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ABSTRACT 

Master of Science Thesis 

A PARALLEL HUFFMAN CODER ON  

THE CUDA ARCHITECTURE 

Habibelahi RAHMANİ 

Anadolu University 

Graduate School of Sciences 

Computer Engineering Program 

Supervisor: Assoc. Prof. Dr. Cüneyt AKINLAR 

2014, 39 pages 

We present a parallel implementation of the widely-used entropy encoding 

algorithm, the Huffman coder, on the NVIDIA CUDA architecture. After 

constructing the Huffman codeword tree serially, we proceed in parallel by 

generating a byte stream where each byte represents a single bit of the compressed 

output stream. The final step is then to combine each consecutive 8 bytes into a 

single byte in parallel to generate the final compressed output bit stream. 

Experimental results show that we can achieve up to 22x speedups compared to 

the serial CPU implementation without any constraint on the maximum codeword 

length or data entropy. 

 

Keywords: Huffman coding, variable length coding, CUDA, GPGPU, parallel 

computing, JPEG  
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ÖZET 

Yüksek Lisans Tezi 

CUDA MİMARİSİ ÜZERİNDE  

PARALEL HUFFMAN KODLAYICI 

Habibelahi RAHMANİ 

Anadolu Üniversitesi 
Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

Danışman: Doç. Dr. Cüneyt AKINLAR 

     2014, 39 sayfa 

Çalışmamızda, geniş kullanıma sahip olan entropi kodlama algoritması 

Huffman kodlayıcının, NVIDIA CUDA mimarisi üzerinde, paralel uygulaması 

sunulmuştur. Huffman kod sözcük ağacının seri olarak oluşturulmasının ardından,  

paralel olarak her baytın sıkıştırılmış akım çıktısı olan tek bir biti temsil ettiği bir 

bayt akımı oluşturularak ilerlenmiştir. Son adımda, art arda gelen her 8 bayt 

paralel olarak tek bayt içerisinde birleştirilerek, son sıkıştırılmış bit akım çıktısı 

oluşturulmuştur. Deneysel sonuçlar, kod sözcüklerin uzunluğunda veya veri 

entropisinde her hangi bir kısıt olmadan, seri CPU uygulamaya göre 22 kat hız 

kazanıldığını göstermiştir. 

 

Anahtar Kelimeler: Huffman kodlama, değişken uzunluklu kodlama, CUDA, 

GPGPU, paralel hesaplama, JPEG 
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1. INTRODUCTION 

Huffman coding is an entropy encoding algorithm that produces uniquely 

decodable codewords in variable length to minimize the average codeword length 

[1]. It is widely used by many communication protocols, compression algorithms, 

and image and video formats [2] [3]. It is most suitable to compress large volumes 

of data having a small number of different symbols. 

A typical serial implementation of a Huffman coder consists of two 

separate steps. In the first step, the input stream is processed to compute the 

frequency of each input symbol, and then a binary codeword tree is generated 

using the symbol frequencies. In the resulting tree, each symbol has a variable 

length encoding with the most frequently occurring symbol having the shortest 

codeword, and the least frequently occurring symbol having the longest 

codeword. Having computed the codeword for each symbol, the second step of 

the algorithm proceeds by simply appending the codeword for each symbol of the 

input stream one after the other to obtain the final encoded stream, which is a slow 

operation. 

Although both steps of the algorithm can be made parallel, researches have 

concentrated on the second step, i.e., the encoding, since it consumes a lot more 

time than the first step. At the same time, parallelizing the second step is more 

challenging due to the fact that the codewords for each symbol has variable length 

and it is not clear where the codeword for an arbitrary symbol of the input should 

be written in the final output stream. This problem is trivial in the case of a serial 

implementation where the codewords are easily appended one after the other to 

the output stream. Dividing the data into chunks and encoding them separately is 

also not a feasible solution since it requires bitwise arrangements on the encoded 

data chunks to obtain a single encoded stream at the end of the operation. 

Despite the difficulties in implementing the Huffman coder in parallel, 

many researchers have looked at the problem from different aspects. In [4], the 

authors look at parallel codeword generation using “n” CREW processors, but 

they do not talk about parallel encoding. In [5], the authors present a parallel 

decoding method that limits error propagation in the event of a bit error in the 
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encoded stream. In [6], the authors present different hardware architectures for 

dynamic Huffman coding. Making the Huffman coding faster in the context of 

JPEG and MPEG encoding is also a widely researched topic [7] [8]. 

