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Privacy-preserving collaborative filtering has been receiving increasing 

attention. There are various algorithms providing accurate recommendations while 

preserving privacy. Like collaborative filtering algorithms, privacy-preserving 

collaborative filtering methods might be subjected to shilling attacks. Such attacks 

are employed by malicious users to increase/decrease the popularity of some target 

items. They might affect the overall performance of recommendation systems. 

Therefore, it is imperative to design such attacks with privacy concerns, determine 

how robust the privacy-preserving collaborative filtering schemes are, how to find 

out fake profiles, and analyze them. 

In this dissertation, designing shilling attacks with privacy concerns is 

studied. Also, robustness analysis of various privacy-preserving collaborative 

filtering schemes (memory-based, model-based, and hybrid methods) is performed. 

Determining fake or shilling profiles from perturbed databases is scrutinized. 

Besides employing the modified existing detection methods, a new shilling attack 

detection algorithm is proposed. Real data-based experiments are conducted for 

assessing the overall performance. Empirical outcomes show that designing 

effective shilling attacks with privacy concerns is possible. Also, existing detection 

methods can be effectively used to determine fake profiles from masked data. In 

addition, the novel detection method is successful on filtering out shilling profiles. 

Compared to memory-based and hybrid schemes, privacy-preserving model-based 

recommendation algorithms are very robust against shilling attacks. 

 

Keywords: Privacy, Shilling, Robustness, Collaborative Filtering, Performance, 

Recommendation. 
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GİZLİLİK-TABANLI ORTAK FİLTRELEME  

METOTLARININ GÜRBÜZLÜĞÜ ÜZERİNE  

İhsan GÜNEŞ 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

Danışman: Doç. Dr. Hüseyin POLAT 

2015, 120 sayfa 

 

Gizlilik-tabanlı ortak filtreleme artan ilgi görmektedir. Gizliliği ihlal etmeden 

doğru öneriler üreten değişik algoritmalar vardır. Ortak filtreleme algoritmalarında 

olduğu gibi gizlilik-tabanlı ortak filtreleme algoritmaları da şilin ataklarına maruz 

kalabilir. Bu atakların amacı belli ürünlerin popüleritesini artırmak veya 

azaltmaktır. Bunlar sistemin genel performansını etkileyebilir. Bu nedenle, bu tür 

atakların gizliliği koruyarak nasıl tasarlanacağı, gizlilik-tabanlı ortak filtreleme 

algoritmalarının ne kadar gürbüz oldukları, şilin profillerin nasıl tespit edileceği ve 

bunların analizlerinin yapılması önemlidir. 

Bu tezde öncelikle gizlilik endişeleri olduğunda şilin atakların nasıl 

tasarlanacağı çalışılmıştır. Ayrıca gizliliği koruyan hafıza-tabanlı, model-tabanlı ve 

hibrit ortak filtreleme algoritmalarının gürbüzlük analizleri yapılmıştır. Şilin 

atakların maskelenmiş profiller içeren veri tabanlarında nasıl tespit edilebilecekleri 

araştırılmıştır. Varolan şilin profil tespit etme metotlarına ek olarak, yeni bir şilin 

atak tespit algoritması önerilmiştir. Genel performansın analizi için gerçek verilerle 

deneyler yapılmıştır. Bu deney sonuçları gizliliği koruyarak etkili şilin ataklarının 

tasarlanabileceğini göstermiştir. Ayrıca mevcut şilin profil tespit metotlarının 

maskelenmiş veri tabanlarında şilin ataklarını etkili şekilde tespit edebildiklerini 

göstermiştir. Bunlara ek olarak, yeni metodun şilin profilleri başarılı şekilde tespit 

ettiği gözlenmiştir. Son olarak, hafıza-tabanlı ve hibrit algoritmalara göre model-

tabanlı gizliliği koruyan ortak filtreleme algoritmalarının şilin ataklarına karşı daha 

gürbüz oldukları görülmüştür. 

 

Anahtar Kelimeler: Gizlilik, Şilin, Gürbüzlük, Ortak Filtreleme, Performans, 

Öneri. 
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1. INTRODUCTION 

 

With the fast improvements in the Internet technologies, e-commerce has 

attracted growing attention. Nowadays, many people favor shopping via the 

Internet. Customers can purchase different items such as books, music CDs, foods, 

and so on via the Internet thorough e-commerce companies. There are millions of 

items marketed in the e-commerce sites and consumers may have to select from 

millions of products. With the rise in the number of options; however, amount of 

information that consumers must take into account has also increased before the 

customers are able to choose which items meet their needs. Hence, e-commerce 

sites utilize collaborative filtering (CF) systems to help customers choose the right 

products. Online sellers receive help from these sites so that they can increase their 

sales and/or profits by giving suggestions to their customers (Schafer et al., 2001). 

The basic functions of CF systems cover recommending items to the 

consumers, giving personalized item information, reviewing community opinion, 

and offering community critiques. These systems are modelled for permitting users 

to locate the preferable items quickly and for preventing the system from the 

possible excess information. They employ data mining methods to control the 

similarity among thousands or even millions of data. There are three main processes 

in these systems: data collections and representations, similarity in determinations, 

and suggestion computations. 

In this chapter, brief information about CF systems is given. Then, how CF 

systems work and classes of CF systems are explained. There are different 

challenges that various CF systems face with. Thus, the challenges that CF systems 

expose and some developed methods to overcome them are explained. Next, the 

methods developed  for disguising data in CF systems are considered. Such methods 

are used to preserve privacy while still allowing CF scheems to produce 

recommendations with decent accuracy. Shilling attack problem is dealt with and 

the methods to overcome this problem are examined. Finally, contributions and 

organization of the thesis are given. 
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1.1. Collaborative Filtering 

 

CF schemes are primarily organized by e-commerce companies in order to 

increase sales by attracting and affecting customers. The term CF was first invented 

by the Tapestry system (Goldberg et al., 1992), which was originally sketched for 

e-mail filtering in the early 1990s. CF operates on collected preferences from many 

users and evaluates predictions depending on similar entities’ ratings by using a 

weighted average approach (Herlocker et al., 2004; Adomavicius and Tuzhilin, 

2005). Similarities are computed over all pairwise entries (either users or items) 

utilizing a similarity metric, such as Pearson’s correlation coefficient (PCC), cosine 

similarity, or trust (Sarwar et al., 2000a; Dokoohaki et al., 2010). Many successful 

CF systems with respect to the quality of predictions utilize user-based techniques 

(Bilge et al., 2012; Ortega et al., 2013; Wu et al., 2013). Those systems marketing 

over a large number of different sorts of items favor item-based solutions (Linden 

et al., 2003; Li et al., 2014; Zhang et al., 2014).  

CF methods have been successful in allowing the prediction of user choices 

in the recommendation systems (Hill et al., 1995; Ekstrand et al., 2011; Bobadilla 

et al., 2013). The goal of CF depicting the relationship between the 

individual and the available data is to further decide the similarity and deliver 

recommendations. How to term the similarity is an important problem. CF utilizes 

various similarity decision methods. One assumption is that similar users have 

similar choices in CF (Desrosiers and Karypis, 2011).  Predictions are often in two 

types: offering prediction for single items and top-N list items that would be 

preferred by an active user (a).  

The users are evaluated according to their choices by CF.  For this reason, a 

database of users’ preferences needs to exist. The preferences can be gathered either 

explicitly or implicitly. In the first case, the user’s participation is needed.  The user 

explicitly presents her rating of the given item. Such rating can, for example, be 

rated with a scale from 1 to 5. Implicit ratings are obtained from observing the user’s 

attitude. In the context of the Web, access logs can be controlled for deciding such 

implicit selections. For instance, if the user accesses the document, she implicitly 

rates it 1. If not, the document is supposed to be rated as 0 by the user (Grčar, 2004). 
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In a traditional CF process, provided a user-item matrix, a similarity metric is used 

for valuing the similarities between a and each user in the matrix. Then, the best 

similar k users are chosen as a’s neighbors. Finally, using a CF algorithm and the 

neighbors’ data, a recommendation for a target item (q) is approximated. The 

prediction (paq) is sent back to a. 

There are basically three classes of CF algorithms: memory-based, model-

based, and hybrid. Memory-based CF algorithms utilize either the whole or a 

sample of the user-item database to produce a prediction. The neighborhood-based 

CF algorithm, which is known as a prevalent memory-based CF algorithm, employs 

the following steps: compute the similarity or weight, wij reflecting distance, 

correlation, or weight between any two entities (users or items), i and j; establishes 

a neighborhood, and generates a prediction for the active user a by getting the 

weighted average of all the ratings of the user or item on a certain item or user, or 

using a simple weighted average (Herlocker et al., 2004). When the goal is to 

produce a top-N recommendation, k most similar users or items (the closest 

neighbors) after calculating the similarities need to be found. Upon that the 

neighbors are accumulated in order to get the top-N most frequently purchased 

items as the recommendation (Su and Khoshgoftaar, 2009). 

Model-based CF algorithms develop a model from the system data (user 

ratings), and this model is utilized for giving suggestions. There are many sorts of 

model-based algorithms including cluster models, probabilistic models, Bayesian 

network, rule-based methods, and dimensionality reduction methods. The 

clustering technique, for instance, first trials to separate the data set into groups of 

users (Sarwar et al., 2000a). The clustering method employed is the bisecting k-

means algorithm (Steinbach et al., 2000), a variant of the k-means clustering 

algorithm. The Bayesian network model expresses a probabilistic model for the CF 

problem (Breese et al., 1998). The rule-based technique applies association 

regulation discovery algorithms to find association between co-purchased products 

and then produces item suggestion based on the intensity of the association between 

items (Sarwar et al., 2000a). Billsus and Pazzani (1998) present a learning algorithm 

reporting the limitations of CF methods. Their suggested technique is based on 

dimensionality decrease through singular value decomposition (SVD) of an initial 



4 

 

matrix of user ratings. SVD is used for dimensionality reduction for advancing the 

functioning of the CF algorithm (Sarwar et al., 2000b). Russell and Yoon (2008) 

propose employing discrete wavelet transform (DWT) on recommender systems.  

For making the duration long enough prior to a prediction, data are transformed to 

these systems and reduced significantly. A new algorithm based on incremental 

SVD and generalized Hebbian algorithm is proposed (Polezhaeva, 2011). The 

user/item profiles are revised by the new algorithm effectively when a new user or 

a new item emerges.  It is not necessary to save the initial data matrix. 

Hybrid methods unite the advantages of memory- and model-based 

techniques for solving issues related to the limitations of pure CF. Recommendation 

functioning of these algorithms is most of the time better than some pure memory- 

or model-based CF algorithms. Probabilistic memory-based CF unites memory- 

and model-based approaches (Yu et al., 2004). This method utilizes a combined 

model built on the basis of a set of saved user profiles and benefits the posterior 

delivery of user ratings to make prediction.  Personality diagnosis is an illustrative 

hybrid CF method uniting memory and model-based CF algorithms and retaining 

some benefits of both algorithms (Pennock et al., 2000).  

 

1.2. Challenges of Collaborative Filtering Schemes 

 

CF systems yield quite successful results. Yet, their common use has revealed 

some real challenges (Schafer et al., 2007; Bobadilla et al., 2013; García et al., 

2013). The most important challenges are keeping privacy and being subject to 

shilling attacks. In addition to these challenges, other challenges can be recorded as 

accuracy, scalability, sparsity, synonymy, and so on. 

Privacy: If the users’ privacy is not sheltered by the CF system, the users may 

reject giving data at all or provide false information. Customers want to assure that 

their private and personal information are kept properly. Therefore, it is difficult to 

gather quality user data for CF goals. Having not enough quality user data causes 

poor recommendation and not accurate prediction for users. When privacy 

measures are in the system, it will be easy to collect trustable data (Canny, 2002a; 

Polat and Du, 2005a). 
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Shilling attacks: If the CF system is susceptible to outline injection attacks, 

in order to bias the suggestions and prediction, people may provide tons of positive 

or negative rates. Hateful users or service providers acting as a user may affect the 

popularity of some target items in terms of either increase or decrease.  For 

achieving that goal, such users or sites want to add false user profiles into data sets. 

Profile injection attacks are extensively utilized against CF algorithms (O’Mahony 

et al., 2004; Burke et al., 2005b).  

Accuracy: System accuracy is a fundamental matter for recommender 

systems. Users can easily estimate the accuracy of any system by searching and 

controlling recommendations for items. For such items the users may already have 

a choice. By providing lower quality suggestions, any system may collapse in 

meeting users’ expectations. As a result, much research has been performed in terms 

of evaluating and upgrading the accuracy of recommender systems (O’Mahony, 

2004; Herlocker et al., 2004; Choi and Suh, 2013).  

Scalability: If the system has high number of users and/or items data, 

traditional CF algorithms will have serious scalability problems, with 

computational resources reaching values above the practical or acceptable levels. 

Many systems have to react immediately to online requirements and make 

suggestions for all users independent of their purchases and ratings history. This 

history normally speaking demands a high scalability of a CF system (Schafer et 

al., 2007; Su and Khoshgoftaar, 2009). 

Data sparsity: Practically speaking, many recommender systems are utilized 

to estimate very large item sets. In this way, the user-item matrix used for filtering 

will be extremely sparse and the functioning of the prediction or recommendations 

of the CF systems are questioned. The data sparsity challenge emerges in various 

states. In particular, the cold start problem happens when a new user or item has 

just entered the system. It turns to be a challenge to find similar ones since there is 

scarce information. The cold start problem is also defined as either the new user 

problem or new item issue. New items cannot be suggested until some users rate it 

(Su and Khoshgoftaar, 2009). 

Synonymy: Synonymy is defined as the tendency of a number of the same or 

very similar items to have different names or entries. Most recommender systems 
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cannot find this latent association and in this way, handle these items differently. 

For instance, the seemingly different items “children movie” and “children film” 

are in fact the same item. Yet, memory-based CF systems would not able to find 

match between them to calculate similarity. Indeed, the extent of variability in 

descriptive term usage is greater than commonly questioned. The prevalence of 

synonyms lowers down the recommendation performance of CF systems (Su and 

Khoshgoftaar, 2009). 

In the literature, there are several reports proposed to focus on the 

abovementioned challenges (Sarwar et al., 2000a; Sarwar et al.,2002; Su and 

Khoshgoftaar, 2009). Since privacy and shilling attacks are essential for the overall 

success of CF schemes, both privacy and shilling attacks have been seriously 

investigated. There are many techniques proposed to accomplish confidentiality 

while achieving truthful recommendations (Agrawal and Srikant, 2000; Polat and 

Du, 2006; Troiano and Díaz, 2014). In parallel to this, there are many proposed 

algorithms to detect shilling attacks and enhance the robustness of CF schemes 

without privacy issues (Chirita et al., 2005; Burke et al., 2006a; Williams et al., 

2007; Sandvig et al., 2008; Cheng and Hurley, 2010b). However, as expected, 

privacy-preserving collaborative filtering (PPCF) might be questioned by shilling 

or profile injection attacks. On one hand, there are various PPCF schemes. On the 

other hand, CF schemes might be subjected to shilling attacks. Likewise, PPCF 

schemes might be subjected to such shilling attack. However, there is no report on 

PPCF schemes in terms of shilling attacks. Whether the proposed techniques for 

detecting and preventing shilling attacks in CF systems can be employed to PPCF 

schemes as well or not has not been studied. If they cannot be applied to PPCF 

algorithms, new methods should be developed for detecting and preventing profile 

injection attacks in PPCF techniques. In this dissertation, the abovementioned 

reports will be addressed. Recent reports on shilling attacks will be investigated. 

PPCF schemes will be evaluated in terms of profile injection attacks. New 

techniques will be explored to find and prevent shilling attacks in PPCF systems. 
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1.3. Privacy-Preserving Collaborative Filtering 

 

Personal privacy is one of the serious threats CF systems face with. For this 

reason, researchers apply data mining methods whose major concern is privacy.  

These methods are defined as PPCF schemes. PPCF is one of the privacy-

preserving data mining (PPDM) studies. After the research by Agrawal and Srikant 

(2000) and Lindell and Pinkas (2002), reports on PPDM have begun to increase. 

PPDM mediates privacy by several ways such as using techniques establishing 

anonymous results, randomization, cryptographic schemes, and so on. Aggarwal 

and Yu (2008) made surveys on PPDM models and algorithms. 

Privacy concerns in CF services were first mentioned by Canny (Canny, 

2002a; Canny, 2002b). The author suggests two different schemes for PPCF. In the 

first one, he explains a new method for CF that may help with protecting the privacy 

of individual data. This first technique deals with a probabilistic factor analysis 

model. Privacy protection is provided by a peer-to-peer protocol. In the second 

schema, he describes an alternative model. In the alternative model, users control 

all of their log data. He proposes an algorithm whereby a community of users can 

calculate a public “aggregate” of their data that does not expose individual users’ 

data. The aggregate permits personalized recommendations to be computed by 

either members of the community or outsiders.   

Polat and Du (2005a) utilized randomized perturbation techniques (RPTs) for 

establishing privacy in CF systems. In their technique, users perturb their data by 

adding random numbers to actual ratings. Such random numbers are chosen from a 

predefined distribution. It is based on the assumption that the value that will be 

hidden is x, then, to perturb x with RPT, a random number r is added to it.  

Ultimately, x + r takes place in the database rather than x. In another work, the same 

authors examined achieving referrals using item-based algorithms on binary ratings 

with providing users’ privacy (Polat and Du, 2005a). For disturbing users’ data, 

their suggestion was employing randomized response techniques (RRTs). In 

another study by Polat and Du  (2005c), how to offer SVD-based prediction with 

privacy was studied. RPT for achieving confidentiality was applied. The authors in 

(Polat and Du, 2005b) presented a scheme for binary ratings-based top-N 
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recommendation on horizontally partitioned data in which two parties own disjoint 

sets of users’ ratings for the same items while preserving data owners’ privacy. A 

privacy-preserving protocol for CF grounded on vertically partitioned data was 

proposed as well (Polat and Du, 2007). The users might disturb their private data 

differently. This causes inconsistently masked data. Polat and Du (2007) examine 

how inconsistent data perturbing affect accuracy and privacy. In their survey, Bilge 

et al. (2013) mainly concentrated on studying various privacy-preserving 

recommendation methods according to the data partitioning cases and the utilized 

methods for preserving confidentiality. The suggested schemes were discussed in 

terms of their limitations and practical implementation challenges. 

 

1.4. Shilling Attacks 

 

Intensely used by e-commerce web sites to increase sales, CF and PPCF 

schemes can be susceptible to shilling or profile injection attacks. Although shilling 

attack concept is first initiated by O’Mahony et al. (2002a, b), Dellarocas (2000) 

addressed fraudulent attitudes against reputation reporting systems. The goal in that 

study was to form more robust online reputation systems by identifying frauds. 

O’Mahony et al. (2002a, b) claimed susceptibilities of recommender systems 

against attacks to encourage specific recommendations. There are several studies in 

order to define such possible attacks, detect them, enhance robustness of 

recommender systems or develop robust algorithms against known attacks, and 

perform cost/benefit analysis. Moreover, there are a number of studies compiling 

up-to-date progresses in this area. Some researchers emphasized surveying on 

shilling attacks and their effects on recommendation systems. 

 Mehta and Hofmann (2008) surveyed about robust CF methods only. Some 

robust CF techniques via intelligent adjacent selection, association rules, 

probabilistic latent semantic analysis (PLSA), SVD, and robust matrix factorization 

(RMF) were evaluated. These methods fail in guaranteeing to produce robust 

recommendations under shilling attack scenarios. A relatively recent model-based 

approach, VarSelect SVD, was also evaluated to give robustness to recommender 

systems and its stability to shilling was shown. In another survey report, Sandvig et 
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al. (2008) tested robustness of several model-based CF methods such as clustering, 

feature reduction, and association rules. In particular, they applied principal 

component analysis (PCA) to compute similarities and Apriori algorithm to 

generate recommendations. According to the presented results, model-based 

approaches are considered to be more resistive to shilling attacks than conventional 

nearest neighbor-based algorithms. Zhang (2009c) presented a survey of research 

on shilling attacks, attack detection, and attack evaluation metrics. Zhang (2009c) 

explains some attack models like random, average, bandwagon, segment, and 

reverse bandwagon attack in addition to describing well-known attack detection 

approaches such as generic and model-specific assignments and addressing 

prediction shift, hit ratio, and ExptopN as evaluation metrics. 

In addition to the above mentioned survey papers, Mobasher et al. (2007a, b) 

classified attack forms by taking their dimensions into account, i.e., required 

knowledge to recognize the attack, intent of attacking, and volume of attack. In the 

conclusion of the paper, particular attacks with samples were described. In addition 

to analyzing attack types, the authors also covered detection methods and 

evaluation metrics in identifying shilling attacks. They also investigated responses 

of model-based, hybrid, and trust-based recommender systems against shilling 

attacks. Burke et al. (2005d) outlined some of the important problems for 

continuing research in robust CF systems such as attack models, algorithms, 

profiling methods, detection, and evaluation. Burke et al. (2011) discussed attack 

profiles and concentrated on in particular some of the attack detection methods and 

presented some of the robust algorithms. 

The research performed by Sandvig et al. (2008) concentrated on robust 

model-based algorithms only. Zhang (2009c) reviewed limited number of attack 

types, attack detection strategies, and evaluation metrics. The studies presented in 

(Burke et al., 2005d; Burke et al., 2011; Mobasher et al., 2007b; Mobasher et al., 

2007a) cover different aspects of shilling attacks. In a survey paper, Gunes et al. 

(2014) gave a comprehensive survey including research that has been carried out 

on the issue of shilling attacks so far as well as analyzed attack descriptions with 

details, detection methods, robust algorithm design, and cost/benefit analysis and 

metrics. 



10 

 

1.5. Contributions 

 

There are several studies suggesting to deliver recommendations while 

maintaining data confidentiality. Likewise, there are different studies targeting 

possible increases in the robustness of CF systems. Yet, as in CF schemes without 

privacy concerns, PPCF schemes can also be exposed to shilling attacks. Malicious 

users and/or sites might try to add fake profiles to obtain nuke and push attacks. 

This will make the robustness of such schemes worse. The main objective of the 

dissertation is studying PPCF schemes in terms of profile injection attacks. Main 

contributions of the dissertation can be summarized as follows. 

PPCF schemes mentioned in the literature are analyzed in details, and in this 

way survey study was conducted (Bilge et al., 2013). Considering various 

partitioning cases, distributed systems are surveyed for their computational and 

application level drawbacks. Bilge et al. (2013) examine privacy-preserving 

measures used in PPCF methods like randomization, cryptography, anonymization, 

and so on. In this research, a brief explanation was given regarding the evaluation 

of the overall performance of PPCF schemes.   

