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Geo-statistics deals with spatial data and tries to find out relationship between 

locations and measured data. Methods used in geo-statistics interpolations rely on 

the principle that things are closer to each other more alike than the things are 

farther apart. Inverse distance weighting and kriging are the most well-known and 

applied methods in geo-statistics. It is important to perform such methods without 

violating data confidentiality due to privacy reasons. Also, their accuracy depends 

on the total number of sample points. If there are insufficient sample points due to 

financial or privacy reasons, accuracy of the predictions produced by these methods 

may become unconvincing. There are cases in which institutions obtain 

measurements for the same or neighbor region. To create more accurate models, 

they may want to collaborate. However, they do not want to share their private data. 

In this thesis, privacy-preserving methods are proposed to provide inverse 

distance weighting- or kriging-based predictions for different data partitioning 

schemas including central server-based case. The proposed solutions are analyzed 

with respect to privacy, performance, and accuracy. Different sets of experiments 

are conducted using real data sets to analyze the proposed methods. Empirical 

outcomes show that the methods are able to provide accurate predictions while 

preserving privacy.  
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ÖZET 
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Bilgisayar Mühendisliği Anabilim Dalı 

 

Danışman: Doç. Dr. Hüseyin POLAT 

2014, 115 sayfa 

 

Jeoistatistik uzaysal veri ile ilgilenir ve konum ve ölçüm verileri arasındaki 

ilişkiyi ortaya çıkarmaya çalışır. Jeoistatistikte kullanılan enterpolasyon yöntemleri 

yakın nesnelerin uzak nesnelere göre daha çok birbirine benzediği prensibine 

dayanır. Mesafeyle ters ağırlıklandırma ve kriging jeoistatistikte en iyi bilinen ve 

uygulanan yöntemlerdir. Gizlilik endişelerinden dolayı bu işlemleri gizliliği ifşa 

etmeden gerçekleştirmek önemlidir. Ayrıca bu yöntemlerin doğruluğu ölçüm 

noktalarının toplam sayısına bağlıdır. Eğer ekonomik veya gizlilik nedenleriyle 

yetersiz ölçüm noktası var ise bu yöntemlerle üretilen tahminlerin doğruluğu 

inandırıcı olmayabilir. Bazı durumlarda kurumlar aynı veya komşu bölge için 

ölçümler elde edebilirler. Daha doğru modeller oluşturmak için işbirliği yapmak 

isteyebilirler. Ama gizli verilerini paylaşmak istemezler. 

Bu tezde merkezi sunucu tabanlı şemayı da içeren farklı veri paylaştırma 

şemaları için gizliliği koruyan mesafeyle ters ağırlıklandırma veya kriging 

çözümleri önerilmiştir. Çözüm önerileri gizlilik, performans ve doğruluk açısından 

analiz edilmiştir. Bu amaçla gerçek veri setleri kullanılarak değişik deneyler 

yapılmıştır. Deneysel sonuçlar önerilen yöntemlerin gizliliği koruyarak doğru 

öneriler ürettiklerini göstermiştir. 

 

Anahtar Kelimeler: Gizlilik, Jeoistatistik, Dağıtık Veri, Mesafeyle Ters 

Ağırlıklandırma, Kriging, Doğruluk 
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1. INTRODUCTION 

 

1.1. Geo-statistics 

 

Geo-statistics has been receiving increasing attention since the work 

conducted by Tobler (1979). It has found applications in many areas such as 

hydrology, meteorology, geography, forestry, agriculture, soil science, etc. Its 

application in those areas is found to be very useful (Krasilnikov et al., 2008). It is 

assumed that sample points and their corresponding values are related (Armstrong, 

1998). One of the main tasks in geo-statistics is interpolation, which is a method of 

estimating new data points from a discrete set of known data points. Inverse 

distance weighting (IDW) interpolation is one of the eminent interpolation 

techniques (Ly et al., 2011, Jang, 2012). The first of the two steps in IDW 

interpolation is determining the neighbors of the interpolated point. The second step 

is taking the weighted average of the observation values within the neighborhood. 

In IDW interpolation, the weights are a decreasing function of distance. IDW allows 

users to choose a power value (m), which controls the significance of known points 

(Naoum and Tsanis, 2004). Such significance is determined on the distance 

between known points and the location for which prediction is sought.  

Kriging is also one of the most preferred methods in geo-statistics 

interpolation. Kriging has two phases (Johnston et al., 2001). The first phase is to 

investigate the gathered data to create a semi-variogram model. The second phase 

is to make prediction for unobserved coordinate. The concept of kriging was first 

introduced by a mining engineer Krige (Krige, 1951). Kriging formulates the 

Tobler’s first law of geography (Tobler, 1979). Tobler’s law assumes that things 

are closer to each other more alike than the things are farther apart. A short 

summary of kriging method is given by Rojas-Avellaneda and Silván-Cárdenas 

(2006). Basic assumptions and formulas of kriging are presented by Kleijnen 

(2009). In a traditional kriging interpolation, there are two participating parties. One 

of them is referred to as server, which holds measurements for a specific region to 

make predictions for some locations in the same region. The second party is called 

client. Unlike the server, it does not hold measurements; thus, it looks for 
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predictions. It may need predictions to make a commercial decision in the same 

region for which the server has measurements. 

Shahbeik et al. (2013) compare IDW and ordinary kriging methods based on 

error estimation in the Dardevey iron ore deposit in Iran. They show that ordinary 

kriging performs better than IDW with respect to accuracy. Joseph et al. (2013) test 

a variety of interpolation methods for 8-h ozone. Their results show that kriging 

performs better than other interpolation techniques. Triki et al. (2013) compare 

ordinary kriging with co-kriging with respect to estimation error; and show that 

ordinary kriging is superior to co-kriging. Kalivas et al. (2013) compare block 

kriging, block co-kriging, and IDW for the Municipal Forest of Skyros Island. Their 

empirical results show that block kriging gives more accurate results than the other 

two methods. Meng et al. (2013) investigate seven GIS interpolation methods. They 

conclude that regression kriging is a powerful interpolation technique.  

To conduct geo-statistics interpolations, measurements for some sample 

points in a region are needed. Given a set of data values and the locations in which 

they were observed, predictions are made for selected points with unknown values. 

Data collected for geo-statistics are considered confidential and it is imperative to 

perform geo-statistics while preserving data owners’ privacy. It is also vital to make 

enough measurements for estimating correct predictions. Without sufficient data, it 

becomes challenging to provide accurate and reliable predictions. Although it is 

possible to offer predictions with inadequate data, they might not be precise and 

accountable enough. Sometimes it might be costly and time consuming to collect 

enough measurements for sample points in a region. Or data collected for geo-

statistics interpolation methods might be partitioned between two or more parties. 

In other words, companies, even competing ones, might collect measurements for 

some sample points in the same region. However, due to scarce resources and time, 

they might not gather enough data. Thus, data holders with inadequate data might 

decide to collaborate and provide predictions on their integrated data. They spend 

considerable effort (money, time, etc.) to gather measurements. They want to get 

back what they spent; and moreover, make benefit out of such effort. Hence, such 

measurements are considered valuable and they are often held confidential by their 

owners. Moreover, the locations from which the measurements are taken are 
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considered confidential and they are kept secret (Leitner and Curtis, 2006). 

Therefore, due to privacy and financial concerns, the parties might hesitate to 

collaborate or refuse to share data at all. On one hand, they need each other for 

better services. On the other hand, they do not want to disclose their private and 

valuable data values. 

 

1.2. Applications 

 

With recent developments in computer technology, geo-statistics methods 

have been applied in many disciplines from archeology to zoology. Geo-statistics 

is based on exploring the spatial correlation between measured data and location. 

IDW and kriging are fundamental geo-statistics methods, which are widely used in 

many application areas. With the invention of interpolation methods, petroleum 

industry became interested in geo-statistics. The industry use data from seismic 

surveys and wells to enhance geometry of oil reservoirs models. Other than the 

petroleum industry, IDW and kriging have been used in diverse fields such as 

health, oceanography, soil science, ecology, hydrology, environment, and so on. 

   

1.3. Geo-privacy 

 

Privacy is a general concept regarding the protection of confidential data. 

Geo-privacy refers to the protection of geo-information. The objective of geo-

privacy is to protect point mapping of individual information and it is very sensitive 

in studies of health and crime data (Young et al., 2009). It concerns the location of 

sensitive data (Kwan et al., 2004). The authors study how to protect geo-privacy 

while making individual data available in such a way that analytical results are not 

significantly affected. Leitner and Curtis (2006) propose a general framework for 

presenting the location of confidential point data. They study how to identify 

geographic masking methods that protect confidentiality of individual locations. 

Geographic and health records of patients are used to create analytic maps to 

explore the relation between illness and location data.  Gambs et al. (2013) propose 

to utilize MapReduce paradigm to efficiently perform privacy analysis on large 
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geo-located data sets. Exeter et al. (2014) propose a geographical privacy-access 

framework that guides how geographic and health data should be publicized 

without jeopardizing privacy of individuals. Social networks and location-based 

services are trendy topics of the Internet. People who use location-based services 

like Foursquare and Twitter are not aware of publishing private data about 

themselves. Li and Goodchild (2013) study how to guess the locations of home and 

work address of twitter users.  

 

1.4. Privacy-Preserving Data Mining 

 

Privacy has become a major issue for many people and companies. Some 

people might want to selectively reveal information if they can receive benefits in 

return (Cranor et al., 2000). According to the survey conducted by Cranor et al. 

(2000), 17% of respondents are privacy fundamentalists, 56% of respondents are 

concerned about data usage, and the remaining 27% are marginally concerned. 

Privacy-preserving data mining (PPDM) became very popular after the works by 

Agrawal and Srikant (2000) and Lindell and Pinkas (2000). Providing predictions 

to customers about some unseen or not purchased products while preserving 

customers’ privacy has been receiving increasing attention. To provide 

recommendations while preserving users’ privacy, various schemes have been 

proposed in the literature. Canny (2002a, 2002b) proposes two schemes in which 

users iteratively compute a public “aggregate” of their data adding vectors of user 

data employing cryptographic methods to privately encrypt and decrypt vectors 

without exposing individual data. Polat and Du (2005) utilize randomized 

perturbation techniques to mask customers’ private data while estimating 

recommendations to users. Sachan et al. (2013) review the existing efficient 

methods in PPDM. Kaleli and Polat (2010) discuss how to provide private 

predictions on binary ratings in peer-to-peer (P2P) networks. Like randomized 

perturbation techniques, randomized response methods are also used to achieve 

privacy while generating recommendations on binary data (Polat and Du, 2006). 

Zhang et al. (2006) propose a two-way communication privacy-preserving scheme 



 

  5 

for estimating predictions to customers, where users mask their preferences for each 

item according to the server’s guidance.  

 

1.5. Data Partitioning Schemes 

 

Although it is possible to generate predictions from one of the parties’ data, 

they might not be reliable and accurate. It is more likely to produce dependable and 

precise predictions from integrated data. Thus, data owners might decide to provide 

services on their combined data. However, data collected for interpolation purposes 

are considered confidential and valuable assets. The companies often do not want 

to reveal such data.  