With the introduction of the GPGPU processing and the NVIDIA 

Computed Unified Device Architecture (CUDA) architecture [9] [10] , which has 

a Single Instruction Multiple Data (SIMD) computation model, many researchers 

have concentrated on implementing parallel data intensive applications on the 

GPU. In [11], authors present a data parallel algorithm for variable length 

encoding and achieve high speedups by making limitations on the codeword 

length. Specifically, the author assumes that the total codeword length for four 

consecutive symbols of the input stream cannot exceed 64-bits, which severely 

limits the algorithm’s usage for data having high entropies. In [12], the authors 

present a modified Huffman coder that composes the data into independently 

compressible and decompressible blocks for concurrent compression and 

decompression, and achieve up to 3x speedup. 

In this study, we present a parallel Huffman encoding algorithm which 

works without any constraints on the maximum codeword length and entropy. We 

tested the proposed method with a large set of test data with different size and 

distributions, and we obtained promising results in terms of speedup. 

1.1 Huffman Algorithm 

Towards the end of 1940, at the beginning of the Information Theory, the 

idea to develop new effective coding techniques had new begun. Investigators 

were searching about the ideas of entropy, information content, and redundancy. 

One of the notion went into, that if the occurrences of symbols in a message were 

known, there would be a way to encode symbols, so the size of message become 

small. This worth considering work was being done before invent of modern 

digital computer. Although, now it appearing normal that information theory goes 

together at the same level with computer science, but just after World War II, 

there were no modern computers for all practical tasks. So encoding symbols 

using base 2 arithmetic algorithm development idea was really major 

breakthrough [13]. 
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 According to data compression format, there are two types of data 

compression, lossless (entropy encoding) and lossy. If losing some data does not 

matter the lossy data compression is used, i.e. (video, voice, image), otherwise 

lossless data compression algorithms are used, i.e. (text, source codes.) 

Huffman coding is an entropy encoding algorithm that produces uniquely 

decodable codewords in variable length to minimize the average codeword length 

[1] . It is widely used by many communication protocols, compression algorithms, 

and image and video formats [2] [3]. It is most suitable to compress large volumes 

of data having a small number of different symbols. This algorithm developed 

by David A. Huffman while he was a Ph.D. student at MIT, and published in the 

1952 paper "A Method for the Construction of Minimum-Redundancy Codes" 

[14]. 

A typical serial implementation of a Huffman coder consists of two 

separate steps. In the first step, the input stream is processed to compute the 

frequency of each input symbol, and then a binary codeword tree is generated 

using the symbol frequencies. In the resulting tree, each symbol has a variable 

length encoding with the most frequently occurring symbol having the shortest 

codeword, and the least frequently occurring symbol having the longest 

codeword. Having computed the codeword for each symbol, the second step of 

the algorithm proceeds by simply appending the codeword for each symbol of the 

input stream one after the other to obtain the final encoded stream [13] [15].  

1. Step: consist of the following steps (Expressed in the following example) 

Example: 

 Input symbol stream: ‘ABABCDDEFGAFDCAABBCCDDEEFFGAAAFFFFF’ 

Count the frequency: Count the appearance of the symbols in stream 

Table ‎1.1-1: Symbols and Counts 

8 4 4 5 5 9 2 

A B C D E F G 
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Building tree: The procedure for constructing the tree is simple. The different 

symbols are considered as stream of leaf nodes that are connected by a binary tree. 

Every node owns a number, which basically shows the count of symbol in the 

string. The tree can be constructed with the following steps: 

1) Locate two nodes which less occurred in the string. 

2) For created two nodes a parent node is created. The sum of the two child’s 

weight is assigned to parent node of them. 

3) The two child nodes which were used are removed from the list. The new 

created parent node is added to the free nodes list. 

4) The paths to the children is 0, 1 arbitrarily when decoding. 

5) The upper steps are continuing until one free node is left in the list. This 

last free node is the root of the tree. 

The above steps can be used to the symbols used in the given example. 

Illustrated in Figure ‎1.1-1 to Figure ‎1.1-7.  

As mentioned before these seven nodes are going to be the leaves of the 

decoding tree. 

At first we pack the two nodes with lowest weights: In our list B and G 

have the lowest weights which are 4 and 2. One parent node is created for these 

two which is assigned a weight of 6. The used Nodes B and G removed from the 

list. Figure ‎1.1-1. 

