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kabul edilmiştir.
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ABSTRACT
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Edge detection is a fundamental first step in many computer vision and
image processing applications. Since traditional edge detection algorithms
produce binary edge maps as output (which usually consist of multi-pixel
wide, disconnected -especially in noisy images- edge fragments), an additional
edge linking step is usually employed to clean up the resulting edge map
and combine disjoint edge fragments. An edge linker takes a binary edge
map as input and is expected to generate high-quality (one-pixel wide and
contiguous) edge segments (chain of pixels), which are then used in such
applications as line, arc and shape detection, image segmentation, tracking
and registration, among many others.

In this thesis, two edge linking algorithms are proposed: The first al-
gorithm makes use of the Smart Routing (SR) step of the recently proposed
edge segment detection algorithm Edge Drawing (ED), to convert Canny’s
binary edge maps to edge segments; thus the name CannySR. The second
algorithm takes in a binary edge map generated by any arbitrary traditional
edge detection algorithm and converts it to a set of edge segments; filling
in one pixel gaps in the edge map, cleaning up noisy edge pixel groups and
thinning multi-pixel wide edge pixel formations in the process. The algo-
rithm walks over the edge map based on the predictions generated from its
past movements; thus the name Predictive Edge Linking (PEL).

We evaluate the performance of CannySR and PEL both qualitatively
using visual experiments and quantitatively within the precision-recall frame-
work of the Berkeley Segmentation Benchmark (BSDS 300), and compare its
performance with ED, which is a natural edge segment detection algorithm.
Both visual experiments and quantitative evaluation results show that both
CannySR and PEL greatly improves the modal quality of binary edge maps
produced by traditional edge detectors, and take a very small amount of
time to execute making them suitable for real-time image processing and
computer vision applications.

Keywords: Edge Detection, Edge Linking, Edge Segment Detection, Canny,
Edge Drawing, Smart Routing.
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ÖZET

Yüksek Lisans Tezi

KENAR BAĞLAMA ÜZERİNE BİR ÇALIŞMA

Edward Chome

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Cüneyt Akınlar
2015, 53 sayfa

Kenar tespiti birçok bilgisayarlı görü ve imge işleme uygulamalarında
temel ilk adımdır. Geleneksel kenar tespit algoritmalarının ürettikleri ik-
ili kenar haritaları çoğunlukla birden fazla piksel genişliğinde ve -özellikle
gürültülü resimlerde- parçalı kenar fragmanlarından oluştuğu için, üretilen
ikili kenar haritasındaki boşlukların doldurulması ve gürültülerin temizlen-
mesi için kenar bağlama işlemi kullanılmaktadır. Bir kenar bağlama algorit-
ması ikili kenar haritasını işleyip yüksek kalitede (tek piksel genişliğinde ve
bitişik) kenar bölütleri üretmelidir. Bu bölütler daha sonra çizgi, ark ve şekil
tespiti, imge bölütleme, gibi birçok uygulamada kullanılabilirler.

Bu tezde iki adet kenar bağlama algoritması önerilmiştir. İlk öner-
ilen algoritma Canny kenar tespit algoritması tarafından üretilen ikili kenar
haritalarını, yakın zamanda önerilen Kenar Çizme algoritmasının Akıllı Ro-
talama adımını kullanarak çalışan, bu sebeple CannySR olarak adlandırılan
bir algoritmadır. Ikinci önerilen algoritma ise girdi olarak herhangi bir ke-
nar tespit algoritması tarafından üretilen bir kenar haritası alıp bunu ke-
nar bölütlerine çevirir. Bu işlem esnasında kenar haritası içindeki bir piksel
büyüklüğündeki boşlukları doldurur, gürültülü kenar piksel gruplarını tem-
izler ve birkaç piksel genişliğindeki kenar piksel oluşumlarını inceltir. Bu
algoritma kenar haritası üzerinde geçmiş hareketlerinden üretilen öngörüler
ile hareket ettiği için Öngörülü Kenar Bağlama (PEL) olarak adlandırılır.

PEL ve CannySR’nin performansı öncelikle görsel deneyler vasıtasıyla
nitel olarak değerlendirilmiştir. Nicel değerlendirme ise Berkeley Bölüt Kıyasl-
ama (BSDS 300)’nın doğruluk-hatırlama çerçevesi içinde gerçekleştirilmiştir.
Önerilen algoritmalar hem Canny ile hem de doğal bir kenar bölüt tespit algo-
ritması olan Kenar Çizme algoritması ile karşılaştırılmıştır. Hem görsel, hem
de nicel değerlendirmeler önerilen CannySR ve PEL kenar bağlama algorit-
malarının geleneksel kenar tespit algoritmaları tarafından üretilen ikili kenar
haritalarının şekilsel kalitelerini büyük ölçüde iyileştirdiğini göstermektedir.
Ayrıca algoritmalar çok kısa zamanda çalışmaktadır, ve bu sebeple gerçek
zamanlı uygulamalar için çok uygun olacakları düşünülmektedir.

Anahtar Kelimeler: Kenar Tespiti, Kenar Bağlama, Kenar Bölütü Tespiti,
Canny, Kenar Çizme, AkıllıYönlendirme.
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1. INTRODUCTION

Edge detection is one of the most important and fundamental steps in many

computer vision and image processing applications. Edges can be roughly

described as image positions where the local intensity changes distinctly along

a particular orientation. The stronger the intensity, the higher the evidence

for an edge at that position [4].

Edges and contours play a dominant role in human vision and other

biological vision systems. Edges are often vital clues toward the analysis and

interpretation of image information, both in biological vision and in computer

image analysis [5]. In fact, edge-like structures and contours seem to be so

important for our human visual system that a few lines in a caricature or

illustration are often sufficient to unambiguously describe an object or a scene

[4].

The edges are not only visually striking but a complete object can be

reconstructed by just a few key edges. Humans have a very good visual

system that makes it possible to automatically detect boundaries within mo-

ments in an image; whereas, a considerable amount of effort is required for

machines to replicate the same [6]. The human vision has a unique way of

detecting boundaries in objects contained in images; however, in some cases

the human visual system is affected by optical illusion.

Mathematically edge detection can be defined as a function that aims

to identify points in a digital image at which the brightness or the intensity

level changes sharply or has discontinuities. Edge detection is a useful, low-

level form of image processing for obtaining a simplified image [7]. It serves

to simplify the analysis of image by drastically reducing the amount of data

to be processed and at the same time preserving useful structural information

about the object boundaries [8].

Edge detection is a process which transforms a grayscale image to bi-

nary image, which indicates either the presents or absence of an edge [9].

More specifically, edge detection can be defined as the process of determin-

ing which pixels are the edge pixels [5]. The result of an edge detection is

usually an edge map which is an image that describes each original pixel’s

edge classification and possible edge attributes such as magnitude and ori-
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entation [5]. A traditional edge detection algorithm takes a grayscale image

as input and produces a binary edge map (BEM) as output, where an edge

pixel (edgel) is marked (e.g., its value in the edge map is 255), and a non-edge

pixel is unmarked (e.g., its value in the edge map is 0).

Due to its importance, edge detection remains to be an active area

of research. It is not a trivial task, the research area has attracted much

attention over the past decades. This is evidenced by a myriad of edge

detection algorithms that have been proposed over the years. Unfortunately

these algorithms depend on a wide range of external factors such as choice

of appropriate filters and thresholds. Furthermore they are only limited to

digital images. The other striking factor is that there is no a single edge

detection algorithm which is applicable in all situations (different types of

images and scenes contained in images). Despite the fact that there are a

wide number of edge detection algorithms proposed in the literature, they

are still far from matching the human eye.

There are a number of problems that can baffle the edge detection pro-

cess in real images. These factors may include noise, crosstalk or interference

between nearby edges and inaccuracies resulting from the use of a discrete

grid [5], which result in missing edges, false detection and errors in edge

location. Henceforth, there is a need for edge linking as there are usually

gaps between the edgels, unattended edgels and noisy notch-like structures,

ragged and multi-pixel wide edgels formations etc. This is the subject of

this thesis. Our goal is to develop an edge linking algorithm that takes in a

low-quality binary edge map produced by a traditional edge detection algo-

rithm, and output a set of edge segments each of which is a chain of pixels.

In the process, the proposed algorithm needs to fill up small gaps between

edgel groups, clean up noisy edgel formations and thin down multi-pixel wide

edgel groups to 1-pixel wide chains.

1.1 Applications of Edge Detection

Edge detection is of paramount importance in a wide range of applications

such as in image processing and analysis, pattern recognition and computer

vision applications. Boundary lines are considered one of the most important

features of an object in an image. Many computer vision applications rely

on boundary information for object and shape recognition tasks [10].
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Figure 1.1: Some Applications of Edge Detection

Originally edge detection was used in object detection as the boundaries

detected provide a set of features suitable for model matching. Nowadays

it is being applied to a host of different ways [11]. It has been used as a

pre-processing step in many applications such as image segmentation [9].

Edge detection algorithms may greatly reduce the amount of data to

be processed or work to be carried out by filtering irrelevant data and at the

same time preserving relevant data which will be processed. The purpose of

edge detection algorithms is to extract useful information from an image in

such a way that the image will be left with less but relevant information [12].

While edges can be used as objects of recognition or features for match-

ing they can also be used for image editing [13]. A similar object can be

reconstructed from the edge information obtained by edge detectors.

Edge detection is also particularly important in medical imaging, where

it is used for body part recognition and also tumour identification such as

in magnetic resonance angiography (MRA) [14]. It is of great importance in

diagnostic detection and feature extraction. For example in medical imag-

ing, edges may represent a tumour and other features of interest. Once the

boundary features have been established high order reconstruction methods

can be used to analyze internal tissues [15].

