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ABSTRACT 

Master of Science Thesis 

DETECTION OF TRIANGULAR AND RECTANGULAR 

 OBJECTS IN DIGITAL IMAGES 

Selcan KAPLAN BERKAYA 

Anadolu University 

Graduate School of Sciences 

Computer Engineering Program 

 Supervisor: Assoc. Prof. Dr. Serkan GUNAL 

2014, 49 pages 

 

In this dissertation, novel methods are proposed for the detection of rotated 

triangular and rectangular objects in digital images. The proposed methods utilize 

recently developed and successful edge detection algorithm, and consist of 

detection and validation stages. In the detection stage, the proposed methods use 

line segments and construct triangular and rectangular shapes from those 

segments. The line segments detected by using edge detection algorithm are 

converted into line pairs according to their angles and distance between each two 

lines. The candidate line pairs are first combined with each other. If the triangular 

or rectangular shapes are not constructed, for triangular shapes these line pairs are 

combined with a single line segment, for rectangular shapes two line pairs 

combined, and then these pairs are combined with a single line segment by 

following the appropriate criteria. Finally, in the validation stage, the candidate 

triangles and rectangles are validated using Helmholtz principle and Number of 

False Alarms (NFA) computation. According to the results of the experimental 

studies, the proposed methods offer higher detection performances than Open 

Source Computer Vision (OpenCV) triangle and rectangle detection algorithms 

which are commonly used in computer vision field.   

 

Keywords:  Geometrical Shape Detection, Triangular Object Detection, 

Rectangular Object Detection, Shape Analysis, Hough Transform 
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ÖZET 

 Yüksek Lisans Tezi 

SAYISAL İMGELERDE ÜÇGENSEL VE DİKDÖRTGENSEL 

NESNELERİN BELİRLENMESİ  

Selcan KAPLAN BERKAYA 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

Danışman: Doç. Dr. Serkan GÜNAL 

2014, 49 sayfa 

 

Bu tez çalışmasında, sayısal imgelerdeki döndürülmüş üçgensel ve 

dikdörtgensel nesnelerin tespiti için yeni yöntemler önerilmiştir. Önerilen 

yöntemler, yakın zamanda geliştirilmiş olan başarılı bir kenar tespit 

algoritmasından faydalanmakta olup, tespit ve doğrulama olmak üzere iki 

aşamadan oluşmaktadır. Tespit aşamasında, önerilen yöntemler çizgi parçalarını 

kullanarak üçgensel ve dikdörtgensel şekillerin tespitini yapmaktadır. Kenar tespit 

algoritmasıyla tespit edilen çizgi parçaları, açıları ve aralarındaki uzaklığa göre 

ikili çizgi parçalarına dönüştürülmüştür. Aday ikili çizgi parçaları önce kendi 

aralarında birleştirilmiştir. Eğer üçgen veya dikdörtgen oluşmamışsa, üçgensel 

şekiller için tek bir çizgi parçasıyla, dikdörtgensel şekiller için bu iki ikili çizgi 

birleştirildikten sonra tek bir çizgi parçasıyla karşılaştırılarak uygun ölçütlerde 

birleştirilmiştir. Son olarak, doğrulama aşamasında, Helmholtz prensibi ve Yanlış 

Alarm Sayısı (YAS) hesaplaması kullanılarak onaylanmıştır. Deneysel 

çalışmaların sonucuna göre, önerilen yöntemler, bilgisayarla görü alanında sıkça 

kullanılan Açık Kaynaklı Bilgisayarla Görü (OpenCV) üçgen ve dikdörtgen tespit 

algoritmalarına göre daha yüksek tespit başarımı sağlamaktadır. 

 

Anahtar Kelimeler: Geometrik Şekil Tespiti, Üçgensel Nesne Tespiti, 

Dikdörtgensel Nesne Tespiti, Şekil Analizi, Hough 

Dönüşümü 
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1. INTRODUCTION 

 

Detection of polygonal objects in digital images is an important problem in 

image processing and computer vision, and has many applications especially in 

such building detection for geographical information systems, construction 

planning, environmental investigation (Park et al., 2009), vehicle detection (Moon 

et al., 2002), license plates recognition (Gao and Zhou, 2000; Xu et al., 2004; 

Llorens et al., 2005), triangular and rectangular traffic signs detection 

(delaEscalera et al., 1997; Cyganek, 2007; Maldonado-Bascon et al., 2007; Xu, 

2009; Ruta et al., 2010; Khan et al., 2011; Bruno et al., 2012; Zaklouta and 

Stanciulescu, 2014), and many others. The most common geometrical shapes are 

triangle and rectangle. While triangular and rectangular objects can be observed in 

ordinary images, they can be also encountered in particular images such as road 

scenes including traffic signs. So far, it has made many rectangular objects 

detection methods. Detection of triangular objects is mainly used in traffic sign 

recognition and there are many studies in this field. However, there are a few 

papers about diverse kinds of triangular objects detection from color images.  

The common methods for shape detection are based on HT and its improved 

version (Zhu and Quingzhi, 2011). Although these methods may offer satisfactory 

performance, their main disadvantages are high computational complexity and 

large storage requirement. These methods are mostly used in circle and line 

detection problems (Liu et al., 2006, Bradski and Kaehler, 2008).  

In the HT based methods (described in detail in Section 1.2), most of the 

methods that used edge and line primitives to form shapes like rectangles or 

triangles use Canny edge detector for finding contours, and then apply Hough line 

transform for finding straight lines. In (He and Ma, 2009) and (Jung and 

Schramm, 2004), techniques based on windowed HT are used for image transform 

and triangle and rectangle detection, respectively. 

The other methods are based on linear combination of methods (Non-HT). 

Some samples of them are information of corners, the property of inscribed circle, 

color information and template matching, etc. Non-HT methods based on edge 

and line pirimitives were provided to avoid the defects of the HT method. These 
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methods of detection efficiency and detection accuracy depend on the number of 

the lines obtained from the line detection algorithm (Gunduz et al., 2013). 

 In (Liu and Wang, 2014), the approach based on the property of the 

inscribed circle of triangles is proposed for triangle detection.  In (Garlipp and 

Muller, 2006), the authors establish a model with a regression function after 

detecting the edges. Then, they detect the triangular and rectangular objects if the 

model meets the triangularity or rectangularity conditions. (Liu et al., 2006a; Liu 

et al., 2006b) presented Markov Random Field (MRF) model-based algorithms for 

triangular and rectangular shaped objects detection in color images, respectively. 

In (Barnes et al., 2010), they proposed a regular polygon detector using a 

posteriori probability approach based on locality and gradient information. 

However, the proposed technique is capable of detecting only equilateral triangles 

and rectangles.  

In the methods used information of corners, firstly corners must be found. A 

corner can be defined as the intersection of two or more edges. Polygons can 

detect using localization of corners in image. Distance Transform (DT) is one of 

these. In this method, firstly the corner points are found in the image (Maldonado-

Bascon et al., 2007; Moomivand and Abolfazli, 2011). DT image is obtained 

using distance of each pixel to the nearest corner of the image. This method takes 

a long time to create the feature vector. Therefore, it is not suitable for real-time 

applications. 

Color based detection methods aim to segment the given color in order to 

provide a region of interest for further processing. Color information is easy to be 

influenced by illumination changes and different weathers. With color based 

methods, researchers choose different color spaces and thresholds. Escalera et al. 

used the normalized Red Green Blue (RGB) space with fixed threshold in which 

red component was chosen as reference (delaEscalera et al., 1997), and (Yalic and 

Can, 2011; Xu et al., 2012) used RGB, too. International Commission on 

Illumination, L* stands for luminance, a* is the red-green axis, and b* is the blue-

yellow axis (CIELab or CIE L*a*b*) is used in other work (Khan et al., 2011) to 

represent the color image because this space can independently control color and 

intensity information. Most researches (Xu, 2008, Zhu et al., 2006, Ruta et al., 
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2010, Maldonado et al., 2007) used Hue Saturation Intensity (HSI) space which is 

regarded as more immune to lighting changes. In (Garcia-Gorrido et al., 2006), 

comparing the methods based on colour segmentation with the ones based on 

shape analysis it can be concluded that color provides a faster focusing on the 

seeking areas but in practice precision is lower. In conclusion, the methods based 

on shape analysis are more robust against changes in lighting conditions.  