 

 

Figure ‎1.1-1: Tree Generation Step 1 

In the second step also we pack the two nodes with lowest weights from 

the new list which are the D and C nodes. Then a new parent node is created for D 

6 

A:8 B:4 C:4 D:5 E:5 F:9 G:2 

B:4 G:2 
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and C. For new created node weight is 9. D and C are deleted from the node list. 

Our tree and list structure is shown in Figure ‎1.1-2. 

 

Figure ‎1.1-2: Tree Generation Step 2 

On the next pass, the two nodes with the lowest weights are the parent 

node for the B/G pair and E node. These are tied together with a new parent node, 

which is assigned a weight of 11, and the children are removed from the free list. 

This process is so until all free nodes finished.  The process is illustrated in 

Figure ‎1.1-3, Figure ‎1.1-4, Figure ‎1.1-5, Figure ‎1.1-6 and in Figure ‎1.1-7. 

 

Figure ‎1.1-3: Tree Generation Step 3 
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B:4 G:2 

9 

C:4 D:5 
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Figure ‎1.1-4: Tree Generation Step 4 

 

Figure ‎1.1-5: Tree Generation Step 5 
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Figure ‎1.1-6: Tree Generation Step 6 

 

Figure ‎1.1-7: Tree Generation Step 7 
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Prefix Code Extraction: To extract the symbols, we have to walk on Huffman 

tree from leaf to root, collecting bits as we put for every parent node. The new 

created bits codes are get in reverse order, accordingly we have to reverse them 

again.. These steps will give codes for each symbol which are shown in the 

following table. 

Table ‎1.1-2: Generated Codes 

A 10 

B 0000 

C 111 

D 110 

E 001 

F 01 

G 0001 

As we can see, the new generated codes are prefix codes (Since no code is 

a prefix to another code); Huffman codes can be easily decoded when we face 

them in a stream. The symbol with big weight, A and F, has been assigned the 

smaller codes, and the symbol with the small weights, B and G, has been assigned 

the big codes [13]. 

2. Step: In this step we are building a bit stream by picking the corresponding 

prefix code and writing in a sequence. So, working on our previous example will 

get result like this.     

A  Encoded String: ‘10’ 

AB  Encoded String: ‘100000’ 

And so on. So, our final result is:  

‘10000010000011111011000101000110011101111010000000001111111101100

010010101000110101001010101’ 

Finally our work can be summarized in the Table 1.1-3. 
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Table ‎1.1-3: Generated Codewords Summary 

Symbol Count Original 

Symbol 

Size 

Total Size 

In the 

String per 

symbol 

Huffman 

symbol 

Size 

Total Size 

of Huffman 

Bits per 

symbol 

A 8 8 64 2 16 

B 4 8 32 4 16 

C 4 8 32 3 12 

D 5 8 40 3 15 

E 5 8 40 3 15 

F 9 8 72 2 18 

G 2 8 16 4 8 

Size of original string: 296 bits 

Size of encoded string: 100 bits 

1.2 GPU Programming 

GPU computing, a graphics processing unit (GPU) scientific, engineering, 

and enterprise are used together with a CPU to accelerate applications. In 2007, its 

leadership, NVIDIA's GPUs, now worldwide government laboratories, 

universities, institutions, small and medium enterprises are strengthening energy-

efficient data centers [16]. 

 

Figure ‎1.2-1: CPU and GPU Core Architecture [16] 

CPU is optimized for sequential batch process consists of a few seeds, 

GPU is consists of lots of work that is designed to simultaneously execute 

GPU CPU 
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thousands of smaller, more efficient core. GPUs has thousands core for handle 

efficiently parallel workloads. GPU computation, the code continues to work on 

the rest of the CPU, even though the account-intensive parts of the application by 

installing GPU delivers outstanding application performance. From the 

perspective of users, applications run significantly faster. [16] 

1.3 CUDA 

The first GPUs that support only specific fixed-function pipelines were 

designed as graphics accelerators. The programmability of hardware increased in 

the late 1990s, resulting in NVIDIA's first GPU in 1999. In short period when 

NVIDIA coined the term GPU, artist and game developers didn’t have the priority 

in doing ground-breaking work regarding the technology. Researchers hinted of 

excellent floating point performance. The General Purpose GPU (GPGPU) 

movement had reduced [17]. 