Data collected for various purposes might be horizontally, vertically, or 

hybrid (arbitrarily) partitioned. In vertical and horizontal partitioning, data are 

partitioned with clean-cut lines. However, in arbitrary partitioning, which is most 

common, there is no definite lines for data distribution. Vertical partitioning is not 

practical in geo-statistics methods.  

  

1.6. Data Distribution Scenarios 

 

Data (measurements for some sample points in a region and their location 

information) collected for interpolation are usually held by a single company or a 

server. The data owner then can provide predictions on available data to query 

owners. Such data distribution scenario is referred to as central-based. If each 

measurement and its location are held by a party or a company, this case is called 

P2P. Although P2P data holding is very common in some applications like 

recommender systems, it is not practical in geo-statistics. On one extreme, there is 

central-based case, while on the other extreme, there is P2P case. Between these 

two, data collected for interpolation purposes might be partitioned between two 

parties only. Such case is referred to as partitioned data-based. Likewise, data can 

be distributed among more than two parties or M parties. This case is called as 

distributed data-based. Notice that M is a constant and 2 < M << m, where m 

represents the number of measurements. 
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1.6.1. Central-based data distribution 

 

To estimate an unknown measurement for a location i, referred to as Pi, 

distances between the locations i and every nearby point j, referred to as Dij, need 

to be computed. Likewise, measurements at each location j, referred to as Pj, are 

needed, where each location is defined by two coordinate values (x, y). In IDW 

interpolation, m is also needed. An example of a traditional interpolation is depicted 

in Figure 1.1. As seen from the figure, assume that a server C owns measurements 

(Pj values) of sample points (S1, S2, …, S25) for region A. The client Q sends 

coordinates of the location i (xi, yi) for which she is seeking a prediction (Pi) to C. 

First, C determines i’s neighbours (the closest G points to i). It then estimates the 

prediction using IDW or kriging methods. It finally sends Pi back to Q. Notice that 

the closest five points (S3, S4, S6, S8, and S9) are selected as neighbours, as seen from 

Figure 1.1. In other words, G = 5.  

 

1.6.2. Two-party data distribution 

 

It might not be an easy task to perform some measurements over a region for 

prediction purposes. Moreover, measurements collected by a company might not 

be sufficient for satisfactory predictions. Two companies may have data collected 

for the same region to provide predictions. Figure 1.2 shows an example of 

partitioned data-based interpolation between two parties. Notice that some of the 

measurements in Figure 1.1 are held by server C (measurements for sample points 

SC1, SC2, …, SC12) and the remaining measurements for sample points SV1, SV2, …, 

SV13 are held by server V. When the client Q asks a prediction for a location i, she 

sends coordinates of the location i (xi, yi) for which she is seeking a prediction Pi to 

the master company C. C and V collaboratively estimate Pj and the prediction is 

sent back to Q.   
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Figure 1.1. Central-based data distribution 

 

To estimate Pj, the parties need to collaborate. Suppose that G = 5. When the 

parties estimate the prediction collaboratively, the five closest sample points (SV2, 

SV6, SC4, SC8, and SC9), which lie inside the straight line circle in Figure 1.2, are 

selected as neighbours. However, if the master party C wants to estimate the 

prediction by itself, then the closest five sample points (SC1, SC2, SC4, SC8, and SC9) 

whose measurements are held by C are selected as neighbours. Such points lie 

inside the dashed line circle in Figure 1.2. Similarly, if V wants to estimate the 

prediction by itself, then the closest five sample points (SV1, SV2, SV5, SV6, and SV7) 

whose measurements are held by V are selected as neighbours. Such points lie 

inside the dotted line circle in Figure 1.2. 
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Figure 1.2. Two-party data distribution 

 

1.6.3. Multi-party distribution 

 

Accuracy of geo-statistics methods depends on total number of measurement 

points. Geo-statistics measurements require very high cost and time. Therefore, in 

some situations, more than two companies or institutions may join their data to 

provide more accurate results. As mentioned before, location and measurement data 

are valuable assets of such companies. In addition to this, the prediction coordinate 

and the estimated value should be kept secret; otherwise, the client may lose a 

critical economic advantage.  

As seen from Figure 1.3, in a given region-region A, some measurements are 

held by one party (PC1j values held by C1), while some are owned by another party 

(PC2j values held by C2), and the remaining are held by another company (PC3j 

values held by C3) for some j. Given a specified region, various companies can 

collect measurements for geo-statistical purposes, as seen from Figure 1.3. The 

parties then perform IDW or kriging interpolations using their data collaboratively 

without violating their privacy and the clients’ privacy. 
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Figure 1.3. Multi-party data distribution 

 

1.7. Privacy in Two-Party Case 

 

There are various studies for performing different computations on 

partitioned data between two parties with privacy. There are horizontal, vertical, or 

hybrid partitioning configurations. Hybrid or arbitrary partitioning is more common 

over others. Nayak and Devi (2011) provide a review of the state-of-the-art methods 

privacy-preserving distributed data mining (PPDDM), present the related 

representative techniques, and point out their merits and demerits. The authors 

review horizontally or vertically partitioned data-based classifiers like ID3, naïve 

Bayesian, support vector machine, k-means clustering, and association rule mining 

with privacy. Since there are different protocols foe secure two-party computations, 

it is imperative to select the most appropriate ones. Thus, Kerschbaum et al. (2013) 

propose automatic protocol selection that chooses a protocol for each operation 

resulting the best performance. 

Aggarwal and Yu (2008) discuss PPDDM. The authors investigate possible 

computational and theoretical limits that might occur in high dimensional data sets 
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while performing privacy-preserving functionalities. A comprehensive view on a 

set of metrics utilized in various PPDM algorithms including the partitioned data-

based ones are provided to design more effective measurements (Bertino et al., 

2008). Han and Ng (2007a) propose a protocol for secure genetic algorithms when 

data are arbitrarily partitioned between two parties. The parties seek to perform 

genetic algorithms to discover a better set of rules without jeopardizing their 

confidentiality. Bansal et al. (2011) present a privacy-preserving algorithm for 

neural network learning when data are arbitrarily partitioned between two parties. 

They show that the algorithm leaks no knowledge about the other’s party data 

except the final weights. Li et al. (2011) propose a scheme for detecting outliers 

using distance-based approach over arbitrarily partitioned data with privacy. 

Bringer et al. (2013) show how to apply secure two-party computation to biometric 

identification. They utilize encryption to achieve privacy. Henecka and Schneider 

(2013) propose a secure two-party protocol, which is faster than previous 

implementations.  

 

1.8. Privacy in Multi-Party Case 

 

Performing various tasks while preserving privacy has been receiving 

increasing attention. Due to its popularity, distributed data-based computations are 

also widely accepted. Thus, how to perform distributed data-based tasks with 

privacy is becoming popular. Clifton et al. (2002) present some PPDDM problems 

and propose solutions to them as a toolkit. Duan and Canny (2008) propose an 

effective zero knowledge tools for PPDDM and also offer general tool for 

implementing many algorithms prevalent in distributed data mining. Compared to 

horizontal or vertical partitioning, arbitrary partitioning is more recent and the most 

probably encountered data partitioning case (Jagannathan and Wright, 2005).  

Jagannathan and Wright (2005) introduce the concept of arbitrarily 

distributed data (ADD). ADD can be considered as a combination of horizontal and 

vertical partitioning. They propose a scheme for k-means clustering on ADD while 

preserving privacy. In order to cluster ADD using BIRCH algorithm with privacy, 

Prasad and Rangan (2007) propose a method. They also introduce secure protocols 
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for distance metrics and give a procedure for using these metrics in securely 

computing clusters over ADD. Han and Ng (2007b) present an efficient method to 

perform the secure scalar product operation based on ADD among multiple parties 

and show how to perform decision tree induction algorithm on ADD while 

preserving data holders’ confidentiality.  

Majority of the multi-party computation methods require that all parties 

should be connected during computation phase. This situation may raise different 

problems. Gordon et al. (2013) foresee the problems brought by being online all 

time during computation. They propose more efficient solutions. In multi-party 

computation methods, it is assumed that all parties are honest, which means that 

they follow the protocol but they try to learn as much information from the others. 

This is not always true. A party may mislead other parities. Zhang et al. (2013) 

propose a series of protocols, which are secure and verifiable in terms of 

computation results. They also analyze the existing protocols against possible 

attacks. Prabhakaran and Sahai (2013) provide a comprehensive body of basic and 

advanced material on secure multi-party computation including classical and recent 

protocols. Some real world applications require that a query should be performed 

on different databases owned by multi parties. Sepehri et al. (2013) propose a secure 

solution, which allows performing equality test among multi databases without 

revealing private data of each database owner. 

 

1.9. Related Work   

 

Geo-statistical interpolation has been receiving increasing attention since the 

study conducted by Krige (1951), which forms the basis of geo-statistical works in 

the literature. Similarly, the study proposed by Shepard (1968) forms the basis of 

IDW. The author proposes a two-dimensional interpolation function for irregularly-

spaced data. After such studies, Tobler (1979) has prompted geo-statistical studies. 

Along with kriging, IDW is one of the most widely used deterministic models in 

interpolation (Lu and Wong, 2008). It is relatively fast and straightforward to 

interpret. IDW interpolation method has been expanded by Bartier and Keller 

(1996) to allow users to define the expected degree of surface abruptness along 
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thematic boundaries using a transition matrix. Li et al. (2010) first analyzed the 

traditional IDW interpolation technique and then improved it into the grade 

estimation model. Their proposed model promotes the application of IDW method 

by combining ore body occurrence elements with the interpolation method.  

Geo-statistics interpolation methods can be grouped as deterministic and geo-

statistical methods (Rivoirard and Romary, 2011). IDW is a widely used 

deterministic method while kriging is the main tool used as a geo-statistical method 

(Fritz et al., 2009). Hence, in order to estimate predictions for unmeasured 

locations, IDW and kriging interpolations are widely used. Krige (1951) who 

developed kriging proposes to use kriging in order to predict the ore reserves. 

Armstrong (1998) explains the application of geo-statistics in mine reservoirs to 

calculate capacity of mine reservoir and errors. Shad et al. (2009) utilize kriging for 

air pollution prediction, where the authors employ a genetic algorithm to optimize 

membership functions to improve accuracy. Kriging-based techniques are used to 

predict and analyze soil properties (Sun et al., 2012). The authors perform some 

experiments and demonstrate that their approach provides highly accurate 

outcomes for some specific cases. They also develop a software program to perform 

local regression kriging automatically. In addition to analyzing soil properties and 

air pollution prediction, kriging is also utilized to estimate soil contamination 

(Largueche, 2006). Largueche (2006) investigates whether kriging is a useful tool 

to estimate the spatial distribution of ground pollutants in contaminated land. The 

author also discusses the identification of areas that should be subjected to remedial 

actions. Kaymaz (2005) proposes to apply kriging to structural reliability problems. 