Shilling attacks against various CF algorithms are surveyed in details (Gunes 

et al., 2014). Several works with respect to shilling attacks were examined. 

Arrangements are explained briefly for categorizing shilling attacks and introducing 

new ones. Major research directions (attack types, attack detection, robust 

algorithms, and cost/benefit analysis) are studied. Since evaluation takes attention 

of most of the researchers, detailed explanation of evaluation methodology, 

benchmark data sets, evaluation measures, and briefly discuss cost in terms of 

shilling attacks are given in details. 

Although PPCF methods can be manipulated through shilling attacks, their 

robustness against specific attack strategies has not been evaluated explicitly. 

Furthermore, techniques to establish shilling attacks against masked data have not 

been studied. Two widespread memory-based PPCF schemes based on two 

variations of the neighborhood-based prediction algorithm are tested (Gunes et al., 

2013a, b). Design methodologies are proposed to modify some principal attacks to 

be applied in privacy-preserving environments. Six attack strategies, i.e., random, 
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average, bandwagon, and segment push attacks and reverse bandwagon and 

love/hate nuke attacks are formed for PPCF schemes. Two primary memory-based 

PPCF algorithms are tested in terms of robustness when exposed to formerly 

suggested attacks. It is experimentally depicted that while the PPCF algorithms are 

very robust against a couple of attacks, they are still as susceptible as well 

established CF schemes against other types of attacks. 

In these previous studies, two memory-based algorithms were studied to show 

robustness of them against these attacks. The question of whether or not model-

based PPCF schemes are robust against shilling attacks is inspected (Bilge et al., 

2014). Robustness of four state-of-the-art model-based PPCF schemes is checked 

against six attack models. The six attack models are constructed for manipulate 

private preference collections. The model-based schemes that are investigated are 

k-means-, SVD-, item-, and DWT-based PPCF schemes. Revised forms of random, 

average, bandwagon, and segment push attacks along with reverse bandwagon and 

love/hate nuke attack models are employed against such PPCF schemes. 

In addition to memory- and model-based PPCF schemes, there are hybrid 

PPCF schemes. Thus, robustness analysis of a hybrid PPCF scheme is conducted 

(Gunes and Polat, 2015a). The analysis shows that the hybrid scheme is also 

vulnerable against shilling attacks.  

Detecting these types of attacks and lowering their effects for 

recommendation systems to function correctly are significantly essential. Various 

detection methods developed and applied to CF algorithms are cited in the 

literature. However, any work related to detecting the shilling profiles in PPCF 

algorithms was not performed so far. In this contribution, the most commonly used 

detection methods applied to CF algorithms are applied for PPCF schemes. In order 

to test this purpose, the current detection approaches are rendered in such a way that 

they are applicable to PPCF techniques and experiments might be performed with 

real data. In practice, six of the modified attacking models formed previously for 

attacking PPCF algorithms are utilized. A new detection method for PPCF schemes 

is proposed (Gunes and Polat, 2015b). The novel scheme is based on hierarchical 

clustering. In order to improve the detection performance, analysis of the ratings of 

the target items is also proposed.  
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1.6. Organization of the Dissertation  

 

The rest of the dissertation is organized as follows: In Chapter 2, general 

background and preliminaries are explained. In Chapter 3, shilling attack models 

design against PPCF schemes are described in details. Chapter 4 presents shilling 

attacks against memory-based PPCF and two memory-based PPCF schemes’ 

robustness. Chapter 5 analyzes four model-based PPCF schemes if they are robust 

against several shilling attack models. In Chapter 6, a hybrid-based PPCF scheme 

is analyzed in terms of robustness. Chapter 7 scrutinizes how to detect shilling 

profiles inserted into PPCF systems’ databases. Finally, in Chapter 8, concluding 

remarks and recommendations for further research are discussed. 
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2. PRELIMINARIES 

In this chapter, general background and preliminaries on CF, PPCF, and 

shilling attacks are explained. Upon describing recommendation systems, CF 

prediction estimation algorithm is defined. Following that, randomization-based 

individual privacy protection mechanisms are explained. Then, shilling attack 

models mentioned in the literature are covered. The properties and the way they are 

formed are discussed. Finally, real data sets and evaluation metrics utilized in the 

tests are described. 

 

2.1. Prediction Estimation 

 

In a typical CF system, ratings are saved and a user-item matrix is established, 

Un×m, having preference information from n users on m items. During an online 

interaction with a CF system, an active user (a), who has the goal of getting a 

prediction for a target item q, directs her available ratings to the system. CF 

prediction approximation is a process with two-steps: (1) locating adjacent ones by 

calculating similarities between a and all other users in the system and (2) 

approximating a prediction as a weighted average based on favorites of the adjacent 

ones on q. Such similarities between a and any user u are computed by different 

techniques. PCC is one of the best similarity measures. PCC is shown in Eq. 2.1. 

This formulation was first mentioned in the GroupLens project (Resnick et al., 

1994). In that study, PCC was described as the basis for the weight calculation. The 

correlation between active user a and user u is computed as follows (Breese et al., 

1998): 

 
𝑤𝑎𝑢 =  

∑ (𝑣𝑎𝑗 − 𝑣𝑎̅̅ ̅)𝑗∈𝑀 (𝑣𝑢𝑗 − 𝑣𝑢̅̅ ̅)

√∑ (𝑣𝑎𝑗 − 𝑣𝑎̅̅ ̅)𝑗∈𝑀

2
 √∑ (𝑣𝑢𝑗 − 𝑣𝑢̅̅ ̅)𝑗∈𝑀

2
 

(2.1) 

in which vaj and vuj are the votes for item j by users a and u, respectively. Likewise, 

𝑣𝑎̅̅ ̅ and 𝑣𝑢̅̅ ̅ are the average votes of users a and u, respectively.  M  is the number of 

co-rated items by both a and u. Upon computing the similarities, the most similar k 

users are marked as neighbors (Herlocker et al., 2004). 
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GroupLens presented an automated CF system utilizing a neighborhood-

based algorithm (Resnick et al., 1994; Konstan et al., 1997). GroupLens gave 

personalized prediction for Usenet news articles. PCC was utilized by the original 

GroupLens system to weight user similarity. A prediction for a on q, given as paq, 

is generated as a weighted average of scores of the ones adjacent to each other on q 

by the formula given in Eq. 2.2. 

 
𝑝𝑎𝑞 = 𝑣𝑎̅̅ ̅ +  

∑ (𝑣𝑢𝑞 − 𝑣𝑢̅̅ ̅)𝑤𝑎𝑢
𝑁
𝑢=1

∑ 𝑤𝑎𝑢
𝑁
𝑢=1

 (2.2) 

in which wau is the similarity weight between a and u. 

An extension of the GroupLens algorithm, which is used in the current study 

was proposed by Herlocker et al. (1999). The authors compared the performance of 

various normalization methods including the bias-from-mean, the z-scores, and the 

non-normalized ratings. The performance of z-scores was significantly better than 

the non-normalized rating method. The mean and the standard deviation of the z-

scores are 0 and 1, respectively. If the vuj is user u’s vote on item j, 𝑣𝑢̅̅ ̅ is the mean 

vote of the user u, and 𝜎𝑢 is the standard deviation for the user u, then the z-scores 

(zuj) can be given as follows: 

 𝑧𝑢𝑗 = (𝑣𝑢𝑗 − 𝑣𝑢̅̅ ̅) 𝜎𝑢⁄  (2.3) 

The differences in spread between users’ rating distributions were explained 

by Herlocker et al. (1999) converting ratings to z-scores. A weighted average of the 

z-scores is computed in the following way: 

 
𝑝𝑎𝑞 = 𝑣𝑎̅̅ ̅ + 𝜎𝑎 ×

∑ 𝑤𝑎𝑢 × 𝑧𝑢𝑞𝑢∈𝑁

∑ 𝑤𝑎𝑢𝑢∈𝑁
 (2.4) 

 
  

𝑤𝑎𝑢 =
∑ (𝑣𝑎𝑗 − 𝑣𝑎̅̅ ̅) × (𝑣𝑢𝑗 − 𝑣𝑢̅̅ ̅)𝑗∈𝑀

𝜎𝑎 × 𝜎𝑢
 (2.5) 

in which M is the item set rated by both the active user a and the user u. 𝜎𝑎 and 𝜎𝑢 

are standard deviations of the active user a’s ratings and the user u’s ratings, 

respectively. The similarities are calculated and the neighbors are selected based on 

such similarity weights. 
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2.2. Privacy Protection by Randomization 

 

Utilizing RPTs make privacy applications possible. A random value r by 

these methods is added to private data item x for covering that value. The purpose 

of a random number is to get a predetermined distribution in addition to data values 

saved in the database in the form x + r. Since recommendation systems are applied 

on accumulated data instead of individual data, the systems can successfully 

generate recommendation on the grouped and perturbed data. In PPCF schemes, 

there are two purposes of the privacy protection process in general. These are 

preventing server to learn true ratings and rated items.  Forming random values and 

accumulating them to their rates help with getting masked data. Users can also 

generate random values to add some of the randomly chosen unrated items. 

Gaussian or uniform distribution with zero mean (μ) and standard deviation (σ) are 

employed by the users for producing random values (Polat and Du, 2005a). In the 

PPCF scheme, z-score is applied by the users to normalize the ratings. The users 

define σmax (maximum standard deviation to produce random numbers) and βmax 

designating the maximum percentage of filling unrated items to be filled with noise. 

They choose σu and βu from the ranges (0, σmax) and (0, βmax), respectively. Data 

masking can be summarized as follows: 

1. Each user u computes their z-score values of their ratings.  

2. The users decide the values of σmax and βmax. 

3. βu and βu percent of their unrated items are selected by each user u 

randomly to be filled with random numbers. 

4. Then, standard deviation σu of random numbers is selected by each user u 

prior to performing random number distribution. The distribution of 

random numbers (either uniform or Gaussian) by coin tosses is determined 

by users.  

5. Random numbers (ruj values) for real ratings and unrated items are formed 

by users. Each user masks their z-score values through random value 

addition (z’uj = zuj + ruj). Each user ultimately fills the selected unrated 

items by the corresponding random numbers. 

6. Finally, the masked vectors are sent by users to the defined server. 
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2.3. Shilling Attack Models 

 

For increasing the robustness of a CF system against any possible attack, first 

for which aims attacks are conducted and how generally they are recognized need 

to be clarified. There are two possible common motivations behind almost all 

shilling attacks: to either push or nuke a specific item’s reputation to get economical 

advantage over competitors. Usually, a push attack is established to enhance the 

reputation of a target item so that the recommender system brings it back as a strong 

suggestion to their customers. Whereas, a nuke attack is planned to lower down the 

reputation of a target item. Thus, the probability of the target item being 

recommended will be low (Mobasher et al., 2007b).  

Prior to conducting any shilling attack, the attackers must be informed about 

the recommender system that they try to attack. Such information might cover but 

not limited to the average rating and standard deviation for each item and/or user in 

the user-item matrix, ratings distribution, and so on. Low-knowledge attacks must 

have system independent knowledge that might be received through public sources. 

However, very detailed knowledge about the recommender system and ratings 

distribution are required for high-knowledge attacks (Mobasher et al., 2007b). 

Compared to low- or high-knowledge attacks, the most information is necessary for 

informed attacks for the target CF system. It is essential to get the high degree of 

domain knowledge, which is required to choose proper items and ratings used to 

produce attack shapes (Burke et al., 2011).  

Attackers generally recognize shilling attacks by injecting an attack profile as 

shown in Fig. 2.1, which is first addressed by (Bhaumik et al., 2006; Mobasher et 

al., 2007b; Mobasher et al., 2007a) to mislead the CF system. Such profiles can be 

separated into four set of items. First, a set of items, IS, is determined by the attacker 

together with a particular rating function δ to establish the properties of the attack. 

Moreover, another set of items, IF, is chosen arbitrarily with a rating function θ to 

hinder detection of an attack. Ultimately, a sole item it is targeted with a rating 

function, ϒ, to establish a bias on. Residual items are left unrated shown as Iϕ in 

Fig. 2.1. An intelligent strategy for selecting filler items to realize more effective 

shilling attacks was suggested by (Ray and Mahanti, 2009a). Malicious user 
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functions as authentic users and forms false profiles (note that user choices about 

different items characterized in a vector is defined as the profile of that user). Then, 

these are directed by the user to the recommender system to attack (she injects such 

false profiles into the attacked system’s database). 

 

 

 

Figure 2.1. General form of an attack profile 

 

Typically, an attack is recognized by placing different attack profiles into a 

recommender system database to generate bias on chosen target items. Attacks 

might be employed for different aims and they can be separated into various 

dimensions like intent of attack and required knowledge (Lam and Riedl, 2004). 

Table 2.1 lists the most well-known attack types like random, average, bandwagon, 

segment, love/hate, and reverse bandwagon described by Mobasher et al. (2007b). 

Table 2.2 shows the attack profiles of popular attack types based on general attack 

profile given in Fig. 2.1. 

 

Table 2.1. Attack types according to intent and required knowledge 

 

 

 

 

 

 

 

Attack Type 
Intent Required Knowledge 

Push Nuke Low High 

Random    

Average    

Bandwagon    

Segment    

Reverse Bandwagon    

Love/Hate    
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Table 2.2. Attack profile summary 

 

 

As shown in Table 2.1, shilling attacks can be defined as either push or nuke 

according to their intent. Similarly, they are classified as low, high, or informed 

attacks relating to needed knowledge. Although some attacks can only be utilized 

for either to push or nuke an item, some can be employed for both intents. As could 

be seen in Table 2.1, attacks usually need low knowledge. Whereas, average attack 

requires high knowledge. The most well-known attack kinds can be shortly 

explained in the following. 

Random attack functions through attack profiles with ratings to randomly 

selected unfilled cells around system overall average and rmax or rmin to target item 

for push and nuke attacks, respectively (Burke et al., 2005a; Burke et al., 2005d; 

Burke et al., 2006a; Mobasher et al., 2007a; Mobasher et al., 2007b; Ray and 

Mahanti, 2009b). The alternative term for this type of attack is RandomBot attack 

(Lam and Riedl, 2004; Chirita et al., 2005). Average attack functions through attack 

profiles with ratings to arbitrarily selected unfilled cells around each item’s average 

and rmax or rmin to target item for push and nuke attacks, respectively. This attack 

needs high level knowledge. As a result, it is difficult to apply (Burke et al., 2006b; 

Mehta et al., 2007a; Mehta et al., 2007b; Mobasher et al., 2007b; Mehta and Nejdl, 

2008; Ray and Mahanti, 2009b). Alternatively, it is defined as AverageBot attack 

(Lam and Riedl, 2004; Hurley et al., 2007). In bandwagon or popular attack, an 

attacker produces profiles with elevated ratings to well-known products and the 

highest possible rating to the target item. In this way, injected profiles can easily be 

Attack Type 
IS IF 

𝐼∅ it 
Items Rating Items Rating 

Random Not used  
Randomly 

chosen 

System 

mean 
I – IF rmax/rmin 

Average Not used  
Randomly 

chosen 
Item mean I – IF rmax/rmin 

Bandwagon Popular items rmax 
Randomly 

chosen 

System 

mean 

I – 

{IF⋃IS} 
rmax 

Segment Segmented items rmax 
Randomly 

chosen 
rmin 

I – 

{IF⋃IS} 
rmax 

Reverse 

Bandwagon 
Unpopular items rmax 

Randomly 

chosen 

System 

mean 

I – 

{IF⋃IS} 
rmin 

Love/Hate Not used  
Randomly 

chosen 
rmax 

I – 

{IF⋃IS} 
rmin 
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related to other users in the system in terms of similarity and push the prediction to 

the target item. It is not difficult to apply this attack since it needs public knowledge 

rather than domain specific knowledge and as effective as the average attack 

(O’Mahony et al., 2005; O’Mahony et al., 2006; Cheng and Hurley, 2010a). 

Segment or segmented attack is probed to target a specific group of users who have 

high intention to purchase a specific item. In attack profiles, attacker injects high 

ratings for the items the users in the segment probably will prefer to buy, and low 

ratings for others. Thus, similarity between users in the segment and injected 

profiles emerges as high probability, and the probability that the target item will be 

suggested will be high (Burke et al., 2005c; Burke et al., 2005b; Sandvig et al., 

2007). 

Reverse bandwagon attack is an alternative to bandwagon attack to nuke 

particular products. In this attack, profiles are produced according to low ratings to 

products with lower reputation and target item. Likewise, reverse bandwagon attack 

is comparatively easy to employ (Mobasher et al., 2007a; Zhang, 2009b). Love/hate 

attack is an exceptionally effective nuke attack. In this attack, randomly selected 

filler items are rated with the highest possible rating while the target item takes the 

lowest one in attack profiles (Mobasher et al., 2007a; Zhang, 2009b).  

CF algorithms are often grouped into three major classes as mentioned before: 

memory-based, model-based, and hybrid CF algorithms. For approximating the 

predictions, memory-based ones function over the entire user-item matrix (Breese 

et al., 1998). Thus, their online performance is not good. Whereas, model-based 

algorithms first form a model off-line from user-item matrix; they then use that 

model to generate prediction online (Breese et al., 1998). Due to off-line model 

generation, their online performance is much more promising compared to 

memory-based schemes. Although model-based CF schemes are faster than 

memory-based ones, their accuracy is slightly worse than memory-based ones’ 

accuracy. The advantages of both memory- and model-based CF algorithms are 

united by hybrid approaches (Pennock et al., 2000). Since each of the three 

algorithms has different properties, upon intending to attack them, different shilling 

attack strategies should be built. 
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2.4. Data Sets and Evaluation Criteria 

 

This dissertation performed experiments on a variation of a well-known 

publicly available data set, MovieLens Public (MLP), which was collected by the 

GroupLens research team at the University of Minnesota 

(http://www.grouplens.org). The set contains 100,000 discrete votes on a five-star 

rating scale for 1,682 movies from 943 users.  

The performance of profile injections can be measured using various metrics. 

It is utilized the most frequently used metric in assessing shilling attack 

performance, i.e., prediction shift, which is defined as the average alteration in the 

predicted rating of an attacked item after the attack (Burke et al., 2005b). For 

measuring the performance of detection methods, the standard measurements of 

precision and recall are used. The basic definition of such metrics is given as 

follows (Han et al., 2011):  

Precision = Number of true positives / (Number of true positives + Number 

of false positives) 

Recall = Number of true positives / (Number of true positives + Number of 

false negatives) 

Since we are primarily interested in how successful the algorithms are in 

detecting the possible attacks, each of these metrics with respect to attack 

identification is controlled. Thus, number of true positives is the number of 

correctly classified attack profiles, while number of false positives is the number of 

authentic profiles misclassified as attack profiles, and number of false negatives is 

the number of attack profiles misclassified as authentic profiles.  

 

2.5. Experimental Methodology 

 

All-but-one experimentation methodology was used in the experiments. In 

this methodology, each user is defined as a test or an active user once and the 

remaining users are assigned to the training set. Moreover, two distinct target item 

sets were formed, each consisting of 50 movies for push and nuke attacks. Items 

were randomly chosen using stratified sampling. Intuitively, trying to push a 
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popular item or nuke an unpopular one is deemed to be unreasonable. Thus, push 

and nuke attack sets consist of items with averages within range 1-3 and 3-5, 

respectively. Table 2.3 shows the statistics of the selected target items. During the 

experiments, all target items were attacked for all test users in the system and 

predictions were estimated pre- and post-injection of attack profiles. Then, 

prediction shift values were calculated to indicate relative changes on estimated 

recommendations for each different attack model. Obtained empirical results for 

masked push and nuke attack models are presented. 

 

Table 2.3. Statistics of target movies 

 

Ratings Count 
Pushed Items Nuked Items 

1 – 2 2 – 3 3 – 4 4 – 5 

1 – 50  30 15 12 18 

51 – 150 – 3 5 6 

151 – 250  – 1 2 3 

250 and up – 1 1 3 
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3. SHILLING ATTACK DESIGN IN PIVACY-PRESERVING 

COLLABORATIVE FILTERING 

 

In PPCF applications, disguised data from users are gathered for protecting 

customers’ privacy. Although different attack models are planned against non-

private rating groups, they cannot be employed directly to databases with covered 

data. Since the preferences of the users are perturbed prior to submitting them to 

PPCF servers, an attacker can only collect information about the disguised ratings.  

This action needs some alterations to the attack models to be applied. Effects of 

various shilling attack strategies on privacy-preserving frameworks have not been 

investigated in details.  In this section, how to design six famous attack models so 

that they can be applied to perturbed data is described. 

Prior to the generation of different kinds of shilling profiles, the attackers 

must determine the random number distribution as uniform or Gaussian. Thus, 

random numbers might be generated and it is possible to choose σp uniformly 

randomly from the range (0, σmax] for each attack profile p. Upon determination of 

these parameters, the attacks can be formed on masked databases, as explained in 

the following subsections. After discussing how to establish push attack models, 

the design of nuke attack models will be analyzed in details. 

Values of the parameters defined in previous sections, required to produce 

shilling profiles, were selected as follows: (i) for the average attack model, α is 

constant at 0.25, which intuitively provides a sufficient interval to disguise an 

average of items, where σmax was chosen equal to two, (ii) the number of popular 

and unpopular items (c) for bandwagon and reverse bandwagon attacks, 

respectively was set at 10, (iii) the number of segmented items (h) for the segment 

attack was fixed at five and selected from the most-rated horror movies. In addition, 

users who positively rated at least 60% of five of these movies were included in the 

segment, and (iv) the constant multiplier (C) for the love/hate attack was set at four 

to insert high rating values into the filler items. The attacks were then generated 

based on these values. 
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3.1. Designing Push Attack Models 

 

3.1.1. Random attack model 

 

Random attack is comparatively easy to employ and a baseline model 

requiring low knowledge compared to the other attack models (Burke et al., 2005a). 

Accordingly, a random attack model can be characterized to attack databases 

including disguised data as follows: 

1. The set of chosen items is unfilled (IS = ∅). 

2. A total of l filler items (IF) are uniformly randomly chosen from the items 

except the target item (I – {it}) with respect to a predetermined value of 

filler size parameter. 

3. Utilizing the selected distribution, l+1 arbitrary numbers are produced with 

µ equal to zero and σ equal to σp. 

4. The highest value of the produced random numbers is allocated to the 

target item and the residual numbers are randomly allocated to the l filler 

items. 

5. All users can be targeted via the resulting shilling profiles. 

 

3.1.2. Average attack model 

 

It is difficult to apply average attack since it needs a high level of knowledge 

about the system (Zhang, 2009a; Gunes et al., 2014). The filler items have values 

around each item’s mean vote. This situation requires calculation of the average 

value of each item in the system. Correspondingly, average attack profiles should 

be altered. They can be utilized for attacking the disguised databases as follows: 

1. The set of chosen items is unfilled (IS = ∅). 

2. A total of l filler items (IF) are uniformly arbitrarily chosen from all items, 

excluding the target item (I – {it}), employing a predetermined value of 

the filler size parameter. 
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3. Utilizing the selected distribution, l random numbers (r1, r2, …, rl) are 

produced in the interval [–α, α].  In this case, α is a disguising parameter 

utilized to evade discovery of the attack profile. 