Steganography algorithms and digital water making algorithms use

edges to hide secure information. Furthermore image resizing algorithms

using the edge map of an image paired with a logical transform have yielded

superior image resizing results [16]. Carlsson suggested a novel form of cod-

ing in which a compressed image is generated from the information contained
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in edges pixels [15, 17]. A recent JPEG-LS compression standard developed

by the Joint Photograph Experts Group uses simple localized edge detection

techniques in order to determine the predictive value of each pixel [15].

The correct detection of boundaries between overlapping objects al-

lows for accurate object identification and precise motion analysis for several

machine vision applications. This initial procedure often leads to further

calculations such as area, perimeters and shape classification of scene ele-

ments once they have been isolated from the background this has shown to

be particularly useful for military and surveillance applications [18].

Edge detection is a problem of fundamental importance to image anal-

ysis tasks. The aim is to find areas where there is high or large intensity

changes. These changes often correspond to some boundaries of an object

in an image. Edges characterize object boundaries which are useful for seg-

mentation, registration and identification of objects in a scene [19].

Edge detection is also particularly important to image segmentation.

It has been a staple of many segmentation algorithms for many years [20].

Examples of algorithms which make use of edge detection include geometric

active contours, gradient vector floor and snakes use edge information to

detect their curve evolution [18].

1.2 Edge Linking

Conventional edge detection algorithms always result in missing parts of the

edges and spurious edges being added [9]. Efficient edge operators such as

those based on partial derivatives fail to produce continuous edge maps. Tra-

ditional edge detection algorithms use a threshold and some filters to detect

edges, consequently the edge maps produced thereafter consist of individual

edge pixels with no real relationship and connectivity [21].

Some edge detection algorithms use a global threshold. The global

threshold transforms the image into a binary image; however, this results in

removal of thin edges in low contrast regions. Consequently the edges would

be broken and important edges are lost [9].

Conventional edge detectors such as Sobel or Canny [22, 23] use local

gradient operators and at times with additional smoothing for noise removal

as a result some important edges might be regarded as noise and therefore

discarded [9].

4



Common edge detectors which are supposed to extract object bound-

aries suffer from the problems posed by differentiation operations and noises

contained in images except for images obtained in highly restricted environ-

ments [10]. To address this, supplementary edge linking step is required to

complete the initial edge information [2]. Edge linking is of great importance

and plays a pivotal role in ensuring that spurious edges are eliminated and

the missing parts are added.

Edge detection involves four stages as explained by Gonzalez and Woods

[24]. The first step is usually smoothing, which attempts to reduce noise and

minimize the detection of false edges. Sharpening or enhancement then fol-

lows, which attempts to consolidate edges that might have been lost due to

smoothing. Sharpening is usually optional some algorithms do not make use

of it. Detection then follows that selects which non-zero pixels are to be

considered as edges and which are not to be considered. A threshold is then

applied to the image, which makes it a binary image as there will be two

set of pixels those which are above the threshold and those which fall below.

From the steps described above, at each stage some important edges will be

lost.

Edge detection errors can occur in two forms, which can be grouped

as false positive and false negative. False positives occur when wrong pixels

are classified as edge pixels in other words they will be misclassified as edge

pixels. False negative occurs when true edge pixels are not classified as edge

pixels in other words they will be misclassified as not belonging to edge

pixels [5]. Detection of both types increase proportionately with noise and

as a result noise suppression is of great importance as it goes a very long in

increasing the odds of accuracy detection. There is a need to compensate

for those edges lost to ensure that edges are connected and to discard those

false edges, thereby increasing the accuracy of edge detection. This will have

a great impact on subsequent algorithms that depend on the outputs of an

edge detection operation. This also depicts that edge linking is not a trivial

task as it tries to ensure that edges are connected. Edge linking attempts

to fill in the gaps and to connect the segments to a set of contiguous lines

and also to eliminate spurious edges, enabling the precise description and

accurate analysis of the boundary objects [10].

Edge linking and boundary detection operations are the fundamental

important steps in image understanding. Edge linking process takes an un-

5



ordered set of edge pixels produced by an edge detector as input to form an

ordered list of edges [25]. If the edges have been detected using zero crossing

of some function then linking them up is a very minute task since the edge

elements share a common endpoint [13]. The edge elements are linked into

chains by picking up an unlikely edge element and following its neighbors in

both directions. Either a sorted list of edge elements or a 2D array is used

to speed up the process of finding the neighbors. Since edge detection is a

pre-processing step for many applications it is therefore necessary to ensure

the successful detection of edges by following up with edge linking as other

applications are dependent on the success of the detection.

Computer vision systems that rely on edge detection often have a hard

time in doing their task if the edges contain gaps and are ambiguous. Hence-

forth edge linking is of great importance in eliminating such problems caused

by non-contiguous and ambiguous edges. Detected edges are usually defrag-

mented and in general they do not divide the image into sections henceforth

edge linking is more than necessary [12]. On the other hand defragmented

edges or edge elements produced by an edge detection operation can be use-

ful in some applications such as line detection and sparse stereo matching;

however, they are more useful when linked into contiguous contours [13].

Different techniques have been employed for linking edge points in order

to recover closed contours. Edge linking methods can be classified into two

main categories: (1) Local Edge Linking, (2) Global Edge Linking. Others

group the edge linking into three categories, the third one being Regional

Linking [24].

Local edge linking can be one of the simplest forms of edge linking as

it involves analyzing the characteristics of pixels at every point in a small

neighborhood (e.g., 3x3) that have been declared edge points. All the points

that are similar or share some common properties according to some criteria

are linked forming an edge of pixels. The two main properties used for

establishing similarity of edge pixels are the strength (magnitude) of the edge

and the direction of the gradient vector [24]. Local edge linking algorithms

work over a single edge point by considering that particular point and its

neighboring edge point’s relationship with it [26, 27]. The basic process used

by Local Edge Linking is that of tracking a sequence of edge points. Local

Edge Linking has the advantage that it can be used to find arbitrary curves

[27].
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Local approaches have advantages; however, they are applicable in sit-

uations where knowledge or partial knowledge about pixels belonging to in-

dividual objects is at least known. Often times we have to work in situations

where there is no knowledge of where the objects of interest might be. In

these situations all pixels are considered as potential candidates to be in-

cluded as edges for linking until when they fail to meet a certain predefined

threshold or criteria put in place.

Regional processing is based on the idea that often times the locations

of regions of interest in an image are known or they can be established.

This implies that knowledge is available regarding the regional membership

of pixels in the corresponding edge image. Techniques for linking pixels on

a regional basis are used in such situations with the desired result being an

approximation to the boundary of the region [24].

Global approaches consider the whole edge map at the same time and

sets of edge points are sought according to some similarity constraint such

as points which share the same edge equation [26, 27]. Global approaches

apply mathematical modeling techniques to formulate the boundaries of the

objects in the images [10]. Examples of global approaches include the Hough

transformation [28] and the whole-boundary formulation [29].

Many edge linking algorithms have been proposed to compensate for

the edges not fully connected. Broken edges are very difficult to fix [9]. The

lack of information from edge images such as low number of endpoints limits

the performance of edge linking algorithms. Although many edge linking

algorithms have been proposed, they still have some shortfalls and are unable

to link some edges. Edge linking remains to be an area of research as this

is evidenced by the large number of researchers choosing the topic and large

number of algorithms which have been proposed over the decades.

1.3 Objectives

The objective of this thesis is to develop edge linking algorithms that satisfy

the following goals:

(1) Close small gaps (1-pixel gaps in our case) between edgel groups

(2) Clean-up noisy, unattended and notch-like structures from the edge

map
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(3) Thin down multi-pixel wide staircase edgel formations to 1-pixel wide

chains

(4) Output a set of edge segments each of which is a chain of pixels. The

edge segments can then be used in high level operations such as line,

arc, circle, ellipse and corner detection.

1.4 Outline

The rest of this thesis is organized as follows:

� Chapter 2 describes related work done by researchers in the literature.

It gives a brief summary of the previous edge linking algorithms and

how they operate. It then gives strengths and weaknesses of these

previous linking algorithms and identifies more research opportunities.

� Chapter 3 gives theory to the proposed solution. It clearly identifies

the problem and explores the proposed algorithms in detail.

� Chapter 4 gives the results and evaluation. The proposed algorithms

are evaluated both qualitatively and quantitatively, and compared with

some related work.

� Chapter 5 presents the conclusions and suggestions for future work.
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2. RELATED WORK

Edge detection is of great importance to image processing and computer

vision applications. Edge detection algorithms always result in edge maps

having broken edges or edges appearing where there are not supposed to

appear; henceforth, many edge linking algorithms have been proposed to try

to counter these shortcomings. Edge linking algorithms try to fix the broken

edges, spurious edges and other problems encountered by edge detection

algorithms in order for subsequent applications that depend on edges to

perform at their best.

Edge linking algorithms can be divided into two main groups: Those

based on global approach and those based on local approach. There also

exist other edge linking algorithms that combine both approaches that may

use additional information such as colour [26].

Although many edge linking algorithms have been proposed, there is

not a single one that works well in all circumstances to date. This shows

that edge linking is a challenging task and not a trivial one. A great many

researchers who have devoted their time and effort to this research area only

proves and provides evidence of how edge linking carries such a great weight.

In this chapter, we review some of the algorithms proposed over the

decades. Only the most important and relevant edge linking algorithms are

chosen here, and they are presented in chronological order.

2.1 Edge Linking By Using Causal Neighborhood Win-

dow

Xie [30] is one of the first researchers to present an edge linking algorithm that

makes use of two concepts: the horizontal edge elements, and the concepts

of casual neighborhood window. The algorithm performs two operations in

one pass, which are contour chain creation and the contour chain linking.

