipulate produced predictions. 

When attack models are generated as in either Section 4.1 or 4.2, they have the 

same impacts on the produced predictions. However, the attack models generated 

as in Section 4.2 are less detectable. When the scheme described in Section 4.3 is 

chosen as generation algorithm, the proposed attack models are successful as 

nearly much as the other versions and the detectability of the scheme is much less 

than the others. 

 

5.2.3. Multi-group scheme without full privacy 

 

The proposed shilling attack generation schemes are applied to NBC-based 

CF algorithm with multi-group RRT scheme. The best outcomes are gained when 

the number of groups M = 3 and the masking parameter θ  = 0.7 for NBC-based 
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PPCF with multi-group scheme (Kaleli and Polat, 2007). Thus, M and θ are set to 

3 and 0.7, respectively while varying filler size and attack size values from 1 to 

15. In order to measure robustness of NBC-based PPCF algorithm with multi-

group scheme, initially, the attack profiles are generated using the procedure in 

Section 4.1 and applied to the system. Then, generated attack profiles are also 

disguised utilizing the procedure in Section 4.2 and injected to the database for 

obstructing detectability.  

Table 5.12 and 5.13 show how varying attack size values influence 

performances of the attack models. Increasing attack size values enhance ratio 

shift values of the attack profiles for both of the shilling attack generation 

schemes. As it is seen in the tables, injecting attack profiles without disguising 

gives more successful results but eases detactability. Also, undisguised push 

attacks require modes of items such as average and bandwagon attack models are 

much more successful than their disguised versions because of items’ properties, 

θ, and M. To prevent these differences, choosing target push or nuke items is 

important.  

 

Table 5.12. Effects of varying attack sizes on performance (no masking) 

 

Attack Size (%) 1 3 6 10 15 

RA (Push) -1.917 -2.783 -2.787 -2.993 -1.266 

AA (Push) 22.244  38.115 46.040 49.393 50.920 

BA 9.741  20.740 28.848 34.102 36.859 

SA -0.829 3.192 6.036 6.764 7.546 

RA (Nuke) 1.616  4.093  5.264 5.902 6.235 

AA (Nuke) 25.031 38.450 44.208 46.373 47.133 

RB  5.173  11.277 15.936 19.103 20.973 

L/H  11.652 16.768 19.408 20.554 21.143 
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Table 5.13. Effects of varying attack sizes on performance (multi-group w/o full privacy) 

 

Attack Size (%) 1 3 6 10 15 

RA (Push) -2.271 -3.077 -3.065 -2.411 -2.028 

AA (Push) 3.421  13.508 18.422 23.226 25.082 

BA -0.176  5.722 9.256 10.356 12.507 

SA -2.153 0.780 3.018 4.125 4.802 

RA (Nuke) 2.042  3.381  4.587 6.127 6.297 

AA (Nuke) 18.590 33.421 40.524 43.692 44.821 

RB  3.485  7.050 10.694 13.022 14.944 

L/H  10.394 19.245 23.385 25.317 26.170 

 

In Tables 5.14 and 5.15, the ratio shift values of average, segment, and 

love/hate attack models enhance with incremental filler size values for both 

generation schemes. However, performances of random, bandwagon, and reverse 

bandwagon attack models may increase or decrease with increasing filler size 

values depending on the votes given to the filler items for both schemes. Thus, the 

idea of that incremental filler size values enhance performances of all attack 

models is not possible.  

 

Table 5.14. Effects of varying filler sizes on performance (no masking) 

 

Filler Size (%) 1 3 6 10 15 

RA (Push) -7.601 -7.446 -5.712 -4.106 -1.266 

AA (Push) 12.615 28.229 38.106 45.811 50.920 

BA 24.702 29.082 31.557 35.858 36.859 

SA -0.271 4.152 5.504 7.396 7.546 

RA (Nuke) 17.729 17.262 13.451 10.505 6.235 

AA (Nuke) 30.244 39.26 44.148 46.927 47.133 

RB  13.8119 19.529 21.718 20.891 20.973 

L/H  19.667 20.744 21.213 21.608 21.143 
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Table 5.15. Effects of varying filler sizes on performance (multi-group w/o full privacy) 

 

Filler Size (%) 1 3 6 10 15 

RA (Push) -7.843 -7.845 -5.890 -4.011 -2.028 

AA (Push) 0.210 8.643 16.477 20.749 25.082 

BA -5.567 -3.022 1.962 10.155 12.507 

SA -3.960 1.406 3.701 5.287 4.802 

RA (Nuke) 17.601 17.317 13.739 10.551 6.297 

AA (Nuke) 26.076 35.179 40.861 44.121 44.821 

RB  7.128 12.585 15.463 14.795 14.944 

L/H  20.163 22.070 24.008 25.854 26.170 

 

Tables 5.16 and 5.17 show how the proposed attack models generated as in 

Section 4.1 and 4.2 perform depending on varying θ values. As it is seen from the 

tables, the attack models generated by either the first scheme or the second 

scheme manipulate target items’ predictions much more when θ has higher values. 

When θ aproaches to 0.5, the privacy level increases but effects of attack profiles 

on predictions produced by NBC-based PPCF with multi-group RRT scheme 

decrease.  

 

Table 5.16. Effects of varying θ values on performance (no masking) 

 

θ 0.51 0.6 0.7 0.85 1 

RA (Push) -4.768 -3.442  -1.266 1.663 2.772 

AA (Push) 4.827 42.365 50.920 57.090 61.035 

BA 17.047  32.498 36.859 43.041 43.777 

SA 2.808 4.598 7.546 12.778 15.762 

RA (Nuke) 5.578 6.212  6.235 8.197 9.113 

AA (Nuke) 7.370  42.439 47.133 51.296 53.285 

RB  -13.425  12.904 20.973 25.531 25.798 

L/H  18.967 19.970 21.143 23.779 25.502 
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Table 5.17. Effects of varying θ values on performance (multi-group w/o full privacy) 

 

θ 0.51 0.6 0.7 0.85 1 

RA (Push) -4.821 -3.442  -2.028 1.813 2.772 

AA (Push) 0.808 10.216 25.082 48.309 61.035 

BA 2.424  4.903 12.507 34.034 43.777 

SA -0.112 1.889 4.802 11.088 15.762 

RA (Nuke) 6.458 6.187  6.297 8.021 9.113 

AA (Nuke) 8.460  39.198 44.821 50.341 53.285 

RB  -1.459  8.240 14.944 23.750 25.798 

L/H  25.599 25.981 26.400 26.441 25.502 

 

The number of groups, M, is one of the agents impresses the performances 

of both schemes. As it is seen from Tables 5.18 and 5.19, the effects of attack 

profiles generally decrease with increasing M values. Ratio shift values of some 

attack models such as random attack model for both schemes may increase with 

higher M values depending on the votes given to the filler items.  