Although GPGPU was hard by the time, even for graphic programs for 

example OpenGL. Developers had to do scientific calculation onto problems that 

could be showed as triangles and polygons. A group of Stanford University 

researches work to reimagine the GPU as a “streaming processor” that resulted 

memorized the latest graphics APIs [17]. 

During 2003, researches in head Ian Buck unveiled Brook made the way 

the first widely adopted programming model to extend C with data-parallel 

constructs. Make use of concepts such as streams, kernels and reduction operators, 

the Brook compiler and runtime system exposed the GPU as a general-purpose 

processor in a high-level language. The highlighted point was Brook programs 

were not only easier to write than hand-tuned GPU code, they were seven times 

faster than similar existing code [17]. 
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Figure ‎1.3-1: CUDA Program Execution Architecture [16] 

NVDIA was aware of that blazingly fast hardware had to be coupled with 

intuitive software and hardware tools, and asked Ian Buck to join the company 

and start evolving a solution to seamlessly run C on the GPU. Using the hardware 

and software together, the world's first solution for general-computing on GPUs 

explained CUDA by NVDIA in 2006 [17]. 

1.3.1 CUDA Architecture 

By using CUDA architecture shows that performance off application is 

much better than CPU based application. Actually this difference basically in 

GPU architecture, improvement for operations such as graphic operation and 

those intense highly rated parallel needed operations are required [9] [18] [19]. 

 

Figure ‎1.3.1-1: The GPU Devotes More Transistors to Data Processing [9] 

Application Code 

CPU 

Use GPU to 
Parallelize 

Compute-Intensive 
Functions 

Rest of Sequential 
CPU Code 

+ 

GPU 
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The purpose of GPU being image processing, 3d compiling and signal 

processing applications, GPU architecture improved based on data processing 

transistors heavily existed. 

1.3.2 Programming Model 

CUDA, comes along with high level language C and a platform which 

give Access to software development. Languages helped by CUDA platform 

shown in Figure 1.3.2-1.  

 

Figure ‎1.3.2-1: GPU Computing Applications [9] 

In terms of designed CUDA architecture allows scalable programming. 

Developers don’t have to deal with GPU kernel. It provides the same transaction 

running into thousands of channels. The least amount of channel is executed again 

in the very small amount of CPU cores. 

1.3.2.1 Kernels  

CUDA C expands standard C language and allows user to identify kernel 

called C functions. Kernel functions different from normal C function when 

executed N times Works N units Works in parallel on separate channels [9] [19]. 

Kernel functions are described in terms __global __. Number of channels 

able to run Kernel is indicated by <<< ... >>> expression. Each of channel running 

Kernel is given private key value (ID). This value is accessed via “threadIDx” 

variable. 

In the representation of Figure 1.3.2.1-1, saxpy kernel was called with a 

<<<B,T>>> configuration type. In here, number of blocks B, and T in each block 

refers to the number of channels. 
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Figure ‎1.3.2.1-1: A Sample CUDA Application in C Language 

1.3.2.2 Channel Hierarchy 

Variable threadIDx, which allows us to reach the ID value of the channel 

is an element included of 3 elements. With this structure, vector, matrix, or 3D 

data sets allows easy adjustment of on operations. [19] 

The relationship between the Channel index values and the channel ID 

values, will varies according to the size of the data block. For one-dimensional 

data block channel index and ID values are equal to each other. 

Two-dimensional, A data block size for Dx and Dy, index for the channel 

in x and y coordinates is calculated as value of: Kin=x+y Dy. 

Kin=x+y Dy  

 

x: A Channel consisting of channels in the matrix column number 

y: A Channel consisting of channels in the matrix row number 

Dx: The number of columns of channel matrix 

Dy: The number of columns of row matrix 

 

void saxpy(unsigned int n, float a, 

 float *x,float *y) 

{ 

 for(int i=0;i<n;i++) 

 { 

  y[i]=a*x[i]+y[i]; 

 } 

} 

 

 

 

void serial_sample() 

{ 

 //call serial saxpy 

function 

 saxpy(n,0.2,x,y); 

} 

 

__global__ void saxpy(unsigned int n, float a,float 

*x,float *y) 

{ 

 int i=blockIdx.x*blockDim.x+threadIdx.x; 

 if(i<n) 

 { 

  y[i] = a*x[i] + y[i];  

 } 

} 

 

void parallel_sample() 

{ 

 //Launch parallel saxpy kernel 

 //using n/256 blocks of 256 

 //threads each 

 saxpy<<<ceil(n/256,256)>>>(n,0.2,x,y); 

} 

 

 
(a) (b) 
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Figure ‎1.3.2.2-1: Grid of Thread Blocks [9] 

The number of channels that can be opened in a block varies according to 

hardware. In existing products, this number can be up to 1024. To fully cover 

processed data could be utilized by evenly shaped blocks. Thus the total number 

of channels, in a block the number of channels is obtained by multiplying the total 

number of blocks [9]. 