The author investigates the use of kriging for such problems and compares it with 

response surface method. Ali et al. (2006) apply kriging to the spatial interpolation 

of local disease rates. Their approach helps researchers incorporate the pattern of 

spatial dependence into the mapping of risk values.      

Privacy-preserving and secure multi-party computation methods give us 

opportunities to conduct data mining methods without revealing information to 

other parties. Agrawal and Srikant (2000) propose randomized methods to hide 

sensitive information. The authors show that accurate predictive models can be 

created from a large number of perturbed data items. Evfimievski (2002) discusses 



 

  13 

perturbation levels against privacy levels and presents some methods to measure 

privacy. Li and Sarkar (2006) propose a perturbation method for categorical data to 

prevent disclosure of private data. Their scheme is based on two steps consisting of 

linear programming and swapping. In (Chen and Liu, 2011), the authors propose 

geometric data perturbation for preserving confidential data and discuss different 

aspects of such method. Taur et al. (2012) propose an enhanced method based on 

table look-up in order to improve the performance of substitution data hiding 

method. They present a general form of the method and show that their scheme 

significantly improves the amount of hidden data. Likewise, Guo et al. (2012) 

propose a new data hiding scheme establishing an injection mapping. Their 

empirical outcomes show that their method has a stable and efficient embedding 

capacity. In (Choi et al., 2012), the authors propose a solution to the problem of 

preserving mining accuracy and privacy in publishing sensitive time-series data. 

The authors propose both naïve solutions and advanced one, where they discuss 

randomization-based solutions. Li and Wang (2012) propose a classification 

method based on singular value decomposition with privacy. Meskine and Bahloul 

(2012) study and analyze privacy-preserving k-means algorithms and classify them 

based on data distribution, where they discuss advantages and disadvantages of 

each proposed protocol. Baboulin et al. (2013) propose a random transformation, 

which can be performed efficiently while providing sufficient accuracy. 

Performing interpolations with privacy on central data, partitioned, or 

distributed data has not been studied in the literature before. On the other hand, 

Tugrul and Polat (2013a) show how to perform kriging-based predictions while 

preserving the client’s and the server’s privacy. The authors consider a central 

server-based scenario in which the data are held by a single party, referred to as the 

server. In another study, Tugrul and Polat (2013b) study how to provide IDW-based 

predictions from centralized data without violating the client’s and the server’s 

confidentiality. In both studies, the authors focus on central server-based schemes 

rather than partitioned data-based methods.   
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1.10. Contributions 

 

Geo-statistics and privacy-preserving schemes have been used in many 

applications. As mentioned before, collecting data for geo-statistics analysis 

requires so much time and money. Moreover, amount of data used for prediction 

effects the accuracy of geo-statistics methods. In general, there are more than 20 

different geo-statistics methods in the literature. On the other hand, privacy-

preserving schemes enable to apply various methods without publishing sensitive 

data to competitive parties. To the best of our knowledge, our study is the pioneer 

of using privacy-preserving schemes in two of the geo-statistics methods. IDW and 

kriging, which are two common methods used as geo-statistics interpolation 

methods, are chosen. Solutions for central data distribution scheme are first 

proposed. In these schemes, data are held by one company only and clients request 

prediction for a specific location, where they are interested in. The location in which 

the client asks prediction and measurement values are accepted as sensitive data of 

client and server. The proposed IDW and kriging-based solutions protect sensitive 

data of both parties.  

In some situations, companies may collect data for the same region or 

neighbor regions in respect to economic or legislation reasons. It is assumed that 

there may be two or more competitive companies. This first scenario is called as 

two-party. The second scenario is depicted as multi-party. IDW and kriging-based 

methods are proposed for both scenarios, as well. In these scenarios, coordinates 

and measurement values of each company and prediction location for which client 

is interested in are assumed as sensitive data. It is also assumed that the companies 

are semi-honest. In other words, they follow the protocol as required; however, they 

try to acquire as much data as possible about each other’s private data. 

For the clients, the location and the estimated prediction are considered 

confidential and valuable asset because the clients plan their investments according 

to predicted measurements for specific locations. Similarly, locations of 

surrounding points and their measurements are confidential data for the servers. 

They do not want to disclose them. Moreover, they utilize such data to provide 

predictions to their clients in return of some benefits. Thus, they are also considered 
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valuable assets and the servers do not want to share them with the third parties. 

IDW- or kriging-based predictions should be estimated without revealing the 

confidential data. However, the area in which the servers have measurements is 

considered public. 

Individual users or companies might not want to spend money and/or time to 

estimate unknown measurements of some locations due to scarce resources. Instead 

of using their own effort, they prefer obtaining estimations from those who have 

enough measurements and provide prediction services to others. Suppose that the 

client wants to get a prediction from the server. The client must send the location 

information to the server, which then must estimate the prediction based on the 

location information it receives and the measurements for surrounding points it has. 

However, the server does not want to reveal information about the measurements 

and their locations due to privacy and financial reasons. Similarly, the client does 

not want to reveal the location information for which it is looking for prediction 

and the estimated prediction to the server. Hence, neither the server nor the client 

wants to disclose their confidential data (locations, measurements, and predictions) 

to each other. The problem is how to estimate predictions using IDW or kriging for 

the clients without revealing the server’s and the clients’ private data? Thus, 

privacy-preserving methods are proposed in order to provide predictions using IDW 

or kriging interpolations. The proposed methods protect both the server’s and the 

client’s confidentiality against each other. They are able to provide accurate 

predictions without greatly jeopardizing privacy. 

Performance and accuracy of interpolations success are mainly dependent on 

number of sample points to be used and quality of the collected measurements for 

prediction purposes. It is unlikely to provide accurate and dependable predictions 

from insufficient and/or false data. Measurements collected for interpolation 

purposes might be partitioned between two parties, even competing companies. 

Instead of collecting all measurements due to limited time and budget, such parties 

might decide to provide interpolations based on their integrated data. To offer 

correct and reliable predictions, they might decide to collaborate. However, due to 

privacy and financial concerns, they do not want to disclose their confidential data. 

Without privacy protection, they hesitate to collaborate for better interpolation 
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services. Thus, the problem is how such parties perform IDW- or kriging-based 

interpolations while preserving their privacy and the clients’ confidentiality? In 

order to provide partitioned data-based predictions using IDW or kriging 

interpolations while preserving privacy, different methods are proposed. Due to 

privacy measures, the proposed solutions might bring extra costs like storage, 

communication, and computation. However, such costs should not prevent the 

servers from providing predictions efficiently. Moreover, accuracy losses are 

inevitable due to the utilized privacy measures. On one hand, it is hypothesized that 

accuracy improves if the servers decide to collaborate. On the other hand, privacy 

measures cause accuracy losses. However, overall gains due to collaboration should 

compensate the losses due to privacy concerns. Empirical outcomes show that the 

proposed methods provide accurate predictions efficiently with privacy. 

As in data mining and statistics applications, the main requirement for 

performing dependable and truthful interpolations is to gather enough amounts of 

data. For interpolations, data values are measurements representing some quantities 

for some pre-determined locations in a geographical region. Various companies, 

firms, institutes, organizations, and so on measure some quantities for interpolation 

purposes. Even if a few numbers of organizations do not expect any benefit from 

such measurements, most of them plan to make money out of such collected data. 

There are mutual benefits between such data owners and those seeking predictions. 

On one hand, data collectors spend noteworthy efforts including but not limited to 

budget, time, labor, and so on in order to gather measurements for interpolation. It 

is reasonable for them to try to compensate what they spent out of such values. On 

the other hand, some companies, even rival ones, might not have enough resources 

to collect data. They prefer to buy services from those who willing to offer 

predictions in return of some benefits.  

 When a company owns adequate data for providing reliable and correct 

predictions, it is a straightforward task for it to offer such services. However, due 

to scarce resources, it might not be possible to assemble enough measurements. 

Moreover, different companies gathering measurements from the same region 

might decide to provide predictions on their integrated data collaboratively. It is 

more likely to sustain more accurate predictions from joint data than the ones on 
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split data only. Predictions with decent accuracy help service providers keep 

existing customers (query owners) and recruit new ones. That results more benefits 

for them. On the other hand, query owners obtain more truthful predictions. Due to 

such mutual advantages (between collaborating parties or data and query owners), 

it becomes interesting and inevitable to perform interpolations on distributed data 

for both service providers and clients. However, privacy and financial concerns 

might prevent them from conducting such services without any protection. 

Therefore, the problem is how to offer predictions using IDW- or kriging-based on 

distributed data while preserving privacy? In order to address the problem, various 

privacy-preserving methods are proposed. The schemes make it possible for the 

servers and the clients to perform interpolations on distributed data without 

violating confidentiality. The solutions provide correct and dependable predictions 

efficiently while preserving privacy. 

 

1.11. Organization of the Dissertation  

 

The remainder of the thesis is organized as follows. In the following chapter, 

IDW and kriging methods are explained briefly.  In addition, auxiliary methods that 

are used in our solutions are described. Privacy-preserving IDW and kriging-based 

schemes on central data are presented in Chapter 3 and Chapter 4, respectively. The 

proposed solutions for estimating predictions using IDW on partitioned or 

distributed data are presented in Chapter 5. The next chapter explores solutions of 

kriging on partitioned or distributed data. Finally, in the last chapter, conclusions 

are presented and future research directions are pointed out.  
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2. PRELIMINARIES 

 

2.1. Geo-statistics in General 

 

Interpolation methods used in geo-statistics have been played a significant 

role in planning, resource management, decision making, and risk assessment. With 

the help of powerful geographic information systems and modeling tools, geo-

statistics analyses become popular between scientists to develop accurate 

predictions. There are several methods, which can be categorized into three sections 

like non-geo-statistical methods, geo-statistical methods, and combined methods 

(Li, 2008). IDW is an example of non-geo-statistical methods. Kriging, on the other 

hand, is a geo-statistical method. Although there are different kriging methods, 

ordinary kriging is studied because it is the basis of other types of kriging schemes.  

 

2.2. Inverse Distance Weighting-based Interpolation 

 

To predict a value for an unknown point, IDW assigns a weight to each of the 

surrounding points. Weights get smaller as a function of distance. In other words, 

weights are proportional to the inverse of the distance raised to power m. If m = 0, 

then the weights do not depend on distance. If m > 1, the effects of distant points 

get smaller. The measure in location i (referred to as Pi) using IDW approach can 

be estimated as follows (Armstrong, 1998): 

𝑃𝑖 =  
∑ [𝑃𝑗 (𝐷𝑖𝑗)

𝑚
⁄ ]𝐺

𝑗=1

∑
1

(𝐷𝑖𝑗)𝑚
𝐺
𝑗=1

                                          (2.1) 

in which G represents the number of neighbor points, Pj shows the measurement in 

point j, and Dij represents the distance between points i and j. In a relatively small 

area with appropriate coordinate system, Dij can be calculated using Euclidean 

distance metric, which measures the straight-line distance between any two points. 