4. Each derived random number is inserted to the resultant item’s mean vote, 

i.e., vi = xi + ri, i = 1, 2,… l, where xi is the mean number of votes for the 

item i and vi resembles the value for the item i in the shilling profiles. 

5. Ultimately, utilizing the selected distribution, l additional random numbers 

(t1, t2, …, tl) are produced.  In this equation, µ is equal to zero and σ is 

equal to σp. The highest value of the produced arbitrary numbers is 

appointed to the target item, i.e., it = max(ti). 

6. All users can be targeted via the resulting shilling profiles. 

 

3.1.3. Bandwagon attack model 

 

Bandwagon attack is also known as popular attack. The bandwagon attack is 

a low-knowledge push attack that needs public information about items. Items 

known to be popular are given high ratings in shilling profiles to misuse users’ 

interest in generally valued items (O’Mahony et al., 2005). The same strategy can 

be employed for forming the attack model for privileged collections. Although 

users mask their choices prior to submission, popular items can still be identified 

with some accuracy by depending on amassed data as the number of users increase 

in the system. Average votes for items can be approximated as follows:  

 
𝑉𝑗

′̅ =
∑ 𝑣𝑗

′
𝑗∈𝑁

#𝑁
=

∑ (𝑣𝑗 + 𝑟𝑗)𝑗∈𝑁

#𝑁
=

∑ 𝑣𝑗 +𝑗∈𝑁 ∑ 𝑟𝑗𝑗∈𝑁

#𝑁
≈

∑ 𝑣𝑗𝑗∈𝑁

#𝑁
≈ 𝑉𝑗̅ (2.6) 

in which 𝑉𝑗
′̅ is the average number of votes computed from the masked data, 𝑉𝑗̅ is 

the real average for item j, and N is the set of users who rated item j. As N enlarges, 

the expected value of the average of the random numbers tends to converge to zero 

since they are all produced from a zero-mean distribution. In this way, the disguised 

bandwagon attack can be applied as follows: 

1. Among the items with the highest means, a total of c items with high 

reputation are chosen (IS = {p1, p2, …, pc}). 
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2. A total of l filler items (IF) are uniformly arbitrarily chosen among all 

products except the target item and the chosen items (I – {it ∪ IS}) utilizing 

a predetermined value for the filler size parameter. 

3. Utilizing the selected distribution, l+c+1 random numbers (r1, r2, …, rl+c+1) 

are formed, where the mean is equal to zero and σ is equal to σp. 

4. The highest value of the produced arbitrary numbers is appointed to the 

target item. 

5. Then, the top c of the residual arbitrary numbers are randomly appointed 

to items with higher reputation. 

6. Ultimately, the residual arbitrary numbers are randomly placed into l filler 

items. 

7. All users can be targeted via the resulting shilling profiles. 

 

3.1.4. Segment attack model 

 

Segment attack model targets a subset of users with interest in a specific kind 

of item, such as fantastic movies or jazz music (Burke et al., 2005c). The segment 

consists of users who have rated highly most of the chosen items. Thus, the attacker 

attempts to misuse the segmented users’ positive interest in the specific items to 

push approximated prediction for a target item. Attack profiles targeting segmented 

users can also be formed in reserved systems as follows: 

1. A total of h items with high average ratings are chosen with a certain and 

common property (IS = {p1, p2, …, ph}). 

2. A total of l filler items (IF) are uniformly arbitrarily chosen among all items 

except the target item and chosen items (I – {it ∪ IS}) utilizing the 

predetermined value of the filler size parameter. 

3. Utilizing the selected distribution, l+h+1 random numbers (r1, r2, …, rl+h+1) 

are produced, where the average is equal to zero and σ is equal to σp. 

4. The highest value of the produced arbitrary numbers is appointed to the 

target item. 

5. Then, the top h of the residual arbitrary numbers are appointed randomly 

to chosen segment items. 
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6. Ultimately, the residual arbitrary numbers are randomly inserted into l 

filler items. 

Users to be attacked, or segmented users, are from reserved groups and have 

positively rated at least P% of the chosen items. 

The abovementioned four attack models are designed as push attacks to 

enhance the reputation of some targeted items in the disguised database. Besides 

these attack models, two more attack models are designed as nuke attacks to lower 

down the reputation of targeted items in the perturbed database. This will be 

discussed in the following sections. 

 

3.2. Designing Nuke Attack Models 

 

3.2.1. Reverse bandwagon attack model 

 

Reverse bandwagon attack is the nuking form of the bandwagon attack. It is 

intensely operational against item-based algorithms (O’Mahony et al., 2005).  This 

attack model does not need any system particular data, but it needs an accustomed 

knowledge of the product domain. This will be similar to the bandwagon attack 

effectively choosing the products with low reputation.  Consequently, reverse 

bandwagon attack profiles for disguised data can be formed utilizing a technique 

similar to the related bandwagon attack profiles with small differences as follows: 

1. From the products with the lowest means and ratings with the highest 

values, a total of c items with low reputation are chosen (IS = {p1, p2, …, 

pc}). 

2. A total of l filler items (IF) are consistently arbitrarily chosen from among 

all products except the target item and chosen items (I – {it ∪ IS}) utilizing 

the predetermined value of the filler size parameter. 

3. Utilizing the chosen distribution, l+c+1 arbitrary numbers (r1, r2, …, rl+c+1) 

are produced, where µ is equal to zero and σ is equal to σp. 

4. The minimum of the produced arbitrary numbers is appointed to the target 

item. 
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5. Then, the lowest c of the residual arbitrary numbers are appointed 

arbitrarily to chosen unpopular items. 

6. Ultimately, the residual arbitrary numbers are randomly placed into l filler 

items. 

7. All users can be targeted via the resulting shilling profiles. 

 

3.2.2. Love/hate attack model 

 

Love/hate attack is one of the most effective models to nuke prediction in 

user-based CF systems. Besides being simple, it is not necessary to have any 

knowledge about the system in this model (Mobasher et al., 2007b).  Utilizing the 

love/hate attack model to shill the disturbed database can be explained as follows: 

1. The set of chosen items is unfilled (IS = ∅). 

2. A total of l filler items (IF) are consistently arbitrarily chosen among all 

the products but the target item (I – {it}) utilizing a predetermined value 

of the filler size parameter. 

3. Employing the selected distribution, C×l arbitrary numbers are produced, 

where the average is equal to 0, σ is equal to σp, and C is a constant utilized 

to assure placing high ratings into the profiles. 

4. The highest l of the produced arbitrary numbers are randomly appointed 

to the filler items, while the minimum number is allocated to the target 

item. 

5. Any user can be directed via the resulting shilling profiles. 
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4. ROBUSTNESS OF MEMORY-BASED PIVACY-PRESERVING 

COLLABORATIVE FILTERING SCHEMES 

 

In this chapter, two memory-based PPCF algorithms are investigated, their 

robustness against several shilling attack strategies are analyzed. The effectiveness 

of the PPCF filtering algorithms in manipulating predicted recommendations are 

examined by experimenting on real data-based benchmark data set. It is shown that 

it is still possible to manipulate the predictions significantly on databases having 

disguised favorites even though a few of the attack strategies are not operational in 

a privacy-preserving environment. 

 

4.1. Introduction 

 

There are widespread reports concentrating on responses of recommender 

systems to promoting attacks in non-private schemes. Yet, they are not successful 

in protecting individual privacy. Further, previously suggested privacy increasing 

approaches employed to recommender systems have not been studied for their 

robustness against shilling attacks. Each group addresses only one side of 

recommender system technology. There are two techniques to determine neighbors 

entering into the prediction approximation procedure. In the previous method, 

among the neighbors, the most similar k neighbors are chosen. This approach is 

defined as the k-nearest neighbor (k-nn) recommendation algorithm. This algorithm 

tends to positively consider correlated neighbors only, organized by their similarity 

values (Herlocker et al., 1999; Herlocker et al., 2004). Contrary to this original 

method, a revised version of the k-nn algorithm, the correlation-threshold method, 

also takes negatively correlated users into account with absolute values of similarity 

higher than a threshold value (τ) (Herlocker et al., 1999). Due to the negatively 

correlated neighbors, absolute values of the similarity weights are used in the 

denominator of Eq. 2.5, which is defined previously. In this way, the revised version 

only filters out users with negligible correlation. However, it covers both positively 

and negatively correlated users in the prediction procedure. Thus, the exact number 

of neighbors is not obvious in the correlation-threshold algorithm.  
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In this part, two primary memory-based PPCF algorithms are tested in terms 

of robustness when exposed to previously suggested attacks. It is experimentally 

shown that while the PPCF algorithms are very robust against a couple of attacks, 

they are still as susceptible as usual CF schemes against other sorts of attacks. 

  

4.2. Experimental Evaluation 

 

Real data-based experiments are performed to estimate the effectiveness of 

our revised shilling attack models on two memory-based PPCF algorithms. Two 

control parameters, i.e., filler size and attack size, were employed in the current 

evaluations. These are considered for implementing successful shilling attacks in 

the literature (Bhaumik et al., 2006; Mobasher et al., 2007b). Filler size is the 

percentage of unfilled cells to be filled in bogus profiles, utilizing the rating 

function, θ, to hinder recognition of the attack, as explained in Section 3 (Bhaumik 

et al., 2006). Attack size is the number of attack profiles to insert, and this is directly 

proportional to the number of clients in the system (Mobasher et al., 2007b). For 

instance, five percent attack size is to have 50 attack profiles against a system 

holding initially 1,000 users. Privacy-preserving parameters are kept constant, βmax 

= 25% and σmax = 2. Such values are enough to give a decent level of individual 

privacy (Bilge and Polat, 2012). 

 

4.2.1. Empirical results 

 

Throughout the experiments, all focused products were attacked individually 

for all users in the system. Each prediction was approximated prior to and after 

inserting the false profiles. Then, the prediction shift values were evaluated to show 

the relative change in forecasted values for various attack models. The number of 

neighbor was set to 30, chosen from users who rated the target item for the k-nn 

algorithm. The absolute similarity threshold (τ) was 0.2 for the correlation-threshold 

algorithm. We present experimental results for push and nuke attacks objected for 

attacking disturbed databases in the following. 
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4.2.1.1. Evaluating the effects of push attack models 

 

To exhibit the effects of the revised push attacks on both of the memory-based 

PPCF algorithms, first experiments with varying filler size were conducted (from 

3% to 25%), which is a parameter directly related to the effect of the attack. During 

these tests, attack size was kept at 15%, which is the highest value in the trial, to 

enlarge the influence of the operations. The trials were repeated 100 times due to 

the randomization. The average results are shown in Fig. 4.1 and Fig. 4.2 for k-nn 

and correlation-threshold algorithms, respectively. 

 

 

 

Figure 4.1. Prediction shifts for varying filler size (k-nn algorithm) 

 

 

 

Figure 4.2. Prediction shifts for varying filler size (Correlation-threshold algorithm) 
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As indicated in Fig. 4.1 and Fig. 4.2, bandwagon and segment attacks are 

more efficient against PPCF algorithms. The revised bandwagon attack obtained a 

largest prediction shift of 1.37 and 0.94 for k-nn and correlation-threshold 

algorithms, respectively. The suggested segment attack is slightly more fruitful and 

steady, obtaining a prediction shift of nearly 1.45 for each algorithm. On a five-star 

scale, this prediction shift has importance. A highest average prediction shift of 1.34 

is calculated for the revised random attack against the k-nn algorithm.  Yet, this 

attack does not function sufficiently against the correlation-threshold algorithm. 

The mean attack is less fruitful but more steady than the random attack model for 

masked data and reaches a prediction shift of approximately 0.45 for both 

algorithms. There is inverse proportionality between filler size and prediction shift 

for all attack schemes. This is explained instinctively as the optimum value of filler 

size is interrelated with data density. In this way, the maximum prediction shifts are 

reached for 3% and 5% filler size, approximately close to the general density of the 

data set. 

Then another set of experiments was performed with differing attack size 

(from 1% to 15%) to inspect the effects on the prediction shift of the number of 

inserted profiles. During this set of trials, filler size is maintained constant at 15%.  

This was anticipated to maximize the influence. Experiments were reiterated 100 

times due to the randomization in the disturbance procedure. The general means of 

the results are shown in Fig. 4.3 and Fig. 4.4 for k-nn and correlation-threshold 

algorithms, respectively.  

 

 

 

Figure 4.3. Prediction shifts for varying attack size (k-nn algorithm) 
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Similar to the former experiments, the random attack functions well against 

the k-nn algorithm, obtaining a prediction shift maximum of 0.98. However, it is 

entirely ineffective against the correlation-threshold algorithm. Likewise, the 

average attack is not successful in all experiments for both of the algorithms due to 

the filler size. Moreover, both the bandwagon and segment attacks function 

similarly as in the case of the former experiments, except that the performance of 

the bandwagon is slightly better than the segment attack against the k-nn algorithm. 

Overall, it can be concluded that the prediction shift grows as the attack size 

increases, as instinctively anticipated. 

 

 

 

Figure 4.4. Prediction shifts for varying attack size (Correlation-threshold algorithm) 

 

Depending on the general prediction shifts indicated in Fig. 4.1 to Fig. 4.4, it 

is also concluded that the correlation-threshold algorithm is more robust than the k-

nn algorithm. This result is clarified through the neighbor choosing techniques of 

the two algorithms. The correlation-threshold algorithm accepts both negatively 

and positively correlated users. Yet, k-nn only covers strongly and positively 

correlated users. As the very nature of the attacks is to form a positive relationship 

with users, the k-nn algorithm is more susceptible to push attacks like random, 

average, bandwagon, and segment attacks. 

 

 



33 

 

4.2.1.2. Evaluating the effects of nuke attack models 

 

To show the effects of the revised nuke attacks on memory-based privacy-

protecting algorithms, new experiments with varying filler size and attack size were 

conducted. First, attack size is set to 15% to try the effects of differing filler sizes 

for both of the algorithms. The experiments were reiterated 100 times to generate 

randomness in the perturbation process. General means of the results for varying 

filler sizes are indicated in Fig. 4.5.  

 

 

 

Figure 4.5. Prediction shifts for varying filler size 

 

As shown in Fig. 4.5, the love/hate attack model is entirely impractical against 

both algorithms and never obtains a significant prediction shift with differing filler 

magnitudes. Even though the love/hate is an effective attack in non-private 

environments, it is not likely to achieve strong relationships depending on shilling 

profiles from the masking scheme. Appointing high z-score values does not assure 

high similarity values, since similarity weight is approximated via dot products and 

profiles also cover negative values. Whereas, reverse bandwagon functions 

effectively, in particular against the k-nn algorithm, reaching a maximum nuke 
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prediction shift of 1.75. Likewise to the outcomes of the push attacks, effects of the 

filler size are intensely related to the data set density. In this way, a lower prediction 

shift is obtained with greater values of filler size. Furthermore, correlation-

threshold algorithm is more robust compared to the k-nn algorithm (maximum 0.56 

nuke predictions), due to the reasons covered above. 

The next step of the experiment is to set the filler size to 15% to examine the 

effects of differing attack sizes for both of the algorithms. Once more the 

experiments are reiterated 100 times to produce randomness in the disturbance 

procedure. The results indicate that the love/hate attack cannot obtain any 

prediction shift (prediction shift values are all 0.0) for differing attack sizes in both 

of the algorithms. Contrary to the love/hate attack, in the case of bandwagon attack, 

increasing attack sizes results in growing prediction shift for both of the algorithms. 

However, the correlation-threshold algorithm is healthier than the k-nn algorithm. 

For the attack sizes of 1, 3, 6, 10, and 15 percent, the prediction shift values are -

0.04, -0.11, -0.19, -0.26, and -0.33 for the correlation-threshold algorithm while 

they are -0.15, -0.40, -0.66, -0.91, and -1.13, respectively for the k-nn algorithm.    

 

4.3. Conclusions 

 

Many studies have tested CF schemes without privacy concerns in terms of 

shilling attacks. Likewise, some researchers also explored recommendation 

algorithms with respect to privacy. On the one hand, there are helpful studies 

describing shilling attacks that fail to focus on privacy protection. On the other 

hand, various schemes are suggested to give recommendations on privacy without 

studying shilling attacks. Privacy-preserving prediction techniques can also be 

exposed to shilling attacks. These systems have not been assessed in terms of their 

robustness against profile injection attacks. Hence, two well-known memory-based 

PPCF algorithms subjected to shilling attacks were studied. New methods to form 

shilling profiles to be injected into masked databases in privacy-preserving 

prediction systems are proposed in the current work. Privacy-preserving k-nn and 

correlation-threshold algorithms with respect to their robustness are also intuitively 

assessed. Experimental outcomes indicate that these systems are also susceptible to 
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profile injection attacks, similar to classical CF schemes. Our suggested revised 

bandwagon, segment, and reverse bandwagon attacks obtained significant changes 

in generated prediction. However, it is exhibited that the revised love/hate model is 

not effective, which is attributed to the data masking mechanism. Moreover, it is 

empirically confirmed that the correlation-threshold algorithm is more robust than 

the k-nn algorithm, since its principle of establishing neighborhoods disproves the 

logic of shilling attack profile design. 

In the present section, the capacity for profile injection attacks to be 

successfully attached against memory-based privacy-preserving schemes is 

explored. The significance of experimental outcomes is that the outcomes verify 

the applicability of some attacks on recommendation schemes with privacy. This 

leads us to question the robustness of other techniques. Therefore, other ways of 

preserving individual privacy, such as data substitution techniques, and other 

schemes of giving private prediction, such as item- or model-based CF schemes 

with privacy, need to be explored against profile injection attacks.  
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5. ROBUSTNESS OF MODEL-BASED PIVACY-PRESERVING 

COLLABORATIVE FILTERING SCHEMES 

 

In this chapter, robustness of four well-known privacy-preserving model-

based recommendation methods against six-shilling attacks is investigated. First, 

disguised data-based profile injection attacks are employed to privacy-preserving 

k-means-, DWT-, and SVD-, and item-based prediction algorithms. Then complete 

experiments are conducted using real data to assess their robustness against profile 

injection attacks. Next, non-private model-based methods are compared with their 

privacy-preserving correspondences in terms of robustness. Furthermore, well-

known privacy-preserving memory- and model-based prediction techniques are 

compared with respect to robustness against shilling attacks. Experimental analysis 

indicates that couple of model-based schemes with privacy is very robust. 

 

5.1. Introduction 

 

PPCF schemes are generally classified as either memory- or model-based 

schemes. Memory-based methods with privacy are the simplest heuristic 

techniques. It is not difficult to implement such techniques in the process of 

generating predictions. Because memory-based algorithms work online, inserting a 

new user or item into the collection is facile. It is not required to assess the content 

of the suggested products. The mechanism scales well with co-rated items. 

Whereas, in scaling these systems the data size might be an obstacle. When a new 

user enters into the system, suggestion for that user might not be possible due to 

data sparseness. Privacy-preserving model-based CF algorithms generate a model 

relying on user ratings as well as giving prediction. Even though they function better 

in terms of scalability and sparsity issues, employing them is harder compared to 

memory-based ones. Using the model, they find either item or user similarities off-

line. When a new item or user is inserted, a fresh model should be established. Yet, 

this procedure is computationally costly. Further, useful data can be wasted during 

a particular model generation. This may decrease accuracy. 
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CF schemes without privacy concerns are explored in terms of profile 

injection attacks. Various methods are suggested to solve the shilling issue.  

Similarly, several PPCF schemes are recommended to overcome the privacy 

problem. In addition to protecting confidentiality, preventive techniques for PPCF 

schemes against shilling attacks are also claimed. However, there are not sufficient 

studies to inspect PPCF schemes with respect to shilling attacks. There are not many 

researches on PPCF’s robustness against shilling attacks. In the previous chapter, 

couple of memory-based PPCF schemes are investigated with respect to shilling 

attacks. In this chapter, the issue of whether or not model-based PPCF schemes are 

robust against shilling attacks is tested. Robustness of four state-of-the-art model-

based PPCF schemes is controlled against six attack models. These models are 

planned to manipulate private preference collections. Investigated model-based 

schemes are k-means-, SVD-, item-, and DWT-based PPCF schemes. Revised 

versions of random, average, bandwagon, and segment push attacks along with 

reverse bandwagon and love/hate nuke attack models are employed against such 

PPCF schemes. 

 

5.2. Model-based Collaborative Filtering Schemes 

 

 In this section, four state-of-the-art model-based CF algorithms covered in 

this study are described to give the reader a background on recommendation 

mechanisms of algorithms. 

 

5.2.1. k-means clustering-based collaborative filtering 

 

In the k-means clustering algorithm, initial objects for cluster centers are 

arbitrarily selected. Each article is then appointed to the closest cluster based on 

similarity scale. In each repetition, cluster centers are re-approximated as the mean 

of the articles. This algorithm is completed when there is no change observed in the 

cluster members. k-means clustering is also utilized for solving the scalability issue 

in CF (Kim et al., 2011). k-means clustering-based CF algorithm places user 
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profiles into k clusters off-line. When an active user a wants a prediction for item 

q, the server decides a’s similarity to each cluster center using PCC as follows: 

 
𝑤𝑎𝑐 =

∑ (𝑣𝑎𝑗 − 𝑣𝑎̅̅ ̅)𝑚
𝑗=1 (𝑣𝑐𝑗 − 𝑣𝑐̅)

𝜎𝑎𝜎𝑐
         (5.1) 

in which c is cluster center, 𝑣𝑎̅̅ ̅ and 𝑣𝑐̅ are average ratings of a and the cluster center 

c, respectively.  Similarly, σa and σa are standard deviations of the ratings of a and 

the cluster center c, respectively.  Further, vij, usually, is the rating of user i on item 

j. The cluster with the largest similarity with a is decided. After that the similarities 

between a and her cluster members are computed. In this way, clustering in CF 

reduces down similarity procedure by computing similarities between a and her 

cluster members only rather than all users within the system. Prediction for a on 

item q is computed as weighted mean of the neighbors’ z-scores as follows: 

 
𝑝𝑎𝑞 = 𝑣𝑎̅̅ ̅ + 𝜎𝑎 ×  

∑ 𝑧𝑢𝑞𝑤𝑎𝑢
𝑁
𝑢=1

∑ 𝑤𝑎𝑢
𝑁
𝑢=1

         (5.2) 

in which N is the number of users in the corresponding cluster, wau is the similarity 

between the active user a and the adjacent user u and zuq is the z-score of the user u 

on the item q. 