An edge map is transformed into a set of horizontal edge elements, and then

grouped into contour chains [31].

A neighborhood window is referred to as being casual when all the
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neighboring edge elements have been processed and the chains where they

belong to are known [31]. The main advantage of this approach is that it has

a low computational cost; however, the drawback is that it performs poorly

when dealing with textured images [2].

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xleft0 − xgap − 1 ≤ x ≤ xright0, if y = y0
xleft0 − xgap − 1 ≤ x ≤ xright0 + xgap + 1, if y0 − ygap − 1 ≤ y ≤ y0 − 1

(2.1)

The neighborhood window in region OXY is shown in equation 2.1, where

xgap denote the maximum gap value in X direction of boundaries and ygap the

maximum gap value in Y direction. Given a casual neighborhood window

(xgap, ygap) positioned at a horizontal edge element (xleft0, xright0, y0) [30].

2.2 Edge Linking By Sequential Search

Edge linking by sequential search considers linking as a graph search prob-

lem [26]. Each pixel is represented as a node. The set of pixels S is a lattice

graph [1] as shown in equation 2.2.

S = {(x, y) ∶ 0 ≤ x ≤M − 1,0 ≤ y ≤ N − 1} (2.2)

Their approach uses the linear model as part of the linking algorithm

and a path metric is used to guide the search. A* algorithm is then used for

finding the best path along the edge points. The node S(x, y) has 8 nearest

neighbors, a tree then evolves having 8 branches. The depth into the tree

indicates position along the path. The size of the search space for a path

of Q nodes is 7Q; however, they [1] devised measures to reduce it to 3Q as

noted by [32]. They limit the possible transitions to 3 (π/4 or 450), which

leads to the path definition [32].

They state that succeeding node should differ by 450 or less from its

predecessor as shown in Fig 2.1. This path definition reduces the search

space significantly and ensures that the algorithm is fast. However, one of the

problems with this path definition lies with images that have oscillating edges.

The algorithm performs poorly as it only looks at 3 possible transitions, which

is not the case with images that have oscillating edges. Important pixels may

be left out. The main sources of errors occur at the corners since the edge

path definition does not take into account abrupt or sharp changing edge
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transitions. As a result, the errors will be inherited in the linking algorithm

resulting in broken edges or contours [33].

Figure 2.1: Edge path definition (Edge paths are such that connected segments
can make ≤ 450 from each other).

Figure 2.2: Possible node extension on 3x3 neighborhood according to the path
definition. (The start node is denoted by x and the preceding node
is denoted by � and the start direction is assumed to be horizontal)

[1].

They define a path (edge path definition) as a connected set of nodes

that has the following qualities: For any subset of three nodes on the path,

the direction defined by the two preceding nodes and by the second node

differs by π
4 or less.

They further put some criteria to define the path metric that follows

the edge path definition defined above. The path metric is given by equation

2.3 for path p(i) ∈ S of length Q:
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γQ(p(i)) =
Q

∑
j=1
βij + hi(p(i)) (2.3)

where βij is a measure for the selection of the possible transitions along the

jth branch of the path p(i) that adheres to the path definition, and hj(p(i))
is the apriori measure.

The criteria to define the path metric is as follows:

(a) the path metric should not be biased by the path length

(b) the metric should have the necessary drift property (high on the correct

path and low on the wrong path)

(c) the path metric should be easy to calculate

Figure 2.3: A simplified tree structure that satisfies the edge path definition.
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Table 2.1: Edge Linking by Sequential Search

1. Smooth the image
2. Estimate the gradient of the smoothed image
3. Determine the swath (belt) of important information
4. Linking

i. Choose the root node and find the initial direction using the
magnitude and angle information obtained in step 2

ii. A* algorithm is used within the belt of important information
[a]. Calculate y (path metric) using the models
[b]. Break the ties using the apriori measure as well as angle

information
iii. Stop the search when all goal nodes have been examined

They further reduce the search space to be the area inside the swath

(belt) defined by a hypothesized boundary [1]. This further ensures that the

algorithm performs fast. However, limiting the search to be just in the swath

may affect the accuracy of the algorithm as it can lead to broken edges espe-

cially when some important edges are laying outside the swath of important

information. Xiaomin Ji et al. [34] noted that the algorithm produced better

results; however, it still had broken edges, which could be owing to the limi-

tation of the search range provided by the swath of important information.

They also noted that the approach they use of applying the second

gradient operator to the original image and considering the zero-crossing to

be the hypothesized boundary has the advantage that the gradient operator

provides closed boundaries and also it can be used as a by-product of the

linking algorithm [1].

One of the weaknesses of the sequential edge linking algorithm is that

it depends too much on the accuracy of the initial enhancement stages [1].

If the enhancement stage was done poorly, the errors will be inherited in

the output image thereby producing less accurate results. However if done

correctly, good results are almost guaranteed.

Another problem associated by the sequential search algorithm is the

way in which the ties are broken in the event that the vertical model V, the

horizontal model H or the diagonal models D1 and D2 are equal. The model

that gives the smallest distance from the zero crossing boundaries is chosen.

However, this does not necessarily mean that the correct decision was made

or reached at, as noted in [1].
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Figure 2.4: Four edge models on a 3x3 neighborhood.

Some researchers [2, 26, 35, 36] noted that the results presented by the

sequential search algorithm are promising; however, the excessive CPU time

and the large number of parameters that have to be adjusted before using

the algorithm discourage its use.

2.3 Edge Linking By a Directional Potential Function

(DPF)

Zhu et al. [10] proposed an algorithm by the potential function method that

originated in physics. Their algorithm models an edge map as a potential field

with energy dispositions at the detected edge positions. Pixels located at the

broken edge points are charged with a potential force of energy proportionate

to their relative distances and directions of neighboring pixels [10].

The algorithm looks at neighboring pixels, e.g., 3x3 or 5x5, in the whole

image, and then links the segment to its most potentially connected segment

[37]. This technique uses neighboring pixel information to help labeling an

image pixel, it exploits the fact that noise pixels are normally not supported

by their neighbors and as a result it uses this fact to suppress noise and

reinforce detected structures. The drawback of this method is that it only

deals with small gaps and no global shape model is involved in the process

[38].

Tang et al. [39] noted that Zhu et al. [10] detected underlying bound-

aries by minimizing the directional potential function. They [39] also noted

that these approaches are best suited at contour grouping in noisy images and

fail to a great degree when it comes to dealing with clustered and textured

regions.

Edge linking by DPF works as follows: Let xi be an edge pixel at

position (xi, yi) in an image I(x, y). The assumption is that only positive
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energy is deposited in the image and as such non-edge pixels have null energy

deposits. Energy charge at pixel xi is given by equation 2.4:

q(xi) = q(xi)d(xi) (2.4)

where q(xi) is the energy charge and d(xi) is the directional component of

the energy charge. The energy force is calculated as in equation 2.5:

g(x,xi) = cq(xi)
cos(α)
∣∣x − xi∣∣

n(x,xi) (2.5)

where g(x,xi) is the potential force generated by energy charge at point xi,

α is the angle between vector d(xi) and x − xi.

The connection of edge points is inducted by the accumulation of

g(x,xi) at the edge points xi and xj [10]. The accumulation of forces leads

to the broken edges competing with each other to be included as the edge

pixels. The process is repeated several times leading to some pixels (x and

xi) being discarded as edges and others being regarded as edge pixels.

2.4 A Very Large Scale Integration Architecture for

Real-Time Edge Linking

Hajjar and Chen [40] proposed a real-time algorithm and its VLSI implemen-

tation for edge linking. Their method is based on break point’s direction and

the weak level points. They define break points as a point at which an edge

line is terminated. The gaps in the edges are filled according to the distance

between the two compatible break points. The two compatible break points

with the smallest distance are filled. Their approach has the advantage that

it is simple and it increases significantly the level of connected pixels in the

edge structure as observed by [2]. Their approach is based on a fixed scan-

ning window and as such their implementation does not guarantee closed

contours [2].

The break point is determined using the criteria given in equation 2.6

for a 3x3 window :
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Break(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if I0
8

∑
i=1
Ii

(6+i)%8

∑
j=(i+2)%8

Ij /= 0

0, otherwise

(2.6)

where Ii represents the existence of an edge point at position i.

Once the break points have been determined, their directions have to

be determined as well. The direction of the break point takes one of the 8

directions depending on the preceding edge that it is connected to, as shown

in Fig 2.5.

Figure 2.5: (a) The basic edge structures. (b) Break point direction
representation.

They defined eight directions by using complex number notations as

shown in Fig. 2.5(b). The real part of a break-point direction represents the

horizontal shift that the linking edge point should take. The imaginary part

represents the vertical shift. A break point at position (x, y) is said to have

a direction a + jb, where a, b ∈ −1,0,+1, if it is connected to a previous edge

point located at the position (x - a, y - b) [40].
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2.5 Computational Approach for Edge Linking

Ghita and Whelan [2] proposed an edge linking algorithm based on local

information. After edge detection and selection of a threshold, an iterative

stage of edge thinning follows.

First, small gaps will be closed and filled. The endpoints are recovered

and labeled. The endpoints are linked together using local information, which

takes into account the Euclidean distance based on the edge points to be

linked (2D distance), and two reward coefficients: (1) if the points (to be

linked) are both end points and (2) if the direction associated to the points to

be linked is opposite from each other [26]. Sappa and Vintimilla observed that

this technique proposed for edge linking does not guarantee closed contours

[26]. Lu and Chen observed that a mask is adopted in the algorithm to

acquire the direction of end points and in order to estimate the cost of the

linking line [3].