Defining a measure or a cost measuring the “distance” or the “similarity” 

between the (known) reference patterns and the (unknown) test pattern, in order to 

perform the matching operation known as template matching (described in detail 

in Section 1.1). Matching based algorithms are standard methods for polygons 

detection; these start by recovering line segments, and construct shapes from 

these. This is inherently slow as the possible match candidates grow exponentially 

with the number of edges. It is also non-robust, performing poorly under partial 

occlusions. 

Some of major algorithms that commonly used for shape detection are 

mentioned in continued Section 1.1 and Section 1.2. 

 

1.1.  Template Matching (OpenCV Template Matching) 

 

Template Matching is a method for searching and finding the location of a 

template image in a larger (source) image. Template matching via 

cvMatchTemplate() matches an actual image patch against an input image by 

“sliding” the patch over the input image using one of the matching methods 

described in this section (Bradski and Kaehler, 2008). If, as in Figure 1.1, there is 

an image patch containing a triangular traffic sign, then that sign can be slid over 

an input image looking for strong matches that would indicate another sign is 

present. The function call is given below: 

void cvMatchTemplate( 

const CvArr* image, 

const CvArr* templ, 

CvArr* result, 

int method ); 



 4   

 

 

Figure 1.1. cvMatchTemplate() sweeps a template image patch across another image 

 

The matching model in templ is just a patch from a similar image containing 

the object for which you are searching. The input image is used as I, T the 

template, and R the result. 

 

1.1.1. Square difference matching method (method = CV_TM_SQDIFF)  

 

These methods match the squared difference, so a perfect match will be 0 

and bad matches will be large: 

 

       
(   )  ∑   (     )   (         )         (1.1) 

 

1.1.2. Correlation matching methods (method = CV_TM_CCORR) 

 

These methods multiplicatively match the template against the image, so a 

perfect match will be large and bad matches will be small or 0. 

 

      (   )  ∑   (     )  (         )        (1.2) 
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1.1.3. Correlation coefficient matching methods 

(method=CV_TM_CCOEFF) 

 

These methods match a template relative to its mean against the image 

relative to its mean, so a perfect match will be 1 and a perfect mismatch will be –

1; a value of 0 simply means that there is no correlation (random alignments). 

 

       (   )  ∑   (     )  (         )        (1.3) 

 

 (     )   (     )  
 

(   ) ∑  (       )
      

   (1.4) 

 

 (         )   (         )  
 

(   )∑  (           )      
  (1.5) 

 

1.1.4. Normalized methods 

 

The normalized methods are useful because they can help reduce the effects 

of lighting differences between the template and the image. In each case, the 

normalization coefficient is the same: 

 

 (   )  √∑  (     )      ∑  (         ) 
      (1.6) 

 

The values for methods that give the normalized computations are listed in 

Table 1.1. Figure 1.2 shows the results of sweeping the sign template over the 

source image (shown in Figure 1.1) using each of cvMatchTemplate()’s available 

matching methods. In the first column, the darkest is the better match, for the 

other two columns, the brighter a location, the higher the match. 
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Table 1.1. Normalized computations 

Value of method parameter Computed result  

CV_TM_SQDIFF_NORMED 
               (   )  

        (   )

 (   )
 

CV_TM_CCORR_NORMED 
             (   )  

      (   )

 (   )
 

CV_TM_CCOEFF_NORMED 
              (   )  

       (   )

 (   )
 

 

   

   

Figure 1.2. Match results of six matching methods for the template search depicted in Figure 1.1, 

first row are the standard methods SQDIFF, CCORR and CCOEFF, second row are 

the same methods in its normalized version 

 

 

Figure 1.3. The right match for a sample image given in Figure 1.1 (CCORR NORMED, 

CCOEFF, COEFF NORMED give the correct matches) 



 7   

 

The right match is shown above (black rectangle around the sign at the top). 

For this image, CCORR NORMED, CCOEFF and CCOEFF NORMED give the 

best matches. 

 

1.2.  Hough Transform (OpenCV Hough Transform)  

 

The HT (Hough, 1962) was proposed by Paul Hough who patented the 

method in 1962. It transforms between the Cartesian space and a parameter space 

in which a straight line (or any parameterized curve) can be defined. The original 

HT was a line transform (Bradski and Kaehler, 2008; Ginkel et al.,2004), which is 

defined to detect straight lines in binary images, and seemingly inherently 

discrete. The transform can be further generalized to cases other than just simple 

lines (to other shapes and grayscale images).  

The advantages of the HT: 

 The Generalized Hough Transform (GHT) (Ballard, 1981) is 

essentially a method for object recognition. 

 It is robust to partial or slightly deformed shapes (i.e., robust to 

recognition under occlusion). The pixels lying on one line need not 

all be contiguous. This can be very useful when trying to detect lines 

with short breaks in them due to noise, or when objects are partially 

occluded.  

 It is robust to the presence of additional structures in the image (i.e., 

other lines, curves, etc.). 

 It is tolerant to noise. The main advantage of the HT technique is 

that it is tolerant of gaps in feature boundary descriptions and is 

relatively unaffected by image noise (Fisher et al., 2000). 

 It can find multiple occurences of a shape during the same 

processing pass. 

The disadvantages of the HT: 

 It requires a lot of storage and extensive computation (but it is 

inherently parallelizable!). 

 Faster variations have been proposed in the literature. 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
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 It can give misleading results when objects happen to be aligned by 

chance. 

 Detected lines are infinite lines described by their (a, b) values, 

rather than finite lines with defined end points. 

 

1.2.1. Hough Line Transform 

 

The basic theory of the Hough line transform is that any point in a binary 

image could be part of some set of possible lines. Given a single isolated edge 

point (xi, yi), there are an infinite number of lines that could pass through the 

points and each of these lines can be characterized by some particular equation 

(varying values of a and b) presented in Equation 1.7 (Gonzalez and Woods, 

2008). 

 

              (1.7) 

 

These lines can be represented as a line in parameter space. Given a set of 

collinear edge points, each of them have associated a line in parameter space. 

These lines intersect at the point where a is the slope and b the intercept of the 

lines corresponding to the parameters of the line in the image space. In fact, all the 

points on this line (shown in Figure 1.4a) have lines in parameter space that 

intersect at (a
’
, b

’
) (shown in Figure 1.4b and Figure 1.5b). 

Figure 1.5a shows a line in the Cartesian coordinates (xy-plane). Figure 1.5c 

shows its HT. The equation of the line is Equation 1.7 and the corresponding 

equation in Polar coordinates (parameter space) is Equation 1.8: 

 

ρ = x cosθ + y sinθ     (1.8) 
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(a) (b) 

Figure 1.4. A sample line in image and parameter spaces (Gonzalez and Woods, 2008). (a) xy-

plane. (b) Parameter space  

 

  

(a) (b) 

 

(c) 

Figure 1.5. A sample straight line and its HT. (a) (p, θ) parameterization of line in the xy-plane (A 

straight line in the Cartesian coordinates). (b) Sinusodial curves in the pθ-plane, the 

point of intersection (p
’
, θ

’
) corresponds to the line passing through points (xi, yi) and 

(xj, yj) in the xy-plane (Gonzalez and Woods, 2008). (c) HT of the straight line 

(Figure 1.5a) (He and Ma, 2009) 

 

OpenCV supports two different kinds of Hough line transform: the standard 

Hough transform (SHT) (Duda and Hart, 1972) and the probabilistic Hough 

transform (PHT) (Kiryati et al., 1991). Both of these algorithms are tested in this 
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thesis and accessed with the same OpenCV function, though the meanings of 

some of the arguments depend on which method is being used. 

CvSeq* cvHoughLines2( 

CvArr* image, 

void* line_storage, 

int method, 

double rho, 

double theta, 

int threshold, 

double param1 = 0, 

double param2 = 0 

); 

The first argument is the input image. The second argument is a pointer to a 

place where the results can be stored, which can be either a memory storage or a 

plain N-by-1 matrix array (the number of rows, N, will serve to limit the 

maximum number of lines returned). The next argument, method, can be 

CV_HOUGH_STANDARD, CV_HOUGH_PROBABILISTIC, or 

CV_HOUGH_MULTI_SCALE for (respectively) SHT, PHT, or a multiscale 

variant of SHT. The next two arguments, rho and theta, set the resolution desired 

for the lines (i.e., the resolution of the accumulator plane). The threshold value is 

the value in the accumulator plane that must be reached for the routine to report a 

line (Bradski and Kaehler, 2008). 