 

5.2.2. SVD-based collaborative filtering 

 

By increasing the number of users and/or items, CF systems might face with 

the scalability issue. For overcoming such an issue, it is possible to employ SVD 

for CF algorithms. SVD lowers down dimensionality of database containing 

user/item rates and increases the functioning of the CF algorithm. SVD is known as 

a matrix factorization method factoring an n × m matrix A into three matrices as A 

= USVT. Note that U and V represent two orthogonal matrices of size n × r and m 

× r, respectively, while r is the rank of the matrix A, and S is a diagonal matrix of 

size r × r having all singular values of matrix A on its diagonal entries. SVD-based 

CF algorithm is employed as a scalable technique (Sarwar et al., 2000b, Polezhaeva, 

2011). First, the empty user-item matrix A is filled through employing the mean 

item for items. Adding z-scores normalizes the filled matrix and Anorm is found. 
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Then, Anorm matrix is factored into three matrices as U, S, and V by using SVD. To 

get matrix Sk, r × r matrix S is reduced by choosing only k largest diagonal values, 

where k << r. 𝑈𝑘√𝑆𝑘 and √𝑆𝑘𝑉𝑘
𝑇 are then computed. The scalar product of ath row 

of 𝑈𝑘√𝑆𝑘 and the qth column of √𝑆𝑘𝑉𝑘
𝑇 is calculated, the outcome is de-normalized, 

and the prediction for user a on item q is approximated as follows: 

 𝑝𝑎𝑞 =  𝑣𝑎̅̅ ̅ +  [𝑈𝑘√𝑆𝑘(𝑎)√𝑆𝑘𝑉𝑘
𝑇(𝑞)].         (5.3) 

Note that paq is the prediction for the active user a on the aimed item q and 𝑣𝑎̅̅ ̅ is the 

a’s average rating. 

 

5.2.3. Item-based collaborative filtering 

 

While user- or memory-based CF methods indicate challenges as scalability 

and sparsity, item-based CF approaches are developed to solve these challenges 

(Desrosiers and Karypis, 2011; Sarwar et al., 2001; Wen and Zhou, 2012). Several 

commercial recommender systems are selected for assessing large items sets. Users 

can buy or rate a small amount of items on these systems. Likewise, a new user or 

item can be just entered into the system. In these circumstances, detecting similar 

objects can be difficult because of the insufficient information. Therefore, 

recommender systems based on neighbor algorithms may not produce a 

recommendation for a particular user. 

Item-based CF depends on calculating item-item similarities off-line. A set of 

items that are rated by a are explored. The algorithm then computes how similar 

they are to the item q. The most similar k items are decided as neighbors. After 

detecting the most similar item, the prediction is computed online through weighted 

mean of a’s ratings on these similar items. To compute item-item similarities, 

adjusted cosine item-item similarity metric can be used as follows: 

 
𝑠𝑖𝑚𝑖𝑗 =  

∑ (𝑣𝑢𝑖 − 𝑣𝑢̅̅ ̅)𝑢∈𝑈 (𝑣𝑢𝑗 − 𝑣𝑢̅̅ ̅)

√∑ (𝑣𝑢𝑖 − 𝑣𝑢̅̅ ̅)𝑢∈𝑈 √∑ (𝑣𝑢𝑗 − 𝑣𝑢̅̅ ̅)𝑢∈𝑈

 
        (5.4) 

in which U represents set of users who rated items i and j, vui is the rating for user 

u on item i, 𝑣𝑢̅̅ ̅ is the mean rating for user u, and simij is the resemblance weight 
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between i and j. Prediction for user a on item q is ultimately computed by 

calculating weighted sum of a’s ratings for similar item as follows: 

 
𝑝𝑎𝑞 =  

∑ 𝑣𝑎𝑗𝑠𝑖𝑚𝑗𝑞𝑗∈𝑁

∑ 𝑠𝑖𝑚𝑗𝑞𝑗∈𝑁
         (5.5) 

in which N is q’s neighbors and vaj is the rating for user a on item j.  

 

5.2.4. DWT-based collaborative filtering  

 

One of the methods employed for data reduction is called DWT. DWT-based 

CF schemes are planned to solve the scalability issue of memory-based 

recommendation techniques. DWT was first utilized by Russell and Yoon (2008) 

to reduce the amount of items for obtaining scalability in recommendation 

procedure. The scheme divides the original user-item matrix into two components 

for each pair. These constituents are called approximation and detail coefficients, 

which are shown as follows: 

 
𝐶𝑎𝑝𝑝𝑥 =  

𝑣𝑎𝑗 +  𝑣𝑎(𝑗+1)

√2
 & 𝐶𝑑𝑡𝑙 =  

𝑣𝑎𝑗 −  𝑣𝑎(𝑗+1)

√2
         (5.6) 

in which vaj is the rating for user a on item j. Even though each coefficient composed 

of half of the items, approximation coefficient has a large fraction of the 

information. DWT functions with successful transformations on approximation 

coefficient, which stores a large fraction of the original data. However, a small 

portion of information is lost in the procedure. Given an n × m matrix, DWT lowers 

down the size of the matrix to n × (m/2k) after k transformations. Russell and Yoon 

(2008) employed PCC to compute similarities among users by reduced data. Since 

the number of items is lowered down, computing similarities becomes faster. After 

the completion of similarity computing, the best N similar users are chosen as 

adjacent for a particular user a. The prediction for a is predicted by employing 

adjusted weighted sum CF technique.   
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5.3. Shilling Attacks against Model-based Prediction Schemes with Privacy 

 

On the one hand, model-based recommendation schemes are explored in 

terms of shilling attacks and their strength against profile injection attacks is 

assessed without thinking privacy safety. On the other hand, various schemes are 

offered to propose predictions using such model-based techniques while 

maintaining confidentiality without thinking shilling attacks. Yet, privacy-

preserving model-based CF algorithms should be evaluated with respect to strength 

against different shilling attacks because they might be exposed to such attacks. In 

this way, four well-known model-based CF schemes are scrutinized in terms of 

strength against six shilling attacks. 

Privacy-preserving k-means clustering-based CF scheme is suggested by 

Bilge and Polat (2013). The authors study how to propose k-means clustering-based 

predictions fundamentally while maintaining individual user’s privacy. Polat and 

Du (2005c) offered SVD-based CF having privacy protection. They employed 

RPTs for obtaining privacy in addition to proposing accurate suggestions. Due to 

z-score normalization, predictions are approximated as follows: 

 𝑝𝑎𝑞 =  𝑣𝑎̅̅ ̅ +  𝜎𝑎 × [𝑈𝑘√𝑆𝑘(𝑎)√𝑆𝑘𝑉𝑘
𝑇(𝑞)].            (5.7) 

Recall that 𝑣𝑎̅̅ ̅ and σa symbolize the active user a’s mean rating and standard 

deviation of her ratings, respectively; and 𝑈𝑘√𝑆𝑘(𝑎)√𝑆𝑘𝑉𝑘
𝑇(𝑞) is the scalar product 

of ath row of 𝑈𝑘√𝑆𝑘 and the qth column of √𝑆𝑘𝑉𝑘
𝑇. Polat (2006) extends item-based 

prediction algorithm by changing ratings into z-scores. Predictions are 

approximated with the equation shown below: 

 
𝑝𝑎𝑞 =  𝑣𝑎̅̅ ̅ + 𝜎𝑎 ×

∑ 𝑧𝑎𝑗𝑠𝑖𝑚𝑗𝑞𝑗∈𝑁

∑ 𝑠𝑖𝑚𝑗𝑞𝑗∈𝑁
.         (5.8) 

Notice that because z-scores (zaj values) are utilized, the weighted mean is de-

normalized by multiplying it with the a’s standard deviation (σa) and adding the a’s 

mean rating (𝑣𝑎̅̅ ̅). Also note that simjq symbolizes the similarity weight between 

items  j and q. Russell and Yoon (2008) do not count privacy preservation on DWT-

based CF scheme. Bilge and Polat (2012) suggest privacy-maintaining DWT-based 
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CF without putting users’ privacy at risk. Due to z-score normalization, Bilge and 

Polat (2012) calculate paq as follows: 

 
𝑝𝑎𝑞 = 𝑣𝑎̅̅ ̅ + 𝜎𝑎 × 

∑ 𝑧𝑢𝑞𝑤𝑎𝑢
𝑁
𝑢=1

∑ 𝑤𝑎𝑢
𝑁
𝑢=1

.         (5.9) 

in which wau is the similarity weight between users a and u; and zuq is the z-score 

of user u on item q.  

In this thesis, four privacy-preserving model-based CF schemes are 

scrutinized with respect to strength against six well-known shilling attacks. Four of 

these attacks are push attacks (random, average, segment, and bandwagon attacks). 

These push attacks target to enhance the reputation of target items. Two of them are 

known as nuke attacks (reverse bandwagon and love/hate attacks). These two 

attacks are utilized to lower down the popularity of target items.  

In PPCF schemes, users mask their personal and private data before uploading 

them on CF systems. As a result, it becomes difficult to employ traditional shilling 

attack models against PPCF systems. Because of the disguised ratings in PPCF 

schemes, the attackers need some revision on conventional attack models. Gunes et 

al. (2013b)  redesign traditional attack models against disguised databases. Then 

the robustness of memory-based CF scheme against six modified shilling attack 

models is explored. As stated by Gunes et al. (2013b), attackers have to determine 

on random number distribution as either uniform or Gaussian to produce arbitrary 

numbers. Furthermore, σ is chosen uniformly arbitrarily from the range (0, σmax] for 

each attack profile prior to producing shilling profiles. 

5.4. Experimental Evaluation 

To indicate the effects of the six shilling attack models on four model-based PPCF 

algorithms, real data-based experiments were performed. Effects of shilling attacks 

were assessed in terms of the two control parameters, filler size and attack size. 

Empirical outcomes show that model-based PPCF schemes are more robust than 

memory-based ones. 
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5.4.1. Empirical results 

 

5.4.1.1. Effects of filler size parameter 

 

Experiments were conducted with the aim of showing the effects of the 

disguised push and nuke attack models with changing filler size values on four 

privacy-preserving model-based recommendation algorithms. Filler size is directly 

correlated to the success of a conducted attack since filler items establish the base 

for leaking into neighborhoods of genuine users in the recommendation procedure. 

Since βmax is set to 25% initially, during the tests, filler size is changed from 3% to 

25%.  Further, attack size is kept constant at 15%, which is the highest value of 

attack size value tested. The number of predefined clusters is considered as three 

for k-means clustering-based PPCF and a three-level alteration is conducted for 

DWT-based PPCF scheme, as it is mentioned to be optimal by Russell and Yoon 

(2008) and Bilge and Polat (2012). Experiments were repeated 100 times due to the 

necessity of establishing randomization in the disturbance procedure and mean 

outcomes are given. Prediction shifts for DWT- and k-means clustering-based 

PPCF schemes are shown in Fig. 5.1 and Fig. 5.2, respectively due to relatively 

high shifts. Yet, prediction shifts for SVD- and item-based PPCF algorithms are 

given in Table 5.1 due to smaller shifts being closer to zero. 

 

 

 

 

Figure 5.1. Prediction shifts for varying filler size (DWT-based scheme) 



44 

 

 

 

Figure 5.2. Prediction shifts for varying filler size (k-means-based scheme) 

 

As indicated in Fig. 5.1 and Fig. 5.2, DWT- and k-means clustering-based 

PPCF algorithms can be susceptible to shilling attack manipulations. In terms of 

DWT-based scheme, all attack models excluding love/hate attack obtain prediction 

shift values worth noting. A positive shift between 0.7 and 1.0 is possible for 

average and bandwagon push attack models. Segment and random attack models 

also have a prediction shift around 0.5. Moreover, as filler size expands, already 

achieved shifts significantly enhance for average push attack and slightly lower 

down for segment attack. This happens due to the alteration of the successive items 

together. As filler size expands, such alteration can be conducted between more 

items increasing success of average attack, which does not rely on particularly 

chosen items but using all filler items with their mean votes. However, segment 

attack heavily depends on a chosen category of items. As a result, the more the filler 

items are added into profiles, the less it is likely to keep such chosen items’ 

manipulation effects during alteration. The same case is also valid for bandwagon 

attack. However, it is not deeply affected from increases in filler size. Moreover, 

reverse bandwagon attack is also successful in decreasing the reputation of items. 

Love/hate attack is entirely ineffective. This again arises from the DWT-based 

algorithm’s alteration procedure. This diminishes the effects of “love” part of the 
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attack, i.e. all high values given to the filler items are normalized through the 

transformation. Therefore, it might be concluded that the DWT-based scheme is not 

strong against shilling revision. Yet, it is more resistant to attacks, which focus on 

chosen item strategy and profiles having all extreme values due to its normalization-

based approach. Similarly, k-means clustering-based recommendation scheme is 

not strong enough against random, bandwagon, segment, and love/hate attack 

models. This situation happens since such scheme does not change the profiles 

anyhow during the recommendation process. Therefore, proposed attacks can be 

more easily recognized as long as the attack profiles meet with genuine users in 

clusters. Thus, it obtains positive prediction shifts close to 1.5 and negative shifts 

as -2.0. This might be thought of highly significant in a five-star rating scale. 

Because the number of clusters is limited, such a scheme becomes susceptible to 

attacks such as memory-based algorithms. Moreover, when filler size expands the 

effects shrink, because more filler items aid the scheme discriminate attack profiles 

and instinctively cluster them together. However, discrimination mechanism over 

clusters is prone to group exceptionally similar attack profiles together as in average 

attack. As a result, as filler size expands average attack becomes less successful. 

 

Table 5.1. Prediction shifts for varying filler size 

 

Attack Type 
Filler Size (%) 

3 5 10 15 25 

SVD-based PPCF 

Random 0.0000 0.0000 0.0000 0.0001 0.0003 

Average 0.0001 0.0001 0.0002 0.0003 0.0003 

Bandwagon 0.0001 0.0001 0.0001 0.0001 0.0002 

Segment 0.0001 0.0002 0.0002 0.0002 0.0002 

Reverse BW -0.0014 -0.0015 -0.0016 -0.0016 -0.0016 

Love/Hate -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

Item-based PPCF 

Random 0.0172 0.0174 0.0178 0.0180 0.0183 

Average 0.0184 0.0188 0.0194 0.0199 0.0209 

Bandwagon 0.0169 0.0173 0.0179 0.0180 0.0180 

Segment 0.0710 0.0727 0.0754 0.0786 0.0805 

Reverse BW -0.0159 -0.0159 -0.0164 -0.0168 -0.0169 

Love/Hate -0.0181 -0.0181 -0.0182 -0.0182 -0.0186 

 

SVD- and item-based PPCF have strength against the employed attack 

models as shown in Table 5.1. SVD-based scheme is exceptionally strong against 
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manipulations as in the case of being in non-private schemes (Mehta and Hofmann, 

2008). Achieved prediction shifts are not significant for both of the push and nuke 

attacks. SVD is utilized in noise removal procedure usually.  As a result, it is 

successful in removing noisy effects of attack profiles. The item-based PPCF 

scheme is also resistant to such attacks. However, the origin of its resistance does 

not arise from its strong recommendation technique, but a natural defense 

mechanism due to production of the predictions based on item-item similarities. 

Since it is not sensible to add an item profile into a PPCF database, all attack models 

concentrate on inserting user profiles. This in turn gives item similarities-based 

recommendation schemes a strong mechanism. Compared to SVD-based PPCF 

scheme, item-based is slightly more susceptible to attacks. Yet, only two-digit 

fractions are achieved at most. This concludes that SVD- and item-based PPCF 

schemes function in a robust manner against shilling attacks. 

 

5.4.1.2. Effects of attack size parameter 

 

Another set of experiments was conducted to inspect the effects of the attack 

models with changing attack size values on model-based PPCF algorithms. Attack 

size is the second parameter directly affecting overall success of a profile injection 

attack. While the filler size parameter handles utility perspective of an attack, attack 

size concentrates on influence of such usefulness by deciding the number of bogus 

profiles to be added into a database. It is clear that the more attack profiles inserted 

into the system, the larger the obtained shifts are. However, it establishes a trade-

off between the detectability and the influence of the employed attack model. 

Therefore, for defining different effects of the attack size parameter, it is varied 

from 1% to 15% while the filler size is kept constant at 15%. As in the previous set 

of tests, initial number of clusters is set to three for k-means clustering-based PPCF 

and a three-level alteration is conducted with the DWT-based scheme. Likewise, 

the experiments were repeated 100 times in order to generate randomization. 

Average prediction shifts values for DWT- and k-means clustering-based PPCF 

schemes are shown in Fig. 5.3 and Fig. 5.4, respectively. Experimental results for 

SVD- and item-based PPCF schemes are listed in Table 5.2. 
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Figure 5.3. Prediction shifts for varying attack size (DWT-based scheme) 

 

 

 

Figure 5.4. Prediction shifts for varying attack size (k-means-based scheme) 

 

As shown in Fig. 5.3 and Fig. 5.4, effects of the applied attacks become more 

significant as the attack size expands excluding for the love/hate attack in the DWT-

based scheme and reverse bandwagon attack in k-means clustering-based scheme. 

These two attacks are not effective in corresponding recommendation schemes 

because of already described reasons in the previous section. Besides these two 
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attacks, residual ones obtain a decreasingly rising trend for all of the attack models. 

The most effective push attack is an average attack. Since DWT procedure changes 

ratings by taking Haar transform of successive two votes, the loss in information 

becomes minimum and attack profiles can be still effective. It needs to be 

mentioned that random and segment attacks function very similar against DWT-

based PPCF scheme for changing attack size values as indicated in Fig. 5.3. This 

happens because of the transformation procedure of the DWT-based scheme, which 

reduces the special interest given to segmented products in segment attack useless 

and makes it very similar to the random attack model. The highest push and nuke 

prediction shifts are achieved around 15% attack size. Yet, shifts at 10% are also 

very close to the highest ones. Therefore, employing a 10% attack size might 

maximize the benefit achieved from and lowers down cost of the attack. Further, 

adding less profiles hinders finding the attack. In particular, for k-means clustering-

based PPCF, which has higher capacity of finding attacks, it might be more 

beneficial to prepare less profiles, i.e. keep attack size small. As a result, it can be 

finalized that DWT- and k-means clustering-based PPCF schemes can be exposed 

to profile injection attacks with significant prediction shifts.  

 

Table 5.2.  Prediction shift values for varying attack size 

 

Attack Type 
Attack Size (%) 

1 3 6 10 15 

SVD-based PPCF 

Random 0.0000 0.0000 0.0000 0.0001 0.0003 

Average 0.0000 0.0000 0.0000 0.0001 0.0003 

Bandwagon 0.0000 0.0000 0.0000 0.0001 0.0001 

Segment 0.0000 0.0000 0.0000 0.0001 0.0001 

Reverse BW -0.0001 -0.0003 -0.0006 -0.0013 -0.0016 

Love/Hate -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

Item-based PPCF 

Random 0.0171 0.0172 0.0172 0.0172 0.0172 

Average 0.0182 0.0185 0.0188 0.0197 0.0199 

Bandwagon 0.0175 0.0178 0.0179 0.0180 0.0181 

Segment 0.0639 0.0701 0.0728 0.0749 0.0786 

Reverse BW -0.0160 -0.0164 -0.0167 -0.0169 -0.0174 

Love/Hate -0.0180 -0.0181 -0.0181 -0.0181 -0.0182 

 

Since filler size parameter’s utilization characteristics do not affect the SVD- 

and item-based PPCF schemes, as shown in the previous set of experiments, the 
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impact of such negligible manipulations are not much affected with varying attack 

size values for these algorithms, as shown in Table 5.2. Again, SVD-based PPCF 

scheme is extremely robust resulting in negligibly small prediction shifts for all 

attack models. Similarly, item-based PPCF scheme performs slightly vulnerable to 

manipulations; yet, such effects are insignificant, as well. 

 

5.4.1.3. Number of number of clusters 

 

Although experiments for the filler size and the attack size parameters were 

conducted with a fixed number of clusters in k-means clustering-based PPCF 

scheme, such algorithm’s functioning is directly correlated to the number of clusters 

used. Therefore, finally a set of experiments was conducted to show how different 

number of clusters affect the strength of k-means clustering-based PPCF scheme. 

In this set of experiments, the filler size and the attack size parameters were fixed 

at 15% and the number of clusters was varied from two to 10. The experiments were 

performed 100 times and meaning prediction shift outcomes are shown in Fig. 5.5.  

 

 

Figure 5.5. Prediction shifts for varying number of clusters 

 

As the number of clusters expands, distinguishing the attack profiles from the 

genuine ones becomes easier for k-means algorithm. Attack profiles usually prone 

to demonstrate resemblance to each other due to their systematic production. In this 

way, k-means algorithm simply groups attack profiles together.  Such an attack 
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discriminates them from original users. Therefore, as the number of clusters 

increase, it becomes more unlikely that a genuine profile is injected into a cluster 

composed of mostly of fake profiles. However, increasing the number of clusters 

worsens system’s overall accuracy, as reported by Bilge and Polat (2013). Hence, 

selecting k for the algorithm around five according to results displayed in Fig. 5.5 

might be effective.  As seen in Fig. 5.5, changes in prediction shifts with increasing 

number of clusters are very steady for most of the attacks. With increasing number 

of clusters, bandwagon and love/hate attacks become less effective. 

 

5.4.2. Overall comparison 

 

In this part, a pairwise comparison between non-private and privacy-

preserving model-based schemes is given along with privacy-preserving memory- 

and model-based ones with respect to strength against shilling attacks. 

Because non-private DWT-based recommendation scheme is not examined 

previously in the literature, a comparison for k-means clustering-, SVD-, and item-

based schemes is provided. Mobasher et al. (2006a) compare k-means clustering- 

and k-nn-based CF algorithms. The authors report that k-means functions more 

strongly. Furthermore, it is more resistant to segment attack than k-nn algorithm. 

Moreover, Sandvig et al. (2008) propose k-means clustering-based CF as a strong 

recommendation scheme with small influences against segment attacks. In our tests, 

it is also clearly seen that k-means clustering-based PPCF algorithm is mostly 

susceptible to segment attacks with a prediction shift of about 1.5. Yet, it is more 

resistant to other types of push attacks. Whereas, this algorithm is not examined 

against nuke attacks. However, it is shown that it is highly vulnerable to love/hate 

nuke attack model. How varying the number of clusters influences the robustness 

of k-means clustering-based scheme is explored as well. The outcomes indicated 

that changing number of clusters do not significantly affect the prediction shift 

values given by the random, average, segment, and reverse bandwagon attacks. 