Generally these methods are easy but their main drawback is that they

return incomplete edge structures [3]. The diagram below summaries the

algorithm.

Figure 2.6: Outline of computational approach for edge linking courtesy of [2].

2.6 Adaptive Mathematical Morphology for Edge Link-

ing

Shih et al. [33] applied mathematical morphology for edge linking to fill

in the gaps between edge segments. Shih and Cheng [33] applied adaptive

structuring to dilate the broken edges along their slope direction [9]. Thin-

ning and pruning are applied. However, the common problem of thinning

is that it distorts the image as noted by [26]. Shih and Cheng [33] solve

this problem by iteratively linking the edges to ensure that broken edges are

linked up gradually and smoothly so that shape of the object is not altered

by the previous process of pruning and thinning. The algorithm steps are
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summarized in Table 2.2:

Table 2.2: Adaptive Mathematical Morphology Algorithm steps

1. Removing noisy edge segments
2. Detecting all the endpoints
3. Applying adaptive dilation operation at each endpoint
4. Thinning
5. Branch pruning
6. Decision

The program terminates when no endpoints exist or when maximum
number of iterations have been reached

2.7 Edge Point Linking by Means of Global and Local

Schemes

Sappa and Vintimilla [26] suggested a technique for linking edge points to

create closed contours. They use the original intensity image and the edge

map as input to their algorithm. Their algorithm consist of two steps. The

first step uses some global measure to compute the connecting edge point

representation [26]. Sappa and Vintimilla proposed to use the Euclidean

distance in 3D space taking into account the intensity (not only the point

position in the edge map), unlike Ghita and Whelan [2] who used 2D Eu-

clidean distance. The linking cost between two edge points (E(i,j), E(u,v))

is defined as follows:

LC(i, j)(u, v) = ∣∣(i, j, I(i, j)) − (u, v, I(u, v))∣∣ (2.7)

where LC is the linking cost, which represents the 3D distance between

the points to be linked, I(r, c) is a 2D intensity array, i and u are rows, j

and v are columns.

Their approach has an advantage that it is more accurate than only

taking point positions in the edge map, which could lead to wrong results

[26]. The last step is concerned with generating closed contours by linking

broken edges using a local cost function. The first stage is based on graph

theory and the second stage relies on local information. The spurious edges

are removed by a morphological filter [26].
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2.8 Edge Detection Improvement By Ant Colony Op-

timization

Edge detection improvement by ant colony optimization as the name suggests

tries to improve edge detection by using ACO (Ant Colony Optimization).

Initially ants are placed at the broken endpoints, the number of ants corre-

sponding to the broken edges. Wong et al. observed that the algorithm uses

the original intensity values to guide the ants [41], which are susceptible to

noise as observed by [42].

Fig. 2.7 summaries the algorithm [3].

Figure 2.7: Flow chart for edge detection improvement by Ant Colony courtesy
of [3].

2.9 Ant based Edge Linking Algorithm

Ant system is a swarm-based algorithm that exploits the self organizing na-

ture of real ant colonies and their foraging behaviour to solve discrete opti-

mization problems [43]. The ant based edge linking algorithm is based on

mimicking the behaviour of biological ants. Biological ants leave a pheromone

trail that attracts other ants when they are searching for food, in the same

way the ant based algorithm uses artificial ants. The nodes (pixels) will be
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the food source. The artificial ants leave pheromone trail which in turn at-

tracts other ants. Negative feedback is sent by pheromone evaporation which

distracts other ants from following the same route. Initially, a number of ants

corresponding to the number of endpoints are placed and each endpoint will

be the starting pixel of each ant. The ant system uses the grayscale image

and the Sobel edge image as its inputs, and the resultant image will be a

sum of the Sobel edge image and the connecting edges [9]. A block diagram

for the ant based linking algorithm is shown in Fig. 2.8 summarizing the

processes involved in the ant based linking algorithm.

Figure 2.8: Block diagram of the Ant Based Edge Linking algorithm.

The ant based algorithm uses the original grayscale image and the Sobel

edge image as inputs. The grayscale image is used to calculate the visibility

matrix as shown in equation 2.8. It is used as the initial pheromone trail.

Applying the visibility matrix as the initial pheromone trail has the advan-

tage that it enhances the probability of a pixel belonging to the edge to be

chosen and thereby reducing the computational overload [9]. On the other

hand using the original grayscale image may present false edges being de-

tected when the image has too much noise as shown in the formula (equation

2.8) for calculating the visibility matrix. However, this might be overcome

by using the smoothed image. The grayscale value at p(i, j) is calculated as

follows:
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ξij =
1

Imax
.max

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣I(i − 1, j − 1) − I(i + 1, j + 1)∣,
∣I(i − 1, j + 1) − I(i + 1, j − 1)∣,
∣I(i, j − 1) − I(i, j + 1)∣,
∣I(i − 1, j) − I(i + 1, j)∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8)

where Imax is the maximum grayscale value in the image. Therefore,

ξij is normalized in (0 ≤ ξij ≤ 1).

The ant based algorithm does not use a global threshold; it uses a

fitness value calculated as follows:

fk =
ξ

σξ.Np

(2.9)

where ξ and σξ are the mean value and the standard deviation of the

grayscale visibility of the pixels.

The fitness value is a measure of how fit a pixel is to the route it is

supposed to belong to. This in turn gives other advantages in that weak

edges may not be discarded as is the case when using a global threshold, so

it avoids the shortcomings of a global threshold. The fitness value of a route

is dependent on the mean value and the standard deviation of the grayscale

visibility of the pixels in the route and the total number of pixels belonging

to that route [9].

Node transition is based on probability. The probability of an ant

following a route of some sort is a function of what the ant can see (visibility

of the pixel from the endpoints) or the proximity to that particular endpoint

and the pheromone trail laid as shown in the equation 2.10. Probability

distributions change on each iteration. Probabilities are not constant and

this can be a problem causing the algorithm to take more time to converge.

Pixel transition rule (probability) is defined as follows:

P k
ij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(τij)σ(ηij)β
∑h∉tabuk(τih)

σ(ηih)β , if j ∉ tabuk

0, otherwise
(2.10)

where τij and ηij are the intensity of the pheromone trail on edge (i, j)
and the visibility of the node j from node i, respectively. (τij, ηij > 0; τij, ηij ∈
R, for ∀i, j). α and β are the parameters that control the importance of the
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pheromone trail and the visibility, respectively (α,β > 0;α,β ∈ R). Tabuk

list contains the nodes that have already been visited by the kth ant.

Tempering with α and β results in different outcomes. A large α/β
ratio results in ants choosing the strongest edges. β parameter is of great

importance as it inclines the ants towards closest endpoints [9]. At the end

of each iteration the pheromone trail will be updated and a positive feedback

will result in pheromone accumulation and negative feedback will result in

pheromone evaporation. This has the advantage that it reduces poor quality

solutions (wrong edges being detected).

Pheromone trail update rule:

τij,(new) = (1 − p)τij,(old) +
m

∑
k=1

∆τ kij (2.11)

where p is the pheromone evaporation rate (0 < p < 1 ∶ p ∈ R), and ∆τ kij
is the amount of pheromone laid on edge (i, j) by the kth ant and is given

by:

∆τ kij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

fk
Q , if edge(i, j)is traversed by the kthant at the current cycle

0, otherwise

(2.12)

where fk is the fitness value of the solution found by kth ant and Q is

a constant.

One of the novelties of the ant based algorithm is that its convergence

is guaranteed. However, one of the shortfalls is that there is no certainty

on the time to converge. The number of iterations to be done is image de-

pendent. Large resolution images require less iterations while low resolution

images require quite a large number of iterations. As observed and stated

by A. Jevtic et al. [9] the number of iterations that gave satisfactory results

were 100 iterations, and lower resolution images such as 128x128 pixels re-

quired larger number of iterations. This also means the iterations have to be

adjusted for each image and this can be cumbersome.
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3. PROPOSED EDGE LINKING ALGORITHMS: CAN-

NYSR, PEL

In this chapter we propose two edge linking algorithms: The first is an edge

linking algorithm to convert Canny’s binary edge maps to edge segments

using the Smart Routing (SR) step of Edge Drawing (ED); thus the name

CannySR [44]. The second is an edge linking algorithm that just takes in

a binary edge map generated by any arbitrary traditional edge detection

algorithm and converts it to a set of edge segments; filling in one pixel gaps

in the edge map, cleaning up noisy edge pixel groups and thinning multi-

pixel wide edge pixel formations in the process. The proposed edge linking

algorithm walks over the edge map based on the predictions generated from

its past movements; thus the name Predictive Edge Linking (PEL) [45].

Before we give a detailed explanation on how the proposed algorithms

operate, we first give a brief overview of Canny and Edge Drawing [21, 46].

We then describe CannySR followed by PEL.

3.1 Canny, Edge Drawing and Smart Routing

In this section our goal is to give a brief overview of Canny, Edge Drawing

and Smart Routing algorithms as they are the founding blocks of CannySR.

23



Table 3.1: Psuedocode for Canny

Symbols used in the algorithm:
I: Input grayscale image
sigma: of the Gaussian smoothing kernel
lowThresh: Low gradient threshold
highThresh: High gradient threshold
S: Smoothed image
G: Gradient magnitudes
Dir: Edge directions
BEM: Binary edge map

Canny(I, sigma, lowThresh, highThresh)
1. S = SmoothImage(I, sigma);
2. (G, Dir) = ComputeGradient(S, Sobel);
3. BEM = NonMaximalSuppression(G, Dir);
4. Hysteresis(BEM, lowThresh, highThresh);
5. Return BEM;

End-Canny

The pseudocode for Canny is given in Table 3.1. As seen from the

algorithm, Canny takes in 4 parameters, i.e., the input image I, sigma of the

Gaussian smoothing kernel, low and high gradient thresholds, and performs

edge detection in 4 steps. In the following, we briefly explain each step.