 

Table 5.18. Effects of varying M values on performance (no masking) 

 

M 1 2 3 5 

RA (Push) 2.197 0.723  -1.266 -1.758 

AA (Push) 59.457 55.213 50.92 49.557 

BA 42.261 39.408 36.859 35.612 

SA 15.678 11.315 7.546 5.754 

RA (Nuke) 9.898 5.512  6.235 7.540 

AA (Nuke) 51.843 46.874 47.133 47.618 

RB  25.773 17.413 20.973 21.572 

L/H  25.493 20.305 21.143 21.041 

 

As it is seen from the tables represented in Section 5.2.3, the ratio shift 

values of disguised average and bandwagon attack models are much smaller than 

their unmasked forms. However, when average attack model is used for nuking, 

the difference between its masked and unmasked forms decreases. The reason of 
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that this situation happens for only average and bandwagon attack models is that 

they need means of the items. Also, the cause of the difference between ratio shift  

values of their undisguised and disguised forms depends on some factors like θ, 

M, the number of votes given to the target items, etc. 

 

Table 5.19. Effects of varying M values on performance (multi-group w/o full privacy) 

  

M 1 2 3 5 

RA (Push) 2.197 0.081  -2.028 -1.228 

AA (Push) 59.457 35.109 25.082 16.013 

BA 42.261 24.532 12.507 3.313 

SA 15.678 9.446 4.802 2.961 

RA (Nuke) 9.898 6.189  6.297 7.101 

AA (Nuke) 51.843 45.86 44.821 43.994 

RB  25.773 14.445 14.944 13.101 

L/H  25.493 24.151 26.400 26.575 

 

The items whose modes equal to 0 are chosen as target items for pushing. 

Conversely, the items which have modes as 1 are chosen as target items for 

nuking. Since MLP is sparse, for pushing, the percentage of the target items 

whose number of given votes is smaller than 40 is 50. Unlike the target items for 

pushing, that percentage is smaller than 20 for the target items to nuke. Besides θ 

and M, the number of votes given to a target item is another factor, which affects 

performances of the undisguised and disguised forms of the attack models. When 

the number of votes is large enough (more than 40), even though the calculated 

means of items deviate so much from their originals, the masked and unmasked 

attack models can mostly give similar ratio shift values. 

When the calculated mean of disguised data deviates so much for the items 

with smaller number of votes, the ratio shift value of disguised attack models 

generally differs so much than their unmasked versions. The effect of θ on this 

situation is represented in Tables 5.16 and 5.17. The influence of M is shown in 

Tables 5.18 and 5.19. Also, to illustrate the effects of target items’ properties, 

some examples are represented in Table 5.20. In Table 5.20, # represents the 

number of votes given to a target item and d represents the difference between 
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mean of an unmasked item and mean of its masked form. The ratio shift values of 

four items are represented. The idea is that either only θ, M, or item’s property is 

the reason of the difference is not enough. The number of disguised items of an 

attack profile and the number of disguised attack profiles should be considered.  

 

Table 5.20. Effects of target items’ properties on performance of masked and unmasked attacks 

 

Property 
# < 40 # > = 40 

d < 0.05 d >= 0.05 d < 0.05 d >= 0.05 

AA (Unmasked) 62.460 60.445 62.884 69.459 

AA (Masked) 61.082 -0.848 59.915 65.854 

BA (Unmasked) 46.871 47.190 39.661 49.629 

BA (Masked) 47.508 7.211 39.237 49.311 

 

Generally speaking, even if NBC-based CF is masked with multi-group 

scheme RRT without providing full privacy, effective attack models can be 

generated. The performances of the proposed attack models enhance mostly with 

increasing θ, attack size, filler size, and decreasing M values. When attack profiles 

are generated as in Section 4.1 and injected to the system, they have admissible 

impacts on produced predictions with θ = 0.7 and M = 3 values. Under the same 

conditions, the masked forms of them have also high ratio shift values with 

aggravated detactabilities. As it is shown in the tables in Section 5.2.3, the average 

attack model is the most successful attack model for the scheme discussed in 

Section 4.1. For the second scheme, the average attack model is also the most 

effective attack model when the target items are chosen carefully or with high θ 

and low M values. For both of the schemes, bandwagon, reverse bandwagon, and 

love/hate attacks are successful. When approppriate conditions are provided, the 

masked forms of the proposed schemes can be preferred for manipulating 

predictions in order to obstruct detectability. 
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5.2.4. Multi-group scheme with full privacy 

 

The proposed shilling attack generation schemes are applied to NBC-based 

CF algorithm masked with full privacy provided multi-group RRT scheme. The 

best outcomes are gained when the number of groups M = 3 and the masking 

parameter θ  is 0.7 for NBC-based PPCF with multi-group scheme (Kaleli and 

Polat, 2007). Thus, M and θ are set to 3 and 0.7, respectively while varying filler 

size and attack size values from 1 to 15. Also, to provide full privacy the masking 

parameter f is chosen as 50 during the experiments. In order to measure robustness 

of NBC-based PPCF algorithm masked with multi-group scheme and provides 

full privacy, the attack profiles are generated using the procedure in Section 4.1 

and inserted to the system. Then, generated attack profiles are also disguised 

utilizing the procedure in Section 4.2 and injected to the database for obstructing 

detectability. Lastly, the attack profiles are generated as in Section 4.3 to provide 

full privacy as genuine users aiming to aggravating further detactability.  

Tables 5.21, 5.22, and 5.23 show how varying attack size values affect 

performances of the proposed attack models on NBC-based CF masked with 

multi-group RRT scheme and provides full privacy.  

 

Table 5.21. Effects of varying attack sizes on performance (no masking) 

 

Attack Size (%) 1 3 6 10 15 

RA (Push) -0.229 1.003 1.606 2.770 1.737 

AA (Push) 15.529 37.419 49.012 53.552 54.721 

BA 6.742 20.117 32.019 39.994 41.065 

SA 3.024 8.817 11.635 13.294 11.945 

RA (Nuke) 0.530 1.120 2.590 2.770 3.037 

AA (Nuke) 18.719 33.364 39.847 42.689 43.650 

RB  2.761 7.003 10.937 13.514 15.724 

L/H  7.226 13.705 16.14 17.355 18.187 
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Table 5.22. Effects of varying attack sizes on performance (multi-group w/o full privacy) 

 

Attack Size (%) 1 3 6 10 15 

RA (Push) -0.178 0.973 1.782 3.332 1.620 

AA (Push) 2.810 13.784 19.654 25.279 29.843 

BA 0.823 5.826 11.116 15.525 16.197 

SA 0.443 5.128 8.534 10.448 9.241 

RA (Nuke) 0.829 1.497 2.233 3.300 3.820 

AA (Nuke) 12.388 26.785 35.771 39.396 41.024 

RB  1.506 3.998 6.062 8.600 11.230 

L/H  6.611 16.195 19.726 22.418 23.224 

 

Table 5.23. Effects of varying attack sizes on performance (multi-group with full privacy) 

 

Attack Size (%) 1 3 6 10 15 

RA (Push) 0.394 0.999 2.823 3.782 2.329 

AA (Push) 3.661 11.924 20.288 26.850 32.002 

BA 1.561 5.334 10.335 15.697 17.275 

SA -0.040 3.236 7.224 9.811 9.525 

RA (Nuke) 0.448 0.394 1.343 1.137 1.309 

AA (Nuke) 9.001 23.092 32.38 38.286 40.274 

RB  1.281 3.016 5.232 7.743 9.404 

L/H  4.276 9.684 15.396 19.101 21.627 

 

As it is seen from the tables, average attack model is the most successful 

model. But, the best results are gained when it is undisguised. For the remaining 

attack models, even if the best results are gained when the attack models are as in 

their undisguised forms for most of them, the other generation schemes may 

increase their performance depending on given votes to the filler items. The tables 

show that increasing attack size values enhance performance of the attack models 

for three generation schemes. 