The results of these two functions compared with the proposed algorithms in 

this thesis are not good enough in terms of accuracy and processing time. Even 

only to obtain the straight lines with SHT or PHT takes longer than the proposed 

algorithms. 

A sample image and its PHT are illustrated in Figure 1.6. Only PHT is 

shown, because it is observed that PHT gives better results than SHT. 
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(a)  (b) 

Figure 1.6. A sample synthetic image and  its PHT. (a) A sample image. (b)  The obtained lines 

using OpenCV PHT (10.59 ms) (overlayed by red color) 

 

1.3.  The Proposed Approaches 

 

In this thesis, novel and efficient algorithms are proposed to detect various 

types of triangular and rectangular shapes under different ligthing conditions. The 

proposed methods mainly consist of a detection stage and a validation stage. In 

the detection stage,  the algorithm first utilizes the recently developed, real-time 

edge segment detection algorithm, named Edge Drawing (ED) (Topal and 

Akinlar, 2012), which, given a grayscale image, produces a set of edge segments 

each of which is a contiguous pixel chain. Nextly, the extracted edge segments are 

converted into line segments and these line segments are further processed to 

detect triangles or rectangles. In case an extracted edge segment is closed, i.e., the 

first and the last pixel of the edge segment is very close to each other on the 

image, the edge segment most likely traces the boundary of a polygonal object; 

thus, triangular and rectangular shapes can easily and quickly be detected from 

such closed edge segments. If, on the other hand, the edge segment is a non-

closed, triangular and rectangular shapes can still be detected in a reasonable time 

using pairwise relationships of line segments that meet certain criteria. In the 

validation stage, the candidate shapes are validated using Helmholtz principle 

(Desolneux et. al., 2004; Desolneux et. al., 2008) which eliminates false 

detections leaving only perceptually meaningful triangles or rectangles. In order 

to evaluate the performance of the proposed algorithm, for triangle detection four 

datasets, which are composed of synthetic and real images containing various 
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types of triangles (e.g. regular, overlapped, partially occluded, discontiguous, 

etc.), and for rectangles three datasets are employed. The results of the 

experimental works reveal that both of the proposed methods offer higher 

detection performances than that of widely used OpenCV triangle or rectangle 

detection algorithm.  

 

1.4. Organization of the Thesis  

 

The organization of this thesis is as follows: Section 2 introduces the 

proposed triangle detection algorithm in detail. In addition, the parts used in 

common with the proposed rectangle detection algorithm are provided in this 

section. Also, experimental work and related results in terms of accuracy and 

processing time of the proposed triangle detection algorithm are presented in this 

section.  

In Section 3, the proposed rectangle detection algorithm is introduced. Also, 

in a similar manner to the proposed triangle detection algorithm, the experimental 

work and related results are presented in this section.  

Finally, some concluding remarks and future directions are provided in 

Section 4. 
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2. THE TRIANGLE DETECTION ALGORITHM 

 

Triangular and rectangular shape detection algorithms work with grayscale 

images and follow several steps to compute the triangle(s) and rectangle(s) in a 

given image. General outline of these algorithms is presented in Algorithm 1 and 

each step of the algorithm is described detailly within the following subsections. 

 

Algorithm 1: 

 

1. Detect edge segments by Edge Drawing Parameter Free (EDPF). 

2. Convert edge segments into line segments. 

3. Find closed edge segments and extract complete triangles/rectangles. 

4. Detect line pairs and straight lines by combining remaining line segments. 

5. Combine line pairs and straight lines to detect triangle/rectangle 

candidates. 

6. Validate the candidate triangles/rectangles using Helmholtz principle. 

7. Output the remaining valid triangles/rectangles. 

1 and 2 steps are common for both triangle and rectangle detection algorithms. 

 

2.1. Edge Segment Detection by EDPF 

 

Edge Drawing (ED) (Topal and Akinlar, 2012), a real-time edge/edge 

segment detector is proposed recently. ED outputs not only a binary edge map 

similar to those output by traditional edge detectors, but it also outputs the result 

as a set of edge segments each of which is a contiguous (connected) pixel chain 

(Akinlar and Topal, 2013). 

ED has many parameters that must be set by the user, which requires the 

tuning of ED’s parameters for different types of images. Ideally, one would want 

to have a real-time edge/edge segment detector which runs with a fixed set of 

internal parameters for all types of images and requires no parameter tuning. To 

achieve this goal, ED is recently incorporated with the “a contrario” edge 

validation mechanism due to the Helmholtz principle, and obtained a real-time 

parameter-free edge segment detector, which named  EDPF (Akinlar and Topal, 

2012). EDPF works by running ED with all ED’s parameters at their extremes, 
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which detects all possible edge segments in a given image with many false 

positives. Then the extracted edge segments are validated by the Helmholtz 

principle, which eliminates false detections leaving only perceptually meaningful 

edge segments. 

Figure 2.1a shows a 640 × 480 synthetic image containing various kinds of 

colored rectangles and triangles obstructed by ellipses, circles or each other. When 

this image is fed into EDPF, the edge segments shown in Figure 2.1b are 

produced. Each color in the edge map represents a different edge segment, each of 

which is a contiguous chain of pixels. For this image, EDPF outputs 66 edge 

segments in just 18.68 ms in a PC with a 3.5GHz Intel Core i7-3770K CPU and 

16GB RAM. 

 

 

(a) 

  

(b) (c) 

Figure 2.1. A sample synthetic image and results of EDPF (Akinlar and Topal, 2012). (a) A 

sample image (640 × 480). (b) Edge segments extracted by EDPF (Akinlar and 

Topal, 2012). EDPF (Akinlar and Topal, 2012) outputs 66 edge segments in 

18.68 ms. (c) Lines approximating the edge segments. A total of 310 lines are 

extracted 



 15   

 

2.2. Conversion of Edge Segments into Line Segments 

 

Conversion of an edge segment into a set of lines follows the algorithm, 

EDLines given in (Akinlar and Topal, 2011). The proposed algorithm is to start 

with a short line that satisfies a certain straightness criterion, and extend the line 

for as long as the mean square error is smaller than a certain threshold, i.e., 1 pixel 

error. Here is the algorithm (Akinlar and Topal, 2011) for converting an edge 

segment into several lines:  

 

Algorithm 2: 

 

LineFit(Pixel *pixelChain, int noPixels){ 
 double lineFitError = INFINITY;     // current line fit error 
LineEquation lineEquation;              // y = ax+b OR x = ay+b 
  
while (noPixels > MIN_LINE_LENGTH){ 
    LeastSquaresLineFit(pixelChain, MIN_LINE_LENGTH, &lineEquation, &lineFitError); 
    if (lineFitError <= 1.0) break; // OK. An initial line segment detected 
    pixelChain ++;   // Skip the first pixel & try with the remaining pixels 
    noPixels--;          // One less pixel 
} // end-while 
  
if (lineFitError > 1.0) return;  // no initial line segment. Done. 
  
// An initial line segment detected. Try to extend this line segment 
int lineLen = MIN_LINE_LENGTH; 
while (lineLen < noPixels){ 
    double d = ComputePointDistance2Line(lineEquation, pixelChain[lineLen]); 
    if (d > 1.0) break; 
    lineLen++; 
} //end-while 
  
// End of the current line segment. Compute the final line equation & output it. 
 LeastSquaresLineFit(pixelChain, lineLen, &lineEquation); 
 Output “lineEquation” 
  
// Extract line segments from the remaining pixels 
LineFit(pixelChain+lineLen, noPixels-lineLen); 
}  //end-LineFit 
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Using Algorithm 2, it is very fast to convert an edge segment made up of a 

chain of pixels into a set of lines (Akinlar and Topal, 2011). Consecutive set of 

lines are shown in Figure 2.1c. After conversion these line segments are turned 

into straight lines by checking collinearity. The edges of the corners of the 

regular- shaped objects are straight line segments (Zhang et al., 2010). Due to 

effect of noise or illumination variation, line segments may be highly fragmented 

and grouping process is necessary. Moreover, line segments combination will 

reduce the time complexity of later rectangle boundary detection process (Liu et 

al., 2006a, Liu et al., 2006b). Therefore, some straight line segments are merged 

into a single segment according to several perceptual grouping criteria: 

1. The merged line segments must belong to the same edge segment.  

2. The distance between line segments should be very short.  

3. The angle between line segments should be smaller than five degree to 

check collinearity. 