In terms of SVD-based CF scheme, Zhang et al. (2006) report that changes in 

predicted values do not go beyond 0.003, which proves it to be a very strong 

algorithm. Furthermore, Mehta and Nejdl (2008) suggest that SVD has greater 
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stability against random, average, and bandwagon attacks. According to our 

experimental results, among four model-based PPCF schemes, SVD-based PPCF 

scheme is also the most resistant one such that at most -0.0016 prediction shift 

happened for reverse bandwagon attack model, which is extremely negligible in a 

five-star rating scale. Therefore, we may state that SVD functions in a robust 

manner in privacy-preserving environment as it also does in non-private schemes. 

As a non-private CF scheme, item-based CF algorithm is shown to be very 

vulnerable to segment attacks rather than random, average, or bandwagon attacks 

(Burke et al., 2005c; Mobasher et al., 2007b). Burke et al. (2005c) reported that 

segment attack is seriously more striking in item-based CF due to its profile 

construction protocol. It is also shown that segment attack functions more effective 

than broader attacks against item-based CF scheme (Burke et al., 2005c). However, 

according to the outcomes in privacy-preserving scheme, although a segment attack 

functions slightly more manipulative than other models, item-based PPCF scheme 

is still very resistant to all six attack models with a maximum prediction shift value 

of 0.0805 against disguised segment attack model. 

Ultimately, four privacy-preserving model-based prediction schemes with a 

highly reputable privacy-reserving memory-based recommendation scheme are 

compared in terms of strength against the six shilling attacks. Recall that privacy-

preserving k-nn-based CF algorithm is assessed with respect to strength previously. 

The most significant prediction shift values due to the six shilling attacks on four 

model- and one memory-based PPCF schemes are presented in Table 5.3.  

 

Table 5.3.  Prediction shift for memory- and model-based PPCF algorithms 

 

Algorithm type 
Shilling attacks 

Random Average Bandwagon Segment Reverse BW Love/Hate 

Memory-based PPCF 

k-nn 1.343 0.545 1.377 1.523 -1.753 -0.168 

Model-based PPCF 

DWT 0.600 1.032 0.877 0.601 -0.562 -0.021 

k-means 1.230 0.572 1.093 1.467 -0.298 -2.083 

SVD 0.000 0.000 0.000 0.000 -0.001 -0.000 

Item-based 0.018 0.021 0.018 0.080 -0.017 -0.018 

As shown in Table 5.3, model-based schemes are stronger than the memory-

based one against the random attack. SVD-, item-, and DWT-based schemes 
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function successfully against the random attack. Even though k-means-based 

scheme is stronger than the k-nn against the random attack, the random attack 

produces very close prediction shift values for both schemes. SVD- and item-based 

schemes function better than k-nn against the average attack. Yet, the DWT-based 

method functions worse than k-nn while the k-means-based scheme almost obtains 

the same prediction shift as k-nn in case of average attack. In terms of the 

bandwagon and the segment attack models, the same trends are observed. The k-nn 

technique gives the worst performance against such attacks. The algorithms having 

the best outcomes are SVD- and item-based schemes against these two attacks. 

DWT-based scheme is stronger than the k-nn. However, k-means works like k-nn 

against the bandwagon and the segment attacks. As listed in Table 5.3, all four 

model-based methods are stronger than the memory-based technique against the 

reverse bandwagon attack. In terms of love/hate, only k-means functions worse than 

the memory-based algorithm. In this way, SVD- and item-based schemes are the 

strongest algorithms. Usually, model-based approaches are more robust than the 

memory-based scheme. 

 

5.4.3. Discussion 

 

There are several model-based methods to generate personalized prediction 

depending on user choices. Like their non-private forms, privacy-preserving model-

based CF schemes can also be exposed to manipulations through profile injection 

attacks. This study gives an increase with respect to previous reports by examining 

the strength of such model-based PPCF techniques against well-known six shilling 

attack models and giving comparisons between their non-private forms and 

memory-based privacy-preserving methods.  

According to the empirical outcomes shown above, it might be suggested that 

the SVD-based PPCF scheme is not fully influenced by malicious profiles and it is 

the strongest PPCF algorithm. This phenomenon is attributed to noise removal 

capability of SVD algorithm, which removes extreme influences of the added 

malicious profiles to manipulate a certain product’s recommendation reputation. 

The item-based PPCF method has an implicit defense mechanism against shilling 
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attacks arising from its recommendation method of computing similarities among 

items, not users. Since added attack profiles are planned to affect user-user 

similarities, manipulation effects become useless against the item-based PPCF 

scheme like its non-private form. Whereas, the DWT-based PPCF algorithm is 

resistant against love/hate attack only. This is attributed to the alterations of 

successive items’ ratings. The DWT-based scheme is influenced significantly by 

all other five attacks. Similarly, the k-means clustering-based PPCF technique is 

affected by all of the attacks excluding reverse bandwagon attack since clustering 

procedure is directly functioned on pure rating profile similarities. Although k-

means clustering can be utilized as a finding and removal tool for malicious profiles, 

it is important to decide a proper number of clusters. Also, it is more successful 

with attacks having discriminating properties such as high filler size. Compared to 

memory-based k-nn algorithm, all of the model-based schemes are more resistant 

to shilling attacks, which indicates that intermediate procedures on prediction 

approximation process decreases the effects of such attacks. 

 

5.5. Conclusions 

 

Many online shopping sites broadly utilize CF algorithms. Both customers 

and online vendors obtain benefits from recommendation schemes. In addition to 

their advantages, CF techniques have their own challenges. Two most important 

challenges of such schemes are privacy protection and being subject to shilling 

attacks. Besides these, scalability is another problem that many prediction methods 

face with. 

Because of their online efficiency, model-based recommendation techniques 

are preferred with respect to memory-based ones. There are privacy-preserving 

model-based prediction schemes, which give recommendations efficiently without 

disrupting customer privacy. In this thesis, first four push and two nuke shilling 

attack models were applied onto four broadly utilized privacy-preserving model-

based techniques; namely k-means clustering-, SVD-, DWT-, and item-based 

schemes. Because disguised data are utilized by such techniques, revised versions 

of random, average, segment, bandwagon, reverse bandwagon, and love/hate 
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shilling attacks were employed. Several sets of real data-based experiments were 

performed to assess the strength of the prediction schemes against the six attacks.  

Our experimental outcomes teach the lessons that privacy-preserving SVD-

based scheme is the strongest recommendation algorithm. Privacy-preserving item-

based CF algorithm comes next. Even though the DWT- and the k-means 

clustering-based schemes are not as strong as the SVD-based scheme, they are still 

more robust than the privacy-preserving k-nn scheme. This is an example of the 

memory-based prediction techniques. Revised average attack seemed to be the most 

effective attack model among all six techniques as it obtains more prediction shift 

against the DWT-based scheme compared to the k-nn algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. ROBUSTNESS ANALYSIS OF HYBRID PIVACY-PRESERVING 

COLLABORATIVE FILTERING SCHEME 
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In this chapter, it is analyzed a privacy-preserving hybrid prediction scheme 

with respect to robustness. Four push and two nuke shilling attacks are applied to 

the algorithm to show how robust it is against them. Different sets of experiments 

are conducted using real data to show how varying control parameters affect the 

robustness. The hybrid scheme is compared with memory- and model-based 

schemes in terms of robustness. The analysis shows that although the scheme can 

be marginally considered as a robust algorithm, it is less robust than memory- or 

model-based prediction algorithms with privacy. 

 

6.1. Introduction 

 

PPCF schemes are categorized into three different schemes: memory-based, 

model-based, and hybrid methods. Hybrid methods can be considered as 

combinations of memory- and model-based methods. Memory-based techniques 

with privacy are the simplest heuristic methods (Polat and Du, 2005a). Using such 

methods for producing referrals is straightforward. It is easy to add a new user or 

product into the collection. The mechanism scales well with commonly rated items 

by any two users. However, the size of data can be a disadvantage for scaling those 

systems. Privacy-preserving model-based prediction algorithms generate a model 

relying on user ratings as well as providing predictions (Polat and Du, 2005a; Bilge 

and Polat, 2012; Bilge and Polat, 2013). They scale better in a sparse environment. 

They find item or user similarities off-line via the model. When a new item or user 

is added, a new and a fresh model should be established. However, this process is 

computationally expensive. Also, as useful data can be lost during a specific model 

production, accuracy may be reduced. Hybrid prediction scheme with privacy 

features a more effectively performance by utilizing advantages of memory- and 

model-based models  (Renckes et al., 2012).  

In addition to analyzing memory- and model-based PPCF algorithms with 

respect to robustness, hybrid PPCF scheme should also be analyzed in terms of 

robustness. Hence, a hybrid PPCF scheme is analyzed against six well-known 
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shilling attack models and its robustness is examined. The algorithm is also 

compared with other PPCF schemes with respect to robustness. 

 

6.2. Hybrid Collaborative Filtering with Privacy 

 

Renckes et al. (2012) propose a novel hybrid PPCF scheme. The hybrid 

scheme’s structure is similar to that of a tree, where each node represents a user and 

each link depicts similarity between two corresponding users. The root of the tree 

indicates the initial neighbor of a target user. The authors form trees for representing 

the users and the similarities between them. A tree is constructed off-line after 

collecting users’ preferences about various items, for each user u. The root node 

represents the user u. The server first constructs trees for each user u as follows:  

1. Similarity weights between user u and each other user are computed. The 

user u is inserted into the root node. The ratings are already known and no 

effort is spent for finding them. 

2. The most similar s users to user u are discovered and removed from the 

database. These s users represent the children (adjacent) of the user u and 

they are housed at the first level. 

3. For each of the s users, the best similar s users to them among the 

remaining ones are found. Such users are then placed into the second level. 

Correspondingly, these users are the neighbors of each of the s users 

remaining at the first level. 

4. The most related s users to each user among the remaining ones are 

determined until there is no one left in the records. The structure 

constructed for each user u is similar to a tree, where each node’s children 

represent the most similar users to that user. Note that n = 1+ s + s2 + s3 

+ …..+ sy, where y is the number of levels and n is the number of users. 

The value of y is subjected to n and s.  

For each tree, the following storage is done: initial user, her neighbors, her 

neighbors’ neighbors, and so on. Further, similarity weights between neighbors and 

their preferences about a variety of items are stored. Similarities are saved for each 
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link between users. Each user is linked to the best similar users to her. They 

represent her neighbors.  

When an active user a asks a prediction, the first step is to decide an initial 

user. There are two possible ways for selecting the initial user. In the first way, the 

similarities between a and each user in the database are estimated online. The best 

similar user to a is determined as initial user. In the second way, after collecting n 

users’ data, they can be gathered in several clusters by utilizing different clustering 

algorithms. Since k-means algorithm is widely employed for clustering users for 

CF purposes (Marlin, 2004; Xue et al., 2005), it is used for clustering n users into k 

clusters off-line. When a asks referrals, distances between a and each cluster center 

is computed to determine her cluster online. Then, she is inserted into the closest 

cluster. Similarities between a and each user in that cluster are found and the best 

similar user to a is selected as initial user. The procedure for generating referrals 

online for a can be explained as follows: 

1. a sends her ratings and a query to the server. The query consists of the 

target item q or items for which referrals are sought. The system first places 

a into a cluster. The initial user is chosen for a among the users in that 

cluster. The data in the tree generated for the initial user are used for 

finding appointments. 

2. Since the tree contains n users’ data, the optimum value of the number of 

users whose data to be used for PPCF should be decided. For improving 

the overall performance, the best-N neighbors can be chosen for providing 

recommendations and the optimum value of N can be calculated 

experimentally. 

3. Finally, the system considers those N users’ data to find referrals. The 

system can calculate guessing for a on item q (paq) as follows (Herlocker 

et al., 1999).  This is one of the best memory-based CF algorithms, where 

 is the z-score of user u for item q and N is the number of users involved 

in recommendation computation: 

 
𝑝𝑎𝑞 = 𝑣𝑎̅̅ ̅ + 𝜎𝑎 ×

∑ 𝑤𝑎𝑢×𝑧𝑢𝑞
𝑁
𝑢=1

∑ 𝑤𝑎𝑢
𝑁
𝑢=1

      
        

(6.1) 

file:///D:/Tez_hüseyin_hoca/Phd%20Proposal/Markov_Model/markov_salih/paper_son_duzeltilmiş.docx%23_ENREF_13
file:///D:/Tez_hüseyin_hoca/Phd%20Proposal/Markov_Model/markov_salih/paper_son_duzeltilmiş.docx%23_ENREF_13
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in which  and σu represent a’s mean rating and standard deviation of her ratings, 

respectively and wau is the similarity between a and her neighbor u. z-scores and 

wau values based on z-scores can be computed as follows: 

 𝑤𝑎𝑢 = ∑ 𝑍𝑎𝑗 × 𝑍𝑢𝑗
𝑁
𝑗=1      (6.2) 

   

in which j shows co-rated items between users a and u. 

 

6.3. Robustness of Hybrid Collaborative Filtering with Privacy 

 

Since the hybrid scheme is popular compared to other methods, its robustness 

against shilling attacks should be scrutinized. Therefore, the goal is to analyze the 

hybrid PPCF method with respect to robustness. The most popular and successful 

four push attack models along with two nuke attack models are considered.  

There are couple of control parameters that might affect the overall 

performance of shilling attacks. These are called filler size and attack size 

parameters. Therefore, the six attacks models and their effects on the hybrid PPCF 

scheme can be evaluated with varying values of filler and attack size parameters. 

Real data-based experiments are performed to show how varying values of filler 

size and attack size affect the robustness of the hybrid method. In addition to these 

two parameters, there also other parameters whose values might affect the overall 

performance of such attacks. Examples of such parameters are σmax, βmax, and N. 

Their values might affect the robustness of the hybrid PPCF scheme. Hence, similar 

sets of experiments are conducted using real data while varying the values of such 

parameters. Finally, since there are memory-based, model-based, and hybrid PPCF 

schemes, it is vital to compare them with respect to their robustness against six 

popular shilling attacks. Thus, a comparative study is conducted to relate these three 

types of schemes in terms of robustness under the same attacks with the same 

settings. Real data-based empirical outcomes show that the most successful 

algorithms against shilling attacks are model-based PPCF schemes. Memory-based 

and hybrid PPCF schemes are quite vulnerable against shilling attacks. 

   

 



59 

 

6.4. Experimental Evaluation 

 

To show the effects of the six shilling attack models on hybrid PPCF 

algorithm, real data-based experiments were performed. Effects of shilling attacks 

were evaluated as a function of filler size and attack size. Privacy-preserving 

parameters are kept constant, where βmax = 25% and σmax = 2. Note that such values 

are sufficient for providing a decent level of individual privacy (Bilge and Polat, 

2012). The perturbed data was divided into training and testing sets. 150 users were 

selected for testing and the rest of the users were assigned to the training set. Two 

distinct target item sets defined in Table 2.3 were formed, each consisting of 50 

movies for push and nuke attacks.  

 

6.4.1. Effects of filler size parameter 

 

Experiments were performed for demonstrating the effects of the masked 

push and nuke attacks with changing filler size values on hybrid CF algorithm. 

Remember that filler size is directly related to the success of a performed attack 

because filler items comprise the base for leaking into neighborhoods of genuine 

users in the recommendation process. Since βmax was set to 25% at first, during the 

experiments, filler size was varied from 3% to 25%.  Further, the attack size was 

kept constant at 15%, being the maximum value of attack size value tested. 

Experiments were repeated 100 times due to randomization in the perturbation 

process and average results are presented.  Prediction shift values for push and nuke 

attacks are shown in Fig. 6.1 and Fig. 6.2, respectively.  

As seen from Fig. 6.1 and Fig 6.2, prediction shift values show that the hybrid 

PPCF algorithm is not that robust against shilling attacks. In Fig. 6.1, the most 

successful attack seems to be bandwagon attack. Along all of the values of filler 

size parameter, prediction shift value for bandwagon attack does not show much 

variation and is realized in the vicinity of 1.58. It shows that when the filler size 

value increases, for the related item there is no change in the nearest neighbors of 

users. That is, for the values of filler size 25% compared with 5%, the first n nearest 

neighbors that will affect the prediction value were found not to change much. 
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There is no much change depending on the filler size value for attacks other than 

average attack. Only when the filler size value is 25%, there is a marked decline in 

the prediction value. The other successful attack is segment attack. The reason for 

this phenomenon is that the bandwagon and the segment attacks are specifically 

designed attacks. These push attacks are advanced attacks and they are similar to 

each other by the way they are created.  

 

 

Figure 6.1. Prediction shifts for varying filler size (push attacks) 

 

 

 

Figure 6.2. Prediction shifts for varying filler size (nuke attacks) 
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In Fig. 6.2, reverse bandwagon attack, which is a nuke attack, is also quite 

successful. In this attack, according to different filler size values, prediction values 

were obtained between -1.55 and -2.35. For filler size value between 3% and 15%, 

there has not been much of a change in the prediction shift values. The prediction 

shift value slightly decreases for 25% filler size. Love/hate nuke attack is quite 

successful as reverse bandwagon attack. According to the change of the filler size 

value, prediction shift values do not significantly change. 

 

6.4.2. Effects of attack size parameter 

 

Another set of experiments were performed for demonstrating the effects of 

the attacks with changing attack size values on the hybrid PPCF algorithm. While 

filler size parameter handles utility perspective of an attack, attack size focuses on 

impact of such utility by determining the number of bogus profiles. Although it is 

obvious that the more attack profiles inserted into the system, the larger the obtained 

shifts are; however, it constitutes a trade-off between the detectability and the 

impact of the applied attack model. Therefore, in order to define varying effects of 

the attack size parameter, it was varied from 1% to 15% while filler size was kept 

constant at 15%. The experiments were repeated 100 times due to randomization. 

Average prediction shifts values for push and nuke attacks were presented in Fig. 

6.3 and Fig. 6.4, respectively.  

 

 

Figure 6.3. Prediction shifts for varying attack size (push attacks) 
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Figure 6.4. Prediction shifts for varying attack size (nuke attacks) 

 

As shown in Fig. 6.3, the most successful push attack models are bandwagon, 

segment, and random attacks. With increasing attack size, the success of attacks 

improves. Depending on the increase in attack size, the number of profiles added to 

the system also increases. Along with this increase, the probability of the users of 

attack profiles being nearest neighbors also increase. As a result, rise of attack size 

is more likely to affect the users’ prediction as in the previous experiment. 

Similarly, reverse bandwagon attack and love/hate attack models are quite 

successful. As shown in the Fig. 4, for these two nuke attack models, with increased 

attack size value, prediction shift values also increase. 

 

6.4.3. Effects of βmax parameter 

 

To show how changing βmax values affect the overall performance, another 

set of experiments were performed. As described before, during data disguise βmax 

value determines the rate of unrated item to be filled with random numbers. Each 

user u randomly selects βu; and βu percent of their unrated items to be filled with 

random numbers. At first, σmax was set to 2 and during the experiments βmax 

parameter was varied from 5% to 25%. Furthermore, attack size and filler size were 

kept constant at 15%. The most successful attack models, two push (average and 



63 

 

bandwagon) and one nuke (reverse bandwagon-RBW) in the previous experiments 

were used in this and subsequent experiments. The average prediction shift values, 

obtained by the changing βmax value, were shown in Fig. 6.5. As seen from the 

figure, the values obtained by average and reverse bandwagon attacks are very close 

to one another. Average attack is a bit more successful. The most successful result 

obtained for push attacks based on changing values of βmax is 0.99 in the average 

attack. Prediction shift value has not significantly changed by varying the βmax. The 

reason for this finding is that more unrated cells are filled with increasing βmax; and 

fake profiles become inefficient due to smaller number of fake ratings compared to 

the filled ones. Prediction shift value increased to a limited extent parallel with the 

increasing βmax value in reverse bandwagon attack. The highest prediction shift 

value is obtained as -2.1 for this attack. 

 

 

 

Figure 6.5. Prediction shifts for varying βmax parameter 

 

6.4.4. Effects of σmax parameter 

 

In PPCF schemes, each user selects a standard deviation value σu from the 

range (0, σmax] during data disguise. To examine the effects of σmax value, its values 

were assigned from 0.5 to 3. While βmax was fixed at 25%, filler size and attack size 

values were fixed at 15%. The outcomes were displayed in Fig. 6.6.  
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Figure 6.6. Prediction shifts for varying σmax parameter 

 

As seen from Fig. 6.6, changing σmax parameter in average and bandwagon 

attacks does not affect prediction shift values, which are between 0.6 and 0.8 

according to the changing values of the parameter σmax. In reverse bandwagon 

attack, there is a significant increase in the prediction shift value with increasing 

σmax parameter. The prediction shift value reached -2.25 for reverse bandwagon 

attack. The reason for this phenomenon is that the target item is assigned to the 

minimum random number in this attack; and random numbers become smaller with 

increasing σmax values. Using smaller noise data for nuking predictions causes 

significant manipulations. 

 

6.4.5. Effects of number of neighbors parameter 

 

Number of neighbors (N) determines how many of the most similar neighbors 

will be included when calculating prediction in the PPCF algorithm. At first, σmax 

and βmax were set to 2 and 25%, respectively. Furthermore, attack size and filler size 

were kept constant at 15%.  During the experiments, N value was varied from 10 to 

100. The most successful three attacks, average, bandwagon, and reverse 

bandwagon, were applied in this experiment. Fig. 6.7 shows prediction shift values 

for these three attack models.  
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Figure 6.7. Prediction shifts for varying number of neighbors 

 

As seen from the figure above, prediction shift values obtained via average 

and bandwagon push attacks increase until the value of N is 50 and later show a 

little change. Since more attack profiles will be included in the calculation 

according to the increase in the most similar number of neighbors, prediction shift 

values will increase. Therefore, as shown in Fig. 6.7, some increase in the value of 

N improves the success of average and bandwagon attack models. However, the 

increase after a certain value of N will reduce the average value because the number 

of users less similar will also be taken into account. The best value of N is 

considered as 50 for average and bandwagon attacks. It is considered as 10 for 

reverse bandwagon attack. 

 

6.5. Comparison 

 

The privacy-preserving hybrid prediction scheme is compared with well-

known privacy-reserving memory-based and model-based recommendation 

schemes in terms of robustness. Recall that privacy-preserving two memory- and 

four model-based prediction algorithms are evaluated with respect to robustness. 

The comparison of the hybrid scheme with the other PPCF schemes in terms of 

robustness against shilling attacks is given in Table 6.1. 
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Table 6.1. Comparison of memory-based, model-based, and hybrid PPCF methods 

 

Algorithm Type 
Shilling Attacks 

Random Average Bandwagon Segment RBW Love/Hate 

Memory-based PPCF 

k-nn 1.343 0.545 1.377 1.523 -1.753 -0.168 

Model-based PPCF 

DWT 0.600 1.032 0.877 0.601 -0.562 -0.021 

k-means 1.230 0.572 1.093 1.467 -0.298 -2.083 

SVD 0.000 0.000 0.000 0.000 -0.001 -0.000 

Item-based 0.018 0.021 0.018 0.080 -0.017 -0.018 

Hybrid PPCF 

Hybrid 1.592 0.848 1.582 1.563 -2.102 -2.287 

 

As seen from Table 6.1, model-based PPCF algorithms are observed more 

robust than memory-based and hybrid PPCF algorithms. The most robust 

algorithms, in general, are model-based ones against the well-known shilling 

attacks. The memory-based scheme is somewhat robust against such attacks. 