Tables 5.24, 5.25, and 5.26 represent effects of varying filler size values on 

performances of the attack models generated by the schemes described in Sections 

4.1, 4.2, and 4.3, respectively.  
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Table 5.24. Effects of varying filler sizes on performance (no masking) 

 

Filler Size (%) 1 3 6 10 15 

RA (Push) 0.075 -1.166 0.299 1.690 1.737 

AA (Push) 17.175 33.635 43.548 50.505 54.721 

BA 32.694 38.225 41.321 43.046 41.065 

SA 7.945 11.251 13.173 13.756 11.945 

RA (Nuke) 13.328 13.415 10.172 6.757 3.037 

AA (Nuke) 26.329 34.942 39.385 42.053 43.650 

RB  9.436 17.018 18.437 17.544 15.724 

L/H  15.875 17.561 17.977 18.074 18.187 

 

Table 5.25. Effects of varying filler sizes on performance (multi-group w/o full privacy) 

 

Filler Size (%) 1 3 6 10 15 

RA (Push) -0.174 -0.694 0.233 1.970 1.620 

AA (Push) 6.657 15.024 22.011 26.076 29.843 

BA 1.885 5.372 9.724 14.988 16.197 

SA 3.697 8.443 11.073 11.533 9.241 

RA (Nuke) 13.48 13.383 10.318 6.967 3.820 

AA (Nuke) 22.757 31.242 36.148 38.903 41.024 

RB  2.490 9.118 11.784 11.514 11.230 

L/H  16.131 19.194 20.664 22.651 23.224 

 

Table 5.26. Effects of varying filler sizes on performance (multi-group with full privacy) 

 

Filler Size (%) 1 3 6 10 15 

RA (Push) -0.008 0.422 1.856 3.387 2.329 

AA (Push) 6.590 17.372 25.179 29.631 32.002 

BA 9.459 11.955 15.050 17.050 17.275 

SA 7.546 10.653 12.265 12.571 9.525 

RA (Nuke) 10.229 8.471 6.265 3.220 1.309 

AA (Nuke) 18.749 28.611 34.579 38.057 40.274 

RB  11.750 11.915 11.283 10.691 9.404 

L/H  12.201 14.706 16.995 20.091 21.627 
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As seen from Table 24, Table 25, and Table 26, the ratio shift values of 

average attack model for three schemes increase with incremental filler size 

values. For random, bandwagon, and reverse bandwagon attack models, 

increasing filler size values may enhance performances of the attack models 

generated by the algorithm in Section 4.1 due to the given ratings to the filler 

items. When the attack profiles are disguised as in Section 4.2, then the reversed 

votes given to the filler items may increase ratio shift values. For the mentioned 

attack models, the algorithm in Section 4.3 provides to increase filler item sets of 

their profiles. Increasing filler items may enhance performances of the profiles 

depending on the given votes to them. For three schemes, ratio shift values of the 

average and love/hate attack models  increase with incremental filler size values. 

Tables 5.27, 5.28, and 5.29 represent effects of varying θ values on 

performances of the attack models generated by the schemes in Sections 4.1, 4.2, 

and 4.3, respectively. Ratio shifts of the attack models generated by the scheme in 

Section 4.1 become more similar to their disguised versions when θ approaches to 

1. When θ is 1, they give the same results. Also, the attack models generated as in 

Section 4.3, perform nearly successful as their other forms depending on the filled 

items for full privacy with θ = 1 value. Many attacks perform successfully when θ 

approaches to 1 for the three schemes. For some attack models like love/hate 

attack model, their disguised and full privacy provided forms may perform more 

effectively when θ closes to 0.5 depending on their filler item rating strategy.  

 

Table 5.27. Effects of varying θ values on performance (no masking) 

 

θ 0.51 0.6 0.7 0.85 1 

RA (Push) 2.844 3.692 1.737 5.102 5.071 

AA (Push) 2.392 49.654 54.721 59.357 63.243 

BA 22.887 38.819 41.065 44.339 47.385 

SA 13.014 13.340 11.945 16.419 19.145 

RA (Nuke) 2.683 3.234 3.037 4.341 3.067 

AA (Nuke) -5.684 37.249 43.650 45.266 45.673 

RB  -20.498 9.440 15.724 19.256 18.674 

L/H  16.210 16.187 18.187 18.151 18.288 
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Table 5.28. Effects of varying θ values on performance (multi-group w/o full privacy)  

 

θ 0.51 0.6 0.7 0.85 1 

RA (Push) 3.669 3.099 1.620 4.649 5.071 

AA (Push) 4.547 16.899 29.843 50.346 63.243 

BA 10.575 12.617 16.197 35.355 47.385 

SA 9.616 10.000 9.241 14.698 19.145 

RA (Nuke) 2.261 2.783 3.820 4.068 3.067 

AA (Nuke) -0.967 33.468 41.024 43.996 45.673 

RB  -5.391 6.651 11.230 17.175 18.674 

L/H  23.128 22.679 23.224 21.124 18.288 

 

Table 5.29. Effects of varying θ values on performance (multi-group with full privacy) 

 

θ 0.51 0.6 0.7 0.85 1 

RA (Push) 4.534 4.621 2.329 5.684 5.983 

AA (Push) 5.232 19.122 32.002 52.426 63.773 

BA 10.940 12.507 17.275 35.737 47.088 

SA 10.914 10.621 9.525 15.222 19.179 

RA (Nuke) 0.187 0.613 1.309 2.059 1.016 

AA (Nuke) -2.492 31.722 40.274 44.110 45.555 

RB  -6.850 5.135 9.404 15.786 17.243 

L/H  20.151 20.984 21.627 20.098 15.866 

 

Tables 5.30, 5.31, and 5.32 show effects of varying M values on 

performances of the attack models generated by the schemes in Sections 4.1, 4.2, 

and 4.3, respectively. When M is 1, the attack models generated utilizing the 

method in Section 4.2, perform as successful as their undisguised versions and the 

ratio shift values of their full privacy provided forms are so similar to their other 

versions due to the filled items. As it is obvious in the tables, incremental M 

values decrease ratio shift values of most of the attack profiles for three schemes 

since it increases privacy. 
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Table 5.30. Effects of varying M values on performance (no masking) 