Blocks can be either one-dimensional or two-dimensional clusters. This 

structure is called the grid. In Figure 1.3.2.2-1, a channel structure is shown which 

consists of 6 blocks. Table 1.6-1 contains info about properties of blocks, grid, 

and channel according to compute capacity. 

 Any block in the grid, can be expressed by a one-dimensional or two-

dimensional index. This index value is called as blockIdx. Mentioned block size 

can be obtained out of block “blockDim” element. 

Channels within the block can operate interactively. In addition, the 

common shared memory structure having high access speed is available. This 

structure regulates access, and mechanisms to ensure synchronization of channels 

within the block are also available. 
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1.4 Memory Model 

CUDA memory type has access to many channels. Figure 1.4-1 shows 

channels and the type of memory they can access each channel has a special 

memory access field. Each of the block has a common memory area which has 

access to all channels. The life of these memory types, is limited by the life of the 

block. All channels are entitled to the same global memory access [19].  

A part from this, there are two different type of memory. They are, 

respectively, constant and texture memory. 

Unchangeable memory area varies according to used graphic card 

calculated capacity value (compute capability).  Table 1.6-1. Unchangeable 

memory total area is shown according to calculation capacity.   

 

Figure ‎1.4-1: Memory Access Hierarchy [9] 
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Unchangeable memory area in available NVIDIA products is 64 KB and 

below of it. It is therefore difficult to use effectively.  

Texture memory is a technology that supports higher performance value 

according to global memory help by GPU. Applications for the interface to allow 

read-only transactions. In use basically in connection with a data source. Then the 

functions and data provided by CUDA is managed. Global unchangeable, and 

texture memory spaces are designed to be accessible by all kernels. 

1.5 Running Model 

Some basic information about CUDA model are listed below [19]. 

1) In CUDA study model kernels are run on the grid 

a. At the same time only one kernel is run.  

2) A channel block of a multiprocessor is run. 

a. The channels between processors is not shared to the same block. 

3) A multiprocessor can run more than one blog asynchronously. 

a. Here, runnable channel number is limited by source of processor. 

b. Common (shared) memory space is shared between the blocks. 

c. Local memory (register) is shared between channels. 

1.6 Compute Capacity 

Computing capacity is expressed in numbers large version and a small 

version. Larger version numbers are the same products have the same core 

architecture. Small version number will vary according to updates made on the 

architecture. For example, Fermi [20] architecture is expressed by computing 

capacity 2.x of architecture product. Fermi architecture products prior to the 

calculation of the capacity of the CUDA architecture is expressed by 1.x [19]. 

According to the capabilities and features of multi-processor computing 

capacity is different. In Table 1.6-1; blocks, grids and channels, calculation 

capacity of the memory space rates upon the properties are located. 
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Table ‎1.6-1: Technical Specifications per Compute Capability [9] 

Technical specifications 
Compute capability (version) 

1.0 1.1 1.2 1.3 2.x 3.0 3.1 5.0 

Maximum dimensionality of grid of 

thread blocks 
2 3 

Maximum dimensionality of thread 

block 
3 

Maximum x- or y-dimension of a 

block 
512 1024 

Maximum number of threads per 

block 
512 1024 

Warp size 32 

Maximum number of resident 

blocks per multiprocessor 
8 16 32 

Maximum amount of shared 

memory per multiprocessor 
16 KB 48 KB 

64 

KB 

Number of shared memory banks 16 32 

Amount of local memory per 

thread 
16 KB 512 KB 

Maximum width for a 1D surface 

reference bound to a CUDA array 

Not 

supported 

65536 

Maximum width and number of 

layers for a 1D layered surface 

reference 

65536 × 2048 

Maximum width and height for a 

2D surface reference bound to a 

CUDA array 

65536 × 32768 

Maximum width, height, and 

number of layers for a 2D layered 

surface reference 

65536 × 32768 × 2048 

Maximum width, height, and depth 

for a 3D surface reference bound to 

a CUDA array 

65536 × 32768 × 2048 

Maximum number of instructions 

per kernel 
2 million 512 million 
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1.7 Software Stack 