In this step, straight lines in both closed and non-closed edge segments are 

obtained according to meet the requirements mentioned above. The remaining 

steps are described in following sections. 

 

2.3. Finding Closed Edge Segments and Extraction of Complete Triangles  

 

The easiest case for triangle detection is when the entire boundary of an 

object in the image is returned as a closed curve; that is, the edge segment starts at 

a pixel on the boundary of an object, traces its entire boundary and ends at where 

it starts. In other words, the first and last pixels of the edge segment are neighbors 

of each other (Akinlar and Topal, 2013).  

If an edge segment forms such a closed pixel chain, a check is performed to 

see if the segment traces the entire boundary of a triangle. For this purpose, the 

edge segment is first converted into line segments and a check is performed to see 

if the number of straight line segments is equal to three. 

In the second step, the three interior angles of candidate triangle are 

computed. Angle tolerance (Amin and Amax), distance tolerance (Dmax) and ratio 

tolerance (Rmin and Rmax) are used to verify that those three lines are the sides of 
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the triangle. If the summation of the angles are close to 180 ([180-ε, 180+ε]) and 

each angle is between Amin and Amax, intersection points of each pair of lines are 

found.  Thus, the corner coordinates of the candidate triangle are obtained. Then, 

the distances between these corners are computed. If the ratios of these distances 

to the actual lengths of straight lines are not between Rmin and Rmax, it is concluded 

that these three lines do not form a triangle. Otherwise, these three lines are 

forwarded to the validation stage. The algorithm for triangle processing of a 

closed edge segment is provided in Algorithm 3. 

 

Algorithm 3: 

if(the segment of interest is closed) { 

 bool triangle=false; 

 if(number of lines in the edge segment==3){             

 Find the angles between lines; 

  if(175<summation of three angles<185 ){ 

   if(15<the angles<165)){     

    Find intersection point of three lines; 

Assign these intersection points to the triangles structure as the 

corners of candidate triangle;   

 if(the start and end coordinates of lines are not between corner 

coordinates ){tri=false;} 

    else{  

                 Compute distances between corners; 

           if( distance between corners)>9){  

     if(actual lengths of lines/distances(ratios)<0.35 && ratios >2)

         { triangle=false; }//end-if  

     else{ 

         if(Validation of Triangles==true){ 

       numberofTriangles++; 
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       triangle=true;    

           }//end-if}//end-else 

         }//end-if}//end-else}//end-if}//end-if}//end-if}//end-if}//end-if 

 

If a complete triangle cannot be constructed in previous steps, then a sorting 

operation is processed on available line segments, and the longest three lines are 

selected. Later on, the selected lines are processed as described in Algorithm 3. If 

a triangle still cannot be obtained by both of these methods, Algorithm 4 in 

Section 2.5 is used. 

 

2.4. Extraction of Complete Triangles from Nonclosed Edge Segments 

 

As distinct from extraction of complete rectangles, complete triangles are 

extracted from nonclosed edge segment in a separate stage due to triangle 

detection algorithm. In this stage, if the edge segment of interest is not closed, the 

start and end points of the segment are not close enough to each other; candidate 

triangle cannot be constructed from this segment. In this case, the lines belonging 

to the segment are sorted according to their lengths. Then, the previous steps in 

detection of complete triangles from the closed edge segments (Section 2.3) are 

repeated in the same order.  

 

2.5. Line Pairs Detection 

 

In this step, appropriate line pairs are determined. In order to achieve this 

goal, an algorithm, namely FindPairs (Algorithm 4), is proposed. FindPairs is 

used when a triangle or a rectangle is not constructed from closed edge segments 

or the number of lines in the edge segment of interest is smaller than 3 for 

triangle, 4 for rectangle. 

Here, the lines in the edge segment of interest and the number of lines are 

sent as input parameters to the algorithm. If the lengths of both of the lines 

compared are longer than Lmax (because longer line segments give more accurate 

results than others), the distance between these two lines can be Dmax1 at most. 
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Otherwise, the distance can be up to Dmax2. If the distance between two lines is 

smaller than either Dmax1 or Dmax2, and the angle between these two lines is 

between Amin and Amax, these lines are accepted as an appropriate pair. Also, the 

angle obtained in this step is used as the corner angle whereas the intersection 

point of the two lines computed is used as the corner coordinate for further 

processing in Section 2.6 for triangle detection or Section 3.2 for rectangle 

detection. 

 

Algorithm 4: 

 

void FindPairs (int index, LineSegment *ls){ 

 int dist=0; 

double *xInt = new double[100]; //intersection point x coordinate 

 double *yInt = new double[100]; //intersection point y coordinate 

for(int i=0;i<index;i++){  

    for(int j=i+1;j<index;j++){ 

  dist=0; 

  if( (ls[i].len>10 || ls[j].len>10)){ 

   if(ls[i].len<80 || ls[j].len<80) dist=5; 

   else if (ls[i].len>=80 && ls[j].len>=80) dist=15; 

  Find intersection points of these lines; 

if(distance between the start and end coordinates of lines and intersection 

point < dist) { 

   double angle=Compute angle between two lines; //(ls[i],ls[j]); 

    if ((angle>15 && angle<165) ) { 

    Assign these lines, intersection point and angle to the arrays;   

  }/end-if }//end-if}/end-if }//end-innerfor }/end-for }//end-FindPairs 
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2.6.  Combining Line Pairs and Straight Lines 

 

While combining line pairs, the angles between the line segments in 

appropriate line pairs are computed. Four angles are found in this step. Three of 

them are the interior angles of the candidate triangle, whereas the fourth one is 

either the angle between the two lines that are supposed to be on the same side of 

the candidate triangle, or the angle between the same lines itself. These cases are 

illustrated in Figures 3.1a and 3.1b by P12 and P22, respectively. The values of the 

regarding angle can be up to Amin as in Figure 2.2a, or equal to infinity as in 

Figure 2.2b. In the first case, it is assumed that a corner between two lines does 

not exist. In the second case, the corner between these lines was already found in 

Section 2.5. As alternative to these cases, Figure 2.2c illustrates another case that 

a line pair is combined with a single straight line. Here, there is no suitable line 

pair that can be combined with this line pair; therefore, it is compared with every 

single straight line in a given image.  

 

  

(a) (b) 

 

(c) 

Figure 2.2. Line pairs positions for triangles. (a) Line pairs in different edge segments, (b) Line 

pairs have the same straight line. (c) A line pair joining with a single straight line 
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(a) (b) 

  

(c) (d) 

Figure 2.3. Line segments positions in line pairs for triangles (a, b, c, d) 

 

In the first two cases described above shown in Figure 2.2, there can be four 

line segments positions as illustrated in Figure 2.3. In this figure, {P11, P12} and 

{P21, P22} compose possible line pairs, respectively. 

In all those positions, intersection points of the lines are first computed. 

There are total of four intersection points, namely IP0, IP1, IP2 and IP3. Three of 

these points are corners of the candidate triangle. Since C0 and C1 are already 

obtained within the line pair detection step, C2 needs to be computed now. 

In the first position illustrated in Figure 2.3a, if the distance between the 

lines {P12, P22} is smaller than 3, these lines are collinear; hence, they do not 

constitute a corner. The distance between the obtained intersection point and C0, 

which is called as L1, is set to zero. Similarly, the obtained intersection point and 

C1, represented by L2, is set to zero as well. If the obtained intersection point is 

out of image boundaries, these lines are discarded, and {L1, L2} are set to zero. 