 

M 1 2 3 5 

RA (Push) 4.942 4.418 1.737 3.313 

AA (Push) 57.902 55.688 54.721 52.303 

BA 43.902 45.313 41.065 40.986 

SA 17.442 16.379 11.945 12.258 

RA (Nuke) 5.525 2.505 3.037 2.293 

AA (Nuke) 47.179 40.405 43.650 39.854 

RB  21.196 14.246 15.724 15.432 

L/H  21.253 15.790 18.187 15.251 

 

Table 5.31. Effects of varying M values on performance (multi-group w/o full privacy) 

 

M 1 2 3 5 

RA (Push) 4.942 5.020 1.620 2.914 

AA (Push) 57.902 37.236 29.843 24.134 

BA 43.902 30.295 16.197 9.266 

SA 17.442 14.115 9.241 9.200 

RA (Nuke) 5.525 2.204 3.820 2.505 

AA (Nuke) 47.179 38.384 41.024 36.195 

RB  21.196 11.370 11.230 7.402 

L/H  21.253 19.667 23.224 21.527 

 

Table 5.32. Effects of varying M values on performance (multi-group with full privacy) 

 

M 1 2 3 5 

RA (Push) 5.871 5.572 2.329 4.386 

AA (Push) 58.199 40.021 32.002 25.527 

BA 43.548 31.811 17.275 11.082 

SA 17.389 14.066 9.525 9.491 

RA (Nuke) 3.283 0.708 1.309 0.045 

AA (Nuke) 46.848 37.917 40.274 35.052 

RB  19.915 10.303 9.404 7.3871 

L/H  19.461 18.916 21.627 18.725 
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Effects of varying f values on performances of the attack models generated 

by the schemes in Sections 4.1, 4.2, and 4.3, are represented in Tables 5.33, 5.34, 

and 5.35, respectively. When f is varied, the ratio shift values of attack models 

change depending on θ, M, and the votes given to the randomly filled items. For 

average, love/hate, and segment attack models generated as in Sections 4.1 and 

4.2, the ratio shift values are supposed to decrease with incresing f values when θ 

is large enough and M is small enough. For three shilling attack generation 

schemes, filling unrated items of random, bandwagon, and reverse bandwagon 

attack models equals to increasing filler size values of them. Hence, as it is 

mentioned before, the ratio shift values of mentioned attack models may increase 

or decrease with incremental filler size values depending on the votes given to the 

filler items. Since MLP is sparse, the number of filled items is low even if f is 100. 

If the data set is dense or filler size is much more than 15, the value of f will be 

more effective on the successes of the average, segment, and love/hate attack 

models. Varying f values do not have a distinct impact on performances of the 

attack models for three schemes since the other factors such as M, θ, votes of the 

filler items, and sparsity of the data set play a role on influence of f value. 

 

Table 5.33. Effects of varying f values on performance (no masking) 

 

f (%) 100 50 25 10 

RA (Push) 3.118 1.737 1.646 -0.897 

AA (Push) 56.337 54.721 55.296 51.393 

BA 44.008 41.065 41.12 37.932 

SA 13.285 11.945 11.913 8.484 

RA (Nuke) 4.780 5.351 6.106 6.717 

AA (Nuke) 45.279 46.651 47.72 48.566 

RB  16.278 18.484 19.502 20.259 

L/H  19.014 20.121 21.544 22.422 
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Table 5.34. Effects of varying f values on performance (multi-group w/o full privacy) 

 

f (%) 100 50 25 10 

RA (Push) 2.768 1.620 1.700 -1.071 

AA (Push) 27.841 29.843 30.197 26.534 

BA 16.689 16.197 16.178 13.552 

SA 10.551 9.241 9.171 5.858 

RA (Nuke) 5.128 5.230 6.250 6.638 

AA (Nuke) 42.517 44.104 45.145 45.90 

RB  11.830 12.624 14.284 15.550 

L/H  24.507 25.843 26.753 27.849 

 

Table 5.35. Effects of varying f values on performance (multi-group with full privacy) 

 

f (%) 100 50 25 10 

RA (Push) 4.462 2.329 1.926 -0.821 

AA (Push) 35.321 32.002 31.372 26.643 

BA 21.130 17.275 16.594 13.739 

SA 11.186 9.525 9.319 5.661 

RA (Nuke) 1.735 3.790 4.657 6.028 

AA (Nuke) 41.760 43.572 45.090 46.025 

RB  8.791 11.34 13.351 14.700 

L/H  21.527 25.124 26.494 27.743 

 

Briefly, even if NBC-based CF masked with multi-group RRT scheme with 

providing full privacy, manipulating produced predictions effectively is still 

possible. When attack models are generated as in Section 4.1 and inserted to the 

system’s database, they have acceptable effects on produced predictions with θ = 

0.7, M = 3, and f = 50 values. Even though the average attack models require high 

knowledge about the system, it is still the most successful attack model among the 

other attack models generated as in Section 4.1. Even if the attack models are 

generated as in Section 4.2, they still successfully manipulate the produced 

predictions with obstructed detectabilities. Also, differences between undisguised 

and disguised forms of some attack profiles like average and bandwagon attack 

profiles seen in the tables are explained in Section 5.2.3. When the required 
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conditions discussed in Section 5.2.3 are provided, the average attack model 

becomes the most effective model for the second scheme. Moreover, to aggravate 

detectability of the proposed attack profiles, they can be disguised as genuine 

users. This time, the produced predictions are still manipulated in favor of the 

attackers while detactabilities of the attack profiles get difficult. For three 

schemes, average, bandwagon, reverse bandwagon, and love/hate attacks are 

successful. When approppriate conditions are provided, the full privacy provided 

forms of them can be preferred for manipulating predictions in order to obstruct 

detectability. 
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6. DETECTING SHILLING ATTACK PROFILES ON BINARY MASKED 

DATA 

 

Effectiveness of a recommender system depends mostly on quality of data, 

so dealing with shilling attacks is extremely important. As it is shown in Section 

5, even if data is binary and masked, manipulating produced predictions is still 

possible. Detecting bogus profiles is one of the influential ways of coping with 

profile injection attacks. In the literature, there are many detection schemes based 

on statistical methods, classification, clustering, variable selection, and other 

techniques (Gunes et al., 2014). Since the ratings can be only 1 or 0, classification 

is preferred rather than other methods in terms of performance and accuracy for 

this work. In Section 5, the certain generation strategy of shilling attack models 

are considered while regenerating them for binary masked data. For detecting 

modified attack profiles on binary masked data, some generic attributes derived 

from profiles by utilizing the work proposed by Chirita et al. (2005). Some 

derived attributes are adapted for binary masked data. The derived attributes used 

in the proposed shilling attack detection scheme for binary masked data are 

explained as follows: 

 

1. Dissimilarity in user’s profile (dup): This metric is generated utilizing the 

metric called as standard deviation in user’s profile (Chirita et al., 2005). 