(1) Smoothing: Given an image I, the image is first smoothed by a

Gaussian kernel with a given sigma. The main objective of this step is to

suppress noise and remove some noisy artifacts from the image.

(2) Computation of the gradient: The next stage involves deter-

mining the gradient magnitude and directions. The gradient magnitude and

directions are calculated over the smoothed image S. Well known operators

such as the Prewitt, Sobel and Scharr operators can be used at this step.

(3) Non-maximal suppression: In this stage only the local max-

ima are marked as edges. The edges are computed by a method known as

non-maximum suppression, where a pixel is considered to be an edgel if its

gradient magnitude is greater than its neighbors in the direction of its gradi-

ent. For example, if the gradient direction of a particular pixel is 90 degrees,

then pixels to its north and south are compared with it. If the gradient mag-

nitude of the current pixel is higher then both neighbors, the current pixel

is marked to be a possible edgel. Otherwise, the pixel is eliminated. At the

end of this step a binary edge map is obtained where the white pixels are the
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pixels which survived the non-maximum suppression process.

(4) Hysteresis: This is the last step which is aimed at retaining the

true edges and eliminating false ones in the binary edge map (BEM). It uses

two thresholds, a lower one and a higher one. Edgels whose gradient mag-

nitude is smaller than the lower threshold are eliminated as false detections

while those edgels that have their gradient magnitude greater than the higher

threshold are retained as strong edges. Edgels that fall in between the higher

and lower threshold are only considered weak edgels, and they survice only

if they are linked directly or indirectly to strong edges. Otherwise the weak

edgels are eliminated as false detections.

Figure 3.1: Edge map output by cvCanny for low and high threshold values of
20 and 40 respectively. The image was first smoothed by a
Gaussian kernel with σ = 1.5 before cvCanny was called. A

close-up view of a section of the Canny edge map, with missing,
ragged and multi-pixel wide edgels.

Fig 3.1 shows the binary edge map for the famous Lena image. This

edge map was obtained by the OpenCV implementation of the Canny edge

detector (cvCanny), which is known to be the fastest Canny implementation.

To obtain this edge map, the input image was first smoothed by a Gaussian

kernel with σ = 1.5 (using cvSmooth from OpenCV), and cvCanny was called

with low and high threshold values set to 20 and 40 respectively, and the Sobel

kernel aperture size set to 3. Fig. 3.1 also shows the close-up views of two

separate sections of the edge map to illustrate the low quality artifacts, which
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can be grouped in three categories as follows: (1) There are discontinuities

and gaps between edgel groups as can clearly be seen in the close-up views

of the two enlarged sections of the edge map. Some of these gaps need to

be filled up. (2) There are noisy, unattended edgel formations and notch-like

structures. This is more evident in the close-up view of the upper-left corner

of the edge map. These noisy artifacts needs to be removed. (3) There are

multi-pixel wide edgel formations in a staircase pattern especially around the

diagonal edgel formations (both 45 degree and 135 degree diagonals). Such

formations can be seen in many places in the edge map, and they need to be

thinned down to 1-pixel wide chains.

Unlike traditional edge detectors, Edge Drawing (ED) is a unique algo-

rithm in that it models the problem of edge detection similar to the childrens’

dot completion games, where there will be marked anchor points, and the

hidden picture is revealed after linking these boundary anchors. The algo-

rithm does this by first computing the anchors, which are points of highest

gradient in the edge map. The algorithm then links these anchors by a

method called Smart Routing (SR), and outputs a set of segments each of

which is a clean, contiguous, one pixel wide chain. The pseudo-code of ED

is given in table 3.2.

Table 3.2: Psuedocode for Edge Drawing

Symbols used in the algorithm:
I: Input grayscale image
sigma: of the Gaussian smoothing kernel
thresh: Gradient threshold
S: Smoothed image
G: Gradient magnitudes
Dir: Edge directions
A: Anchors
ES: Edge segments

EdgeDrawing(I, sigma, thresh)
1. S = SmoothImage(I, sigma);
2. (G, Dir) = ComputeGradient(S, Sobel, thresh);
3. A = ComputeAnchors(G, Dir);
4. ES = SmartRouting(G, Dir, A);
5. Return ES;

End-EdgeDrawing

(1-2) The first two steps of ED are similar to that of Canny algorithm.
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The image is smoothed with the requested Gaussian sigma. The gradient

magnitude and direction are calculated at each pixel. The algorithm differs

from Canny in that the gradient directions are quantized into two directions,

i.e., an edge can either be horizontal or vertical. Gradient magnitude of

pixels which is less than the user supplied threshold are suppressed.

(3) ED computes the anchors, which are a set of points over the gra-

dient map. These are the points where gradient is at peek and are assumed

to be edgels.

(4) In the last step Smart Routing (SR) is employed. SR joins the

anchors to form the edge segments.

Figure 3.2: Smart Routing (SR) in action: Starting at an anchor (a red circle),
SR follows a horizontal or a vertial path until it hits another
anchor. SR stops when the end of the edge region is reached.

Fig. 3.2 illustrates SR in action. Starting at an anchor (a red circle), SR

follows a horizontal or a vertical path depending on the edge direction until

it hits another anchor. The walk continues until the end of the edge region

is reached. In Fig. 2, assume that SR starts the walk at pixel (8, 4), whose

gradient value is 230. Since the edge direction is horizontal, there is a walk

to the left. At each step, only three neighboring pixels in the walk direction

is considered, and SR moves to the pixel having the greatest gradient value.

In the example, the pixel having the greatest value is (7, 4), so SR moves

there. The walk continues horizontally to the left until pixel (3, 5) is reached.

There the edge direction changes. Thereafter, SR starts walking vertically
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downwards until the end of the edge region is reached. Notice that as SR

walk over the gradient map, the edgels are obtained as a chain of pixel linked

one after the other. Therefore, the edge segment is a contiguous chain of

pixels and it walks over the pixels having the largest gradient values. In a

sense, this is like walking over the peeks of the gradient map mountain.

3.2 CannySR: An Edge Linking Algorithm to Convert

Canny’s Binary Edge Maps to Edge Segments

In this section we propose an edge linking algorithm to convert Canny’s

edge maps to edge segments using ED’s Smart Routing (SR); thus the name

Canny Smart Routing (CannySR). The motivation behind CannySR is to

use a subset of the edgels in Canny’s binary image as the anchors for SR

(refer to Fig. 3.2), and output a set of edge segments each of which is a chain

of pixels. The edge segment can then be used in other high level important

tasks such as line [47], arc, circle, ellipse [48] and corner detection.
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Table 3.3: Pseudocode for CannySR

Symbols used in the algorithm:
I: Input grayscale image
sigma: of the Gaussian smoothing kernel
lowThresh: Low gradient threshold
highThresh: High gradient threshold
MIN SEG LEN: Minimum segment length
BEM: Binary edge map
G: Gradient magnitudes
Dir: Edge directions
Anchors: Anchors
ES: Edge segments

CannySR(I, sigma, lowThresh, highThresh, MIN SEG LEN)
1. BEM = Canny(I, sigma, lowThresh, highThresh);
2. G = SmoothImage(BEM, 0.50);
3. Dir = ComputeEdgeDirections(I, sigma);
4.
// Compute the anchors
Set all Anchors to 0
for y=2 to height-2 do

for x=2 to width-2 do
// Skip non-edgels
if (BEM[y][x] == 0) continue;

// Horizontal edgel group of 3
if (BEM[y][x-1] && BEM[y][x+1]) Anchors[y][x] = 1;

// Vertical edgel group of 3
if (BEM[y-1][x] && BEM[y+1][x]) Anchors[y][x] = 1;

// 45 degree edgel group of 3
if (BEM[y-1][x+1] && BEM[y+1][x-1]) Anchors[y][x] = 1;

// 135 degree edgel group of 3
if (BEM[y-1][x-1] && BEM[y+1][x+1]) Anchors[y][x] = 1;

end-for
end-for
5. ES = SmartRouting(G, Dir, Anchors, MIN SEG LEN);
6. Return ES;

End-CannySR

The pseudocode for CannySR is given in Table 3.3. After the compu-

tation of the binary edge map (BEM) of an input image I using Canny with
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the user supplied parameters at step 1, the rest of the algorithm involves

converting the obtained BEM to a set of edge segments using SR. We define

the three things that SR needs to work, i.e., a gradient map, edge directions

and anchors, as follows:

(1) Gradient map: We use a smoothed version of BEM as the gradient

map. As seen from the pseudocode, a Gaussian kernel with σ = 0.50

is used for this purpose. The goal of this step is both to widen up the

edgels and create narrow edge areas for SR to walk on, and also fill one

pixel gaps between the edgels. The reason for using a small Gaussian

kernel with a small sigma value is to prevent nearby but completely

separate edgel regions to get connected, which would lead SR to jump

to irrelevant edge regions during a walk and produce incorrect edge

segments. Our experiments have shown that a Gaussian kernel with σ

= 0.50 is a good choice for this purpose.

(2) Edge Directions: We compute the edge directions using the original

image and the sigma of the Gaussian kernel that was used to smooth

the image when BEM was obtained. That is, the original image is

first smoothed by the Gaussian smoothing kernel having the supplied

sigma, and then the edge direction for each pixel is calculated over this

smoothed image by computing the horizontal and vertical gradients.

The fact that edge directions have to be computed over the original

image is a big drawback of this method. Not only do we need to have

the original image for CannySR to work, but we also need to know how

the image was smoothed before the BEM was obtained. That is, the

edge linking method presented in this algorithm cannot be used if we

only have a binary edge map and we do not know how it was obtained,

or if we do not have the original image.