Otherwise, the distance between the obtained intersection point and the corners 

and the angles between the lines {P12, P22} are computed, and assigned to L1, L2, 

and A0, respectively. The aforementioned process is repeated for the line pairs 

{P12, P21}, {P11, P22}, and {P11, P21}. In this way, {L3, L4, A1}, {L5, L6, A2}, {L7, 

L8, A3} values are respectively obtained. Then, the resulting angles are checked to 
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see if they are between Amin and Amax. If there are exactly 3 angles meeting this 

criterion, the corners that had been found before (C0 and C1) are assigned as the 

candidate corners. In order to find the third and last corner (C2), the lines forming 

this corner should be determined.  

Considering the case illustrated in Figure 2.3a, if A0 is lower than Amin, four 

requirements must be met.  

 The distances between IP3 and C0, IP3 and C1 must be longer than Dmax1 

(because minimum line length is equal to 6).  

 The ratio of the actual length of P11 to L7, and P21 to L8 must be 

between Rmin and Rmax. The ratio of the summation of the lengths of P12 

and P22 to L3 must be between Rmin and Rmax, too.   

 A3 must be between Amin and Amax.  

 The ratio between the summation of length of lines and circumference 

of candidate triangle must bigger than 0.6.  

The second and fourth requirements are here necessary to overcome partial 

occlusion. If the start and end points of the lines corresponded to the actual 

corners of the triangle, this ratio would be 1.0. Thus, 40 percent margin of error is 

allowed. If these four requirements are satisfied, and the summation of A1, A2 and 

A3 are between [180-ε, 180+ε], C2 is found and it is equal to IP3. If the lines lie 

between the candidate corner locations, they are fed into the validation stage. The 

abovementioned processes can be repeated in a similar manner for the other cases 

illustrated in Figures 2.3b, c and d. As a reference, Table 2.1 lists all possible 

lengths (visualized in Figure 2.4) in four line positions that are illustrated in 

Figure 2.3.  

 

 

Figure 2.4. A sample triangle with lengths of edges 
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Table 2.1. Lengths in four line positions for triangles 

 

Lengths Position 1  Position 2  Position 3  Position 4  

Lines that are the same side {P12-P22} {P12-P21} {P11-P22} {P11-P21} 

L1 0 A A C 

L2 0 0 0 B 

L3 A 0 C 0 

L4 0 0 B A 

L5 0 C 0 A 

L6 A B 0 0 

L7 C 0 0 0 

L8 B A A 0 

 

In the case of combining line pair with a straight line segment process 

(Figure 2.2c); a straight line is selected in the different edge segment. The selected 

line segment must be in a certain area such that it is determined by longer line 

segments in the line pairs. If the start and end points of the line segment are inside 

the boundary of the circle, which has a radius that is equal to twice the length of 

the longer line segment, this line segment is selected and forwarded to further 

processing as described in the second step of Section 2.3. 

 

2.7. Validation of the Proposed Triangle Detection Algorithm 

 

In the previous section, how the line segments are combined together to 

generate candidate triangles is described. As one would expect, some of the 

candidate triangles would be false detections and need to be eliminated before the 

final result is returned to the user.  

To eliminate false detections, the proposed triangle detection algorithm 

employs the Helmholtz principle, which states that for a geometric structure to be 

perceptually meaningful, the expectation of this structure (grouping or Gestalt) by 

chance must be very low in a random situation  (Desolneux et. al., 2004; 

Desolneux et. al., 2008). This is an ‘a contrario’ approach, where the objects are 
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detected as outliers of the background model. As shown in (Desolneux et. al., 

2008), a suitable background model is one in which all pixels are independent.  

They show that the simplest such model is the Gaussian white noise. In 

other words, no meaningful structure is perceptible in a Gaussian white noise 

image (Desolneux et. al., 2008). 

Desolneux et al. use the Helmholtz principle to find meaning alignments, 

i.e., line segments, in a given image without requiring any parameters (Desolneux 

et. al., 2000). Their idea is to compute the level line orientation field (which is 

orthogonal to the gradient orientation field) of a given image, and look for a 

contiguous set of pixels having similar level line orientation. Figure 2.5a shows 

the level line orientation field for an image, where the aligned pixels that make up 

for a line segment (which represents one side of a triangle) are marked inside a 

rectangle. The authors define what aligned means as follows: Two points (or line 

segments) P and Q have the same direction, i.e., aligned, with precision p=1/8 if 

angle(P) and angle(Q)  are within pπ = π/n degrees of each other. In the proposed 

triangle detection algorithm, the value of ‘n’ is fixed to 8 and thus, ‘p’, the 

precision or the accuracy of direction between two pixels, is equal to 1/8=0.125 

and two points are aligned (or p-aligned) if their angles are within pπ = π/8 = 22.5 

degrees of each other. 

 

  

(a) (b) 

Figure 2.5. (a) Level line orientation field (orthogonal to the gradient orientation) of an image. 

Aligned pixels (inside each rectangle) clearly make up for one line segment of the 

triangle. With all three lines together, the triangle is clearly visible, (b) Illustration of 

several p-aligned and not p-aligned gradients. Observe that the aligned gradients are 

perpendicular to the level-line angle and are inside the tolerance cone of 2pπ 
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The gradient magnitude and the level line angle at a pixel (x, y) are 

computed using a 2x2 mask as follows (Desolneux et. al., 2000): 
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where I(x, y) is the intensity of the input image at pixel (x, y), g(x, y) is the 

gradient magnitude, and angle(x, y) is the level line angle. The reason for using 

such a simple gradient operator is to reduce the dependency of the computed 

gradient, and thus, preserve pixel independence as much as possible (Desolneux et 

al., 2000). 

To make validation by the Helmholtz principle concrete, Desolneux et al. 

define what is called the NFA of a line segment as follows (Desolneux et. al., 

2000): Let L be a line segment of length ‘n’ with at least ‘k’ points having their 

directions aligned with the direction of L in an image of size NxN pixels. Define 

NFA of L as (von Gioi et al., 2008; von Gioi et al., 2010): 

 

   (   )    ∑ (
 

 
)    

   (   )       (2.5) 

  

where N
4
 represents the number of potential line segments in an NxN image. This 

is due to the fact that a line segment has two end-points, each of which can be 

located in any of the N
2
 pixels of the image; thus, a total of N

2
xN

2
 line segments. 

The probability ‘p’ used in the computation of the binomial tail is the accuracy of 

the alignment between the pixel's level line angle and the line segment. 
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An event (a line segment in this case) is called ε-meaningful if its NFA(n, k) 

≤ ε. Desolneux et al. (Desolneux et. al., 2004; Desolneux et. al., 2008) advises 

setting ε to 1, which corresponds to one false detection per image. Given these 

definitions, a line segment is validated as follows: For a line segment of length 

‘n’, compute the level line angle of each pixel along the line and count the number 

of aligned pixels ‘k’. Then, compute NFA(n, k) and accept the line segment as 

valid if NFA(n, k) ≤ 1. Otherwise, reject the line segment. 

Desolneux et. al.’s line segment validation framework outlined above can 

easily be adapted to triangle validation. Since a triangle consists of three line 

segments each representing one side of the triangle, the sides of the triangle are 

just needed to treat as an extended line segment, with each side having a different 

level line orientation. Figure 2.5a shows the level line orientation field of an 

image, where the aligned pixels that make up for each side of the triangle are 

marked inside three rectangles. Figure 2.5 shows the gradient directions 

(perpendicular to the level line angles) of several points on the boundary of a 

triangle, some of which are p-aligned with the triangle, and some of which are 

not. The gray triangle illustrates the tolerance cone between the ideal gradient 

direction and the observed gradient direction. If the observed gradient direction is 

inside the cone, then the point is assumed to be aligned with the side of the 

triangle, otherwise the point is assumed to be non-aligned with the side of the 

triangle.  

The definition of the NFA of a line segment to a triangle is adapted as 

follows: Let T be a triangle having a perimeter of ‘n’ points with at least ‘k’ points 

having their directions aligned with T in an image of size NxN pixels. Define 

NFA of T as: 
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where N
6
 represents the total number of potential triangles in an NxN image. This 

is due to the fact that a triangle has 3 corners and each corner can be located in 

any of the N
2
 points of the image for a total of N

6
 triangles. 
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Given this NFA definition, a triangle is validated as follows: For a triangle 

having a perimeter of ‘n’ pixels, compute the level line angle of each pixel along 

the sides of the triangle and count the number of aligned pixels ‘k’. Compute 

NFA(n, k) and accept the triangle as valid if NFA(n, k) ≤ ε; otherwise the triangle 

is rejected. It is important to point out that the gradient computation is performed 

in the validation step over the original non-filtered image as required by the ‘a 

contrario’ framework. 