However, the hybrid method shows the worst performance in terms of robustness. 

Nuke attacks achieve significant success rates against the hybrid algorithm. All 

push attacks except average attack are also successful when they are applied to the 

hybrid scheme. According to the results displayed in Table 6.1, the most successful 

algorithm is SVD-based method. Notice that SVD is usually used to remove noise 

data. Thus, it is able to eliminate the effects of the fake profiles in a user-item 

matrix. It then makes it as a robust algorithm. As discussed before, recommendation 

algorithms should provide accurate predictions efficiently with privacy. They also 

need to be robust against shilling attacks. Therefore, users need to choose the most 

appropriate prediction schemes. If the only criterion is robustness, then the hybrid 

scheme is not a good choice.  

 

6.6. Conclusions  

 

After analyzing the robustness of memory- and model-based prediction 

schemes with privacy, privacy-preserving hybrid prediction method is examined 

with respect to robustness. Like memory- and model-based schemes, the hybrid 

scheme might be vulnerable against shilling attacks. In this thesis, the hybrid 

scheme with privacy exposed to shilling attacks is examined. Four push (random, 
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average, bandwagon, and segment) and two nuke (reverse bandwagon and 

love/hate) attacks are applied. Empirical results show that the hybrid scheme is 

vulnerable to shilling attacks. Especially bandwagon and reverse bandwagon 

attacks are efficient attacks for manipulating referrals. Also, some experiments are 

conducted to show the effects of control parameters. The outcomes show that 

varying values of control parameters affect prediction shift values.   
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7. DETECTING SHILLING ATTACKS IN PRIVATE ENVIRONMENTS 

 

In this chapter, how to detect shilling attacks in PPCF systems is scrutinized. 

Four existing attack detection methods are modified in such a way to detect shilling 

profiles in PPCF systems. The ability of such modified methods is investigated in 

terms of detecting shilling profiles generated by six well-known shilling attacks on 

perturbed data. Also, a novel detection method, based on hierarchical clustering, is 

proposed. Real data-based experiments are performed. Empirical outcomes 

demonstrate that some of the detection methods are very successful on filtering out 

fake profiles in PPCF schemes. The novel scheme is also successful in detecting 

attacks in private environments. 

   

7.1. Introduction 

 

There is an increase in studies on shilling attacks in recent years. The 

detection of shilling attacks is essential for correct predictions by the recommender 

system. Chirita et al. (2005)  performed the first work on the detection of the shilling 

profiles by checking the profile properties. They considered the simplest attacking 

models of the random and average methods. Their method is successful in the case 

of dense attack profiles, but unsuccessful with profiles having high sparsity. Burke 

et al. (2006a) studied different characteristics derived from user profiles for their 

effectiveness in attack detection. Their study shows that a machine learning sorting 

method including attributes derived from attack models is more successful than 

more widespread detection algorithms. The algorithm proposed by Burke et al. 

(2006a) establishes a model training with known number of real and attack profiles. 

The authors empirically showed that their algorithm was more successful than the 

algorithm proposed by Chirita et al. (2005). 

In detecting the attack profiles in CF algorithm, variable selection based on 

PCA can be utilized (Mehta, 2007; Mehta et al., 2007a; Mehta and Nejdl, 2009). 

PCA method is about calculating either the correlation or the co-variation values of 

all users between each other. The data matrix is then listed with respect to that 

calculation. The correlation values of the attack profiles between each other are 
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high while those of the co-variation are low. The approach can only be applied to a 

dense user-item matrix because PCA cannot tolerate null values, which have to be 

replaced by estimated values.  

Since the attack profiles are formed by a defined method, they are similar to 

each other. Bhaumik et al. (2011) reported that detection attributes values will be 

also closer to each other due to similarities between the attack profiles. Using these 

attributes, the profiles were separated into cluster by k-means algorithm. The 

authors mentioned that the attack profiles will accumulate to the same cluster and 

the number of profiles in the cluster of attack profiles will be less than the number 

of the profiles in the other clusters. While generating recommendations by a CF 

algorithm, the clusters with less number of profiles will not be taken into account 

and thus, the effect of the attack profiles to the system will be avoided. Mehta 

(2007) and Mehta and Nejdl (2009) attempted detecting the attack profiles using 

the PLSA-based clustering algorithm. The users were assigned to the clusters, 

where the probability of belonging was high. They mentioned that the attack 

profiles were distributed to the same clusters due to the similarities among each 

other. In order to figure out the cluster, where the attack profiles are located, the 

distance of the users in each cluster with respect to the center is measured (Mehta, 

2007; Mehta and Nejdl, 2009). 

Tang and Tang (2011) analyzed the time gaps between voting times in order 

to determine suspicious attitudes for affecting the top-N lists in the recommendation 

systems. Zhang (2011) focused on protecting recommendation systems based on 

trust from attacks. For this purpose, data genealogical tree method, following the 

recommendation history and placing sacrifice knots, is employed. Noh et al. (2014) 

proposed a novel robust recommendation algorithm called RobuNec, which provide 

admission control as a defense mechanism against shilling attacks. Due to the power 

of access control, the method provides highly trusted recommendation results. Cao 

et al. (2013) intended to utilize semi-supervised learning to identify attack profiles 

and describe how to apply semi-supervised learning to shilling attack detection in 

detail. Zhang et al. (2013) proposed two methods for building robust recommender 

system to prevent shilling attacks. These methods are CluTr and WCluTr, which 

combine trust information with clustering. CluTr filters out the suspicious fake 
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users in the formed clusters and WCluTr uses trust information to fortify the 

similarities among genuine users. Morid et al. (2013) proposed new attack detection 

method, which detects influential users, instead of the whole user set, to improve 

their attack detection performance. They define influential user as if an attacker 

succeeds, her profile is used over and over again by CF system, making her an 

influential user. 

Zhang and Zhou (2014) built rating series for each user profile based on 

originality and reputation of the products. Then they employed the experimental 

mode decomposition method to decompose each rating series and extract Hilbert 

spectrum-based characteristics to describe shilling attacks. They exploited support 

vector machines to find shilling attacks based on the suggested characteristics. 

Bilge et al. (2014) recommended an original shilling attack finding technique for 

particular attacks based on bisecting k-means clustering method. Their approach is 

based on the fact that attack profiles are collected in a leaf node of a binary decision 

tree. Their experimental results indicate that the technique is exclusively successful 

on discovering exact attack profiles such as bandwagon, segment, and average 

attack. Li (2014) proposed a method, which discloses latent factors appealing 

missing ratings under the non-arbitrary-missing mechanism and further unites these 

hidden issues with Dirichlet process in the framework of probabilistic generative 

model. Zhuo and Kulkarni (2014) presented a technique to make recommender 

systems resistant to shilling attacks, where the attack profiles are highly related with 

each other. They expressed the issue as detecting a submatrix with the highest value 

in the similarity matrix. The maximum submatrix is explored by converting the 

issue into a graph and combining nodes by heuristic functions. Chung et al. (2013) 

suggested Beta-protection approach to solve the drawbacks of current detection 

techniques. The method grounds its theoretical basis on Beta scattering for facile 

calculation and has stable functioning when testing with data obtained from the 

public websites of MovieLens. 

In the previous chapters, it is shown that PPCF algorithms can be affected by 

shilling attacks. In other words, such attacks might significantly affect the accuracy 

of the estimated predictions in PPCF schemes. Therefore, it is very important to 

detect these types of attacks and reduce their effects for recommendation systems 
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to function correctly. Different detection methods developed and applied to CF 

algorithms for determining fake profiles (Chirita et al., 2005; Burke et al., 2006a; 

Bhaumik et al., 2006; Mehta et al., 2007a; Li and Luo 2011; Zhang and Zhou 2014). 

However, no related work with detecting shilling profiles in PPCF algorithms has 

been carried so far. Therefore, in this thesis, the most commonly used detection 

methods are applied to PPCF schemes. For this purpose, the current detection 

methods are modified in such a way so that they are applicable to PPCF methods 

and experiments are carried out with real data. In practice, six attacking models 

developed previously for attacking PPCF algorithms are employed. Four of the 

most common detection schemes are utilized as detection technique. In addition to 

the existing methods, a novel detection scheme is developed and its success is 

investigated.  

 

7.2. Existing Detection Methods-based Shilling Attack Detection 

 

Chirita algorithm, kNN classifier, k-means clustering, and PCA-based 

variable selection methods are briefly explained as shilling attacks detection 

methods. Chirita et al. (2005) tried to classify profiles using generic attributes, 

which consist of some basic statistical formulas. Later, Burke et al. (2006a) used 

model-specific attributes additionally mentioning generic attributes will not be 

sufficient by themselves in classifying profiles.  

There are basically eight generic attributes used to determine fake profiles as 

follows: 

1. Number of prediction-differences (TFS): A prediction is determined for 

each user. TFS describes the net difference after erasing the user from the 

system. 

2. Standard deviation in user’s ratings: This metric shows the selecting 

degree above the average of a user.  

3. Degree of agreement with other users: This metric exhibits the difference 

degree of a user’s each selection from the average selecting degree of an 

item.  
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4. Degree of similarity with top neighbors: The weight of the similarities 

between a user and the closest k number of users of her. 

5. Rating deviation from mean agreement (RDMA): This metric determines 

the deviation from the pre-given average values of some of the certain 

items.  

6. Weighted deviation from mean agreement (WDMA): RDMA is weighted 

by the square of the number of votes for the item.  

7. Weighted degree of agreement (WDA): The difference of this metric from 

the RDMA metric is not applying the division operation with the total 

number of the votes given by the user.  

8. Length variance (lengthVar): The metric measures to what extent the 

length of the investigated profile (the number of items voted for) differs 

from the average profile length. 

Model specific attributes can be briefly described as follows: 

1. Filler mean variance (FMV): FMV calculates the variation between the 

average value of the item and the value of each item (filler items IF), 

assumed to exist in the item set of each profile.  

2. Filler mean difference (FMD): The major difference of FMD from model-

based metric is to use the absolute value of the difference between the vote 

of the user and the average of the votes instead of the square of that 

difference value.  

3. Filler average correlation: This metric calculates the correlation between 

each item value and the average item value found in the filler item set of 

the investigated profile.  

4. Filler mean target difference (FMTD): FMTD calculates the difference 

between the average of the assumed filler item set and the average of the 

possible target item set.  

5. Profile variance: This metric calculates the profile variance as this tends 

to be low compared to authentic users. 
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7.2.1. Existing shilling attack detection methods 

 

Chirita et al. (2005) propose an algorithm (referred to as Chirita algorithm) 

based on RDMA for detecting and isolating shilling attackers. This is the first 

algorithm effectively detecting the most general attacks on recommender systems. 

The proposed algorithm is a two-step algorithm as follows: 

1. The algorithm computes the average similarity with the top neighbors for 

all users using PCC. It then selects those users only who have an average 

similarity smaller than 0.5 of the maximum average similarity in the 

system for computing RDMA.  

2. It associates with each value of RDMA a function that evaluates the 

probability (PAu) that the respective user is a shilling attacker. The first s 

profiles, sorted based on PAu, are considered attack profiles.   

Mobasher et al. (2006b; 2007b) propose a method based on classification 

(known as kNN classifier), which utilizes a total of 15 detection attributes: six 

generic (WDMA, RDMA, WDA, LengthVar, DegSim with k = 450 and DegSim′ 

with k = 2, d = 963, where k is the number of neighbors and d is co-rate factor); six 

average attack model (FMW, FMD and profile variance; computed for both push 

and nuke); two bandwagon attack model (FMTD; computed for both push and 

nuke); one target detection model attribute (TMF). Class labels and detection 

attributes are generated for entire data set, which is divided into two equal-sized 

sub-sections of train and test data sets. A kNN classifier with k = 9 is used. The kNN 

classifiers are implemented using Weka. For each test, the second half of the data 

is injected with attack profiles and then run through the classifier built on the 

augmented first half of the data.  

Clustering is a widely used technique for determining shilling profiles. In k-

means clustering algorithm, primary objects for cluster centers are randomly 

selected. Each object is then appointed to the closest cluster based on similarity 

measure. Cluster centers are re-calculated in each iteration. This algorithm is 

considered completed when there is no change left in the cluster members. Attack 

profiles are so similar to each other because known algorithms generate them.  As 

a result, when k-means algorithm is employed on the data set into which attack 
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profiles are added, it is expected that most of the attack profiles would be distributed 

to the same cluster.  The most important issue at this stage is to find in which cluster 

the attack profiles will be gathered.  Mehta and Nejdl (2009) aim to find the tightest 

cluster (where the elements are so similar to each other) in their study on clustered-

based detection. For this reason, for each cluster, the distance of the profiles to 

center is calculated. The one with the shortest distance to the center is defined as 

the attack cluster. The determined cluster is isolated.   

In a recommendation system, if users are considered as variables, there will 

be data with a similar number of dimensions. Thus, dimensionality reduction would 

discard these dimensions due to low covariance of them. Low covariance is 

observed between not only shilling users, but also shilling users and normal users. 

PCA computes principal components, which are oriented more towards real users 

showing the maximum variance of the data. For this reason, those users who show 

the least covariance with all the other users should be selected. This quantity is used 

to select some variables from the original data applying PCA, known as variable 

selection using PCA. In the algorithm below (Algorithm 1), Mehta and Nejdl 

(2009) depict the outline of their approach for variable selection. The first s users 

are selected as the attack profiles and they are isolated form the system, where s is 

considered as the number of the attack profiles added to the system. The algorithm 

is known as PCA-based variable selection detection algorithm. 

Algorithm 1 PCA Select Users (D: user-item matrix & s: cut-off parameter) 

1: D ← z-scores (D) 

2: COV ← DTD                                                                          {Covariance of DT} 

4: UλUT = Eigenvalue Decomposition (COV) 

5: PCA1 ← U (:, 1)                                                        {First Eigenvector of COV} 

6: PCA2 ← U (:, 2)                                                    {Second Eigenvector of COV} 

7: PCA3 ← U (:, 3)                                                       {Third Eigenvector of COV} 

8: for all column id users in D do 

9: Distance (user) ← PCA1(user)2 + PCA2(user)2 + PCA3(user)2 

10: end for 

11: Sort Distance 

Output: Return s users with smallest Distance 
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7.2.2. Shilling detection methods for PPCF schemes 

 

All of the detection algorithms described in the previous section are 

performed on CF attacks. However, such methods can be used on PPCF attacks by 

adapting them in such a way so that they are able to determine shilling attacks on 

masked data. There are two confidential data in PPCF schemes: actual rating values 

and rated and/or unrated items. In order to protect such private data, random 

numbers are generated using either uniform or Gaussian distribution with zero mean 

and σ, which is uniformly randomly selected from (0, σmax]. Such noise data are 

added to actual votes. Also, some of the uniformly randomly selected unrated items 

cells are filled with noise data. To select unrated cells, a β value is uniformly 

randomly selected from (0, βmax]. Then, β percent of empty cells are filled with 

random numbers. Values of privacy parameters σmax and βmax can be determined 

according to privacy and accuracy levels required by CF users (Bilge et al. 2014). 

Chirita algorithm computes similarities using PCC. Such similarities can be 

estimated with decent accuracy based on perturbed data, as well (Bilge and Polat, 

2012; Bilge et al., 2014). Similarly, RDMA can be computed from masked data. 

Finally, the probability of being an attack profile or not can be calculated using 

RDMA on masked data. Therefore, Chirita algorithm can be employed to determine 

shilling profiles in PPCF schemes. Generic attribute values used in Chirita 

algorithm are calculated for disguised data. Within the study by Chirita et al. (2005), 

α = 10 value is defined in the formula, which calculates the possibility of profiles 

to be an attack profile. When Chirita algorithm is used on PPCF schemes, it is seen 

that the best result is gathered for the value of α = 1; and this value is used in 

experiments stated below.   

Second detection method, kNN classifier, is based on detection attributes. The 

values of such attributes can be determined on disguised data. The modified 

classifier utilizes 14 detection attributes: six generic attributes (WDMA, RDMA, 

WDA, LengthVar, DegSim with k = 450 and DegSim′ with k = 2, d = 963); six 

average attack models (filler mean variance, filler mean difference, and profile 

variance; computed for both push and nuke); two bandwagon attack models 

(FMTD; computed for both push and nuke). Like in non-private environment, class 
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labels and detection attributes are generated for the whole data set. As a classifier, 

a kNN with k = 9 is used. This is the same value used in the study by Mobasher et 

al. (2007b).  This gives the chance of comparing the results of the proposed method 

to the results obtained by them. All experiments in the present study are conducted 

using both the proposed method and the one introduced by Mobasher et al. (2007b).  

k-means clustering-based detection method utilizes PCC to group users into 

k clusters. As shown by Bilge and Polat (2013), k-means clustering is able to group 

users into clusters with decent accuracy using disguised data. The success of this 

method mainly depends on the ability of correctly clustering users into clusters. The 

similarity of each profile in the clusters to the cluster center is calculated in order 

to determine the attack cluster. The similarity between the attack profiles is higher 

than that of the other profiles. The cluster with the highest average similarity is 

isolated from the system. The selection of the cluster number is important for the 

performance of the application. The results of the trials reveal that 12 can be chosen 

as the ideal number of clusters. In this clustering method, as the initial cluster 

centers are chosen randomly among the data, different results could be produced 

when same data are processed recursively. Choosing initial cluster centers could 

affect the results. The steps of the k-means clustering-based detection scheme 

employed on perturb data are defined as follows: 

Algorithm 2 k-means clustering-based detection method on masked data 

Let U′ = {u1, u2, …, un}- set of disguised data vectors & C = {c1, c2, …, ck}-set of 

cluster centers 

1: Randomly select the ‘k’ cluster centers 

2: Estimate the similarity between each data vector and cluster centers 

3: Assign the data vector to the closest cluster 

4: Recalculate the new cluster center  

5: Recalculate the similarity between each data vector and new obtained cluster 

centers 

6: If no data vector is reassigned then stop, otherwise, repeat from step 3 

7: Determine the cluster with the highest average similarity as shilling cluster 

The steps defined in Algorithm 1, which is stated before for PCA-based 

variable selection detection method, are also used in PPCF. However, in PPCF 
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schemes, disguised z-score data are used as input data. During data disguising, 

random numbers whose average is 0 are added to z-scores and masked values are 

obtained (z'uj = zuj + ruj ). Similarly, the average of z-score data is expected to be 0. 

Polat and Du (2005c) state that during the scalar product and sum process, the effect 

of random numbers could be neglected because the average of random numbers is 

0. Nevertheless, the same random numbers must be multiplied while calculating the 

diagonal components of the matrix, which is obtained as a result of the COV ← DT 

D process stated in the third line of Algorithm 1. Multiplying the same random 

numbers, ruj
2, will create an excess value. To lessen such effects, nσr

2 value is 

extracted from the diagonal components (Polat and Du 2005c), where n shows the 

number of random numbers and σr shows the standard deviation of random 

numbers. After modifying the Algorithm 1 as described above, it is utilized as a 

detection method for filtering out shilling profiles in PPCF schemes.  

 

7.2.3. Experimental evaluation 

 

In order to show the ability of the four modified shilling attack detection 

methods on disguised databases in PPCF schemes with respect to six shilling attack 

models, real data-based experiments are performed. The success of shilling attack 

models depends on two control parameters: filler size and attack size. Privacy-

preserving parameters are kept constant, βmax = 25% and σmax = 2. In this section, 

the empirical outcomes of the current contribution with respect to the varying 

control parameters are presented and the significance of these results is discussed. 

 

7.2.3.1. Effects of filler size parameter 

 

Experiments are performed for signifying the performance of the detection 

methods with varying filler size values while detecting fake profiles in masked 

databases. Filler size is varied from 5% to 50% while attack size is kept constant at 

15%. The tests are repeated 100 times due to randomization in the perturbation 

process. Overall averages of precision and recall for Chirita algorithm with varying 

filler size values are shown in Table 7.1, where RB stands for reverse bandwagon.  

file:///C:/Tez_hüseyin_hoca/TEZ_YAZIMI/TEZ_YAZIMI/TEZ_FINAL/TEZ_SON/Submitted/IR_IG_HP_2015.docx%23_ENREF_28


78 

 

Table 7.1. Performance of Chirita algorithm with varying filler size 

 

 Precision Recall 

Filler Size 5 10 15 25 50 5 10 15 25 50 

Random 0.206 0.214 0.217 0.221 0.217 0.206 0.214 0.217 0.221 0.217 

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Bandwagon 0.143 0.181 0.199 0.209 0.207 0.143 0.181 0.199 0.209 0.207 

Segment  0.169 0.141 0.143 0.175 0.138 0.169 0.141 0.143 0.175 0.138 

RB 0.145 0.175 0.186 0.195 0.192 0.145 0.175 0.186 0.195 0.192 

Love/Hate 0.135 0.177 0.197 0.204 0.205 0.135 0.177 0.197 0.204 0.205 

 

As seen from Table 7.1, empirical outcomes with respect to precision and 

recall are equal for Chirita algorithm. Notice that the profiles are listed from top to 

bottom according to PAu and the first s profiles are classified as the attack profiles, 

as explained before. Since s is considered as the number of added attack profiles 

into the system, precision and recall values are found equal. The increase in filler 

size value does not significantly change precision and recall values for all attack 

models. Precision and recall values for all attack models except average attack with 

varying filler size values range from 0.135 to 0.221. Therefore, Chirita algorithm 

shows weak performance on detection operation in private environments. The best 

outcomes are usually observed when filler size is 25%. The most successful results 

are obtained for random attack. For average attack, all filler size values get the value 

0. Recall that Chirita algorithm does classification operation considering especially 

RDMA attribute value. RDMA values for attack profiles will be higher than those 

of real profiles. However, while forming average attack profiles since the filler 

items are filled with the item mean, RDMA value becomes lower. Compared to 

outcomes for non-private environment published by Chirita et al. (2005), Chirita 

algorithm provides lower results in private environments. There are couple of 

reasons why the results are lower than the ones published by Chirita et al. (2005). 