For larger areas in which there are no straight lines, geodesic distance is utilized to 

compute Dij, where geodesic distance is the distance measured along the shortest 

route between two points on the Earth’s surface (Johnston et al., 2001). 
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2.3. Kriging-based Interpolation 

  

Kriging is a widely used technique for interpolating some unknown 

measurements. It has been applied in many engineering fields such as petroleum, 

mining engineering, forestry, remote sensing, meteorology, and so on. Kriging 

interpolation is divided into two tasks: finding a variogram model using all 

measured points and making predictions. 

As explained previously, there are two involving parties in a traditional 

kriging interpolation. The server S owns measurements (P values) for some G 

sample locations with their related coordinates (x, y) in a given region A. The client 

C asks a prediction for some location, referred to as unmeasured location (q) from 

S. The steps of such interpolation are given as follows (Johnston et al., 2001): 

1. S computes distances between any two measured locations i and j in A using 

Euclidean distance measure. The distance between i and j (dij) can be 

calculated as follows:      

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
.                          (2.2) 

2. Then, S calculates semi-variances (s values) between any two measured 

locations, i and j as follows:  

𝑠𝑖𝑗 = 0.5 × [𝑃𝑖 − 𝑃𝑗]
2
.                                (2.3) 

3. S then groups sample points using binning and finds average semi-variances 

and distances for each bin. 

4. S plots average semi-variances versus average distances and finds the formula 

to estimate semi-variance at any given distance. Semi-variances can be 

denoted as follows: 

𝑆𝑒𝑚𝑖 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑓(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒),                          (2.4) 

where f is a function representing the relationship between semi-variances 

and distances.     

5. S then creates Γ matrix, which is a (G + 1) × (G + 1) symmetric matrix 

including the estimated semi-variances between any two locations using Eq. 

(2.3). Note that the last row and column are filled with 1s, except the diagonal 

entry, which is set to 0. 
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6. Next, S finds Γ-1 matrix, which is again a (G + 1) × (G + 1) symmetric matrix 

including γ values. 

7. C sends the coordinates of q (xq, yq) in A, for which she is looking for 

prediction, to S.  

8. S computes distances between q and each measured location in A using Eq. 

(2.2). It creates the matrix g, which is a (G + 1) × 1 matrix including the semi-

variances estimated between q and each measured location using Eq. (2.3).  

9. S then solves the kriging weights (λ matrix) as follows: 

𝛌 =  𝚪−1 ∗ 𝐠
                                (2.5) 

in which λ is a (G + 1) × 1 matrix. 

10. Finally, S estimates the final prediction for unmeasured location (referred to 

as Pq) by multiplying the weight for each measured location and the related 

measure or value; and adds them together. If λ and P are considered as vectors 

of length G, then Pq can be estimated by finding the scalar product of λ and 

P as follows:  

𝑃𝑞 =  𝛌 · 𝐏 =  ∑ 𝜆𝑖 ∗ 𝑃𝑖
𝐺
𝑖=1 .                            (2.6) 

 

2.4. Homomorphic Encryption 

 

Encryption methods are widely used to provide privacy. There are symmetric 

and asymmetric encryption algorithms. Although symmetric encryption is based on 

one common secret key, asymmetric algorithms utilize one private key and one 

public key. Homomorphic encryption (HE) methods are based on asymmetric 

encryption. HE allows an addition or a multiplication operation to be conducted on 

encrypted data without decrypting them. Untrusted parties can perform operations 

on encrypted data without knowing real value of the other party. Several HE 

systems are available and examples include the systems proposed by Benaloh 

(1994), Paillier (1999), and Cheon et al. (2013). Aguilar-Melchor et al. (2013) 

survey about the recent advances in HE with respect to both cryptography and 

software engineering. Huang et al. (2013) investigate HE with respect to ad hoc 

networks. They show that their proposed scheme is secure and practical in ad hoc 

networks and cloud computing. Niu et al. (2013) utilize HE in order to detect 
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whether smart meter data is correct or not. In other words, energy suppliers can 

understand whether the data packet is tampered or not.  

The scheme is basically described by Senyurek and Yakut (2013) as follows: 

HE scheme consists of key generation, encryption, and decryption. In order to 

generate keys, two large prime numbers (p and q) are uniformly randomly selected. 

Then, n = pq and λ = lcm (p - 1, q - 1) are calculated, where λ and lcm are 

Carmichel’s function and least common multiplier, respectively. After that integer 

numbers γ and δ are selected from Zn (set of integers n) to determine the generator 

f = (γn + 1) δn mod n2. Then, the public key for encryption generated as (n, f) and 

the private key for decryption generated as (λ, μ), where μ = (L(fλ mod n2))-1 mod 

n and L (u) = (u - 1)/n. The message M in Zn can be encrypted as follows: M′ = fMrn 

mod n2. Note that M′ represents the related cipher text, r is a random number 

selected from Zn* (set of integers co-prime to n). The cipher text M′ can be 

decrypted as follows: M = L ((M′)λ mod n2)μ mod n.  

Assume that the task is to compute ξe(M1 + M2) from ξe(M1) and ξe(M2). The 

cipher texts can be found as 𝑀1
′ = 𝑓𝑀1𝑟1

𝑛 𝑚𝑜𝑑 𝑛2 and𝑀2
′ = 𝑓𝑀2𝑟2

𝑛 𝑚𝑜𝑑 𝑛2, where 

r1 and r2 are random numbers. If the cipher texts are multiplied, 𝑀1
′ 𝑀2

′  𝑚𝑜𝑑 𝑛2 =

 𝑓𝑀1𝑟1
𝑛  ×  𝑓𝑀2𝑟2

𝑛 𝑚𝑜𝑑  𝑛2 =  𝑓𝑀1+ 𝑀2(𝑟1 × 𝑟2)𝑛 𝑚𝑜𝑑 𝑛2  are obtained. If the 

encrypted result is decrypted, the outcome will be M1 + M2. 

 

2.5. Oblivious Transfer Protocol 

 

In an untrusted environment, two parties might want to collaborate to achieve 

a common goal. To allow one of the parties to get its choices only while preventing 

the other party from learning such choices, 1-out-of-n oblivious transfer protocol 

(OT) proposed by Even et al. (1985) and Brassard et al. (1987) can be used. Naor 

and Pinkas (1999) propose an efficient protocol. By combining it with the one by 

Cachin et al. (1999), OT could be achieved with poly-logarithmic (in n) 

communication complexity. Tzeng (2002) presents efficient OT schemes. Asharov 

et al. (2013) present optimizations and efficient implementations of OT. They also 

offer a novel OT. The author builds OT from fundamental cryptographic 

techniques. Kolesnikov and Kumaresan (2013) propose an improved OT for 
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transferring short secrets. OT is beneficial in the proposed schemes because it 

allows one party to select required values only while preventing the other party 

from deriving which values are chosen. 

At the beginning of this protocol, one party, Bob has n messages M1, M2, . . . 

,Mn and at the end of the protocol the other party, Alice, learns one of the inputs Mα 

for some 1 ≤ α ≤ n of her choice, without learning anything about the other inputs 

and without allowing Bob to learn anything about α. Tzeng (2002) basically 

explains the protocol as follows: Let the sender’s (Bob) input is M1, M2, . . . ,Mn in 

Hq and the receiver’s (Alice) choice is α. Remember that M1, M2, . . . ,Mn represent 

n messages. Hq is an order-q group, where q is a prime. Let a and b be two 

generators in Hq and r is a random number, which is uniformly randomly selected 

from a set R. The receiver computes y = arbα and sends y to the sender. After 

receiving y, the sender first computes 𝑑𝑖 =  (𝑎𝑟𝑖 , 𝑀𝑖 (
𝑦

𝑏𝑖⁄ )
𝑟𝑖

), where ri is a random 

number selected uniformly randomly from a set R by the sender and 1 ≤ i ≤ n. He 

then sends di values for all i to the receiver. Let dα = (X, Y), then the receiver 

computes Mα = Y/Xr. Notice that Mα is the choice that Alice is looking for.   

   

2.6. Data Sets 

 

To analyze the proposed methods, different sets of experiments are conducted 

using real data sets. Two real data sets obtained from the U. S. National 

Geochemical Survey Database are utilized in the experiments. The first data set 

contains Sodium (Na) content of soil in the Illinois State. There are 1,331 

measurements. Minimum and maximum Na contents measured 0.0180 and 1.2730, 

respectively. Mean and median of the data set are 0.6023 and 0.5970, respectively. 

Figure 2.1 shows the distribution of the Illinois data set. 

The second data set contains Sodium (Na) content of soil in the Colorado 

State. As seen from Figure 2.2, there are 1,150 measurements in total along the 

state. Minimum and maximum Na contents measured 0.0630 and 3.2300, 

respectively. Mean and median of the data set are 0.9986 and 0.9115, respectively. 
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Figure 2.1. Histogram of the Illinois data set 

 

 

 

Figure 2.2. Histogram of the Colorado data set 

 

 

2.7. Evaluation Metrics 

 

There are various evaluation metrics that can be used to assess IDW and 

kriging methods (Li, 2008). Mean absolute error (MAE) and root mean squared 

error (RMSE) measures are utilized in the experiments. The smaller they are, the 

more accurate a scheme is. Thus, smaller MAE and RMSE values mean that 
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predictions of a scheme are very close to the observed measurements. MAE can be 

formulized as follows: 

 




M

i

ii po
M

MAE
1

1
. (2.7) 

and similarly, RMSE can be formulized as follows: 
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in which M is the number of observed measurements in the test set, oi and pi are 

original measurement and predicted output of our proposal, respectively. 

Leave-one-out methodology is utilized in the experiments. It means that one 

location is left out and the others are used to estimate a prediction for that one. The 

same thing is done for all locations. Observed measurements are withheld and 

estimated predictions are found for each one. Then they are compared and the error 

for each point j is calculated as follows: Errorj = Observedj – Predictionj.  After 

error calculation, RMSE and MAE values are computed. The experiments are 

conducted several times and overall averages are displayed.  
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3. PRIVACY-PRESERVING IDW INTERPOLATION 

 

Without privacy concerns, it is an easy task to predict unknown measures for 

specific locations using IDW interpolation technique. Basically, the client sends 

location information for which it does not know the measurement to the server. 

After estimating the prediction based on the measurements it has using IDW 

interpolation, the server then sends it back to the client. However, if they want to 

achieve such task with privacy, then it becomes a challenging task.    

 

3.1. Method 

 

As seen from Eq. (2.1), to estimate a prediction for a location i, referred to as 

Pi, distances between the location i and every one of G nearby point j (Dij) need to 

be computed. Moreover, measures at each location j and m are needed. It is assumed 

that each location i is defined by two coordinate values (xi, yi). The goal is to provide 

schemes that allow the client (Alice) and the server (Bob) estimate predictions 

without violating their confidentiality.  