(3) Anchors: There are two alternatives here: (a) We can use all edgels in

BEM as the anchors for SR, but our conclusion was that this produces

some low quality crooked edge segments. (b) We can use a subset of

the more stable edgels as anchors. This is what we propose as follows:

Use an edgel as an anchor only if it is surrounded by two neighbor

edgels, one in each edge direction. For example, within a horizontal

edgel group of three, the middle pixel is taken to be an anchor if there

is an edgel to the left and an edgel to the right. Similarly, within a

vertical edgel group of three, the middle pixel is taken to be an anchor
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    (a)                                                                                          (b) 

  
    (c)                                                                                         (d) 

 

Figure 3.3: (a) Canny’s BEM smoothed by a Gaussian kernel with σ = 0.50,
(b) Thresholded smoothed edge map: the extended edge areas, (c)

Anchors extracted from Canny’s BEM, (d) Final edge segments
after SR. Edge segments shorter than 8 pixels have been eliminated.

if there is an edgel upstairs and downstairs. The anchors for the two

diagonal directions are computed similarly as shown in step 4 of the

pseudocode.

Fig. 3.3 illustrates the steps of CannySR. Fig. 3.3(a) shows the smoothed

BEM, which serves as the gradient map during SR. Fig. 3.3(b) shows the

same smoothed edge map with non-zero values being set to 255. This, in

a sense, is the extended edge regions during SR. That is, the final edgels

will be located within these edge regions and will be located on top of the

gradient map peeks. Fig. 3.3(c) shows the anchors computed at step IV of

CannySR. Anchors are essentially a subset of the edgels in Canny’s BEM
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and are assumed to be more reliable edgels due to our selection criteria. Fi-

nally, Fig. 3.3(d) shows the result of CannySR. Comparing Canny’s BEM in

Fig. 3.1 and the edge segments produced by CannySR in Fig. 3.3(d), we can

clearly see the modal improvements and higher quality output of CannySR.

We note that in Fig. 3.3(d), edge segments that are shorter than 8 pixels

have been considered to be noisy artifacts and eliminated.

3.3 Predictive Edge Linking (PEL)

In this section, we propose a new edge linking algorithm named Predictive

Edge Linking (PEL), which takes as input only the binary edge map (BEM)

produced by any arbitrary traditional edge detector and returns a set of

edge segments. Unlike CannySR, PEL neither requires the input image nor

the sigma of the Gaussian smoothing kernel that was used to smooth the

image before edge detection, which is an important advantage of PEL over

CannySR.

Table 3.4: Pseudocode for PEL

Symbols used in the algorithm:
BEM: Binary edge map
MIN SEG LEN: Minimum segment length
ES: Edge segments
PEL(BEM, MIN SEG LEN)

1. FillGaps(BEM);
2. ES = CreateSegments(BEM);
3. JoinSegments(ES);
4. ThinSegments(ES, MIN SEG LEN);
5. Return ES;

End-PEL

The pseudocode for PEL is given in Table 3.4. PEL only takes in a

BEM as input and returns a set of edge segments (ES) as output. The

algorithm consists of 4 steps, which are summarised below:

(1) In the first step one pixel gaps in BEM are filled.

(2) The second step involves the creation of edge segments

(3) In the third step edge segments whose endpoints are close to each

other are then joined together to form longer edge segments.

(4) The fourth step involves thinning the multi-pixel wide edge segment
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to one-pixel wide edge segments. The minimum segment length supplied

by the user specifies the length of the shortest segment to be returned by

PEL. Any segments which are shorter than the minimum segment length are

removed and not returned to the user. A detailed explanation of these steps

is given in the following sections.

3.3.1 FillGaps: filling one pixel gaps in binary edge map

Recall from Fig. 3.1 that edge maps produced by traditional edge detectors

contain gaps between edgel groups. Many proposed algorithms for edge link-

ing found in the literature concentrate on this problem, and propose solutions

to fill these gaps. Although our concentration in this paper is on obtaining

edge segments, filling the gaps is also important. In this section, we propose

a heuristic method to fill one pixel gaps between edgel groups.

Figure 3.4: Filling one pixel gaps between the edgel groups. The dark gray
pixels at (x,y) is the tip pixel of an edgel group, and the light gray

pixel in each case is its neighbor. We perform a check along the
direction where the tip is moving, and connect the tip to a

neighboring edgel by filling the appropriate pixel.

Fig. 3.4 illustrates our heuristic for filling one pixel gaps between the

edgel groups. Our idea is to first find the tips of the edgel groups, and then

to connect each tip to a neighboring edgel that is one pixel away. The tip of

an edge group is defined to be a pixel with only one neighbour. Of the eight

possible scenarios, fig 3.1 depicts four cases, where the tip pixel marked in

dark gray is located at (x,y), and its only neighbor is marked in light gray

in each case. The other four cases (left, up, up-left, up-right) are simply
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symmetric versions of these four cases.

Our heuristic for connecting a tip pixel takes into account the direction

the tip pixel is moving towards and connects it to a neighboring edgel group

in that direction. For example, consider the case in Fig. 3.4(a), where the tip

pixel is moving to the right because the neighbour pixel of the tip, marked in

light gray, is located on the left at (x-1, y). Here we perform three checks to

the right marked as 1, 2 or 3 in the figure. If the pixel at (x+2, y) is an edgel,

then we connect the tip pixel to (x+2, y) by filling the pixel at (x+1, y).

Otherwise, we check if one of the pixels at (x+1, y-2), (x+2, y-2) or (x+2,

y-1) is an edgel, and if yes, then we connect the tip to one of these pixels by

filling the pixel at (x+1, y-1). Finally, we check if one of the pixels at (x+1,

y+2), (x+2, y+2) or (x+2, y+1) is an edgel, and if yes, then we connect

the tip to one of these pixels by filling the pixel at (x+1, y+1). Although

the other seven directions are not elaborated, we follow a similar procedure

for each direction, and connect the tip pixel to a neighboring edgel in the

direction that the tip is moving.

Fig. 3.4(e) illustrates how the proposed heuristic fills up one pixel gaps

in the edge map. In the figure, light gray pixels are the original edgels in the

input BEM, and the dark pixels are the filled pixels. Just to explain why

the pixel (8, 10) is filled, consider the tip pixel at (7, 10), which is moving

to the right because its only neighbour is located at (6, 10). According to

Fig. 3.4(a), we need to first check the pixel at (9, 10), which is an edgel.

Therefore, (7, 10) is connected to (9, 10) by filling (8, 10).

3.3.2 CreateSegments: linking contiguous edgels to create pixel

chains

Now that some of the missing pixels in BEM have been filled up, we move on

to the heart of the problem: that of linking the edgels in BEM and creating

the edge segments, each a contiguous chain of pixels. The heuristic that

we employ at this step is to start at an arbitrary edgel in BEM and create

potentially two chains starting at that edgel: One in the forward direction

and one in the reverse direction. We then combine these two chains together

to create a single chain of pixels, which essentially makes up for one edge

segment. We then start at another edgel and do the same thing until all

edgels in BEM are converted to edge segments.
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Figure 3.5: Walking in four directions with prediction. We are currently at
pixel (x, y), marked with dark gray colour, and moving towards (a)
Right, (b) Down, (c) Down-Right, (d) Down-Left. The other four

directions, i.e., Left, Up, Up-Left, Up-Right, are simply
symmetrical versions of these four directions respectively.

To create an edge segment, we perform eight-directional walk with pre-

diction, therefore the name Predictive Edge Linking (PEL). The prediction is

used when the current direction changes. By taking the last eight directions

into account, the prediction engine tells us which direction to move on to

after the current direction changes.

Fig. 3.5 illustrates the walk in four directions: (a) Right, (b) Down,

(c) Down-Right and (d) Down-Left. The other four directions, i.e., Left, Up,

Up-Left and Up-Right are simply symmetrical versions of these directions

respectively and are not illustrated.

Starting with Fig. 3.5(a), we see a walk to the right. That is, we

are currently at pixel (x, y), marked with dark gray colour, and we moved

here from pixel (x-1, y) marked with light gray colour. Since the current

direction is “right”, we immediately check the pixel to the right, i.e., (x+1,

y) regardless of our past moves. If there is an edgel at (x+1, y), then we add

it to the current chain and move there. The current walk direction continues

to be “right”. If there is no edgel at (x+1, y), then we need to change the

current direction and check the other six neighbours in some order. This

is where the prediction comes into play. We can first check the “up-right”

pixel at (x+1, y-1) or the “down-right” pixel at (x+1, y+1). To make this
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decision, we consult the prediction engine, which taking the last eight moves

into account, tells us to either check the “up-right” or the “down-right” pixel

first. If the prediction is “up”, then we first check the “up-right” pixel at

(x+1, y-1) and move there if there is an edgel. The current direction is then

changed from “right” to “up-right”. If the prediction is “down”, then we

first check the “down-right” pixel at (x+1, y+1) and move there if there is

an edgel. The current direction is then changed from “right” to “down-right”.

Fig. 3.5(a) shows in detail the order in which the neighbours of the current

pixel (x, y) are checked depending on the current prediction. While checking

the neighbours in the depicted order, as soon as we encounter an edgel we

move there and change the current direction accordingly. For example, if

the current prediction is “up”, and there is no edgel at pixels marked 1, 2,

3, 4 but there is an edgel at pixel marked 5, then we move to (x, y+1) and

change the current direction as “down”. Then in the next iteration of the

loop, we will check the neighbours of the current pixel using the order shown

in Fig. 3.5(b). The current pixel chain will come to an end when we check

all 6 neighbours of the current pixel (x, y) and none has an edgel.