First, in the report by Chirita et al. (2005), there are simultaneous attacks to three 

target items. As a result, RDMA values are found higher. In these experiments, 

attacks are performed to each 50 item separately. The other reason might be data 

disguising in PPCF schemes. Selection of σ during data disguising operation affects 

RDMA attribute value, which may affect the results. The same experiments are then 

conducted for kNN classifier-based detection algorithm. Overall averages of 

precision and recall are displayed in Table 7.2.  
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Table 7.2. Performance of kNN classifier with varying filler size 

 

 Precision Recall 

Filler Size 5 10 15 25 50 5 10 15 25 50 

Random 0.987 0.884 0.872 0.872 0.987 0.987 0.987 0.974 0.974 0.987 

Average 1.000 0.927 0.938 0.938 0.987 0.987 0.987 0.987 0.987 0.987 

Bandwagon 0.776 0.800 0.817 0.817 0.987 0.987 0.987 0.987 0.987 0.987 

Segment  1.000 0.925 0.873 0.873 0.987 0.987 0.961 0.805 0.805 0.987 

RB 0.987 0.920 0.927 0.962 0.987 0.974 0.896 0.987 0.987 0.987 

Love/Hate 0.917 0.936 0.950 0.884 0.987 0.286 0.948 0.987 0.987 0.984 

 

It seems that kNN classifier algorithm is quite successful in detection 

operation of the PPCF attack models. Upon a change of filler size value from 5% 

to 50%, almost all of the precision and recall values vary between 0.800 and 1.000 

for all attack models. Precision values for reverse bandwagon and love/hate nuke 

attacks increase directly with the filler size value. The change in precision value 

depicts variability depending on the filler size for the push attacks. Precision value 

lower than 1.0 exhibits that some of the real profiles are classified as attack profiles. 

However, in general, kNN classifier algorithm is also successful in PPCF algorithm 

as in the case of CF algorithm. The disguise operation in PPCF algorithm does not 

have significant effect on the detection algorithm performance. Since kNN classifier 

can also create a model by using train data, which are disguised in PPCF schemes, 

attack profiles on masked data can be detected by test set easily using this model. 

As shown in Table 7.2, the recall values of kNN classifier algorithm depict high 

success rates. For all filler size values, the algorithm performs very well with 

respect to recall. Generally speaking, random, average, and bandwagon push 

attacks are similar to each other. Therefore, the recall values of such push attacks 

are closer to each other. The recall value of segment attack, different than other 

attacks due to the purpose of it, could be slightly lower than those of other attacks. 

For the nuke attacks at lower filler size values, the recall value is lower than that of 

the push attacks. Yet, as the filler size value increases, the recall value of the nuke 

attacks approaches to 1.0.  The results are similar to the ones calculated for CF 

algorithm reported in the study by Mobasher et al. (2007b). Another set of 

experiments are conducted to evaluate the success of k-means clustering-based 

detection method in private environments. After calculating the overall averages of 

precision and recall for k-means algorithm, they are displayed in Table 7.3.  
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Table 7.3. Performance of k-means clustering with varying filler size 

 

 Precision Recall 

Filler Size 5 10 15 25 50 5 10 15 25 50 

Random 0.501 0.361 0.298 0.245 0.192 1.000 0.997 1.000 1.000 1.000 

Average 0.349 0.347 0.319 0.308 0.255 0.838 1.000 1.000 1.000 1.000 

Bandwagon 0.358 0.285 0.267 0.260 0.232 1.000 1.000 1.000 1.000 1.000 

Segment  0.436 0.362 0.328 0.297 0.225 0.953 1.000 1.000 1.000 1.000 

RB 0.350 0.313 0.298 0.290 0.248 1.000 1.000 1.000 1.000 1.000 

Love/Hate 0.340 0.275 0.243 0.231 0.229 0.995 1.000 1.000 1.000 1.000 

 

As indicated in Table 7.3, recall values are very close to each other for all 

attack models and filler size values. Precision values decrease with increasing filler 

size values for all attack models. Recall that k-means clustering-based detection 

method does clustering operation by considering the similarities between profiles. 

For this reason, type of the attack model is not significant. Since all attack models 

are formed with defined algorithms, they are all naturally similar to each other. 

Based on this similarity, k-means clustering-based detection method finds the 

tightest cluster and isolates that cluster from the system. As the filler size value 

increases, the attack profiles become more similar to the real profiles. Thus, there 

will be more real profiles in the cluster with the attack profiles. In this situation, as 

shown in Table 7.3, more real profiles will be isolated from the system leading to 

lower precision values. The recall values for all attack models approach to 1.0. As 

mentioned above, the increase in filler size values only increases the number of real 

profiles in the cluster under search. This case does not change the recall value. As 

a result, k-means clustering-based detection method on the one hand classifies 

almost 100% of the attack profiles correctly, on the other hand, it pushes many of 

the real profiles to the outside of the system.  This negatively affects the accuracy 

of the system.  

The same experiments are performed for the last detection method, PCA-

based variable selection detection algorithm. Table 7.4 shows the overall averages 

of precision and recall values with varying attack size values for this detection 

algorithm. 
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Table 7.4. Performance of PCA-based detection scheme with varying filler size 

 

 Precision Recall 

Filler Size 5 10 15 25 50 5 10 15 25 50 

Random 0.300 0.330 0.340 0.340 0.270 0.300 0.330 0.340 0.340 0.270 

Average 0.440 0.610 0.670 0.650 0.300 0.440 0.610 0.670 0.650 0.300 

Bandwagon 0.090 0.080 0.080 0.090 0.090 0.090 0.080 0.080 0.090 0.090 

Segment  0.090 0.080 0.080 0.090 0.100 0.090 0.080 0.080 0.090 0.100 

RB 0.076 0.079 0.082 0.082 0.088 0.076 0.079 0.082 0.082 0.088 

Love/Hate 0.060 0.058 0.057 0.057 0.057 0.060 0.058 0.057 0.057 0.057 

 

As seen from Table 7.4, the best results are obtained for average attack model. 

While generating average attack profiles since the filler item set is filled with 

around the item mean, it is expected to have small covariance value of the attack 

profiles among each other. Mehta et al. (2007a) mention that the covariance value 

among the attack profiles is less than that among the real profiles. For this reason, 

the attack profiles might be detected by PCA-based variable selection technique. 

As shown in Table 7.4, both precision and recall values for the average attack model 

reach 0.670. While establishing the other attack models, filler item set is filled with 

random numbers generated with known standard deviation. In the current 

application, since σmax is set to 2, standard deviation is randomly selected from the 

range of (0, 2]. If the standard deviation is high, the covariance among the profiles 

will be high. In this case, PCA-based variable selection detection algorithm does 

not yield successful results. 

  

7.2.3.2. Effects of attack size parameter 

 

Various sets of experiments are conducted for scrutinizing the success of 

shilling attack detection methods with changing attack size values on private 

environments. Attack size is the second control parameter exactly affecting overall 

success of a detection method. It emphasizes the impact of determining the number 

of bogus profiles to be inserted into a database. Furthermore, it touches the utility 

perspective of an attack. It is clear that more attack profiles inserted into the system 

refers to the situation of the larger obtained shifts. However, it establishes an 

adjustment between the delectability and the impact of the applied attack. Thus, 

experiments are conducted while varying attack size from 1% to 15%, where filler 
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size is kept constant at 25%. The trials are repeated 100 times due to randomization. 

Overall averages of precision and recall values are displayed with varying attack 

size values for Chirita algorithm, kNN classifier, k-means clustering, and PCA-

based scheme in Table 7.5, Table 7.6, Table 7.7, and Table 7.8, respectively.  

 

Table 7.5. Performance of Chirita algorithm with varying attack size 

 

 Precision Recall 

Attack Size 1 3 5 10 15 1 3 5 10 15 

Random 0.018 0.051 0.084 0.157 0.221 0.018 0.051 0.084 0.157 0.221 

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Bandwagon 0.015 0.049 0.077 0.148 0.209 0.015 0.049 0.077 0.148 0.209 

Segment  0.013 0.041 0.067 0.127 0.175 0.013 0.041 0.067 0.127 0.175 

RB 0.014 0.043 0.070 0.132 0.195 0.014 0.043 0.070 0.132 0.195 

Love/Hate 0.017 0.049 0.075 0.144 0.204 0.017 0.049 0.075 0.144 0.204 

 

Chirita algorithm is successful in detecting shilling attacks with dense 

attacker profiles, and unsuccessful against attacks with small size and high sparsity 

(Williams et al., 2006). As seen from Table 7.5, as the attack size increases, this 

algorithm becomes more successful towards the attacks excluding average attack. 

Since RDMA values of random attack profiles are higher, the most successful 

precision and recall values are obtained for random attack. On the contrary, average 

attack profiles have lower RDMA values due to establishing methodology, and 

thus, Chirita algorithm cannot detect these attack profiles. Although detection 

performance of the algorithms becomes better with increasing attack size, they are 

not successful in detecting shilling profiles. The best result for this method is 0.22 

for both precision and recall; and such values are observed for random attack when 

the attack size is 15%. 

 

Table 7.6. Performance of kNN classifier with varying attack size 

 

 Precision Recall 

Attack Size 1 3 5 10 15 1 3 5 10 15 

Random 0.000 0.750 0.852 0.847 0.872 0.000 0.706 0.852 0.962 0.974 

Average 1.000 0.842 0.839 0.895 0.938 0.857 0.941 0.963 0.981 0.987 

Bandwagon 0.000 0.375 0.815 0.850 0.817 0.000 0.176 0.815 0.981 0.987 

Segment  0.000 0.750 0.833 0.872 0.873 0.000 0.706 0.926 0.788 0.805 

RB 1.000 0.938 0.929 0.927 0.962 0.143 0.882 0.963 0.981 0.987 

Love/Hate 1.000 1.000 0.897 0.836 0.884 0.571 0.941 0.963 0.981 0.987 
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As depicted in Table 7.6, precision and recall values are usually ranging 

between 0.8 and 1.0 for kNN classifier. Especially, when the attack size exceeds 

5%, this algorithm becomes more successful. Number of attack profiles in train and 

test data cannot be enough to make a stable classification when the attack size is 

low. Thus, zero precision and recall values were gathered for attack size being 1% 

for random, bandwagon, and segment attacks, while better results are acquired for 

other attacks. Actually, since train data set is used in all attack models within this 

method, it does not matter whichever attack model is used. As long as there are 

enough train data, this method proves out to be successful. Therefore, attack size 

parameter plays an important role for the success of this method. 

 

Table 7.7. Performance of k-means clustering with varying attack size 

 

 Precision Recall 

Attack Size 1 3 5 10 15 1 3 5 10 15 

Random 0.095 0.152 0.189 0.248 0.289 0.883 0.915 0.949 0.927 0.962 

Average 0.116 0.229 0.279 0.357 0.396 0.874 0.902 0.943 0.879 0.919 

Bandwagon 0.108 0.226 0.276 0.316 0.344 0.885 0.913 0.950 0.937 0.975 

Segment  0.103 0.179 0.243 0.329 0.386 0.910 0.920 0.961 0.922 0.941 

RB 0.109 0.243 0.302 0.371 0.401 1.000 0.999 0.998 0.975 0.951 

Love/Hate 0.110 0.212 0.244 0.264 0.288 1.000 0.991 0.997 0.999 1.000 

 

In Table 7.7, it is seen that there is a direct correlation between attack size and 

precision value of the k-means detection algorithm towards the attacks. As attack 

size increases, number of attack profiles in the cluster of interest increases. This 

leads to improvement in precision value. Since the tightest cluster is found and 

isolated from the database, a lot of real profiles are left out in this cluster. As a result 

of leaving real profiles out of the user-item matrix, precision value turns out to be 

lower than recall value. As in the application of the previous section, recall metric 

value for k-means clustering-based detection method is seriously meaningful. In 

this situation, as discussed previously, since attack profiles are so similar to each 

other, they are located in the same cluster. Therefore, recall value becomes 

successful in all attack models. As seen from Table 7.7, recall value changes 

between about 0.9 and 1.0 for all attacks. Differences in attack size can only 

increase the number of attacks in cluster, and they do not significantly affect recall 

value. 
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Table 7.8. Performance of PCA-based detection scheme with varying attack size values 

 

 Precision Recall 

Attack Size 1 3 5 10 15 1 3 5 10 15 

Random 0.120 0.180 0.220 0.290 0.340 0.120 0.180 0.220 0.290 0.340 

Average 0.030 0.220 0.370 0.560 0.650 0.030 0.220 0.370 0.560 0.650 

Bandwagon 0.040 0.050 0.050 0.070 0.090 0.040 0.050 0.050 0.070 0.090 

Segment  0.110 0.150 0.140 0.060 0.090 0.110 0.150 0.140 0.060 0.090 

RB 0.078 0.067 0.041 0.057 0.082 0.078 0.067 0.041 0.057 0.082 

Love/Hate 0.006 0.015 0.021 0.038 0.057 0.006 0.015 0.021 0.038 0.057 

 

Like in the case of the application based on filler size parameter explained 

above, the application based on attack size parameter yields the best results for 

average attack as shown in Table 7.8. The reason why PCA-based detection 

technique is more successful for average attack model is described previously. As 

seen in Table 7.8, the increase in attack size value causes an increase in precision 

and recall values of almost all of attack models. Precision and recall values of 

average attack approaches as high as 0.65, and this is an acceptable success. This 

method is unsuccessful for other attack models. The reason for this is that the 

profiles have higher covariance values according to their generating algorithms. As 

mentioned before, PCA method can make categorization by using low covariance 

qualification among attack profiles.  

   

7.2.4. Discussion 

 

Many methods have been developed to detect the attacks performed for 

manipulating recommendation systems. PPCF schemes can also be exposed to these 

attacks as well as non-private CF algorithms. As a matter of fact, literature review 

shows that Gunes et al. (2013b) and Bilge et al. (2014) developed attack models for 

PPCF methods and they reported the effects of these attacks on PPCF techniques 

using real data-based experiments. However, there has not been a study on detecting 

the attacks against PPCF schemes. Hence, the most widely used four detection 

methods on non-private schemes are adapted and used on PPCF schemes.  

When the empirical results, shown in the tables above, are examined, it can 

be seen that kNN classifier method is the most successful method for all attack 

models. The disguise operation in private environments does not have a significant 
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effect on the detection algorithm performance. kNN classifier detection algorithm 

calculates a number of generic and model-specific attribute values for each profile, 

and creates a new data table as well as making classifications by using this new data 

table. It divides this attribute table into two groups under the headlines of train and 

test data. Since it creates a model by using train data, data masking does not have 

significant effects for kNN classifier. By using a train set generated from perturbed 

data, a new model can be formed to detect PPCF attack profiles on test set.   

Upon comparing Chirita algorithm performed on attacks in private 

environments with the implementations on non-private environments, it is seen that 

it is not a highly successful practice. Chirita et al. (2005) states that due to the high 

standard deviation among the rating dispersions in attack profiles, RDMA attribute 

value will be higher than real profiles. In addition, they increase the deviation 

among ratings by making push or nuke attacks on three target items during the 

experiments. Here in this thesis, each item listed in target items of experiments is 

attacked respectively and one by one. Attack profiles generated on PPCF schemes 

are filled with random numbers, which are generated with σ chosen over the range 

(0, σmax = 2]. If the σ value is small, RDMA value for attack profiles turn out to be 

small, and Chirita algorithm cannot detect these PPCF attacks successfully. 

It is hypothesized that with increasing σ values, Chirita algorithm might 

become more successful. In order to verify this hypothesis, a set of experiments are 

conducted while varying σ values, where σ values are selected from the ranges [0, 

2], [1, 2], and [2, 3]. Thus, the expected mean values for σ are 1, 1.5, and 2.5 for 

each range, respectively. In this set of experiments, filler size is fixed at 25% and 

attack size at 15%. Similar methodology is followed for all attack models and 

overall averages are displayed in Table 7.9. The outcomes show that varying σ 

values definitely affect the success of Chirita algorithm. Especially when σ value is 

chosen from the range [2, 3], precision and recall values are over 0.9 for all attacks 

except average attack. Since item mean is used when filling profiles in average 

attack, RDMA value turns out to be low even if we use larger σ values. In this case, 

as seen from Table 7.9, this model will be unsuccessful for average attack. 
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Table 7.9. Performance of Chirita-based detection scheme with varying standard deviation 

 

         Precision Recall 

σ [0, 2] [1, 2] [2, 3]  [0, 2] [1, 2] [2, 3] 

Random 0.221 0.396 0.982  0.221 0.396 0.982 

Average 0.000 0.000 0.000  0.000 0.000 0.000 

Bandwagon 0.209 0.384 0.970  0.209 0.384 0.970 

Segment  0.175 0.368 0.971  0.175 0.368 0.971 

RB 0.195 0.395 0.975  0.195 0.395 0.975 

Love/Hate 0.204 0.395 0.979  0.204 0.395 0.979 

 

Even though the precision value of k-means algorithm is not quite good, the 

recall value is highly successful. The modified k-means algorithm makes clustering 

process by considering the similarities between profiles. A certain profile is created 

for each attack model in non-private environments; therefore, these profiles are 

similar to each other. The same result applies for the attack profiles on PPCF. Since 

the attack profiles are similar due to their generation methods, they are expected to 

be dispersed in the same cluster. However, one of the main goals of shilling attacks 

is to manipulate the system. Thus, they try to look similar to real profiles. As a result 

of this goal, in k-means clusters, there might be many real profiles in the same 

cluster together with the attack profiles. Consequently, a lot of real profiles are left 

out of the database as soon as the isolation of defined attack clusters, which leads 

to smaller precision values.  

PCA-based variable selection-based detection method is successful for 

average attack only. This situation can be explained with the fact that smaller 

covariance values among profiles due to completing filler items set with item mean 

when creating average attack profiles. In other attack models, filler items set in 

profiles are completed with random numbers generated with a certain σ value. If 

the σ value of the random numbers are high, covariance value among profiles also 

becomes high; due to which PCA algorithm may not be able to detect these attack 

profiles. In the studies proposed by  Mehta (2007), Mehta et al. (2007a) and  Mehta 

and Nejdl (2009) the authors state that it is expected to have lower covariance value 

than real profiles because filler items set is generally completed with item mean or 

system overall mean while creating attack profiles. Hence, it is hypothesized that 

the success of PCA-based detection algorithm can be improved if smaller σ values 

are used. To verify this hypothesis experimentally, another set of trials are 
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performed using the same methodology while varying σ values, where  σ values are 

selected from the ranges [0, 2], [0, 1], and [0, 0.5]. Filler size is fixed at 25% and 

attack size at 15%. Table 7.10 shows the empirical outcomes. As seen from Table 

7.10, smaller σ values definitely improves the success of PCA-based algorithm. 

With decreasing σ values, precision and recall values become larger. Especially for 

the range [0, 0.5], quite remarkable results are achieved for all attacks except for 

love/hate attack model.   

 

Table 7.10. Performance of PCA-based detection scheme with varying standard deviation 

 

         Precision Recall 

σ [0, 2] [0, 1] [0, 0.5]  [0, 2] [0, 1] [0, 0.5] 

Random 0.340 0.519 0.721  0.340 0.519 0.721 

Average 0.650 0.740 0.738  0.650 0.740 0.738 

Bandwagon 0.090 0.215 0.411  0.090 0.215 0.411 

Segment  0.090 0.491 0.713  0.090 0.491 0.713 

RB 0.082 0.289 0.613  0.082 0.289 0.613 

Love/Hate 0.057 0.068 0.093  0.057 0.068 0.093 

 

Finally, the detection methods used for PPCF schemes are compared with the 

respective ones utilized in CF schemes under the same conditions. In Table 7.11 

and Table 7.12, precision and recall values are compared, respectively, where filler 

size is 25% and attack size is 1%. The results of experiments carried on CF schemes 

are gathered from related studies. If the comparison with the results taken from the 

study proposed by Burke et al. (2006a) for Chirita algorithm is considered, it can 

be concluded that precision value is the same with the results on modified 

algorithm; however, the practice on CF algorithm is more successful for recall 

value. When a comparison is made with kNN classifier algorithm taken from the 

study proposed by Mobasher et al. (2007b), the results from both studies vary from 

each other. However, at a higher filler size and attack size values, the results of both 

studies are similar. Bhaumik et al. (2011) utilize k-means algorithm on CF in a 

different way than the way in this thesis. They define some generic attribute values 

and perform cluster process with these values. When the results are compared, it is 

seen that their results are more successful than the modified one. Precision and 

recall values achieved for PCA method in the study proposed by Mehta and Nejdl 

(2009) are quite higher than the results of this thesis. The reason behind this 
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difference is the higher σ values chosen during the generation of PPCF attack 

profiles, as mentioned before. As seen from Table 7.11, in the experiments with 

decreasing σ values, successful outcomes are observed in private environments.   

 

Table 7.11. Comparison of detection algorithms on precision 

 

 No Privacy Privacy 

 Chirita  kNN k-means PCA Chirita kNN k-means PCA 

Random 0.020 0.350 0.980 0.960 0.018 0.000 0.095 0.120 

Average 0.020 0.330 0.920 0.900 0.000 1.000 0.116 0.030 

Bandwagon 0.020 0.350 0.900 0.960 0.015 0.000 0.108 0.040 

 Segment  0.050 0.280 0.980 - 0.013 0.000 0.103 0.110 

RB - - - - 0.014 1.000 0.109 0.093 

Love/Hate 0.010 0.350 - - 0.017 1.000 0.110 0.058 

 

Table 7.12. Comparison of detection algorithms on recall 

 

 No Privacy Privacy 

 Chirita  kNN k-means PCA Chirita kNN k-means PCA 

Random 0.680 1.000 1.000 1.000 0.018 0.000 0.883 0.120 

Average 0.620 1.000 1.000 1.000 0.000 0.857 0.874 0.030 

Bandwagon 0.650 1.000 1.000 1.000 0.015 0.000 0.885 0.040 

Segment  0.650 0.920 1.000 - 0.013 0.000 0.910 0.110 

RB - - - - 0.014 0.143 1.000 0.093 

Love/Hate 0.670 1.000 - - 0.017 0.571 1.000 0.058 

 

7.3. A Novel Detection Algorithm 

 

In addition to modifying existing detection scheme, novel methods should be 

proposed. In this section, a novel algorithm is described, which is based on 

hierarchical clustering. Hierarchical clustering creates a hierarchy of clusters 

(Johnson, 1967; Sembiring et al., 2011; Madhulatha, 2012). It is an unsupervised 

clustering algorithm, which does not contain any of experimental variables. It can 

be thought as a tree structure called a dendogram. It is a tree that represents how 

clusters are combined/divided hierarchically. A key step is selecting a distance 

measure. Hierarchical clustering algorithms may be agglomerative or divisive. 

Agglomerative one starts at the leaves and successively merges clusters together. It 

uses each element as a separate cluster at the beginning and tries to convert them 

into successively larger clusters. Divisive algorithm is a top-down clustering. 



89 

 

Agglomerative clustering, on the other hand, is known as botom-up clustering. 