This metric represents how a profile differs its mode. For love/hate and 

segment attack models, this metric is supposed to be so small because of 

their filler item filling strategy. Especially for random, bandwagon, and 

reverse bandwagon attack models, the metric closes to 0.5. The metric is 

calculated as follows for binary data: 

 

    dup =
# 𝑜𝑓 𝑟𝑎𝑡𝑒𝑑 𝑖𝑡𝑒𝑚𝑠 𝑜𝑓 𝑎 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒

# 𝑜𝑓 𝑟𝑎𝑡𝑒𝑑 𝑖𝑡𝑒𝑚𝑠 𝑜𝑓 𝑎 𝑝𝑟𝑜𝑓𝑖𝑙𝑒
           (6.1) 

 

2. Agreement with other users (aou): The metric is called as degree of 

agreement with other users (Chirita et al., 2005). It is adapted for binary 

masked data. It represents how much a profile agrees with the other profiles. 
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Whatever value of attack size is, this metric reaches its maximum value 1 

for average attack model. The metric has also high values for segment and 

love/hate attack models except small values of attack size. For random, 

bandwagon, and reverse bandwagon attack models, this metric will be 

around 0.5. The metric is calculated as follows for binary data: 

 

                      aou𝑎 =
∑ 𝑐𝑜𝑢𝑛𝑡𝑖=𝑘

𝑖=1

𝑘
 ,            𝑐𝑜𝑢𝑛𝑡 = {

1,   𝑖𝑓 𝑎𝑖 = 𝑚𝑖

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                     (6.2) 

 

In Equation 6.2, k represents the number of items rated by user a and mi is 

the mode of item i. 

 

3. Similarity with top-N Neighbors (avgSim): This metric is adapted for 

binary data. Since attack profiles are generated with a certain strategy, they 

look like each other so much. Thus, when attack size is large enough, the 

attack profiles have high similarities with their top N neighbors. N is chosen 

as 25 for this thesis. In order to calculate similarities between user profiles, 

Pearson’s correlation is utilized. The metric is calculated as follows (Chirita 

et al., 2005): 

                     𝑎𝑣𝑔𝑆𝑖𝑚𝑎 =
∑ 𝑊𝑎𝑖

𝑖=𝑁
𝑖=1

𝑁
                                           (6.3) 

 

4. Disagreement with possible target items (dti): Shilling attackers try to 

increase popularity of an item with lower popularity or vice versa. This 

metric is derived for average, love/hate, and segment attack models. 

Possible target items are chosen as the ones with lower popularities for 

average and segment attack models. The items with higher popularities are 

chosen as target items for love/hate attack model. In terms of average attack 

model, since all filler items are filled with their own mode values, it has low 

dti value. For segment attack model, all filler items are filled with 0, so it 

also has lower dti value. For love/hate attack model, since 1 is assigned to 

all filler items, it has lower dti value. For other attack models, this metric is 

not a distinct property in that filler items are filled randomly. The metric is 
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calculated as follows, where k represents the number of items rated by user 

a among possible target items and 𝒎𝒊 is the mode of item i: 

 

                      dti𝑎 =
∑ 𝑐𝑜𝑢𝑛𝑡𝑖=𝑘

𝑖=1

𝑘
 ,            𝑐𝑜𝑢𝑛𝑡 = {

0,   𝑖𝑓 𝑎𝑖 = 𝑚𝑖

𝑖,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                     (6.4) 

 

In order to detect shilling attack profiles, above mentioned metrics are 

derived from binary masked data. Binary data is disguised utilizing two 

algorithms as one- and multi-group full privacy provided RRT schemes. θ and f 

are set to 0.7 and 50, respectively for both schemes. M is set to 3 for multi-group 

RRT scheme. Expected values of derived attributes for attack models on binary 

data are shown in Table 6.1. Calculated values of the attributes differ from their 

original values depending on M, θ, f, and chosen shilling attack generation 

scheme. How to calculate the metrics on binary data masked with one- and multi-

group RRT schemes are discussed in Sections 6.1 and 6.2, respectively.  

As it is obvious in Section 5, the best results are gained when attack profiles 

are undisguised forms as in Section 4.1 for any of the mentioned masking 

algorithms. To obstruct detectability of them, they can be also generated as in 

Section 4.2 and 4.3 with admissible effectiveness. In order to classify profiles as 

bogus, the values of metrics for attack profiles will be different for each shilling 

attack generation scheme. The values of metrics for each shilling attack model 

deviate depending on θ, M, and f values.  

 

Table 6.1. Expected values of derived attributes for each attack model on binary data 

 

 dup aou avgSim dti 

RA (Push) high average values average values - 

AA (Push) high high  high low 

BA high average values average values - 

SA low high high low 

RB  high average values average values - 

L/H  low high  high low 
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6.1. Calculation of Metrics with One-group RRT Scheme 

 

In one-group RRT scheme with full privacy, all ratings of items are reversed 

together or all of them remain the same depending on chosen random number and 

θ. The details are discussed in Section 3.2. Some steps are explained as follows 

aiming to calculate values of the metrics from masked data. 

 Dissimilarity in user’s profile: Due to the one-group RRT scheme, even if 

a profile is disguised, its dup value does not change. Hence, Eq. (6.1) can be 

used in order to calculate dup value of a profile on binary masked data. 

 Agreement with other users: Modes of items are needed for calculating 

aou for a profile. Modes of items are calculated described in Section 4.1 on 

binary masked data. Then,  aou value is calculated by using the gained  aou 

value on the user’s rating vector with probability θ and the gained aou value 

on the user’s reversed rating profile with probability 1-θ.  

 

          𝑎𝑜𝑢𝑎 =  𝑎𝑜𝑢𝑅𝑎
∗ θ + 𝑎𝑜𝑢𝑅𝑎

′ ∗ (1 − θ)                                  (6.5) 

 

 Similarity with top-N Neighbors: In order to calculate similarity between 

two masked user profiles 𝑅𝑎 and 𝑅𝑏, partial similarity is calculated between 

𝑅𝑎 and 𝑅𝑏 with probability θ2 primarily. Then, partial similarities are 

calculated between 𝑅𝑎 and 𝑅𝑏
′  , 𝑅𝑎

′  and 𝑅𝑏, and 𝑅𝑎
′  and 𝑅𝑏

′  with probabilities 

θ*(1-θ), θ*(1-θ), and (1-θ)2, respectively. All partial similarities are then 

added for gaining similarity between two masked user profiles. Used 

similarity function also plays a role on the difference between gained 

similarity and original similarity between two users. Thus, when Pearson’s 

correlation is used and θ is set to 0.7, the gained similarity is 0.16 times of 

its original value.   

 Disagreement with possible target items: The procedure as in calculating 

aou for a profile is used for calculating dti value of a user profile. 
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The calculated values of the metrics may differ from their expected values 

shown in Table 6.1 depending on θ and f values. Thus, the intervals which derived 

attributes’ values may occupy should be determined so tenderly. 