Although walking in all eight directions follow a logic similar to the

one described in the previous paragraph, diagonal moves need a little more

explanation. Consider the “down-right” walk depicted in Fig. 3.5(c). The

first neighbour to be checked in the “down-right” pixel at (x+1, y+1) regard-

less of the prediction. If there is an edgel there, then we will move to that

pixel and the current walk direction will continue to be “down-right”. In this

case however, there is a little caveat that needs to be taken into account as

follows. As we move to the “down-right” pixel marked as 1 in Fig. 3.5(c),

most of the time we would also have an edgel at pixels marked 2 or 3 because

the traditional edge detectors usually generate staircase edgel structures for

diagonal edge groups. This can clearly be observed in Canny’s Lena edge

map shown in Fig. 1. Since we need to collect all pixels in the input BEM

during edge segment generation, as we make the “down-right” move in Fig.

3.5(c), we also check the pixels to the right and down, i.e., pixels (x+1, y)

and (x, y+1) and if one of them contains an edgel, we also pick it up and

add it to the current chain. If both neighbours have an edgel, only one if

picked depending on the current prediction. It is important to note that this

approach applies not only to the “down-right” move, but to all four diagonal

moves. To be more specific, if we are making a “down-left” move and there is

an edgel at the “down-left” pixel (x-1, y+1) marked as 1 in Fig. 3.5(d), then
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we check the neighbours (x, y+1) and (x-1, y). If any one of these contain

an edgel, then it is picked up and added to the current chain before we move

“down-left” to (x-1, y+1).

Figure 3.6: An example illustrating one edge segment creation starting at pixel
(11, 1). Two chains are created, which are then combined together
to create one edge segment. Coloured pixels have edgels. Dark gray

pixels are places where the prediction guides us in the correct
direction.

Fig. 3.6 illustrates the creation of an edge segment. Assume that we

start the segment creation at pixel (11, 1). Looking at this pixel’s neighbours,

there are two possible walks: One going “down” through (11, 2), one going

“down-right” through (12, 2). The arrows depict how PEL walks over the

edgels (denoted with gray colour) and obtain two chains. At each pixel, the

determination of the next pixel to move on to is made by the moves shown

in Fig. 3.5. The dark gray pixels in Fig. 3.6 are where the prediction guides

the walk one way rather than the other, and illustrates the importance of

using the prediction to obtain longer chains.
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Table 3.5: How PEL creates the chain going down from (11, 1)

Current
Pixel

Direction Comment

(11, 1) Down Check (11, 2): Full
(11, 2) Down Check (11, 3): Empty. Check (10, 3): Full
(10, 3) Down-Left Check (9, 4): Full
(9, 4) Down-Left Check (8, 5): Empty. Pred: Down. Check

(9, 5): Full
(9, 5) Down Check (9, 6): Full
(9, 6) Down Check (9, 7): Full
(9, 7) Down Check (9, 8): Full
(9, 8) Down Check (9, 9): Empty. Pred: Left. Check

(8, 9): Full
(8, 9) Down-Left Check (7, 10): Full
(7, 10) Down-Left Check (6, 11): Empty. Pred: Down.

Check (7, 11): Full
(7, 11) Down Check (7, 12): Empty. Pred: Left. Check

(6, 12): Full
(6, 12) Down-Left Check (5, 13): Full
(5, 13) Down-Left Check (4, 14): Full
(4, 14) Down-Left Check (3, 15): Empty. Pred: Down.

Check (4, 15): Empty. Check (3, 14): Full
(3, 14) Left Check (2, 14): Empty. Pred: Down.

Check (2,15): Full
(2, 15) Down Check (2, 16): Full
(2, 16) Down Check (2, 17): Full
(2, 17) Down End of chain

To better understand why PEL makes the moves depicted in Fig. 3.6,

Table 3.5 gives the details of the decision engine as PEL creates the chain

going down from (11, 1). During this chain creation, the prediction engine

helps PEL to make the correct decision at two locations as follows: At pixel

(9, 8), PEL is walking down and the pixel downstairs, i.e., (9, 9), is empty.

At this point there are two alternatives: PEL can walk down-left to (8, 9)

or down-right to (10, 9). PEL asks the prediction engine to guide it to the

left or to the right. The prediction engine performs an analysis of the last

8 moves (in fact there are only 7 moves to this point, i.e., down, down-left,

down-left, down, down, down, down) and concludes that PEL should check

the down-left pixel before the down-right pixel and guides PEL to the down-

left pixel at (9, 9). Similarly, at pixel (3, 14) PEL is moving left and the pixel

to the left, i.e., (2, 14), is empty. At this point there are two alternatives:
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PEL can walk down-left to (2, 15) or up-right to (2, 13). Again PEL consults

the prediction engine, which recommends PEL to check the down-left pixel

before the up-right pixel because over the last 8 moves, PEL made 2 “down”

and 5 “down-left” moves but no “up” moves. Although not given in Table

3.5, a similar analysis can be performed for the chain on the right side of

Fig. 3.6. At pixel (15, 6), the prediction engine guides PEL to the right

rather than to the left; at (19, 6) PEL is guided down rather than up, and

at (9, 16) PEL is guided to the left rather than to the right.

It is also important to note that after the two chains shown in Fig. 3.6

are obtained, they are joined together into one chain by taking the pixels

from one chain in the forward direction and the pixels from the other chain

in the backwards direction. This new chain makes up for the actual edge

segment to be returned by PEL.

3.3.3 JoinSegments: extending nearby edge segments

Although PEL uses a prediction engine to try to make the correct decisions

during a walk and obtain as long edge segments as possible, the structure

of the input BEM may lead to two or more edge segments during segment

creation that in fact should have been combined together into one edge seg-

ment.

Figure 3.7: An example illustrating PEL creating two edge segments that
should be joined together into one edge segment.

To understand the problem better, consider the illustration in Fig. 3.7.
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When this BEM is fed into PEL, two edge segments are created: one marked

with dark gray colour and the other marked with light gray colour. We

can imagine however that this BEM belongs to the boundary a rectangular

object and a single edge segment that traces the entire boundary of the

rectangle would be better to return, rather than two edge segments as PEL’s

segment creation algorithm would do. So after segment creation, we have a

new simple step named JoinSegments that groups neighbour edge segments

and joins them together. We define that two edge segments are neighbours

if the end point of one segment touches the other segment at some point

and their end points are at most five pixels away from each other. Using

this definition, the two edge segments in Fig. 3.7 are neighbours and can be

combined together. To combine the two edge segments in Fig. 3.7, we first

cut the superfluous pixels from the first segment; that is, pixels (13, 2), (14,

2) from one end, and pixels (3, 9), (3, 10) from the other. These are pixels

beyond the point where the second segment touches the first. Joining the

two neighbour segments after cutting of the superfluous pixels is simply done

by attaching the two chains together. By joining neighbour edge segments

together, PEL is able to create longer edge segments, which is important for

high-level processing after edge linking.

3.3.4 ThinSegments: thinning down and cleaning up edge seg-

ments

The final step of PEL is to thin down the created edge segments and to

remove the short ones from further consideration.
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Figure 3.8: The need for thinning of the edge segments: Traditional edge
detectors create multi-pixel wide edgels in a staircase pattern

especially around diagonally placed objects. The goal of thinning is
to remove superfluous edgels (light gray coloured ones) and return

one-pixel wide edge segments.

To see why thinning is necessary refer to Fig. 3.8, which shows a

BEM output by a traditional edge detector for a rectangular object placed

diagonally. As seen from the figure, there are multi-pixel wide edgels in

a staircase pattern around the diagonals, which must be thinned down to

one-pixel wide edgels. Specifically, the goal of thinning is to remove the

superfluous edgels (light gray coloured pixels in Fig. 3.8) from the chain

and to return a contiguous but one-pixel wide chain, i.e., the edge segment

consisting only of the dark gray pixels in Fig. 3.8. This is an easy procedure

to perform: We simply walk over the pixels of the edge segment and remove

a superfluous pixel when we see the staircase pattern depicted in Fig. 3.8.

After the edge segment goes through thinning, the last step is to check its

length and remove the segment from consideration if it is shorter than the

minimum segment length supplied by the user. This is important for cleaning

up noisy edgel formations in a BEM. Our observation is that a minimum

segment length of eight or ten pixels produces good, clean results without

omitting any important details.
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4. RESULTS AND EVALUATION

In this chapter we evaluate the performance of the proposed algorithms both

qualitatively and quantitatively. We use the visual experiments for qualita-

tive evaluation and the precision-recall within the framework of the Berke-

ley Segmentation Dataset (BSDS 300) [49, 50] for quantitative evaluation.

Qualitative evaluation alone is not enough as there is more than meets the

eye and further more qualitative evaluation does not express performance in

numbers so we have to couple it with qualitative evaluation which measures

performance numerically.

The Berkeley dataset is set-up as follows: The human segmented images

provide the ground truth boundaries. They considered any boundary marked

by a human subject to be valid. The ground truth constitute of a multiple

segmentation of each image by different human subjects [50].

Precision is the probability that a machine-generated boundary pixel

is a true boundary pixel. Precision measures how much noise is outputted

in the final edge map. Recall is the probability that a true boundary pixel

is detected. Recall measures how much of the ground truth is detected [50].