The epsilon (ε) in the above comparison denotes the expected number of 

detections under the background model. In other words, if gaussian white noise 

image is fed into the algorithm, at most ε many detections shold be get. ε is set to 

1 as advised by Desolneux et al. (Desolneux et. al., 2004; Desolneux et. al., 2008), 

which corresponds to one false detection per image. 

The candidate rectangles are validated by a similar procedure to this section. 

 

2.8. Experimental Work 

 

Performance of the proposed triangle detection algorithm was evaluated 

through a comprehensive experimental work. Specifically, accuracy and 

processing time of the algorithm was measured using four distinct datasets 

containing both synthetic and natural images. During the experiments, all results 

were presented with a comparison to well-known OpenCV triangle detection 

algorithm (a derivative of squares.cpp that occurs in the OpenCV samples in 

…/opencv/samples/c/) (Bradski and Kaehler, 2008) in terms of accuracy and 

processing time. In the following subsections, the employed image datasets are 

described; accuracy and processing time analysis are comparatively provided. 

 

2.8.1. Datasets 

 

In order to measure the performance of the proposed triangle detection 

algorithm, four datasets (Table 2.2) were employed. The first two datasets are 

respectively composed of synthetic and handmade images containing overlapped, 

partially occluded, discontiguous and arbitrary triangles. The remaining two 
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datasets contain natural images. While one of them has various scenes, the other 

has specifically road scenes with traffic signs. All triangles within the datasets are 

manually tagged. Sample images from all four datasets are provided in Figures 

2.6-2.9a. 

 

Table 2.2. The triangle datasets description 

 

Dataset Image Type Image Size # of images # of Triangles 

1 Synthetic 640 × 480 11 300 

2 Handmade 640 × 480 14 323 

3 Real (Various Scenes) 640 × 480 36 116 

4 Real (Road Scenes) 360 × 270 48 43 

 

   

(a) (b) (c) 

Figure 2.6. A sample synthetic image and results of triangle detection algorithms. (a) A sample 

synthetic image from Dataset 1. (b) The triangles detected by OpenCV triangle 

detection algorithm (overlayed by blue color). (c) The triangles detected by the 

proposed algorithm 

 

   

(a) (b) (c) 

Figure 2.7. A sample handmade image and results of triangle detection algorithms. (a) A sample 

handmade image from Dataset 2. (b) The triangles detected by OpenCV triangle 

detection algorithm. (c) The triangles detected by the proposed algorithm 
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(a) (b) (c) 

Figure 2.8. A sample real image and results of triangle detection algorithms. (a) A sample real 

image from Dataset 3. (b) The triangles detected by OpenCV triangle detection 

algorithm. (c) The triangles detected by the proposed algorithm 

 

   

(a) (b) (c) 

Figure 2.9. A sample road scene image and results of triangle detection algorithms. (a) A sample 

road scene image from Dataset 4. (b) The triangles detected by OpenCV triangle 

detection algorithm. (c) The triangles detected by the proposed algorithm 

 

2.8.2. Accuracy analysis 

 

Since both precision and recall scores of the detection algorithm are of 

concern, well-known F-score, which takes both into consideration, was used for 

evaluation. The detection results of the proposed algorithm and OpenCV 

counterpart are comparatively given in Table 2.3 where the highest F-scores for 

each dataset are indicated in bold. 

 

Table 2.3. Detection results of the proposed triangle detection algorithm / OpenCV 

 

Dataset TP FP FN Precision Recall F-score 

1 298 / 268 4 / 0 2 / 32 0.98 / 1.00 0.99 / 0.89 0.99 / 0.94 

2 295 / 113 4 / 2 28 / 210 0.98 / 0.98 0.91 / 0.34 0.94 / 0.50 

3 103 / 44 27 / 27 13 / 72 0.79 / 0.61 0.88 / 0.37 0.83 / 0.46 

4 39 / 9 2 / 4 4 / 34 0.95 / 0.69 0.90 / 0.20 0.92 / 0.32 
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One can easily see that the proposed algorithm surpassed OpenCV 

algorithm for all datasets. The success of the proposed algorithm is more obvious 

especially in the datasets 2, 3 and 4. Since OpenCV triangle detection algorithm 

relies on complete contours, it fails in real images where complete contours are 

hardly found. On the other hand, the proposed algorithm successfully detects 

triangles even in such conditions. While Figures 2.6-2.9b display the triangles 

detected by OpenCV algorithm on sample images from each dataset, Figures 2.6-

2.9c display the ones detected by the proposed algorithm. 

However, there are a few cases where the proposed triangle detection 

algorithm fails to detect some of the valid triangles in the image. Figure 2.10 

shows some of those cases. Since the performance of the proposed algorithm 

thoroughly depends on the outcome of the edge segment detection algorithm, ED, 

a triangle cannot be constructed if there is no edge between the corners. This can 

be seen in Figure 2.10b, where the triangles with dotted edges are not detected. 

This is expected since the proposed algorithm works on an edge segment that 

must trace the boundary of the triangle, whereas there would be no edge segments 

extracted from the sides of a triangle if the side consists of very short dashed lines. 

So it is impossible for the proposed algorithm to detect such triangles and it is 

seen in Figure 2.10b. The other failure case is when the interior angle of the 

triangle is very small as shown Figure 2.10a, and it remains out of the bounds of 

the preset angle tolerance interval. In such cases, the proposed algorithm would 

not be able to construct any candidate triangles, and no detections would be 

possible. By changing the pre-determined parameters for each image, it may be 

possible to detect such triangles; but it is believed that using a single set of fixed 

parameters for all images is an important property of the proposed algorithm even 

if this would mean that the proposed algorithm would miss some valid triangles 

present in the image. 
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(a) (b) 

  

(c) (d) 

Figure 2.10. Sample images on which the proposed algorithm fails to detect triangles  

 

   

Original (7.07 ms) 0.01  0.03 

   

0.05 0.07 0.09 (15.04 ms) 

Figure 2.11. The performance of the proposed triangle detection algorithm the increasing 

Gaussian white noise on a sample image. The noise added images were obtained by 

using the MATLAB function imnoise(img, 'gaussian', mean, variance) with mean=0 

and variance increasing from 0.01 to 0.09. Increasing the noise further causes 

complete detection failure 

 

The last experiment is to measure the performance of the proposed 

algorithms in noisy images. To this end, an image containing several small and 

big triangles for the proposed triangle detection algorithm and rectangles for the 
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proposed rectangle detection algorithm  is taken, added varying levels of Gaussian 

white noise to the image, and fed the images to the proposed algorithm, 

respectively. 

Figure 2.11 demonstrates the performance of the proposed triangle detection 

algorithm as the increasing Gaussian white noise on a sample image. The noise 

added images were obtained by using the MATLAB function imnoise (img, 

'gaussian', mean, variance) with mean=0 and variance increasing from 0.01 to 

0.09. 

Increasing the noise further causes complete detection failure. The reason 

for the detection failure comes from the fact that as the noise is increased, the 

boundaries of the triangles are approximated by many short edge segments instead 

of a few long edge segments as would be the case in less noisy images. It is 

important to stress that there are no false detections in none of the images, which 

is also very important. It is also observe that the running time of proposed triangle 

detection algorithm increases in noisy images. The reason for this is the increased 

edge segment detection time by EDPF. As the amount of noise increases in an 

image, EDPF takes more time to compute the edge segments because many pixels 

start becoming potential edge elements. Triangle detection after edge segment 

detection remains pretty constant across all images. 

 

2.8.3. Processing time analysis 

 

The proposed algorithm was implemented in C++ language, and evaluated 

on a PC equipped with an Intel Core i7-3770K 3.5 GHz CPU and 16 GB of RAM. 

Average processing times per image are comparatively listed in Table 2.4. 