 

6.2. Calculation of Metrics with Multi-group RRT Scheme 

 

In multi-group RRT scheme, items are partitioned into M groups for a user 

profile. For each group, the user selects a random number and sends true or 

reversed ratings depending on the selected random number and pre-determined 

value of θ. For multi-group scheme, the mentioned metrics of a profile are 

calculated similarly as in Section 6.1. This time, 2𝑀 combinations of 

representations of the profile and probabilities are utilized instead of two 

representations of the user profile in order to calculate values of metrics. 

The calculated values of the metrics will differ from their expected values 

much more than the values calculated with one-group RRT scheme. Thus, while 

specifying the intervals in which derived attribute values may occupy, for each 

attack model, considering M and θ values sensitively is extremely important.   

 

6.3. Experimental Evaluation 

 

Several experiments are performed in order to show how the proposed 

detection scheme performs on binary databases masked with one- and multi-group 

full privacy provided RRT schemes in terms of effectiveness. Used data set and 

evaluation criteria are described in Section 6.3.1 and experimental results are 

shown in 6.3.2. 

 

6.3.1. Data set and evaluation criteria 

 

A set of different trials are performed using MLP data set aiming to measure 

effectiveness of the proposed detection scheme. MLP is a publicly available data 

set including numeric and discrete ratings. In order to perform experiments, the 
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ratings are translated into binary form. If the ratings is bigger than or equal to 3, 

then it is transformed into 1. Otherwise, it is transformed into 0.  

Precision, recall, and F1 measure are chosen as evaluation metrics for 

measuring how accurately the proposed detection scheme performs. Assuming 

that the number of attack profiles classified correctly as fake is A, the number of 

genuine profiles classified as fake is B, and the number of attack profiles are not 

detected is C, then precision, recall, and F1 measure are calculated as follows: 

 

           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐴

(𝐴+𝐵)
                                                 (6.6) 

    𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝐴

(𝐴+𝐶)
                                                     (6.7) 

      𝐹1 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                             (6.8) 

 

6.3.2. Experimental results 

 

In order to show effectiveness of the proposed detection scheme on binary 

masked data, the data are disguised with both one- and multi-group full privacy 

provided RRT schemes. The masking parameters are chosen as their optimum 

values, which are experimentally shown in the work (Kaleli and Polat, 2007). 

Thus,  θ is set to 0.7 for both RRT schemes and M is set to 3 for multi-group RRT 

scheme. Also the f parameter is chosen as 50 for both schemes. Then, the attack 

profiles are disguised as genuine users in order to obstruct detactability of them 

while manipulating produced predictions as successfully as their undisguised 

forms. Later, the generated attack profiles are injected to the database with 

varying filler size and attack size values for measuring effectiveness of the 

proposed detection scheme. All experiments are performed for 50 nuke and 50 

push items. Lastly, in order to show effectiveness of the proposed scheme on 

attack profiles generated as in Section 4.1 and 4.2, some experiments are 

performed.  
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6.3.2.1. One-group RRT scheme with full privacy 

 

Some experiments are performed in order to specify how varying filler size 

and attack size values affect the performance of the proposed scheme on disguised 

attack profiles. Attack size is set to 15 while filler size values are varied from 3 to 

15. Also, filler size is set to 15, while varying attack size from 3 to 15. During the 

experiments the attack profiles are generated as in Section 4.3 using one-group 

RRT scheme as genuine users.  

Fig. 6.1 shows that the proposed detection scheme detects attack profiles 

more successfully with increasing attack size values with recpect to precision. The 

best results are gained with average and love/hate attack models due to their 

generation strategies. Increasing filler size values provide all of the attack models 

to show more specific properties like high similarity. Thus, they become more 

detactable with incremental filler size values. 

 

 

 

Figure 6.1. Effects of varying attack sizes on performance (precision) 
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Fig. 6.2 shows that varying  attack size values improve performance of the 

scheme in terms of recall. Due to the generation strategies of random, bandwagon, 

and average attack models, most of their profiles are detected as independently 

from attack size values. The impact of varying attack size values is more 

significant on the performance of the scheme for remaining attack models. Since 

with increasing attack size values make the profiles of segment or love/hate 

profiles look like each other so much, the recall values are less for them when 

attack size is 3.   

 

 

 

Figure 6.2. Effects of varying attack sizes on performance (recall) 

 

Fig. 6.3 represents F1 measure values with varying attack size values to 

present an overall picture. As it is seen from Fig. 6.3, when random, bandwagon, 

and reverse bandwagon attack profiles are disguised as in Section 4.3, they do not 

differ so much from their undisguised forms as in Section 4.1 in terms of derived 

attributes. Also, f makes the filler size values of mentioned attack models to 

increase. Thus, they are more detectable with increasing attack size values. 

However, since derived attribute values are not so specific, they have smaller 

precision values even though most of their profiles are detected. For segment and 

love/hate attack models, f is more significant on the derived attribute values. All 
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the calculations for derived attributes change differently with f value. Depending 

on the amounts of differences between attributes’ gained values and their expected 

values, the proposed scheme can detect their profiles successfully with higher 

attack size values. Due to the generation strategy of average attack model, the 

proposed scheme is more effective on average attack profiles with M = 1 and 

optimum values of θ and f parameters. 

 

 

 

Figure 6.3. Effects of varying attack sizes on performance (F1 measure) 

 

 Fig. 6.4 shows how varying filler size affects the performance of the 

proposed scheme in terms of precision. As it is seen from Fig. 6.4, the best results 

are gained with  average attack model with respect to precision depending on its 

generation strategy. Since attack size is large enough during this experiment, the 

precision values for love/hate and segment attack profiles are nearly the same with 

smaller varying filler size values. If the filler size is so larger, the effect of f 

parameter increases; thus, precision values will decrease. Since f parameter make 

filler size values of random, bandwagon, and reverse bandwagon attack models to 

increase, the proposed algorithm detects them more successfully with increasing 

filler size values in terms of precision. 
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Figure 6.4. Effects of varying filler sizes on performance (precision) 

 

Fig. 6.5 represents impacts of varying filler sizes on performance of the 

proposed scheme in terms of recall. Increasing filler sizes enhance performance of 

the scheme for random, bandwagon, and reverse bandwagon attack models. Since 

filler size is an influential factor of average attack model, the proposed scheme 

detects average attack profiles more successfully with incremental filler size 

values. Since f parameter is so effective on segment and love/hate attack models, 

the performance of the proposed scheme decreases when filler size is so higher. 