 

Figure ‎1.7-1: Software Stack [20] 

CUDA software stack is composed of a device driver, an application 

programming interface, Runtime software and two number for general usage of 

high-level math library. Figure 1.7-1 shows the CUDA software stack and the 

elements.  
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2. PROBLEM DEFINITON AND RELATED WORK 

Although both steps of the algorithm can be made parallel, researches have 

concentrated on the second step, i.e., the encoding, since it consumes a lot more 

time than the first step. At the same time, parallelizing the second step is more 

challenging due to the fact that the codewords for each symbol has variable length 

and it is not clear where the codeword for an arbitrary symbol of the input should 

be written in the final output stream. This problem is trivial in the case of a serial 

implementation where the codewords are easily appended one after the other to 

the output stream. Dividing the data into chunks and encoding them separately is 

also not a feasible solution since it requires bitwise arrangements on the encoded 

data chunks to obtain a single encoded stream at the end of the operation. 

In [12] (“Accelerating Lossless Data Compression with GPUs”), the 

authors present a modified Huffman coder that composes the data into 

independently compressible and decompressible blocks for concurrent 

compression and decompression, and achieve up to 3x speedup. 

In [11] Ana Balevic (“Parallel Variable-Length Encoding on GPGPUs”) 

worked on Variable-Length Encoding using CUDA. In The presented algorithm, 

each thread processing some data symbols. Although, the mentioned algorithm 

reach some speedups but also it has some constraints on data symbols code word 

lengths. If total length of consecutive 4 data symbols code words lengths exceeds 

32 the speedup slows down dramatically, if this length exceeds 64 the algorithm 

well not work and fails.          
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3. PROPOSED METHOD 

 

 

The Huffman coder consists of two major steps. In the first step, the input 

data is processed to generate a codeword tree. In the second step, the codeword 

for each symbol is appended one after the other to create the final compressed bit 

stream. This second step of Huffman algorithm poses the real challenge due to the 

variable-length nature of the symbol codewords. During a serial implementation, 

we start with an empty encoded stream. We can then take the next symbol from 

the input stream and append its codeword to the end of the encoded stream, and 

do this until all symbols in the input stream are exhausted. During a parallel 

implementation where separate CUDA threads are utilized to encode each symbol 

of the input stream, it is not clear where the thread should write the corresponding 

codeword in the final encoded stream. We can compute the bit-offsets for each 

input symbol and have different threads write the corresponding codewords to the 

appropriate positions in the encoded bit stream as done in [11]. But then, all 

threads have to be synchronized properly as many of them would need to access 

the same memory location. This not only creates a huge synchronization problem, 

but also requires concurrent writes to the same memory slots. 

To avoid these two problems, we have followed a different path during 

encoded stream generation: Our main idea is to have each thread write its 

thread 
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Figure ‎3-1: Illustration of the proposed algorithm for 3rd and 4th steps. Each box represents 1          

byte (8 bit) data. 
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symbol’s codeword as a byte stream where each byte represents a single bit of the 

codeword. For example, if the codeword for the symbol is 5- bits longs, then the 

thread generates 5 bytes with each byte representing a single bit value of the 

codeword, which is either 0 or 1. Notice that since each thread is writing its 

codeword to a separate memory slot, neither synchronization among the threads 

nor concurrent writes to the same location is a problem anymore. 

On the downside, more memory needs to be used to hold the encoded byte 

stream. The only problem that needs to be solved here is where in memory a 

thread will write its codeword during encoded byte stream generation. To solve 

this problem, the byte offset for each symbol’s codeword in the encoded byte 

stream needs to be computed, which can easily be done by using a parallel prefix 

sum algorithm. 

After the encoded byte stream is generated in parallel, a final step is now 

necessary to combine 8 consecutive bytes into a single byte to generate the final 

encoded bit stream. Notice that during this step, CUDA threads again work 

independently without stepping onto each other’s feet. 

Algorithm 1 lists the steps of our algorithm, and Figure 3-2 illustrates the 

general idea. After the Huffman Tree Generation is done serially on the CPU, the 

rest of the computation, that is the encoding, is performed in parallel on the GPU. 