Precision-recall curves provide a good performance measure of the algorithm

performance as they both quantify it but however we need to use a single

number for measuring performance, this is achieved by using the F-measure

which is the harmonic mean of precision and recall [50].
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(a) OpenCV Canny
(Low: 20, High 40)

(b) CannySR: 303 edge
segments

(c) PEL: 311 edge
segments

(d) OpenCV Canny
(Low: 20, High 40)

(e) CannySR: 405 edge
segments

(f) PEL: 388 edge
segments

(g) OpenCV Canny
(Low: 20, High 40)

(h) CannySR: 212 edge
segments

(i) PEL: 200 edge
segments

(j) OpenCV Canny
(Low: 20, High 40)

(k) CannySR: 25 edge
segments

(l) PEL: 25 edge
segments

Figure 4.1: Canny edge maps, CannySR and PEL edge segments for 4 images.
The Canny edge maps were obtained by OpenCV Canny with low
and high threshold parameters set to 20 and 40 respectively. The

images were first smoothed by a Gaussian kernel with σ = 1.5. For
CannySR and PEL, edge segments shorter than 8 pixels have been

removed.
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Fig 4.1 shows the Canny edge maps and the corresponding edge seg-

ments obtained by CannySR and PEL for 4 images. The Canny edge maps

were obtained by OpenCV Canny implementation (cvCanny) with low and

high threshold values set to 20 and 40 respectively, and the Sobel kernel aper-

ture size set to 3. The images were first smoothed by a Gaussian kernel with

σ = 1,5 (cvSmooth) before edge detection. For CannySR and PEL results

look similar visually, it is very clear that both improve the modal quality of

Canny’s binary edge maps tremendously filling one pixel gaps and thus con-

necting disjoint edgel groups, removing noisy edgel formations, and thinning

down multi-pixel wide edgel formations to 1-pixel wide edge segments. Last

but not least, Canny’s BEM has been converted to edge segments, which can

now be used for higher level processing.

OpenCV Canny CannySR PEL

Figure 4.2: A close-up view of the two sections of Canny’s edge map and the
resulting edge segments by CannySR and PEL.

To better see the modal improvements made possible by CannySR and

PEL to Canny’s BEMs, consider Fig. 4.2 that shows a close-up view of the

two sections of Canny’s Lena BEM along with the resulting edge segments

by CannySR and PEL. All three problems that we mentioned for binary

edge maps have been solved: (1) One pixel gaps between edge groups have

been filled up and long edge segments have been obtained. This is more

evident in the vertical bar in the first row of Fig. 4.2. In Canny’s BEM, this
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section contains a lot of 1 pixel wide gaps, all of which have been filled up

and linked together by both CannySR and PEL as seen from their results.

(2) Noisy edgel formations have been removed. This can clearly be seen

in both Canny BEMs with many unattended, noisy edgel formations. All

of these noisy edgel formations have been removed by both CannySR and

PEL as seen in the second and third columns of Fig. 4.2. Recall that both

CannySR and PEL have a minimum segment length parameter. Segments

shorter than this threshold are removed after edge segment creation. In Fig.

4.2, edge segments shorter than 8 pixels have been removed as noise. (3)

Multi-pixel wide edgel structures have been thinned down to one-pixel wide

edge segments. This is more evident especially in diagonal edgel formations

(both 45 degree and 135 degree diagonals). Looking at these diagonal edgel

formations, we see the staircase pattern in Canny’s BEMs, whereas both

CannySR and PEL thin these edgel groups to 1-pixel wide edge segments

as seen in the second and third columns of Fig. 4.2. All and all, it is very

obvious from Fig. 4.1 and 4.2 that both CannySR and PEL greatly improve

the modal quality of BEMs of traditional edge detectors. It is also important

to stress once again that in addition to improving the modal quality of BEMs,

both CannySR and PEL return the result as a set of edge segments, each of

which is a contiguous chain of pixels. This makes it possible to post-process

these segments for such higher level applications such as line, arc, circle,

ellipse detection, image segmentation, edge segment validation etc.

Table 4.1: Running times of OpenCV Canny, CannySR, PEL and ED for the 4
test images in Fig. 9 on a Core i7-3770 CPU

Image
(512x512)

Canny (ms) CannySR (ms) PEL (ms) ED (ms)

Lena 5.20 5.64 2.62 4.32
Chairs 5.40 5.16 2.74 4.57
House 4.40 5.16 1.98 3.80
Circle 3.80 3.90 1.23 3.13

Table 4.1 shows the running time of OpenCV Canny, CannySR, PEL

and ED for the 4 test images in Fig. 4.1. The running times were obtained on

a PC with a Core i7-3770 CPU running at 3.40 GHz. For a fair comparison

with PEL, the running times for CannySR include just the edge linking

steps and not the edge detection step by Canny. We see from the table that

CannySR takes as much time as Canny, while PEL is at least 2 times faster
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than CannySR. Given that PEL’s performance is as good as CannySR, if not

better, and PEL requires but the binary edge map to be linked, we definitely

recommend PEL over CannySR. Table 4.1 also gives the running time of

Edge Drawing (ED) for comparison. We see that ED is faster than OpenCV

Canny in all cases and is a natural edge segment detector. To obtain the edge

segments for an image by first running Canny to get a binary edge map and

then PEL to convert the binary edge map to edge segments would obviously

be costlier. But in any case, PEL takes a very small amount of time and is

very useful in converting binary edge maps to edge segments.

In the rest of this section our goal is to quantitatively evaluate the

performance of the proposed edge linking algorithms to see the amount of

improvements made possible by CannySR and PEL over Canny, which is the

most widely used edge detection algorithm, and to compare and contrast their

performance to that of Edge Drawing (ED), which is a natural edge segment

detection algorithm. To this end, we make use of the Berkeley Segmentation

Benchmark Dataset (BSDS 300) [49, 50] and its precision-recall evaluation

framework.

BSDS has 300 images with 5 to 10 human annotated boundary ground

truth information for each image. 200 of the images are test images and are

used to tune up an algorithm’s parameters. The other 100 images are used

for testing an algorithm’s performance. Let the boundaries returned by an

algorithm for an image be A, and the ground truth boundary information

be GT . Then precision P , recall R and F − score, which is essentially the

harmonic mean of precision and recall, are defined as follows:

P = (A ∩GT )
A

(4.1)

R = (A ∩GT )
GT

(4.2)

F − score = 2PR

(P +R) (4.3)
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Figure 4.3: Precision, Recall and F-score curves for three Gaussian smoothing
kernels with different sigma values as the gradient threshold
changes for Canny, CannySR, PEL and ED. In all cases, ED

produces the best F-score values with CannySR and PEL being
close but much better than Canny.

Fig. 4.3 shows the precision, recall and F-score curves for Canny, Can-

nySR, PEL and ED as the gradient threshold is increased. Each column

in the figure represents the results for a Gaussian smoothing kernel with a

different sigma value. Specifically, in the first column, an input image is

smoothed with a kernel with σ = 1.5 before edge detection is performed.

In the second and third columns, the smoothing sigma is increased to 2.0

and 2.5 respectively. The x-axis in the graphs, i.e., the gradient threshold,

is the threshold used to suppress the pixels having a gradient value smaller

than the threshold. To obtain the results, we fix the gradient threshold at a

specific value and use the same threshold for all images in BSDS test set for

Canny and ED. Then the threshold is increased and a new set of results are

obtained until the maximum gradient value is reached.

As seen from Fig. 4.3, ED produces the best F-score values with Can-

nySR and PEL being close but much better than Canny in all cases. The

reason for CannySR and PEL’s performance improvement can be seen in the

precision curves. Since CannySR and PEL clean up Canny’s edge maps to

a great extent (as can also be visually observed in Fig. 4.1 and 4.2), the

precision curves jump up for CannySR and PEL compared to Canny. Al-
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though the recall performance for CannySR and PEL drops a little compared

to Canny, the big improvements in precision performance compensates the

loss in recall resulting in a much better F-score. We can also observe that

ED outperforms all other algorithms for most threshold values.

Table 4.2: Best F-scores for each algorithm for three Gaussian smoothing
kernels with different sigma values

Gaussian
Sigma

Best F-score

Canny CannySR PEL ED

1.5 0.5454 0.5527 0.5536 0.5576

2.0 0.5628 0.5678 0.5686 0.5705

2.5 0.5678 0.5719 0.5728 0.5744

Table 4.2 lists the best F-score values for each algorithm for three Gaus-

sian smoothing kernels. We can see from the table that both CannySR and

PEL substantially improve the performance of Canny while ED performs the

best.
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5. CONLUSIONS

In this thesis we propose two edge linking algorithms. The first algorithm

makes use of the Smart Routing (SR) step of the recently proposed edge

segment detection algorithm, Edge Drawing (ED), to convert Canny’s bi-

nary edge maps to edge segments; thus the name Canny SR. Both visual and

quantitative experiments show that CannySR improves the modal quality of

the binary edge maps produced by traditional edge detectors such as Canny.

The problem with CannySR though is that in addition to the binary edge

map on which the edge linking will be performed, it also requires the original

source image and the Gaussian sigma that was used to smooth the image

before the edge map was obtained. Although this may not be a problem in

certain cases, it is a big problem if we only have the binary edge map or if we

do not know how it was obtained. The second proposed edge linking algo-

rithm, named Predictive Edge Linking (PEL) that requires only the binary

edge map to work, thus overcoming the limitations of CannySR. PEL starts

at an arbitrary edgel in the edge map and walks over the neighboring edgels

until the end of an edgel chain is reached. During a walk, PEL consults a

prediction engine that, based on the last several movements, makes a rec-

ommendation for the next move. The experimental results show that PEL

performs as good as or even better than CannySR, substantially improves

the modal quality of binary edge maps, takes a very small amount of time to

execute and runs at least two times faster than CannySR. It is also important

to stress that both CannySR and PEL return their results as a set of edge

segments, each of which is a chain of pixels. The edge segments can then

be used in many high-level processing applications. We believe that both

CannySR and PEL will be very useful in many real-time image processing

and computer vision applications.
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