The proposed solutions are described in the following starting from the naïve 

one. Naïve solution assumes that coordinate values and measurements held by the 

server are private. However, prediction coordinate for which Alice needs a 

prediction and prediction value itself are public. Second solution assumes that 

coordinate values held by Bob are public. On the other hand, prediction coordinate 

and estimated value are considered confidential data. Finally, the complete solution 

protects coordinates and measurements held by Bob. It also considers prediction 

coordinate and estimated prediction for Alice as private data.  

 

3.1.1. Naïve solution 

 

The naïve scheme is based on OT. The server and the client aim to hide their 

confidential data from each other. The steps of the method are as follows: 

1. Alice first uniformly randomly generates n-1 bogus locations.  
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2. She then hides the location i for which she is looking for a prediction among 

such n-1 spurious locations. She simply permutes such n locations.  

3. Next, she sends Gj = (xj, yj) to Bob, where j = 1, 2, …, n and the location for 

i = j is the real one. 

4. For each point j, Bob adds random number to optimum power value mo values 

by uniformly randomly selecting mzj values over the range [mo-θ, mo+θ]. 

5. Bob then estimates predictions for each point j using the Eq. (2.1) and 

corresponding mzj values. 

6. Alice finally uses OT to obtain the prediction Pi for her true location i.  

In this scheme, the server can guess the prediction for location i with 

probability of 1/n. Notice that with increasing n values, this probability becomes 

smaller.  

 

3.1.2. Second scheme: Relaxed privacy constraints 

 

In this method, it is assumed that the coordinate values held by Bob are public. 

On the other hand, other data values are considered confidential data. The steps of 

the proposed approach are as follows: 

1. Bob first sends G sample points’ coordinate values to Alice. 

2. Alice computes distances between i and each location j received from Bob 

(finds Dij values).  

3. She adds some randomness to optimum power values mo by uniformly 

randomly selecting mzj values over the range [mo-θ, mo+θ]. 

4. Next, she estimates ∑
1

(𝐷𝑖𝑗)
𝑚𝑗

𝐺
𝑗=1  and 1 (𝐷𝑖𝑗)𝑚𝑗⁄  values for all j = 1, 2, …, G. 

5. After finding 𝜉𝐾𝐴(1 (𝐷𝑖𝑗)𝑚𝑗⁄ ) values for all j = 1, 2, …, G using an HE 

scheme, she sends them to Bob, where KA represents Alice’s public key.  

6. Since Bob knows the measures for each location j (Pj values), he first finds 

[𝜉𝐾𝐴(1 (𝐷𝑖𝑗)𝑚𝑗⁄ ) ]𝑃𝑗 = 𝜉𝐾𝐴 (𝑃𝑗 (𝐷𝑖𝑗)𝑚𝑗⁄ ) values for all j = 1, 2, …, G using 

an HE scheme. 

7. After computing ∏ 𝜉𝐾𝐴 (𝑃𝑗 (𝐷𝑖𝑗)
𝑚𝑗⁄ ) = 𝐺

𝑗=1 𝜉𝐾𝐴 (∑ (𝑃𝑗 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1 )  using 

the HE property, he sends the encrypted sum to Alice. 
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8. Since Alice knows the decryption key, which is her corresponding private 

key, she decrypts the received encrypted sum and obtains ∑ (𝑃𝑗 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1 . 

9. She finally estimates Pi as follows: 

𝑃𝑖 =  
∑ (𝑃𝑗 (𝐷𝑖𝑗)

𝑚𝑗⁄ )𝐺
𝑗=1

∑
1

(𝐷𝑖𝑗)𝑚𝑗
𝐺
𝑗=1

 

 

3.1.3. The complete solution 

 

In this final scheme, sample points coordinates values and their corresponding 

measurements held by Bob are confidential. Alice wants to hide the location for 

which she is looking for a prediction. She also wants to prevent Bob from learning 

the prediction value. In other words, all confidential data described previously are 

wanted to be protected. The steps of this approach are as follows: 

1. Bob first uniformly randomly generates N bogus locations. Now, he has g = 

G + N sample points.  

2. For every sample point j, the parties perform the followings, where j = 1, 2, 

…, g. 

a. Bob uniformly randomly creates n-1 bogus points and hides j among them. 

b. He then sends such n points coordinates to Alice.   

c. Alice adds some randomness to optimum power value mo by uniformly 

randomly selecting mzj values over the range [mo-θ, mo+θ]. 

d. After finding the distances between i and each received point z, she finds 

1 (𝐷𝑖𝑧)𝑚𝑧⁄  values for z = 1, 2, …, n, where mz = mj. 

e. She encrypts 1 (𝐷𝑖𝑧)𝑚𝑧⁄  values for z = 1, 2, …, n using an HE scheme and 

her public key KA; and obtains 𝜉𝐾𝐴 (1 (𝐷𝑖𝑧)𝑚𝑧⁄ ) values. 

f. Bob uses OT and requires 𝜉𝐾𝐴 (1 (𝐷𝑖𝑧)𝑚𝑧⁄ ) for z = j. In other words, Bob 

gets the distance between points i and the real location j in encrypted form. 

3. After performing the abovementioned steps for all g points, Bob can choose 

those encrypted values for G real locations by removing the results for bogus 

points. 
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4. Bob then estimates 𝜉𝐾𝐴(∑ (1 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1 ) =  ∏ 𝜉𝐾𝐴 (1 (𝐷𝑖𝑗)𝑚𝑗⁄ )𝐺
𝑗=1  using 

the HE scheme. 

5. He also computes 𝜉𝐾𝐴(∑ (𝑃𝑗 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1 ) =  ∏ 𝜉𝐾𝐴 (1 (𝐷𝑖𝑗)𝑚𝑗⁄ )
𝑃𝑗𝐺

𝑗=1  

using the HE property.  

6. Finally, Bob sends such encrypted aggregate sums to Alice. 

7. Since Alice knows the corresponding decryption key, which is her private 

key, she decrypts them and obtains ∑ (𝑃𝑗 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1  and ∑ (1 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1  

values. 

8. She finally estimates Pi using the Eq. (2.1). 

 

3.2. Analysis 

 

The last scheme is analyzed because it achieves all privacy requirements. The 

proposed scheme is scrutinized in terms of privacy, accuracy, and performance 

because like in many other applications, they are three major goals that various 

approaches should accomplish. However, they are conflicting goals; and improving 

one or two makes the other(s) worse. Thus, the proposed scheme should find 

equilibrium among them.  

Privacy means that the client should not be able to learn the locations of 

surrounding points and their measurements; and the server should not be able to 

know the estimated predictions and the locations for which the client is looking for 

predictions. Accuracy can be defined as follows: Predictions estimated with privacy 

concerns should be as close as possible to the ones estimated without privacy 

concerns. And finally, efficiency can be described as follows: Additional costs due 

to privacy concerns should be negligible. The proposed scheme should not 

introduce too much supplementary communication, computation, and storage costs. 

Although extra costs are inevitable and they cause some overheads, online 

efficiency is not critical in IDW-based predictions. In some real-time applications 

like obtaining recommendations from e-commerce sites, it is imperative to provide 

recommendations to many customers in a limited time. However, in geo-statistics, 

online time restrictions are tolerable.  
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3.2.1. Supplementary costs analysis 

 

Additional costs like storage, communication (number of communications 

and amount of transferred data), and computation costs are first analyzed. Extra 

storage costs are needed for the server to save the randomly chosen N locations and 

randomly generated n-1 locations for each location j = 1, 2, …, g. Thus, 

supplementary storage costs for the server are in the order of O (ng). For the client, 

she has to save additional n encrypted values for each j = 1, 2, …, g. Hence, extra 

storage costs for the client are in the order of O (ng). On average, the scheme causes 

additional storage costs in total, which are in the order of O (ng), where g = G + N. 

In a traditional IDW interpolation system, the client sends the location 

information to the server. The server returns an estimated prediction. Thus, without 

privacy concerns, number of communications is two only. In the proposed scheme, 

the server communicates with the client to send location information for all g points. 

It also performs OT protocol g times to receive an encrypted value in each time, 

where remember that each protocol could be achieved with poly-logarithmic (in n) 

communication complexity. Finally, the server sends two encrypted partial sums to 

the client. Thus, number of communications are (g + ng + 2), which are in the order 

of O (ng); and it increases from two to (g × (n +1) + 2).  

Besides number of communications, amount of transferred data is also 

important. Without privacy concerns, amount of data sent from the client to the 

server are about eight bytes, assuming that four bytes are needed for each coordinate 

value. Similarly, since the server returns a prediction to the server, amount of 

transferred data are about four bytes. In the proposed scheme, since the server sends 

n pairs of coordinate values rather than one pair, amount of transferred data are 

about 8n bytes. Thus, amount of exchanged data to send location information 

increases n times. During data transfer via OT, encrypted values are transferred. 

The size of the encrypted value produced by the block cipher encryption can be 

computed as follows: size of plain text + block size - (size of plain text mod block 

size) (Obviex, 2012). Assuming that 256-bit key or 32 bytes blocks are utilized, 8 

+ 32 – (8 mod 32) = 32 bytes are needed. Thus, amount of transferred data in each 

ng communications are about 32 bytes. Finally, the server sends two encrypted 
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values in which amount of data sent are about 64 bytes. Although number of 

communications and amount of transferred data increases due to the proposed 

scheme; however, as mentioned previously, online interaction is not critical for 

IDW interpolation methods. Such communications can be considered performed 

off-line. 

The proposed method also causes additional computation costs due to privacy 

concerns. As seen from Eq. (2.1), without privacy concerns, the server conducts G 

number of multiplications, distance calculations, exponentiations, and (G + 1) 

divisions, where addition is omitted. Thus, the computation complexity is in the 

order of O (G). In the scheme, the client performs ng encryptions, divisions, and 

exponentiations due to bogus locations. She also conducts two decryptions and one 

final division. Similarly, the server performs G exponentiations and multiplications. 

Hence, the computation complexity of the method is in the order of O (ng). Since 

the scheme includes encryptions and decryptions, their running times can be 

determined using the benchmarks for the CRYPTO++ toolkit from 

http://www.cryptopp.com/ (2002b). Also note that the additional costs due to 

selecting random locations and randomly choosing power values are not considered 

because they are negligible compared to cryptographic functions, multiplications, 

and exponentiations. 

 

3.2.2.  Privacy analysis 

 

There are four confidential data items that should be protected. The first one 

is location information of surrounding points held by the server. Notice that to mask 

them, the server first creates N bogus location. Hence, it now owns g = G + N points 

rather than G points. For the client, the probability of guessing the true G locations 

out of g locations is 1 out of 𝐶 (
𝑔
𝐺

), where 𝐶 (
𝑋
𝑌

) represents the number of ways of 

picking Y unordered outcomes from X possibilities. Moreover, since the server 

hides each true location of G points among n-1 bogus locations, for the client, the 

probability of guessing one of them is 1 out of n. Then, the probability of guessing 

G points is 1 out of nG. Thus, the probability of guessing the true G points held by 
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the server is 1 out of  𝐶 (
𝑔
𝐺

) × nG. With increasing n and g (N respectively) values, 

the probability is becoming smaller. However, since increasing such values also 

increases supplementary costs, the server and the client should find a balance 

between efficiency and privacy level. The optimum values of n and N can be 

determined based on how much privacy and efficiency the client and the server 

want. Since efficiency is not that critical for the overall performance, they prefer 

having higher privacy level over performance. Also, the client can try to learn true 

locations from the received encrypted sum value 𝜉𝐾𝐴(∑ (1 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1 ) =

 ∏ 𝜉𝐾𝐴 (1 (𝐷𝑖𝑗)𝑚𝑗⁄ )𝐺
𝑗=1 . However, it is not possible to learn G unknown locations 

from an aggregate of G distances. 