Encoding consists of three separate and consecutive steps.  

The first of these is the Parallel Prefix Sum to compute the codeword 

offsets for each input symbol in the intermediate encoded byte stream. In Figure 

3-3 for example, the byte offset of the first input symbol ‘a’ is zero; the byte offset 

of the second input symbol ‘b’ is five; the byte offset for the third input symbol 

 

Algorithm 1. Parallel Huffman Coding Steps 

           1. Huffman Tree Generation . . . . . . . . (Serial in Host) 

2. Prefix Sum Computation . . . . . . . ..(Parallel in GPU) 

3. Encoded Byte Stream Generation . . (Parallel in GPU) 

4. Compressed Bit Stream Generation .(Parallel in GPU) 

 

Figure ‎3-2: Algorithm 1. 2. 3. 4. Steps 
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‘c’ is ten; and the byte offset of the fourth input symbol ‘d’ is twelve. The offsets 

for the rest of the input symbols can easily be computed. 

 

Prefix Sum can easily be done serially in O(n) steps, but modelling it as an 

efficient parallel algorithm is a tough problem. There are many different Parallel 

Prefix Sum implementations on the CUDA architecture each having different 

advantages and disadvantages with different constraints due to the hardware 

restrictions. In our study, we employed a slightly modified version of the Parallel 

Prefix Sum algorithm presented in [21]. 

Having computed the codeword offsets for each input symbol, we now 

proceed to the third step of our algorithm; that of generating an intermediate 

encoded byte stream. This is illustrated in Figure 3-1. As seen, a separate CUDA 

thread is launched to handle one symbol of the input stream, and that thread 

simply writes the symbol’s codeword to its corresponding memory slots in the 

encoded byte stream. For example, thread0 writes 01110 to the first five bytes of 

the encoded byte stream, thread1 writes 11110 to bytes five through ten, and 

 

k ← tid 

for  threads k = 1 to N  in parallel 

 bitpos[1..N ] ← pref ixsum(cwlen[1..N ])  

EndFor 

 

for  threads k = 1 to N  in parallel 

 symbol ← data[k] 

 cw, cwlen ← cwtable[symbol] 

 bitStartPos← bitpos[k]  

 for bits j=0 to cwlen 

  ByteStream[bitStartPos+ j]← cw [j] 

 EndFor 

EndFor 

 

for  threads k = 1 to N  in parallel 

 for bits i=0,j=128 to 8  

  mask=0x01 

  mask ← ByteStream[k*8 + i] && mask 

  temp ← temp | mask * j 

  j ← j>>1  

 EndFor 

 CompressedByteStream[k]←temp  

EndFor 

Figure ‎3-3: Proposed Algorithm Pseudo Code 
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thread2  writes 10 to bytes eleven and twelve. The rest of the threads work 

similarly. 

Notice that there is no need for inter-thread synchronization during the 

encoded byte stream generation.  Since each thread performs writes to non-

overlapping memory slots, each can proceed independently and perform its 

operation without the need for any synchronization or coordination with 

neighboring threads.  That is the main idea with generating an intermediate 

encoded byte stream. Since the codewords are of variable-length, generating the 

final compressed bit stream directly as done in [11] would have created a huge 

thread synchronization problem since many threads would have to perform 

concurrent writes to the same memory location in the final compressed bit stream. 

During encoded byte stream generation, threads make use of the CUDA 

global memory (GM) rather than the shared memory (SM) for the following 

reasons. First, we do not perform any computational operation on the data. In 

other words, each byte that we reach from GM is used only once. Therefore, 

pulling all data to SM and pushing them back becomes unnecessary. The other 

reason is the automatic caching property of the recent CUDA GPUs, which makes 

it unnecessary to explicitly pull the data to SM for fast access as was done in 

previous CUDA GPUs. 

The last step of the algorithm is the compressed bit-stream generation from 

the encoded byte stream (refer to Figure 3-1). This is a massively parallel step. 

Each thread reads 8 consecutive bytes from encoded byte stream and generates a 

single byte of the compressed bit stream. For example, thread0 in Figure 3-1 takes 

the first eight bytes with values 01110111, and compresses them into a single byte 

having the value 0x77. This is now the first byte of the final compressed bit 

stream. The other threads work similarly to output the final bit stream. Notice 

again that each thread works independently requiring no thread synchronization 

whatsoever. Further notice that each thread accesses different memory locations; 

that is, there is no concurrent read or write operations to the same memory slot 

during this step. 
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4. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of the proposed parallel 

Huffman coder and compare its performance to the serial implementation 

executed on a CPU. To execute our GPU-based parallel Huffman code, we 

employ an NVIDIA GTX 480 GPU card; and to execute the serial Huffman code, 

we employ an Intel Core 2 Quad CPU running at 2.40 GHz. 