For overall picture, F1 measure values are calculated and represented in the 

Fig. 6.6 for showing effects of varying filler size values on performance of the 

scheme. Since disguised forms of random, bandwagon, and reverse bandwagon 

attack models may not differ so much from their undisguised forms in terms of 

structure, the algorithm detects their profiles more successfully with increasing 

filler size values. Even if the average attack profiles are disguised, they become 

more detactable by the proposed scheme with increasing filler size values. Since 

segment and love/hate attack models’ values of derived attributes differ from their 

expected values depending on masking parameter f, the algorithm becomes less 

effective on their profiles when filler size is so large. 
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Figure 6.5. Effects of varying filler sizes on performance (recall) 

 

 

 

Figure 6.6. Effects of varying filler sizes on performance (F1 measure) 

 

In order to show how the proposed scheme performs if the attack profiles 

are generated as in Section 4.1 and Section 4.2, different trials are performed with 

setting filler size and attack size values at 15. According to the results shown in 

Table 6.2, if the attack profiles are generated without disguising as in Section 4.1, 
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their derived attributes’ values are so similar to the values supposed to be. 

However, since the algorithm is designed for detecting disguised attack profiles, it 

considers masking parameters. Thus, the algorithm detects all of the attack 

profiles more successfully in terms of recall while having less precision values 

compared to recall values. As it is seen, the algoritm detects all of the attack 

profiles successfully.  

If the attack profiles are generated as in Section 4.2, the values of their 

derived attributes are affected with masking parameters except f. With compared 

to their full privacy provided versions, segment, love/hate, and average attack 

models are detected more successfully. For random, bandwagon, and 

reversebandwagon attack models have similar F1 measure values for three 

generation schemes. 

 

Table 6.2. Effects of attack generation methods on the detection algorithm’s performance 

 

Generation Scheme Attack Model Precision Recall F1 Measure 

Attack profiles are generated by the 

scheme discussed in Section 4.1 

RA 0.534 0.874 0.663 

AA 0.975 0.829 0.896 

BA 0.493 0.795 0.608 

SA 0.614 1.000 0.761 

RB 0.509 0.802 0.617 

L/H 0.848 1.000 0.918 

Attack profiles are generated by the 

scheme discussed in Section 4.2 

RA 0.534 0.875 0.663 

AA 0.975 0.825 0.893 

BA 0.487 0.774 0.598 

SA 0.552 0.799 0.652 

RB 0.503 0.800 0.617 

L/H 0.801 0.712 0.754 

Attack profiles are generated by the 

scheme discussed in Section 4.3 

RA 0.537 0.913 0.676 

AA 0.975 0.821 0.89 

BA 0.467 0.719 0.566 

SA 0.556 0.821 0.663 

RB 0.450 0.804 0.616 

L/H 0.750 0.558 0.639 
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6.3.2.2. Multi-group RRT scheme with full privacy 

 

To show how the proposed detection scheme works with varying filler and 

attack sizes on binary masked data, some trials are performed, where data is 

disguised with multi-group scheme with full privacy. The attack profiles are 

disguised as in Section 4.3. Attack size is set to 15 while filler size values are 

varied from 3 to 15. Also, filler size is set to 15, while varying attack size from 3 

to 15. During the experiments θ, M, and f are set to 0.7, 3, and 50, respectively. 

Fig. 6.7 represents impacts of varying attack sizes on performance of the 

detection scheme in terms of recall. As it is seen from Fig. 6.7, the best results are 

gained for random, bandwagon, and reverse bandwagon attack models since their 

derived attribute values are similar to their values supposed to be. Multi-group 

RRT scheme significantly affects derived attribute values of average, love/hate, 

and segment attack profiles. Thus, recall values of such models are lower. The 

algorithm works worse with smaller attack sizes for all attack models. Increasing 

attack size values mostly improve performance o the scheme for all attack models. 

Since attack profiles are disguised with multi group RRT scheme, if attack size is 

so large, the derived attribute values of attack profiles may differ from their 

expected values especially for love/hate, average, and segment attack models. 

 

 

 

Figure 6.7. Effects of varying attack sizes on performance (recall) 
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Effects of varying attack size values on performance of the detection 

scheme in terms of precision is shown in Fig. 6.8. Due to the masking scheme and 

the generation strategies of random, bandwagon, and reverse bandwagon attack 

models, their precision values are higher than the other attack models. Because 

they have similar derived attribute values with the ones supposed to be. But, the 

genuine users’ derived attribute values may change much more depending on M. 

As it is seen in Fig. 6.8, increasing attack size values enhance performance of the 

scheme in terms of precision for all attack models.  

 

 

 

Figure 6.8. Effects of varying attack sizes on performance (precision) 

 

For overall picture, F1 values are shown in Fig. 6.9 to specify how the 

detection algorithm performs with varying attack size values. As it is seen in Fig. 

6.9, increasing attack size vaues enhance performance of the algorithm for all 

attack models. Since data and attack profiles are disguised with multi-group RRT 

scheme, the least affected attack models are random, bandwagon, and reverse 

bandwagon attack models depending on their generation strategies. Also, filling 

unrated items makes filler size values of the mentioned attack profiles to 

increment, they display their derived attribute values more specifically. Due to the 
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number of groups and f value, derived attribute values of love/hate, segment, and 

average attack profiles display much more differences from their expected values. 

Hence, in order to provide a balance between precision and recall values, the 

values which provide to classify profiles as fake using derived attribute values 

should be chosen carefully by considering M, θ, and f values. 

 

 

 

Figure 6.9. Effects of varying attack sizes on performance (F1 measure) 

 

In Fig. 6.10, impressions of varying filler size values on performance of the 

proposed detection algorithm in terms of recall are represented. As it is shown in 

the figure, increasing filler size values enhance performance of the proposed 

scheme with respect to recall. The proposed detection scheme detects random, 

bandwagon, and reverse bandwagon attack profiles more successfully depending 

on their generation strategy and masking parameters. As it is seen in the figure, 

recall values for bandwagon and reverse bandwagon attack models decrease after 

filler size is 10. The reason of this situation is the chosen values which provide to 

classify profiles of mentioned attack models correctly utilizing derived attribute 

values. Since undisguised forms of average, segment, and love/hate attack profiles 

have so significant structures, their disguised forms differ so much from their 
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original structures. Thus, chosing the intervals in which derived attributes values 

may occupy play an important role on detection ability of the proposed detection 

scheme. While specifying those values, the number of filled items, which increase 

with incremental filler size values, is considered more carefully. Thus, specific 

increases do not happen for segment and average attack models in terms of recall. 

Fig. 6.11 shows how varying filler size values affect performance of the 

proposed detection scheme in terms of precision. As it is seen in the figure, 

increasing filler size values mostly enhance performance of the scheme for all of 

the attack models. The best results are gained with random and bandwagon attack 

models with higher filler size values depending on their generation strategies.   