The second data item that the server wants to hide is measurements. The 

server uses HE property to calculate 𝜉𝐾𝐴(∑ (𝑃𝑗 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1 ) =

 ∏ 𝜉𝐾𝐴 (1 (𝐷𝑖𝑗)𝑚𝑗⁄ )
𝑃𝑗𝐺

𝑗=1  values. Since the server sends an encrypted aggregate to 

the client, even if the client knows the decryption key and obtains the aggregate 

∑ (𝑃𝑗 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1  value, she cannot determine the unknown measurements for G 

points from one known aggregate value. In other words, it is not possible to derive 

G unknown measurements from one known value.  

For the client, confidential data items are the final prediction and the 

location i. The server cannot learn the prediction from 𝜉𝐾𝐴(∑ (1 (𝐷𝑖𝑗)
𝑚𝑗⁄ )𝐺

𝑗=1 ) =

 ∏ 𝜉𝐾𝐴 (1 (𝐷𝑖𝑗)𝑚𝑗⁄ )𝐺
𝑗=1  and 𝜉𝐾𝐴(∑ (𝑃𝑗 (𝐷𝑖𝑗)

𝑚𝑗⁄ )𝐺
𝑗=1 ) =  ∏ 𝜉𝐾𝐴 (1 (𝐷𝑖𝑗)𝑚𝑗⁄ )

𝑃𝑗𝐺
𝑗=1 , 

because it does not know the corresponding decryption key, which is known by the 

client; and it is not able to learn mj values, which are chosen uniformly randomly 

over a range by the client (corresponding θ values are known by the client only). 

The location information for which the client is looking for a prediction is 

also private. The server should not learn that information either. Remember that the 

client uses varying mj values determined uniformly randomly over a range (θ values 

known by the client) and encrypts 1 (𝐷𝑖𝑧)𝑚𝑧⁄  values using HE property using her 

public key. Thus, the server cannot learn the location, because it does not know the 

mj values and the corresponding decryption key, which is known by the client only. 
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In the proposed method, HE and OT are employed. Paillier (1999) shows that 

HE is semantically secure for inference of input values. In other words, the parties 

cannot derive any information from the exchanged encrypted values. Similarly, OT 

is also secure (prevents the client and the server from learning the selected data item 

and data values computed for all points other than the real one, respectively), as 

shown by (Noar and Pinkas, 1999). To sum up, the final solution achieves all four 

privacy requirements. It prevents the participating parties from deriving 

information about each other’s confidential data. Any client and a server can 

employ the proposed method to perform IDW interpolation with privacy.  

 

3.2.3.  Accuracy analysis 

 

As explained previously, accuracy, privacy, and efficiency are three 

conflicting goals. Therefore, due to privacy-preserving measures, accuracy might 

become worse. It is previously shown that privacy measures introduce overhead 

costs. In this section, the proposed scheme is scrutinized in terms of accuracy. How 

the proposed method affects the quality of the predictions is demonstrated in this 

section. Notice that HE and OT are employed, which do not affect accuracy. The 

controlling parameters that can affect the accuracy of the prediction is the range (θ2 

- θ1) over which the client select mj values uniformly randomly and number of 

surrounding points G. Thus, different sets of experiments are conducted using real 

data sets to show how varying range and G values affect accuracy. 

 

3.3.  Experiments 

 

A set of experiments are run to show how varying θ values affect accuracy. 

Besides varying θ values, G is also another controlling parameter that might affect 

accuracy. Thus, another set of trials are performed to show how accuracy is affected 

with varying G values. For this purpose, three different θ values 0.05, 0.15 and 0.25 

are used, while G values are varied from 5 to 50. After calculating RMSE and MAE 

values for both the Illinois and the Colorado data sets, overall outcomes are 

displayed in Table 3.1, Table 3.2, Table 3.3 and Table 3.4, respectively. 



 

  33 

Table 3.1. Effects of varying θ and G values on RMSE (Illinois data set) 

 

 

θ/G 5 10 15 20 30 40 50 

Optimal 0.1162 0.1140 0.1136 0.1134 0.1126 0.1124 0.1124 

 R
a

n
d

o
m

 ±0.05 0.1163 0.1141 0.1137 0.1135 0.1127 0.1125 0.1125 

±0.15 0.1165 0.1142 0.1138 0.1136 0.1129 0.1127 0.1126 

±0.25 0.1167 0.1144 0.1140 0.1138 0.1131 0.1129 0.1128 

 

Table 3.2. Effects of varying θ and G values on MAE (Illinois data set) 

 

 θ/G 5 10 15 20 30 40 50 

 Optimal 0.0839 0.0823 0.0821 0.0821 0.0815 0.0814 0.0814 

 R
a

n
d

o
m

 ±0.05 0.0840 0.0823 0.0821 0.0821 0.0815 0.0814 0.0815 

±0.15 0.0840 0.0824 0.0822 0.0822 0.0816 0.0815 0.0815 

±0.25 0.0841 0.0825 0.0823 0.0823 0.0818 0.0816 0.0816 

 

 

As seen from Table 3.1 and Table 3.2, with increasing G values from 5 to 50, 

accuracy becomes better. For G values 30, 40, and 50, RMSE and MAE values are 

almost equal. As expected, adding random values to optimum power values worsen 

the accuracy. Adding a random number 0.25 to optimum power value when G is 50 

increases the RMSE value by 0.44% and MAE value by 0.25%.  

 

Table 3.3. Effects of varying θ and G values on RMSE (Colorado data set) 

 

 θ/G 5 10 15 20 30 40 50 

 Optimal 0.3190 0.3096 0.3117 0.3124 0.3148 0.3156 0.3159 

 R
a

n
d

o
m

 ±0.05 0.3192 0.3097 0.3117 0.3124 0.3148 0.3156 0.3159 

±0.15 0.3195 0.3099 0.3118 0.3126 0.3150 0.3158 0.3161 

±0.25 0.3200 0.3103 0.3120 0.3128 0.3153 0.3161 0.3165 
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Table 3.4. Effects of varying θ and G values on MAE (Colorado data set) 

 

 

θ/G 5 10 15 20 30 40 50 

 Optimal 0.2258 0.2176 0.2199 0.2202 0.2219 0.2226 0.2231 

 R
a

n
d

o
m

 ±0.05 0.2259 0.2177 0.2199 0.2203 0.2219 0.2226 0.2231 

±0.15 0.2261 0.2179 0.2199 0.2203 0.2219 0.2226 0.2231 

±0.25 0.2264 0.2182 0.2201 0.2205 0.2220 0.2227 0.2231 

 

As seen from Table 3.3 and Table 3.4, the minimum RMSE and MAE values 

are observed when G is 15. There is a steady decrease for G values from 5 to 15; 

however, RMSE and MAE values are getting worse after G is 15. Adding a random 

value 0.25 to optimum power value when G is 15 increases the RMSE value by 

0.10% and MAE value by 0.09%.  

 

3.4. Conclusion 

 

In order to perform IDW interpolations on central data while preserving 

privacy, various schemes are proposed. The complete method is analyzed and it is 

shown that it preserves confidentiality. It is able to efficiently provide predictions 

with decent accuracy. Empirical outcomes show that accuracy losses due to the 

privacy measures used in the proposed schemes are negligible. Additionally, the 

final method is able to provide sufficient accuracy while preserving the server’s and 

the client’s privacy as expressed in privacy analysis section. Therefore, the 

companies, which are in role of either client or server, can use the proposed methods 

in order to achieve IDW-based predictions with privacy.  
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4. PRIVACY-PRESERVING KRIGING INTERPOLATION 

 

Although kriging is widely used in many applications for prediction purposes, 

it fails to protect private data. Due to privacy risks, participating parties might not 

feel comfortable and they may decide not to involve in kriging interpolation. Hence, 

two methods are proposed, which allows the servers and the clients to perform 

kriging without divulging their confidential data to each other. 

 

4.1. Proposed Schemes 

 

As explained previously, S first needs to create a model (formula for 

determining semi variances-Eq. (2.3) and Γ-1 matrix) using its data for a given 

region R in order to estimate a prediction for any unmeasured location q. However, 

it needs q’s coordinates to generate matrix g so that it can estimate matrix λ and 

determine Pq. In the following, two schemes are described assuming that S has 

already created the model given R. In other words, how S creates g, estimates λ, and 

determines Pq without jeopardizing privacy constraints are explained. In the 

following, naïve solution is first described and then enhanced method is explained 

in detail.     

   

4.1.1. First solution: Naïve scheme 

 

The proposed schemes’ major concern is to protect confidential data of 

involving parties. Therefore, during kriging-based interpolation process, sample 

locations (their coordinates) and their related measurements and unmeasured 

location q (its coordinates) and the estimated prediction Pq should not be disclosed 

to C and S, respectively. The following naïve scheme is proposed in order to 

estimate kriging-based predictions without jeopardizing data owners’ privacy. The 

naïve scheme is based on randomness (creating bogus locations) and OT. The steps 

of the naïve method can be listed as follows: 

1. S first creates a model (formula for determining semi variances or Eq. (2.3) 

and Γ-1 matrix) using its data for the given region R. 
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2. C generates n-1 bogus locations in order to mask her real location. 

3. She hides the unmeasured location q among such fake locations; and sends 

the coordinates of n locations including q to S. 

4. For each location j = 1, 2, …, n; S performs the following steps: 

a. First, it estimates distances between j and each measured location using 

Eq. (2.2). 

b. It then computes semi variances using Eq. (2.3). 

c. Next, it creates g matrix. 

d. It then estimates the weights using Eq. (2.5). 

e. Finally, it computes Pj using Eq. (2.6). 

5. After estimating predictions for all n locations, C utilizes OT in order to get 

the prediction for her real location q only. Due to OT, which is shown to be 

secure (Noar and Pinkas, 1999), S cannot learn which prediction is obtained 

by C; and C cannot know other predictions rather than Pq. OT allows C learns 

one of the n inputs (Pq) held by S without learning anything about the other 

inputs and without allowing S to learn anything about q. 

Due to bogus locations, S cannot learn the real location q. However, it can 

guess it with probability of 1/n because there n possibilities. With increasing n, such 

probability becomes smaller. Similarly, for S, the probability of guessing the 

estimated prediction is 1/n because it estimates predictions for n locations and one 

of them is for the real location. S does not want any client obtains more than one 

prediction during a single process due to financial reasons. Service suppliers 

provide estimated predictions in return of some benefits. To prevent C from 

receiving predictions for more than one location, OT is utilized. OT forces C to get 

estimated prediction for her real location only; and at the same time, it prevents S 

from learning which prediction is obtained by C. Due to aggregate outcome 

(estimated prediction), C cannot derive useful information about locations and their 

measurements held by S from received prediction.      