Divisive one selects the whole set as a starting point and divides it into successively 

smaller clusters.  Any metric can be used to measure the similarity between pairs 

of observations. The choice of which clusters to merge or split is determined by a 

linkage criterion, which is a function of the pair wise distances between 

observations. If there is a need of certain number of clusters, it will be sufficient to 

stop accordingly. Hierarchical methods suffer from the act that once the merge or 

split is done, it can never be undone. The basic process of hierarchical clustering 

can be described as follows (Johnson, 1967): 

1. Appoint each item to a cluster. If there are n items, then there will be n clusters 

with one item. 

2. Find the closest (most similar) pair of clusters and combine them into a single 

cluster leading a case with one cluster less. 

3. Calculate distances (similarities) between the new cluster and each of the old 

clusters. 

4. Repeat steps 2 and 3 until all items are collected into a single cluster of size 

n. 

 

7.3.1. Hierarchical clustering-based detection algorithm 

 

Clustering is a broadly used technique for determining shilling profiles in CF 

schemes (Mehta and Nejdl, 2009; Bhaumik et al., 2011; Bilge et al., 2014). 

Clustering methods group similar entities in to the same clusters. Shilling profiles 

are very similar to each other because they are generated using the same 

methodology. Therefore, if clustering methods are used to group profiles, shilling 

profiles will be placed in the same cluster with high probability. There are different 

clustering algorithms, where each one has its own advantages and disadvantages. 

In addition to successfully grouping shilling profiles into the same cluster, 

clustering algorithms should have other advantages. It is proposed to use 

hierarchical clustering method as a shilling attack detection technique. Such 

clustering algorithm has not been used for detection process yet and also has some 

advantages compared to other clustering methods (Manning et al., 2008). 
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Hierarchical clustering presents a more informative structure than flat clustering. It 

provides a hierarchic structure instead of an unstructured set of clusters. There is no 

need to pre-specify the number of clusters. Since many of them are deterministic, 

they lead to the cost of lower efficiency. Although common hierarchical clustering 

algorithms have a complexity that is at least quadratic, they produce better clusters 

than flat clustering. 

Note that users disguise their z-scores and send perturbed data to the server. 

Let vuj be the rating for user u on item j, σu be the standard deviation of her ratings, 

and Vu be the mean rating of her ratings. The related z-score (zuj) can be estimated 

as zuj = (vuj-Vu)/ σu. Suppose that user u’s ratings vector including z-scores is U = 

(zu1, zu2, …, zum), where m is the total number of items and note that U is a very 

sparse vector. User u disguises her rating vector and obtains masked vector as 

follows: U’ = (zu1+ru1, zu2+ru2, …, zum+rum), where ruj values are random numbers. 

Users mask their z-scores similarly and send the server. The server needs to cluster 

the users based on their perturbed data. According to the steps for hierarchical 

clustering explained above, similarities between any two entities need to be 

estimated. Such similarities based on masked z-scores can be estimated as follows:  

 

𝑤’𝑢𝑣 = 𝑧’𝑢1𝑧’𝑣1 +  𝑧’𝑢2𝑧’𝑣2  + … +  𝑧’𝑢𝑚𝑧’𝑣𝑚         (7.1) 

 𝑤’𝑢𝑣 = (𝑧𝑢1 + 𝑟𝑢1)(𝑧𝑣1 + 𝑟𝑣1) + (𝑧𝑢2 + 𝑟𝑢2)(𝑧𝑣2 + 𝑟𝑣2) +  … 

+ (𝑧𝑢𝑚 + 𝑟𝑢𝑚)(𝑧𝑣𝑚 + 𝑟𝑣𝑚) 
        (7.2)  

Note that 

(𝑧7𝑢1 + 𝑟𝑢1)(𝑧𝑣1 + 𝑟𝑣1) =  𝑧𝑢1𝑧𝑣1 + 𝑧𝑢1𝑟𝑣1+ 𝑟𝑢1𝑧𝑣1 + 𝑟𝑢1𝑟𝑣1         (7.3) 

Similarly, other multiplications can be extended. Since the random numbers 

are generated with zero mean and a standard deviation using uniform or Gaussian 

distribution, expected values of the sum of zu1rv1, ru1zv1, and ru1rv1 values will be 

zero. Therefore, the similarities between any two users can be estimated with decent 

accuracy from masked z-scores. 
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User profiles including fake or shilling profiles are clustered using 

hierarchical clustering according to the similarity weights on disguised data. Due to 

the nature of the random numbers and the similarity weights, hierarchical clustering 

is able to put users into clusters with good accuracy using disguised data. The 

performance of this method mainly relies on the ability of correctly grouping users 

into clusters. It is expected that attack or shilling profiles will be found in the same 

cluster due to high similarities between fake profiles.  

The cluster having the most similar elements is considered as the attack 

cluster. In order to determine such cluster, DegSim metric is used. Therefore, 

DegSim for each profile in a cluster needs to be calculated (Burke et al., 2006a). 

This metric is the average similarity weight with the top-k neighbors of a user u and 

can be calculated as follows: DegSimu = (wu1 + wu2 + … + wuk)/k. Since similarities 

are estimated on masked data, DegSim values for each user u can be estimated as 

follows: 

 

𝐷𝑒𝑔𝑆𝑖𝑚’𝑢 = (𝑤’𝑢1𝑤’𝑣1 + … +  𝑤’𝑢𝑘)/𝑘         (7.3) 

 𝐷𝑒𝑔𝑆𝑖𝑚’𝑢 = [(𝑤𝑢1 + 𝑅𝑢1) + (𝑤𝑢2 + 𝑅𝑢2) + … +  (𝑤𝑢𝑘

+ 𝑅𝑢𝑘))/𝑘] 
        (7.4) 

where Ru values are noise data introduced due to random numbers in similarity 

computations. The equation can be written as follows: 

𝐷𝑒𝑔𝑆𝑖𝑚’𝑢 = [(𝑤𝑢1 + 𝑤𝑢2 +  … + 𝑤𝑢𝑘)/k 

+  [(𝑅𝑢1 + 𝑅𝑢2 + … + 𝑅𝑢𝑘)/k   
        (7.5) 

Due to the same reasons described previously, the expected value of (Ru1 + 

Ru2 + … + Ruk)/k will be zero. Therefore, DegSim values for all users can be 

estimated with decent accuracy based on perturbed data. After estimating such 

values for all users in each cluster, the cluster with the highest average DegSim 

value is considered as the attack cluster (the cluster including shilling profiles). This 

cluster is then isolated from PPCF system, which prevents the system to be 

manipulated.  
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As discussed before, attack profiles are so similar to each other because 

shilling profiles are generated by a certain algorithm. At the same time, shilling 

attacks aim to be similar with real profiles to manipulate PPCF systems. As a result, 

there might be many real profiles in the attack cluster together with the attack 

profiles. Herewith, depending on the isolation of defined attack clusters, a lot of 

real profiles might be left out of database and this leads to smaller precision values. 

To save real profiles in the determined cluster, it is proposed to analyze target items 

in such a way so that the real profiles in the attack cluster are distinguished. Hence, 

all profiles are analyzed in the attack cluster and separate real profiles. 

While generating attack profiles regarding PPCF schemes, target items are 

given maximum and minimum values of randomly generated random numbers for 

push and nuke attacks, respectively. In this way, the attack profiles will be 

distinguishable from other attack profiles. In other words, the target items might 

have the maximum or the minimum values for push and nuke attack profiles, 

respectively. However, the target item is unknown during detection process; and 

therefore, the target item needs to be determined first. The target item for push 

(nuke) attacks can be determined as follows: 

1. Find the maximum (minimum) value in each profile in the database. 

2. Determine the corresponding items in each profile. 

3. The item holding the most number of maximum (minimum) values is 

determined as the target item. 

After determining the target item, those profiles whose corresponding values 

for the target item are maximum (minimum) in the attack cluster are marked as 

shilling profiles. The remaining profiles are marked as authentic profiles. In this 

way, if there are some real profiles in the attack cluster, they then can be determined, 

which leads to better precision. 

 

7.3.2. Experimental evaluation 

 

To show the ability of the new shilling attack detection method on disguised 

databases in PPCF schemes with respect to six shilling attacks, various experiments 

are conducted using real data. The success of shilling attacks depends on two 
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control parameters: filler size and attack size. Privacy parameters, βmax and σmax are 

fixed at 25% and 2, respectively. 

 

7.3.2.1. Effects of filler size parameter 

 

Experiments are made for determining the performance of the detection 

methods with varying filler size values while detecting fake profiles in masked 

databases. During the experiments, filler size is ranged from 5% to 50% while 

attack size is kept constant at 15%. The tests are run again 100 times due to 

randomization in the perturbation process. Overall averages of precision and recall 

for hierarchical clustering algorithm with varying filler size values are shown in 

Table 7.13, where RB stands for reverse bandwagon attack model.  

 

Table 7.13. Performance of hierarchical clustering algorithm with varying filler size 

 

 Precision Recall 

Filler Size 5 10 15 25 50 5 10 15 25 50 

Random 0.947 0.097 0.003 0.004 0.006 0.653 0.057 0.002 0.003 0.004 

Average 0.903 0.834 0.739 0.658 0.635 0.843 0.843 0.830 0.904 0.968 

Bandwagon 0.779 0.806 0.818 0.841 0.397 1.000 1.000 0.999 0.971 0.391 

Segment  0.997 0.997 0.993 0.992 0.988 0.999 0.989 0.967 0.911 0.915 

RB 0.990 0.997 0.998 0.997 0.278 1.000 1.000 1.000 0.994 0.253 

Love/Hate 0.995 0.947 0.578 0.165 0.031 0.883 0.645 0.329 0.083 0.014 

 

Due to the properties of the attack profiles, it is easy to classify them. In 

random and love/hate attacks, items are randomly selected and randomly filled. 

Thus, it is difficult to categorize them. For this reason, hierarchical clustering 

method is not successful in these attacks compared to the other ones. In this 

experiment, generally speaking, precision value is better than the recall value. Since 

making them similar to the real profiles forms the attack profiles, while classifying 

them, most of the real profiles are also placed into the same profiles with the attack 

profiles. Isolating this group makes most of the real profiles attack profiles, and this 

lowers down the precision. In particular, when the filler size reaches 50%, the 

similarities between real and attack profiles become closer, and this lowers down 

the precision even further. Usually the attack profiles are dropped down to the same 

group; and therefore, the recall is higher. The best outcome is obtained in the push 
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attack model when segment attack filler size is 5% and with the precision value of 

0.997. The best result is obtained in the nuke attack, when RB attack filler size is 

15%, and the precision is about 0.998. Bandwagon obtains the best recall value for 

push attack with 1.000, while for nuke attack, RB obtains the best value with 1.000. 

As the filler size value increases, precision value decreases. Average, segment, 

bandwagon, and reverse bandwagon attacks obtain better precision and recall 

values. 

 

7.3.2.2. Effects of attack size parameter 

 

Series of experiments are administered for examining the success of the 

shilling attack detection method with modifying attack size values on private 

environments. Attack size is the second parameter fully affecting entire success of 

a detection method. It stresses the effect of defining the number of bogus profiles 

to be included into a database. Further, filler size parameter touches the utility way 

of an attack. It is obvious that more attack profiles inserted into the system refers to 

the situation of the larger obtained shifts. Whereas, it sets up an adjustment between 

the delectability and the impact of the applied attack model. For this reason, to 

explain the varying effects of the attack size parameter, it is varied from 1% to 15% 

while the filler size is kept constant at 25%. The experiments are repeated 100 times 

due to randomization. The complete averages of precision and recall values with 

varying attack size values for the proposed shilling attack detection method are 

shown. Table 7.14 shows the performance of the hierarchical clustering-based 

detection method in terms of precision and recall, respectively. Due to the same 

reasons, average, bandwagon, segment, and reverse bandwagon attacks are more 

successful compared to the others. Reverse bandwagon attack is the most successful 

one for 15% attack size with 0.998 precision and 1.000 recall value. Bandwagon 

and segment attacks obtain values closer to the ones obtained by reverse 

bandwagon. Random and love/hate attacks are not that successful due to the reasons 

explained in the previous experiment.  

As the attack size increases, the number of profiles inserted into the system 

will also increase. Therefore, it will be easier to classify them by the clustering 
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method.  For example, when the attack size is at 1%, there will be only 10 attack 

profiles. For this reason, it will be difficult to do classification. Yet, when the attack 

size is at 15%, there will be 150 attack profiles added. In this way, it will become 

easier to do classification of them. For this reason, the best outcomes are obtained 

when the attack size is 15%.  In push attack, segment attack obtains the best 

precision value of 0.993, and in nuke attack, reverse bandwagon obtains the best 

precision value of 0.998. In the case of recall value, bandwagon yields 0.999 for 

push attack, for nuke attacks it is reverse bandwagon obtaining the best value of 

1.000.   

 

Table 7.14. Performance of hierarchical clustering algorithm with varying attack size 

 

 Precision Recall 

Attack Size 1 3 5 10 15 1 3 5 10 15 

Random 0.001 0.001 0.002 0.003 0.003 0.005 0.003 0.003 0.003 0.002 

Average 0.017 0.055 0.140 0.401 0.739 0.156 0.183 0.310 0.548 0.830 

Bandwagon 0.018 0.139 0.432 0.737 0.818 0.186 0.434 0.802 0.998 0.999 

Segment  0.001 0.074 0.793 0.982 0.993 0.004 0.105 0.836 0.955 0.967 

RB 0.000 0.000 0.348 0.980 0.998 0.000 0.000 0.408 1.000 1.000 

Love/Hate 0.000 0.001 0.002 0.221 0.578 0.003 0.003 0.003 0.149 0.329 

 

It is hypothesized that performance of the proposed hierarchical clustering-

based detection scheme with respect to precision might be improved by analyzing 

the values of target items. After evaluating our method in terms of precision and 

recall, some experiments are finally performed to show how target item analysis 

affects precision. The same methodology is followed and the trials are conducted. 

Overall averages of precision values with varying filler and attack size are displayed 

in Table 7.15 and Table 7.16, respectively.  

 

Table 7.15. Performance of improved hierarchical clustering method with varying filler size  

 

Filler Size 5 10 15 25 50 

Random 0.977 0.111 0.005 0.005 0.006 

Average 1.000 0.994 0.918 0.850 0.795 

Bandwagon 1.000 1.000 1.000 1.000 0.525 

Segment  1.000 1.000 1.000 1.000 1.000 

RB 1.000 1.000 1.000 1.000 0.180 

Love/Hate 1.000 0.959 0.640 0.150 0.002 
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Table 7.16. Performance of improved hierarchical clustering method with varying attack size 

 

Attack Size 1 3 5 10 15 

Random 0.000 0.001 0.001 0.003 0.003 

Average 0.018 0.063 0.137 0.536 0.918 

Bandwagon 0.018 0.122 0.635 0.968 1.000 

Segment  0.000 0.141 0.904 1.000 1.000 

RB 0.000 0.024 0.889 1.000 1.000 

Love/Hate 0.001 0.000 0.002 0.240 0.640 

 

The base results in terms of precision for the proposed method are displayed 

in Table 7.13 and Table 7.14 for varying filler and attack size values, respectively. 

After determining the attack cluster, the target items are determined first and their 

values are analyzed. If the results for the improved method displayed in Table 7.15 

and Table 7.16 are compared with the base results, it is seen that analyzing the target 

items improves the outcomes. Since random attack is designed randomly, target 

item analysis does not make any difference. However, improvements are observed 

for specifically designed attacks. For example, precision value increases from 0.818 

to 1.000 for bandwagon attack when attack size is 15%. Similarly, precision value 

for love/hate attack also improves from 0.578 to 0.640. 

 

7.4. Conclusions 

 

Since PPCF methods can be subjected to shilling attacks, it is also imperative 

for them to determine shilling profiles. Thus, four widely used detection algorithms 

are utilized in private environments in order to figure out shilling profiles created 

using six different attack models.  

kNN classifier and k-means methods are more successful in comparison to 

other methods. Even though kNN classifier algorithm is successful, it needs a train 

data set, which can be defined as a disadvantage. PCA algorithm works faster than 

all the others. One disadvantage of PCA algorithm can be explained as the first s 

pieces should be classified as attack profiles because it ranges profiles according to 

the covariance value. k-means algorithm is also quite successful in isolating the 

attack profiles. However, a great number of real profiles can be left out. In 

consequence of this situation, system accuracy will be affected in a negative way.  
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When all detection methods are analyzed in general, kNN classifier provides 

the best results because a sample train data is used. It can be recommended for both 

non-private and private environments. k-means algorithm also provides good 

results for all attacks and especially for recall value. It is easy to use k-means 

algorithm; but choosing the cluster number has an important role. The best cluster 

number can be defined in accordance with the experiments carried out by 

considering existing data. It is crucial to choose the right cluster and to isolate it 

from the system. If a wrong cluster is chosen and isolated from the system, so many 

real profiles could also be left out. However, many attack profiles still stay in the 

system. Similar results can be generated for all attack models because profiles are 

similar due to attack generation algorithms. k-means algorithm makes cluster 

process by using this similarity. PCA algorithm is successful for average attack due 

to its low covariance feature. In this attack, filler items set is filled with item mean 

value when creating profiles to increase the resemblance to real profiles. This makes 

the covariance value among the created profiles low. In other attack models, random 

numbers are generated with a certain standard deviation value to fill filler items. 

Thus, it is more succeeding at average attack than the others. Chirita algorithm’s 

success is low when compared to others, especially at attacks with lower attack size. 

A novel shilling attack detection scheme is proposed. The hierarchical 

clustering-based shilling attack detection method basically clusters user profiles 

into various clusters. Due to the nature of the attack profiles, it is expected that they 

are grouped into the same cluster. The scheme then determines that cluster, named 

the attack cluster. Since it is expected that all fake profiles are grouped in this 

cluster, attack cluster is isolated. The real data-based empirical outcomes 

demonstrate that the proposed scheme is able to detect shilling profiles designed for 

private environments.   

To improve the detection performance of the proposed scheme, the values of 

target items are analyzed. The target items are usually assigned to maximum or 

minimum random values for push and nuke attacks, respectively while designing 

them for PPCF schemes. Different sets of experiments are performed and the results 

verify the hypothesis. In other words, analyzing the values of the target items 

improves precision values for specifically designed attacks.  
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8. CONCLUSIONS AND FUTURE WORK 

 

There are various studies proposed to provide recommendations while 

preserving data confidentiality. Similarly, there are different works aiming at 

enhancing the robustness of CF systems. However, as in CF schemes without 

privacy concerns, PPCF schemes can also be subjected to shilling attacks. 

Malicious users and/or sites might try to insert fake profiles to achieve nuke and 

push attacks; and make the robustness of such schemes worse. The objective of the 

dissertation is to study PPCF schemes in terms of shilling attacks. Firstly, in this 

dissertation, six attack models are proposed for PPCF schemes. Then, this 

dissertation analyzes the robustness of selected memory-based, model-based, and 

hybrid PPCF algorithms against these attack models. Four widely used detection 

methods are utilized in such a way to detect shilling profiles in privacy environment. 

Finally, a novel detection method is developed to filter out shilling profiles in PPCF 

schemes. Main conclusions and future works of the dissertation can be listed as 

follows:  

1. Based on the extensive literature review about PPCF schemes, the current 

generation of PPCF requires extra improvements to make predictions more 

effective and privacy-preserving methods more protective and 

understandable. Upcoming PPCF systems should be resistant to data losses, 

more user-friendly, transparent, and effectively deployed into mobile devices. 

Another important issue that future PPCF techniques should be able to deal 

with is to make accurate predictions in the presence of shilling attacks. The 

so-called issues and concerns should be discussed in the notion of privacy and 

PPCF community about their future generations. 

2. The comprehensive survey including research that has been carried out on the 

issue of shilling attacks will lead to researchers. In addition, detailed separate 

surveys about shilling attacks strategies, detection algorithms, robustness 

analysis, and robust algorithms should be conducted. Also, known attacks 

should be classified according to various classification dimensions and the 

related attributes. In addition, more work need to be done to create new attack 

strategies and the related detection algorithms to detect them. Moreover, 
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additional study should be done to enhance the robustness of well-known 

model-based and hybrid CF algorithms. 

3. Privacy-preserving prediction methods can also be subjected to shilling 

attacks. In this thesis, PPCF systems are evaluated in terms of their robustness 

against profile injection attacks. Based on this, these systems are also 

vulnerable to profile injection. Modified bandwagon, segment, and reverse 

bandwagon attacks achieved significant alterations in produced predictions. 

It is experimentally verified that the correlation-threshold algorithm is more 

robust than the k-nn algorithm because its principle of forming neighborhoods 

contradicts the logic of shilling attack profile design attacks, similar to 

traditional CF schemes.  

4. The importance of empirical results is that they confirm the applicability of 

some attacks on recommendation schemes with privacy, which lead 

researchers to question the robustness of other methods.  

5. Comprehensive real data-based experiments are conducted to evaluate the 

robustness of the four model-based PPCF algorithms against the six attack 

models. It is experimentally shown that privacy-preserving SVD- and item-

based PPCF algorithms schemes are the most robust recommendation 

algorithms. Values of privacy-preserving control parameters might affect the 

overall performance of the attack models. Thus, investigating how varying 

values of such parameters affect the robustness of privacy-preserving model-

based schemes warrants future work. The robustness of binary ratings-based 

privacy-preserving recommendation schemes against profile injection attacks 

can also be a future work. 

6. In this thesis, privacy-preserving hybrid prediction methods have been 

evaluated in terms of robustness against shilling attacks. It is empirically 

shown that the hybrid scheme is vulnerable to shilling attacks. Especially 

bandwagon and reverse bandwagon attacks are efficient attacks for 

manipulating referrals. Based on the outcomes of the experiments, prediction 

shift values are affected by varying values of control parameters. Other hybrid 

recommendation algorithms should be investigated with respect to privacy 

and robustness. Extensive analysis should be performed to compare different 
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types of CF algorithms in terms of accuracy, efficiency, privacy, and 

robustness. 

7. Four widely used detection techniques are utilized in such a way to detect 

shilling profiles created using six different attack models on masked data in 

PPCF systems’ databases. According to experimental results, it is clearly seen 

that kNN classifier and k-means methods are more successful in comparison 

with the other methods. It is shown that values of privacy-preserving control 

parameters such as standard deviation might affect the detection method. In 

addition, success of k-means method is affected by the selected cluster size. 

As a future work, ways of improving the success of the existing detection 

algorithms should be investigated. Detection algorithms, which can filter out 

binary ratings-based shilling profiles should also be developed. 

8. The hierarchical clustering-based detection method, which is utilized in such 

a way to discover shilling profiles on masked data in PPCF systems’ 

databases is developed. It is experimentally verified that analyzing the values 

of the target items improves precision values for specifically designed attacks. 

It is experimentally shown that this novel detection method is quite successful 

on detection process. Other clustering algorithms can be employed for 

detecting shilling attacks in private environments as a future work. The 

detection methods used in non-private environments might be modified and 

utilized in private environments. 
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