  

 

 

Figure 6.10. Effects of varying filler sizes on performance (recall) 
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Figure 6.11. Effects of varying filler sizes on performance (precision) 

 

In order to give an overall picture, F1 measure values are calculated and 

represented in Fig. 6.12. As it is obvious in the figure, incremental filler size 

values mostly improve performance of the schemes for all attack models. With 

higher filler size values, the best results are gained with random, bandwagon, and 

reverse bandwagon attack models because of their generation strategies. Even 

though they are disguised as in Section 4.3, their derived attributes’ values are 

similar to their expected values. Also, for mentioned attack models, increasing 

filler size values mean incrementing the number of filled items for a profile. The 

values of the profiles’ derived attribute values are supposed to be more similar to 

their expected values. However, this mentioned situation may be hindered 

depending on M value. Thus, the profile may not be detected by the proposed 

scheme. The undisguised forms of average, segment, and love/hate attack models 

have specific generation structures. However, the disguising parameters especially 

M and θ values obstruct so much to detect their profiles when they are disguised. 

Because their specific generation structures change. Since the ranges of derived 

attributes’ values is determined considering f, θ, and M values more appropriately, 

their profiles are detected by the scheme more successfully than the others when 

filler size is 3. 
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Figure 6.12. Effects of varying filler sizes on the performance (F1 measure) 

 

In order to show how the proposed scheme performs when the attack 

profiles are generated as in Section 4.1 and Section 4.2, some experiments are 

performed and represented in Table 6.2. During the experiments filler size, attack 

size, θ, M, and f values are set to 15, 15, 0.7, 3 and 50, respectively. As it is 

obvious in Table 6.3, recall values are high for all of the attack models when they 

are generated as in Section 4.1. Because their derived attribute values’ are so 

similar to the attributes’ expected values. But, precision values are lower 

compared to recall values since the detection algorithm is designed by considering 

masking parameters. As it is seen, the algoritm detects all of the attack profiles 

successfully. If attack profiles are generated as in Section 4.2, recall values of 

segment, love/hate, and average attack models become lower depending on 

masking parameters. Because the mentioned attack profiles’ derived attribute 

values differ from their expected values much more. Precision values of six attack 

models are similar to the precision values of the attack models generated with the 

algorithm discussed in Section 4.1 or 4.3. The intervals which the derived 

attribute values of the attack profiles may occupy are determined by considering 

θ, M, and f values for the proposed detection scheme. Thus, the specified interval 



 64   

 

values are an important factor on precision and recall values for all of the attack 

models generated by any of the discussed generation schemes. As it is seen from 

the table, the proposed detection scheme detects successfully all of the attack 

models. 

 

Table 6.3. Effects of proposed shilling attack generation schemes on performance of the proposed 

detection algorithm 

 

Generation Sceheme Attack Model Precision Recall F1 Measure 

Attack profiles are generated by 

the scheme discussed in Section 4.1 

RA 0.426 0.913 0.581 

AA 0.418 1.000 0.590 

BA 0.419 0.934 0.578 

SA 0.362 0.715 0.480 

RB 0.427 0.948 0.589 

L/H 0.399 1.000 0.571 

Attack profiles are generated by 

the scheme discussed in Section 4.2 

RA 0.427 0.919 0.583 

AA 0.319 0.645 0.426 

BA 0.418 0.929 0.577 

SA 0.397 0.844 0.540 

RB 0.43 0.954 0.593 

L/H 0.205 0.367 0.263 

Attack profiles are generated by 

the scheme discussed in Section 4.3 

RA 0.432 0.954 0.597 

AA 0.327 0.669 0.438 

BA 0.371 0.776 0.500 

SA 0.358 0.734 0.478 

RB 0.410 0.900 0.563 

L/H 0.329 0.713 0.449 
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7. CONCLUSIONS AND FUTURE WORKS 

 

Privacy-preserving collaborative filtering schemes produce accurate 

recommendations while protecting privacy. Accuracy of the produced predictions 

depends on quality of the data. In this dissertation, six well-known shilling attack 

models are modified in order to manipulate predictions on binary data masked 

with randomized response techniques. Also, a detection scheme is proposed in 

order to detect attack profiles on binary disguised data.  

Three generation schemes are proposed aiming to manipulate predictions on 

binary data disguised with randomized response techniques. The best results are 

gained when attack profiles are generated without disguising. Also, either 

generating attack profiles by disguising or generating them by providing full 

privacy is also effective on produced predictions. For one-group randomized 

response technique, performances for three generation schemes are very similar. 

When data is disguised with multi-group randomized response technique, for 

random, segment, and love/hate attack models, performances of generation 

schemes are similar to each other. However, for attack models requiring 

calculations of items’ modes, the attack profiles manipulate predictions worse 

when they are generated by disguising or providing full privacy. However, the 

mentioned attack models can perform as successfully as their undisguised 

versions by chosing target items carefully. Items’ properties such as number of 

given votes and masking parameters are extremely important factors on the 

difference between ratio shift values of unmasked and masked forms of attack 

profiles. When required conditions are provided, masked forms of attack profiles 

manipulate predictions as successfully as their unmasked versions with obstructed 

detectabilities.  

Three generation schemes are applied to naïve Bayesian classifier-based 

collaborative filtering algorithm masked with randomized response techniques in 

order to measure robustness of the scheme under shilling attacks. According to the 

results, naïve Bayesian classifier-based privacy-preserving collaborative filtering 

scheme is vulnerable to shilling attacks. For three generation schemes, the best 

results are gained with average attack model. The proposed generation schemes 
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are also effective on produced predictions for bandwagon, segment, reverse 

bandwagon, and love/hate attacks. Morever, the performances of the generation 

schemes enhance usually with θ values, which are close to 1 or 0, increasing filler 

size and attack size values, and decreasing M and f values. In order to provide 

effectiveness on produced predictions and an obstructed detectability, disguising 

attack profiles with full privacy gives influential results. However, if only 

important skill is manipulability for attackers without considering detactability, 

generating attack profiles without disguising should be a reasonable choice.  

Classification is a tool which can be used for detecting attack profiles. Since 

attack profiles are generated by a certain strategy, classification is used for 

detecting bogus profiles on binary masked data by considering masking 

parameters. For this purpose, four attributes are adapted and derived as 

dissimilarity in user’s profile,  aggreement with other users, similarity with top-N 

neighbors, and disaggrement with possible target items. The mentioned attributes 

play an important role on classifying masked bogus profiles correctly. The gained 

values of the attributes from binary masked data will differ from their expected 

values depending on θ, M, and f values. Thus, the intervals in which derived 

attribute values may occupy, should specify so sensitively for balancing precision 

and recall values. According to the results, when M is 1, the algorithm detects 

attack profiles more successfully comparing with M = 3 value. When binary data 

is disguised with one-group scheme, the best results are gained with average, 

segment, and love/hate attack models. For multi-group scheme, the best results are 

gained with random, bandwagon, and reverse bandwagon attack models since 

average, segment, and love/hate attack models are affected much more by 

masking parameters because of their generation strategies. Also, the performance 

of the proposed detection scheme mostly enhances with increasing filler and 

attack sizes for disguising schemes. Morever, if the intervals in which derived 

attribute values may occupy, are specified differently, distinct results may be 

gained. 

Finally, enhancing performance of the proposed detection scheme and 

applying proposed shilling attack generation schemes to other privacy-preserving 

collaborative filtering algorithms can be performed as future works. 
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