In addition to the naïve scheme, the following scheme is also proposed, 

referred to as improved scheme (IS). Details of the IS are described in the following. 

 



 

  37 

4.1.2. Second solution: Improved scheme 

 

As explained previously, given R, S first can create a model using its data. It 

then needs to estimate distances between q and each sample point it holds in the 

region R. After that it is supposed to estimate semi variances in order to create g 

matrix. It finally needs to estimate Pq. The second scheme is based on HE. HE 

scheme proposed by Paillier (1999) is utilized to hide confidential data. If it is 

assumed that ξ is an encryption function and K is a public key, and xj1 and xj2 are 

private data values to be hidden, then Paillier’s HE scheme allows to compute 𝜉𝐾(X) 

= ∏ (𝜉𝐾(𝑥𝑗1))𝑥𝑗2  𝑛
𝑗=1  values. The steps of the IS are as follows: 

1. The first step is calculating distances between q and each sample location. 

Such distances between q and each location j = 1, 2, …, G can be computed 

using Eq. (2.2) while preserving confidentiality as follows: 

a. Eq. (2.2) can be written as follows: 

𝑑𝑗𝑞 = √(𝑥𝑗 − 𝑥𝑞)
2

+ (𝑦𝑗 − 𝑦𝑞)
2

=

√𝑥𝑗
2 + 𝑦𝑗

2 +  𝑥𝑞
2 + 𝑦𝑞

2 − 2 ∗ (𝑥𝑗𝑥𝑞 + 𝑦𝑗𝑦𝑞) =

√𝑆𝑗 + 𝐶𝑞 − 2𝑥𝑗𝑥𝑞 − 2𝑦𝑗𝑦𝑞                                                          (4.1) 

As seen from Eq. (4.1), S and C can compute Sj and Cq, respectively 

without needing each other. However, to estimate 𝑥𝑗𝑥𝑞 and 𝑦𝑗𝑦𝑞 values, 

they need to collaborate.  

b. Using HE scheme, C finds𝜉𝐾𝐶(−2𝑥𝑞), 𝜉𝐾𝐶(−2𝑦𝑞), and 𝜉𝐾𝐶(𝑥𝑞
2 + 𝑦𝑞

2) 

encrypted values, where note that 𝜉 represents encryption function and KC 

is C’s public key. 

c. She then sends such encrypted values to S. Since the related private key is 

known by C only, S cannot learn xq and yq values. 

d. For each location j = 1, 2, …, G, using HE scheme, S determines 

𝜉𝐾𝐶(𝐷𝑗𝑞) =  𝜉𝐾𝐶(−2𝑥𝑞)
𝑥𝑗

∗  𝜉𝐾𝐶(−2𝑦𝑞)
𝑦𝑗

∗  𝜉𝐾𝐶(𝑥𝑞
2 + 𝑦𝑞

2)
1

∗

 𝜉𝐾𝐶(𝑥𝑗
2 + 𝑦𝑗

2)
1

= 𝜉𝐾𝐶(𝑥𝑗
2 + 𝑦𝑗

2 + 𝑥𝑞
2 + 𝑦𝑞

2 − 2𝑥𝑗𝑥𝑞 − 2𝑦𝑗𝑦𝑞).  

e. To find distances, square root of such encrypted values must be computed. 

Thus, S then sends 𝜉𝐾𝐶(𝐷𝑗𝑞) values for all j = 1, 2, …, G to C.  
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f. C then decrypts 𝜉𝐾𝐶(𝐷𝑗𝑞) values using the related private key, obtains 𝐷𝑗𝑞 

values; and finds djq distance values between q and each location j by 

taking the square roots of 𝐷𝑗𝑞  values. Since 𝐷𝑗𝑞  values are aggregate 

values, C cannot learn the related xj and yj values from them. Even if she 

knows the distances, she cannot determine the true coordinates. She only 

learns that any location j is on the circle whose center is q and radius is djq. 

g. Using HE scheme, C encrypts djq values using her public key KC and sends 

𝜉𝐾𝐶(𝑑𝑗𝑞) to S. 

2. S finds estimated semi variances in encrypted form for location q using Eq. 

(2.4) and HE property; and creates the g matrix including the encrypted 

values, 𝜉𝐾𝐶(𝑔𝑗) values for all j = 1, 2, …, G.  

3. Now, S needs to compute weights or λ values using Eq. (2.5). Using HE 

scheme, S computes 𝜉𝐾𝐶(𝜆𝑗) =  𝜉𝐾𝐶(𝑔1)𝛾𝑗1 ∗  𝜉𝐾𝐶(𝑔2)𝛾𝑗2 ∗  ⋯ ∗

 𝜉𝐾𝐶(𝑔𝐺)𝛾𝑗𝐺 =  𝜉𝐾𝐶(𝑔1 ∗ 𝛾𝑗1 +  𝑔2 ∗ 𝛾𝑗2 +  ⋯ +  𝑔𝐺 ∗ 𝛾𝑗𝐺).  

4. S then can estimate the prediction Pq using Eq. (2.6) as follows: 𝜉𝐾𝐶(𝑃𝑞) =

 𝜉𝐾𝐶(𝜆1)𝑃1 ∗  𝜉𝐾𝐶(𝜆2)𝑃2 ∗  ⋯ ∗  𝜉𝐾𝐶(𝜆𝐺)𝑃𝐺 =  𝜉𝐾𝐶(𝜆1 ∗ 𝑃1 +  𝜆2 ∗ 𝑃2 + ⋯ +

 𝜆𝐺 ∗ 𝛾𝑃𝐺). 

5. Finally, S sends 𝜉𝐾𝐶(𝑃𝑞)  to C. Due to encryption, S cannot know the 

estimated prediction. 

6. Since C knows the related decryption key, she decrypts the received 

encrypted value and gets Pq. Due to aggregate estimation, C cannot derive 

information about S’s confidential data. 

 

4.2. Analysis of the Improved Scheme 

 

There are basically two evaluation criteria for prediction algorithms. They are 

called performance and accuracy. Performance means that how effectively a 

prediction algorithm can estimate predictions. It can be measured with respect to 

off-line and online costs like storage, computation, and communication (number of 

communications and amount of transferred data) costs. Hence, performance 

analysis can be done in terms of off-line and online costs. Compared to online costs, 
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off-line costs are not that critical for overall performance. Online efficiency 

requirements differ for various applications. For some applications, there are very 

hard online performance requirements. For example, recommender systems should 

be able to return many recommendations to their customers simultaneously in a 

very short time during an online interaction. However, performance requirements 

might be soft for some applications like geo-statistics. Online time limitations are 

not that rigid in geo-statistical predictions. For example, if one petroleum company 

looks for oil reserves in a given region, it might ask prediction from those that owns 

enough measurements in that region. Since investments in energy take some time 

and considerable amount of budgets, oil companies spend some time to get reliable 

and accurate predictions. Obtaining dependable and precise predictions is much 

more important than receiving predictions in a short time. Therefore, it can be said 

that online performance constraints are soft in kriging-based interpolations. 

Performance criterion covers the time needed to perform a single prediction, 

number of communications spent for a prediction (and/or amount of transferred 

data), and amount of storage space are needed. Resources spent for interpolations 

should be minimized for performance reasons.  

The second criterion, accuracy, shows how accurate the estimated predictions 

are. Accuracy is measured in terms of the closeness between the estimated 

predictions and their true values. Estimated interpolations should be as close as to 

their observed values. Since predictions are estimated values based on available 

observed measurements, their values should be as close as possible to their expected 

values. Therefore, predictions generated by the proposed scheme with privacy 

concerns should be as close as possible to their true values.   

In addition to performance and accuracy, privacy is another evaluation 

metric, which is used to investigate privacy-preserving prediction schemes. 

Privacy-preserving algorithms should be able to protect confidential data. Privacy 

requirements state that involving parties in interpolation processes cannot derive 

useful information about each other’s private data. Thus, privacy, in this context, 

means that confidential data should be hidden to those but the intended parties. In 

other words, the proposed privacy-preserving scheme should be able to hide 

confidential data held by S and C against each other.   
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The enhanced method is analyzed in terms of privacy, accuracy, and 

efficiency. Additional costs due to privacy concerns are also scrutinized even 

though online performance requirements are not that rigid. Accuracy losses due to 

privacy-preserving measures are expected because accuracy and privacy are 

conflicting goals. Finally, it is shown that the scheme does not violate privacy 

constraints.  

 

4.2.1. Accuracy analysis 

 

In privacy-preserving prediction schemes, privacy measures usually make 

accuracy worse due to the conflicting nature of confidentiality and preciseness. 

However, in the proposed scheme, privacy-preserving methods do not cause any 

loss in accuracy. In other words, predictions estimated by the proposed method with 

privacy concerns are the same as the ones provided by traditional kriging scheme 

without confidentiality fears. Since cryptographic techniques are employed, which 

preserve data originality, accuracy is not affected. Thus, the proposed scheme is 

able to provide the same predictions while preserving confidentiality.  

 

4.2.2. Performance analysis 

 

The proposed scheme is investigated in terms of supplementary costs due to 

privacy concerns. Additional storage costs are first analyzed. The scheme does not 

cause any extra storage costs. Involving parties (S and C) do not need additional 

spaces required to save data caused by confidentiality measures. Thus, storage costs 

will not be affected by privacy concerns. 

As shown in Figure 1.1, in a traditional kriging-based prediction process, 

number of communications is two only because C and S communicates two times 

only. However, number of communications in the proposed method increases due 

to privacy measures. As described in Figure 1.2, number of communications is four 

in the proposed scheme. In other words, number of communications increases two 

times due to privacy concerns. Amount of transferred data are also important. In a 

conventional interpolation, C sends coordinates of location q and S returns a 
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prediction. If it is assumed that four bytes are needed to save a coordinate and four 

bytes are enough to store an estimated prediction, then amount of sent data from C 

to S are about eight bytes while it is about four bytes from S to C in a traditional 

method. In the proposed scheme, C first sends three encrypted values to S. The size 

of an encrypted value is imperative. As explained in (Obviex, 2012), the size of an 

encrypted value produced by block cipher encryption can be computed as size of 

plain text + block size – (size of plain text mod block size). For example, if it is 

assumed that size of plain text is four bytes, block size is 16 bytes, and then 16 bytes 

are needed for an encrypted value. Thus, amount of sent data during this 

communication are about 48 bytes. After computing G encrypted aggregates, S then 

sends them to C. Assuming again that 16 bytes are needed for a single encrypted 

value, amount of sent data are about 16G bytes. During the second turn, C sends G 

encrypted values to S. Thus, amount of transferred data are again 16G bytes. And 

finally, S returns an encrypted value to C. Hence, amount of sent data are about 16 

bytes. To sum up, like number of communications, amount of transferred data also 

increase due to privacy measures.   