 

 

Figure ‎4-1: Speedup achieved on GTX 480 compared to the serial implementation executed on a 

Core 2 Quad CPU running at 2.4 GHz as the data size increases. The entropy of 

the data is fixed at 5-bits/symbol. 

In the first experiment, we evaluate the speedup of the proposed algorithm 

as the data size increases. Figure 4-1 shows the achieved speedup as the data size 

increases from 1 MB to 16 MB. The entropy of the input data, i.e., the average 

codeword length used to encode a symbol is fixed at 5-bits/symbol so that we can 

directly see the effects of the data size on the performance. As expected, the 

speedup increases as the data size increases, and at 16 MB, we achieve about 22x 

speedup. The reason for better speedups for big data sizes is due to the fact that 

after initial start-up, the pipeline of the GPU gets full for large volumes of data 

and processing dominates the total time. Whereas for small data sizes, the initial 

start-up dominates the total time, so the speedup is not as big as expected.  
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Figure ‎4-2: Speedup achieved on GTX 480 compared to the serial implementation executed on a 

Core 2 Quad CPU running at 2.4 GHz as the entropy of the data increases. The 

data size is fixed at 8 MB. 

 

In the second experiment, we fixed the input data size at 8 MB, and 

changed the entropy of the data to see the effects of the entropy on the achievable 

speedup. For data having high entropy, the average codeword length of the 

symbols will be small, which would also mean that the data is not amenable for 

compression. Conversely, if the average codeword length of the symbols is big, 

i.e., the codeword lengths deviate too much from the average, then the data is very 

amenable for compression. Figure 4-2 sketches the speedup values of the 

proposed parallel algorithm over the serial one as the entropy changes from two to 

eight. As seen from the figure, if the entropy of the input data is low, then we can 

achieve about 17x speedups; whereas, when the entropy of the input data is high, 

the speedup drops down to about 12x. This is again expected since with low 

entropy, the resulting compressed bit stream will be of smaller size, which means 

that the algorithm has to deal will less amounts of data. Conversely, with high 

entropy, the resulting compressed bit stream will be of larger size, which means 

that the algorithm has to deal with bigger volumes of data. Since shuffling data in 

the GPU is a slow operation, the speedup drops with higher entropies. 
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Figure ‎4-3: Dissection of the running time of the parallel algorithm as the entropy of the input 

data increases from 2 to 8. 

Figure 4-3 shows the dissection of the total running time of the parallel 

algorithm for data having different entropies, and compares it to the serial 

Huffman coders. The running time of the parallel code is divided into three parts: 

(1) Prefix sum to compute the offset of each codeword in the byte stream, (2) 

Encoding to create the byte stream, (3) Compression to actually compress the byte 

stream into bit stream output by the algorithm. As can be seen from the figure, 

Prefix Sum is the major contributor to the running time of the parallel algorithm. 

To be specific, for data having entropy 8, about 50% of the time is spent on Prefix 

Sum, about 17% on Encoding and the remaining 33% on Compression. For data 

having lower entropies, the contribution of Prefix Sum to the total running time 

increases more. This tells us that to reduce the total running time of the proposed 

algorithm, Prefix Sum must be made faster followed by Compression. It appears 

that Encoding has the least contribution to the total running time and is already 

fast enough. 

      Entropy=2                         Entropy=4             Entropy=6                      

Entropy=8 
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Figure ‎4-4: Execution time comparison of serial vs. parallel algorithm for different size of data 

In Figure 4-4 sketch of the speedup values of the proposed parallel 

algorithm over the serial one is presented for different types of distributions and 

data sizes. It is clearly seen that the speedup value increases as the entropy of the 

data decreases and the deviation of codewords increases. This is an unexpected 

result for us due to the following assumption. Before the experiments, we expect 

that the bigger entropies result in codewords with similar lengths and this situation 

equalizes the overhead per thread. It is a fact that, CUDA architecture performs 

better if a task can be divided to the threads in an even manner. However, we see 

that this assumption was wrong.  
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