 Although the proposed algorithm fails to surpass OpenCV in terms of 

processing time, the required processing time is tolerable considering the superior 

detection performance offered by the proposed algorithm. Besides, these values 

are in still in compatible with real time operations such that more than 45 frames 

per second can be easily processed in the worst case scenario. 
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Table 2.4. Average processing times (ms) of the triangle detection algorithms 

 

Dataset OpenCV Proposed Algorithm 

1 1.07  15.88  

2 1.31  11.82 

3 4.26  21.37 

4 2.31  5.43 
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3. THE RECTANGLE DETECTION ALGORITHM 

 

After obtaining straight lines in both closed and non-closed edge segments 

according to meet the requirements mentioned in Section 2.2, the further 

operations for finding rectangles are processed. Those are described in detail 

between Sections 3.1 and 3.2. 

 

3.1. Finding Closed Edge Segments and Extraction of Complete Rectangles  

 

The first step after the detection of the edge segments, all edge segments are 

checked, take the closed ones and see if the closed edge segment traces the entire 

boundary of a rectangle. To decide whether four lines form a quadrangle, their 

mutual location, parallelism and gap value in the corners must be analyzed 

(Lagunovsky and Ablameyko, 1999). In order to achive this, a rotated rectangle is 

fitted to the pixels making up the edge segment and a check is performed to see if 

the number of straight lines in the segment is equal to four (because rectangles 

have four sides). If the number of lines is bigger than four, sort the lengths of 

these straight lines according to descending order.  

In the next step, the interior four angles of candidate rectangle are 

computed. As used in the proposed triangle detection algorithm, Amin and Amax, 

Dmax and Rmin and Rmax are used to verify that those four lines are the sides of the 

rectangle. If the summation of the angles are close to 360 ([360-ε, 360+ε]), each 

angle is between Amin and Amax and the summation of consecutive two angles is 

close to 180 ([180-ε, 180+ε]), intersection points of each pair of lines are found. 

The usage of Rmin and Rmax is the same as the Algorithm 3 in the Section 2.3. In 

the Algorithm 3, there are there lines for the determination of the sides of the 

candidate triangle; in this case there are four lines for the determination. The 

algorithm for rectangle processing of a closed edge segment is provided in 

Algorithm 5. 

 

Algorithm 5: 

 

if(number of lines>=4){ 
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if(segment of interest is closed){ 

 bool quadrangle=false; 

 if(number of lines in the edge segment==4){      

 Find the angles between lines; 

 if(345<summation of these angles<375){ 

  if(20<the angles<160 && 160<summation of consecutive two angles<200){ 

   Find intersection points of four lines; 

Assign these intersection points to the rectangles struct as the corners of 

candidate quadrangle;   

if( the start and end coordinates of lines are not between corner 

coordinates) {quadrangle=false;} 

   else{ 

Compute distances between corners; 

if( distance between corners)>9){ 

if(actual lengths of lines/distances(ratios)<0.35 && 

ratios>2) 

{quadrangle=false;} 

     else{ 

      if(Validatation of Quadrangles==true){ 

      numberOfQuadrangles++; 

      quadrangle=true; 

                      }//end-if}//end-else }//end-if}//end-else 

}/end-if}//end-if}/end-if}/end-if}//end-if 

 

3.2. Combining Line Pairs and Straight Lines 

 

In this step of proposed algorithm, the first idea is to form a rectangle with 

combining two appropriate line pairs. In combining two line pairs process, the 

angles between the line segments in these line pairs are computed. Four angles are 

found in this step. 
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(a) (b) 

  

(c) (d) 

Figure 3.1. Line segments positions in joining two line pairs for rectangles 

 

There can be four line segments positions as illustrated in Figure 3.1. In this 

figure, {P11, P12} and {P21, P22} compose possible line pairs, respectively. 

In all those positions, firstly intersection points of lines are computed. There 

are total of four intersection points, namely IP0, IP1, IP2 and IP3. If specified 

conditions are satisfied in all positions, for the first position as shown in Figure 

3.1a, C2 and C3 are IP0, IP3, for the second position as shown in Figure 3.1b, C2 

and C3 are IP1, IP2, for the third position as shown in Figure 3.1c, C2 and C3 are 

IP2, IP1, and for the last position, line segments in the first line pair as shown in 

Figure 3.1d, C2 and C3 are IP3, IP0, respectively.  

In the first position illustrated in Figure 3.1a, if the distance between the 

lines {P12, P22} is smaller than 3, these lines are collinear; hence, they do not 

constitute a corner. The distance between the obtained intersection point and C0, 

which is called as L1, is set to zero. Similarly, the obtained intersection point and 

C1, represented by L2, is set to zero as well. If the obtained intersection point is 

out of image boundaries, these lines are discarded, and {L1, L2} are set to zero. 

Otherwise, the distance between the obtained intersection point and the corners 

and the angles between the lines {P12, P22} are computed, and assigned to L1, L2, 

and A0, respectively. The aforementioned process is repeated for the line pairs 
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{P12, P21}, {P11, P22}, and {P11, P21}. In this way, {L3, L4, A1}, {L5, L6, A2}, {L7, 

L8, A3} values are respectively obtained. Then, the resulting angles are checked to 

see if they are between Amin and Amax. If there are exactly 2 angles meeting this 

criterion, the corners that had been found before (C0 and C1) are assigned as the 

candidate corners. In order to find the third and fourth corner (C2 and C3), the 

lines forming these corner should be determined.  

Considering the case illustrated in Figure 3.1a, if IP0 is not equal to C0 and 

C1, three requirements must be met.  

 L1, L2, L7, L8 must be longer than Dmax1 (because minimum line length 

is equal to 6).  

 The ratio of the actual length of P11 to L7, P12 to L1, P22 to L2, and P21 to 

L8 must be between Rmin and Rmax. 

 The ratio between the summation of length of lines and circumference 

of candidate rectangle must bigger than 0.6.  

The last two requirements are here necessary to overcome partial occlusion. 

If the start and end points of the lines corresponded to the actual corners of the 

rectangle, this ratio would be 1.0. Thus, 40 percent margin of error is allowed. If 

these three requirements are satisfied, C2 is found and it is equal to IP0, and if the 

summation of A0, A1, A2 and A3 are between [360-ε, 360+ε], and the consecutive 

angles are between [180-ε, 180+ε], and IP3 is not equal to C0 and C1, C3 are found 

and it is equal to IP3. If the lines lie between the candidate corner locations and 

differences between L1, L2 and L7, L8 are smaller than Lmax1 (parallelism 

tolerance), they are fed into the validation stage. The abovementioned processes 

can be repeated in a similar manner for the other cases illustrated in Figures 3.1b, 

c and d. As a reference, Table 3.1 lists all possible lengths (visualized in Figure 

3.2) in four line positions that are illustrated in Figure 3.1. 
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(a) (b) 

Figure 3.2. Sample rectangles formed line pairs. (a) Formed two line pairs. (b) Formed two line 

pairs and a single straight line 

 

Table 3.1. Lengths in four line positions for rectangles 

 

Lengths Position 1  Position 2  Position 3  Position 4  Interval 

 {P12-P22} {P12-P21} {P11-P22} {P11-P21} (intersection points-corner) 

L1 A ∞ ∞ D { P12-P22 } - C0 

L2 B ∞ ∞ C { P12-P22 } - C1 

L3 ∞ A D ∞ { P12-P21 } - C0 

L4 ∞ B C ∞ { P12-P21 } - C1 

L5 ∞ D A ∞ { P11-P22 } - C0 

L6 ∞ C B ∞ { P11-P22 } - C1 

L7 D ∞ ∞ A {P11-P21 } - C0 

L8 C ∞ ∞ B {P11-P21 } - C1 

 

    

(a) (b) (c) (d) 

Figure 3.3. Line segments positions in joining a single line segment (1) 
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(a) (b) (c) (d) 

Figure 3.4. Line segments positions in joining a single line segment (2) 

 

In this step, the second idea is to combine two line pairs with a single line 

segment process as shown in Figure 3.2b; there can be four line segments 

positions similar to the previous process. In the first position shown in Figure 3.3a 

or Figure 3.4a, the selected straight line is compared with lines P11, P21. In the 

second position shown in Figure 3.3b or Figure 3.4b, the selected straight line is 

compared with lines P11, P22. In the third position shown in Figure 3.3c or Figure 

3.4c, the selected straight line is compared with lines P12, P21. In the last position 

shown in Figure 3.3d or Figure 3.4d, the selected straight line is compared with 

lines P12, P22. 

In Figures 3.3-3.4(a-d) combining two line pairs with a straight line segment 

process, a straight line is selected in the different edge segment. The selected line 

segment must be in a certain area. This area is determined by longer line segment. 

This is P11 or P21 in the first position shown in Figures 3.3a and 3.4a. Then P11, 

P21, selected line, P12 or P22 (the longer one is selected.) are fed into rectangle 

detection algorithm. If start and end points of line segment are inside the boundary 

of circle which has a radius that is equal to twice the length of longer line 

segment, this line segment is selected and forwarded to further processing as 

described in the second step of Section 3.1. 

 

3.3. Experimental Work 

 

Performance of the proposed rectangle detection algorithm was evaluated in 

a similar manner to that of triangle detection algorithm mentioned previously. In 

P12

P21P11

P22

C0 C2

C3 C1

P22P11

P12

P21

C0 C2

C3 C1

P21P12

P11

P22

C0 C2

C3 C1

P11

P22P12

P21

C0 C2

C3 C1



 40   

 

this case, specifically, accuracy and processing time of the algorithm was 

measured using three distinct datasets containing both synthetic and natural 

images. In the following subsections, the employed image datasets are described; 

accuracy and processing time analysis are comparatively provided. 

 

3.3.1. Datasets 

 

In order to measure the performance of the proposed rectangle detection 

algorithm, three datasets (Table 3.2) were employed. The first two datasets are 

respectively composed of synthetic and handmade images containing overlapped, 

partially occluded, discontiguous and various types of rectangles. The remaining 

dataset contains natural images has various scenes. All rectangles within the 

datasets are manually tagged as in the triangle detection algorithm. Sample images 

from all three datasets are provided in Figures 3.5-3.7a. 

 

Table 3.2. The rectangle datasets description 

 

Dataset Image Type Image Size # of images # of Rectangles 

1 Synthetic 640 × 480 10 199 

2 Handmade 640 × 480 7 176 

3 Real (Various Scenes) 640 × 480 36 186 

 

   

(a) (b) (c) 

Figure 3.5. A sample synthetic image and results of rectangle detection algorithms. (a) A sample 

synthetic image from Dataset 1. (b) The rectangles extracted by OpenCV rectangle 

detection algorithm. (c) The rectangles detected by the proposed algorithm 
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(a) (b) (c) 

Figure 3.6. A sample handmade image and results of rectangle detection algorithms. (a) A sample 

handmade image from Dataset 2. (b) The rectangles extracted by OpenCV rectangle 

detection algorithm. (c) The rectangles detected by the proposed algorithm 

 

   

(a) (b) (c) 

Figure 3.7. A sample real image and results of rectangle detection algorithms. (a) A sample real 

image from Dataset 3. (b) The rectangles extracted by OpenCV rectangle detection 

algorithm. (c) The rectangles detected by the proposed algorithm 

 

3.3.2. Accuracy analysis 

 

Since both precision and recall scores of the detection algorithm are of 

concern, well-known F-score, which takes both into consideration, was used for 

evaluation. The detection results of the proposed algorithm and OpenCV 

counterpart by performing Canny edge detector and Hough Line using Emgu CV 

using the Contour class to detect rectangular objects is comparatively given in 

Table 3.3 where the highest F-scores for each dataset are indicated in bold. 
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Table 3.3. Detection results of the proposed rectangle detection algorithm / OpenCV 

 

Dataset TP FP FN Precision Recall F-score 

1 198 /186 1 / 8 1 / 13 0.99 / 0.96 0.99 / 0.93 0.99 / 0.95 

2 176 / 132 6 / 16 0 / 44  0.96 / 0.89 1.00 / 0.75 0.98 / 0.81 

3 160 / 61 8 / 5 26 / 125 0.95 / 0.92 0.86 / 0.32 0.90 / 0.48 

 

  

(a) (b) 

 

(c) 

Figure 3.8. Sample images on which the proposed algorithm fails to detect rectangles 

 

It is clearly visible that the proposed algorithm surpassed OpenCV 

algorithm for all datasets. The success of the proposed algorithm is more obvious 

especially in the datasets 2 and 3. While Figures 3.5-3.7b display the rectangles 

detected by OpenCV algorithm on sample images from each dataset, Figures 3.5-

3.7c display the ones detected by the proposed algorithm. 

However, there are few cases where the proposed algorithm fails to detect. 

Figure 3.8 shows some of those cases. Since the algorithm thoroughly depends on 

the edge detection algorithm, a rectangle cannot be constructed if there is no edge 

between the corners. 
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Original (6.97 ms) 0.01  0.03 

   

0.05 0.07 0.09 (15.87 ms) 

Figure 3.9. The performance of the proposed rectangle detection algorithm as the increasing 

Gaussian white noise on a sample image. The noise added images were obtained by 

using the MATLAB function imnoise(img, 'gaussian', mean, variance) with mean=0 

and variance increasing from 0.01 to 0.09. Increasing the noise further causes 

complete detection failure 

 

The performance of the proposed rectangle detection algorithm in noisy 

images is shown in Figure 3.9. To obtain the noisy images, the processes are used 

as in the Section 2.7.2. After obtaining noisy images, they are fed into the 

proposed algorithm.  

In a similar manner to the proposed triangle detection algorithm, increasing 

the noise further causes complete detection failure and increases the processing 

time. In the noisy images, the rectangle sides forming the line segments obtained 

are divided into many different edge segments, for this reason the proposed 

algorithm can not reach the right result. 

 

3.3.3. Processing time analysis 

 

The proposed rectangle detection algorithm was implemented in the similar 

way proposed triangle detection algorithm. Average processing times per image 

are comparatively listed in Table 3.4. Although the proposed algorithm fails to 

surpass OpenCV in terms of processing time in the real images, the processing 
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time of the proposed rectangle detection algorithm permits the real time 

operations. More than 40 frames per second can be easily processed with this 

algorithm in the worst case scenario. 

 

Table 3.4. Average processing times (ms) of the rectangle detection algorithms 

 

Dataset OpenCV Proposed Algorithm 

1 22,2  13,21  

2 21,57  25,64 

3 14,80  16,14  
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4. CONCLUSIONS 

 

In this thesis dissertation, novel methods are proposed for rotated rectangle 

and triangle detection in digital images. Both of the proposed methods use line 

segments derived from a recently developed edge detection algorithm. The edge 

detection algorithm used first converts each edge segments, which is a contiguous 

chain of pixels, into a set of line segments. Some straight line segments obtained 

are then merged into a single segment according to several perceptual grouping 

criteria.  The straight line segments are compared with each other to obtain the 

appropriate pairwise.  

The proposed algorithms are capable of quickly, accurately and 

simultaneously detecting various types of triangles such as wide-angled, narrow-

angled, right-angled and rectangles such as square, rhombus, parallelogram, etc. 

on both synthetic and real images. Geometrically distorted, poorly illuminated and 

even occluded triangles and rectangles can be also detected with high accuracies.  

The proposed algorithms are tested with synthetic and natural images. Both 

of the algorithms are compared with OpenCV triangle and rectangle detection 

algorithms, which are quite common methods used in computer vision field. The 

proposed algorithms clearly surpass OpenCV algorithms in terms of accuracy. 

Even if the processing time of the proposed triangle detection algorithm is higher 

than that of OpenCV counterpart, it still allows real-time operations.  

Both of the proposed algorithms fail to detect in some cases. Some of those 

cases are described as follows. A side forming more than one line segment 

obtained can be divided into many different edge segments. In the proposed 

algorithms, there are only the line segments in the same edge segment are merged 

each other. For this reason, the proposed algorithm can not reach the right result in 

such cases. If all lines which are parallel to each other are merged regardless of 

whether they belong to which edge segments, all the triangles or rectangles in the 

image, for example nested triangles or rectangles may not be detected. 

In order to compute the angles and to determine the sides of the candidate 

triangles and rectangles, some parameters such as angle tolerance, distance 

tolerance and ratio tolerance are used. These parameters are determined to give 
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the best results as far as possible. The other case is mentioned above is to remain 

outside the determined tolerances. If you give different parameter values, you can 

get the different results. 

 Adaptation of the proposed algorithms for the detection of other polygonal 

shapes remains as an interesting future work. 
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