Supplementary computation costs caused by the proposed scheme are also 

inevitable. In addition to multiplications and additions, the method includes 

encryptions, decryptions, and exponentiations because of privacy measures. 

Number of encryptions is in the order of O (G) and similarly, number of decryptions 

is in the order of O (G). On the other hand, number of exponentiations is in the 

order of O (G2). Notice that G is a constant representing number of measured 

locations in the region R. Cryptographic functions are usually costly operations. In 

order to find out the running times of cryptographic operations, benchmarks for the 

CRYPTO++ toolkit from http://www.cryptopp.com/ can be used (Canny, 2002b).      

Although the proposed scheme does cause some extra communication (in 

terms of number of communications and amount of transferred data) and 

computation costs, they are not critical due to the nature of kriging-based 

interpolation schemes. Unlike some real time applications, online performance 

requirements are softer for kriging-based prediction methods.  
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4.2.3. Privacy analysis 

 

Our privacy requirements state that private data values should not be 

disclosed during prediction process. Notice that the measured locations (or their 

coordinates) and the related measurements are confidential for S. Similarly, the 

unmeasured location (or its coordinates) and the estimated prediction are private 

for C. The parties cannot learn each other’s confidential data during the scheme. C 

sends her location coordinates in encrypted form rather than plain form. Since the 

related decryption key is known by C only, S cannot decrypt the received values 

and learn coordinates. After performing required computations using HE, S sends 

encrypted aggregates to C. Since C knows decryption key, she can decrypt the 

received values and find distances between q and each measured location. Although 

C learns the distances, she cannot learn the true coordinates. For each measured 

point j, given q and the related distance djq, the only information that C can derive 

is that j is in somewhere on the circle whose center is q and its radius is djq.  

S returns the estimated prediction in encrypted form. Since the decryption key 

is known by C only, S cannot decrypt it and learn the prediction. When C obtains 

the prediction, which is an aggregate value, she cannot learn the measurements of 

G sample points. Paillier (1999) shows that HE is semantically secure for inference 

of input values. In other words, the parties cannot derive any information from the 

exchanged encrypted values. The proposed method prevents C from learning the 

measured location coordinates and their related measurements. It also prevents S 

from deriving useful information about the unmeasured location coordinates and 

the estimated prediction.  

 

4.3. Conclusion 

 

Obtaining geo-statistics data requires so much time and budget. Companies 

may be interested in specific locations of the region. It is meaningless to collect 

whole data for a vast region. There may be another company that already has 

collected measurements for the foregoing region. However, the company is not 

eager to give such valuable data whoever needs a prediction. The client also does 
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not want to publicize the coordinate, where it needs prediction. Therefore, a 

privacy-preserving solution is required for both parties. As given in details above, 

the proposed scheme claims that private data of the client and server are protected. 

It is also able to provide predictions efficiently without compromising on accuracy.   

As a result, both parties can use the proposed solution without any privacy 

consideration.  
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5. PRIVACY-PRESERVING IDW ON DISTRIBUTED DATA 

 

Data collected for IDW interpolation purposes might be distributed between 

various parties, even competing ones. Measurements for some sample points might 

be partitioned between two parties only. Similarly, such measurements can be split 

among more than two parties. It is important to estimate IDW-based predictions 

based on integrated data while preserving data holders’ confidentiality because 

accurate and dependable predictions can only be estimated from sufficient data. In 

this chapter, the methods, which are proposed to provide predictions from 

partitioned or distributed data with privacy are explained.  

 

5.1. Privacy-Preserving IDW on Partitioned Data  

 

Although it is possible to generate predictions from one of the parties’ data, 

the results might not be reliable and accurate. It is more likely to produce a 

dependable and precise prediction from integrated data. Thus, data owners might 

decide to provide services on their combined data. However, data collected for 

prediction purposes are considered confidential and valuable assets. The companies 

often do not want to reveal such data.  

Data owners consider collected measurements and their corresponding 

location coordinates private. Q might ask a prediction from the master server (MS) 

or C, which works together with the collaborating company V; and estimates the 

prediction without deeply violating data owners’ privacy. In this context, privacy 

can be described as follows: C and V should not be able to learn the sample points’ 

coordinates and their corresponding measurements while conducting IDW 

interpolations on integrated data. Moreover, the parties should not be able learn the 

location for which Q is seeking prediction and the estimated prediction, because 

they are considered confidential data items for Q. Hence, the problem is then how 

to conduct IDW interpolations on combined data while preserving the participating 

parties’ privacy.   
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5.1.1. Naïve scheme 

 

When privacy is not a concern, it is an easy job to perform IDW interpolations 

on partitioned data. Q sends the required data in plain form to C, which forwards 

the received data to V. After C and V compute necessary values (partial sums 

computed by each party using their own data to estimate Pi in Eq. (2.1)), V sends 

them back to C without any protection. C then combines the partial aggregates, 

finds Pi; and finally returns it back to Q. However, with privacy concerns, it 

becomes challenging to offer predictions on partitioned data. Our proposed naïve 

scheme (NS) helps the involving parties protect their confidential data while 

conducting IDW interpolations on partitioned data as follows: 

1. Q uniformly randomly generates n-1 bogus locations.  

2. She hides the location i among spurious locations. She simply permutes n 

locations.  

3. She sends IQz = (xQz, yQz) values and her public key KQ to C, where z = 1, 2, 

…, n. Notice that z = i represents the true location. 

4. C then sends such received data to V. 

5. For each point IQz, V and C perform the followings: 

a. Both parties uniformly randomly select mzj over the range [mo-θ, mo+θ] in 

which θ is called performance parameter and mo represents the optimum 

power value. Note that since the power value m is data dependent, the 

optimum power value mo is utilized for prediction estimation.    

b. For each point IQz, V and C then estimate ∑ =  ∑ 𝑃𝑗 (𝐷𝑧𝑗)𝑚𝑧𝑗⁄𝐺𝑉
𝑗=1𝑉1𝑧  and 

∑ =  ∑ 1 (𝐷𝑧𝑗)𝑚𝑧𝑗⁄𝐺𝑉
𝑗=1𝑉2𝑧 ; and ∑ =  ∑ 𝑃𝑗 (𝐷𝑧𝑗)𝑚𝑧𝑗⁄𝐺𝐶

𝑗=1𝐶1𝑧  and ∑ =𝐶2𝑧

 ∑ 1 (𝐷𝑧𝑗)𝑚𝑧𝑗⁄𝐺𝐶
𝑗=1  values, respectively, where GV and GC are known by V 

and C only, respectively. 

c. V and C then find 𝜉𝐾𝑄 (∑𝑉1𝑧)  and 𝜉𝐾𝑄 (∑𝑉2𝑧)  and 𝜉𝐾𝑄 (∑𝐶1𝑧)  and 

𝜉𝐾𝑄 (∑𝐶2𝑧), respectively using an HE scheme. 

d. V sends the encrypted aggregates for all n points to C. 

6. Using HE scheme, C finds 𝜉𝐾𝑄 (∑𝑉1𝑧 + ∑𝐶1𝑧)  and 𝜉𝐾𝑄 (∑𝑉2𝑧 + ∑𝐶2𝑧) 

values for all z = 1, 2, …, n points. 
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7. Q uses OT and obtains the corresponding values for her real location i. Thus, 

she receives 𝜉𝐾𝑄 (∑𝑉1𝑖 + ∑𝐶1𝑖) and 𝜉𝐾𝑄 (∑𝑉2𝑖 + ∑𝐶2𝑖).  

8. She then decrypts them using her corresponding private key Kq and obtains 

∑𝑉1𝑖 + ∑𝐶1𝑖 and ∑𝑉2𝑖 + ∑𝐶2𝑖 values, which are required to estimate Pi.  

9. She finally estimates 𝑃𝑖 = (∑𝑉1𝑖 + ∑𝐶1𝑖) (∑𝑉2𝑖 + ∑𝐶2𝑖)⁄ . 

In this protocol, C can act as a Q in multiple scenarios to derive data from V. 

If it acts as Q, since it knows the encryption and decryption keys, it can obtain the 

plain values. It cannot derive useful information (measurements and their locations) 

from them, because such plain values are aggregates. Although C cannot derive 

information about V’s data from such aggregates, it can estimate n predictions rather 

than one during a single collaboration only. It means that it does not need V for 

further joint works. When C acts as Q, it might ask aggregates for n real locations. 

V thinks that one single prediction will be estimated while C estimates n predictions. 

Hence, C might not ask help from V for n predictions. Since they provide such 

services in return of some benefit, V does not want to lose such gains. To overcome 

this weakness, following protocol is proposed. 

 

5.1.2. Enhanced scheme 

 

Although enhanced scheme (ES) follows the similar steps, it overcomes the 

weakness that the NS faces. The steps of the improved scheme are as follows: 

1. Q uniformly randomly generates n-1 bogus locations and hides her location i 

among them.  

2. She sends IQz = (xQz, yQz) values to C, where z = 1, 2, …, n. Notice that z = i 

represents the true location. 

3. C then forwards such received data to V. 

4. For each point IQz, V and C perform the followings, assuming that V’s public 

key (KV) is also known by C. 

a. Both parties uniformly randomly select mzj over the range [mo-θ, mo+θ]. 

b. For each point IQz, V and C then estimate ∑ =  ∑ 𝑃𝑗 (𝐷𝑧𝑗)𝑚𝑧𝑗⁄𝐺𝑉
𝑗=1𝑉1𝑧  and 

∑ =  ∑ 1 (𝐷𝑧𝑗)𝑚𝑧𝑗⁄𝐺𝑉
𝑗=1𝑉2𝑧  values; and ∑ =  ∑ 𝑃𝑗 (𝐷𝑧𝑗)𝑚𝑧𝑗⁄𝐺𝐶

𝑗=1𝐶1𝑧  and 
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∑ =  ∑ 1 (𝐷𝑧𝑗)𝑚𝑧𝑗⁄𝐺𝐶
𝑗=1𝐶2𝑧  values, respectively. Notice again that the 

parties do not know the numbers of sample points held by each other and 

involved in computations. In other words, GV and GC values are known by 

V and C only.  

c. V and C then find 𝜉𝐾𝑉 (∑𝑉1𝑧)  and 𝜉𝐾𝑉 (∑𝑉2𝑧) ; and 𝜉𝐾𝑉 (∑𝐶1𝑧)  and 

𝜉𝐾𝑉 (∑𝐶2𝑧), respectively, using an HE scheme. 

d. V sends the encrypted aggregates for all n points to C. 

5. Using HE scheme, C finds 𝜉𝐾𝑉 (∑𝑉1𝑧 + ∑𝐶1𝑧)  and 𝜉𝐾𝑉 (∑𝑉2𝑧 + ∑𝐶2𝑧) 

values for all z = 1, 2, …, n. 

6. Q uses OT and obtains the corresponding encrypted aggregate values for i. 

Thus, she receives 𝜉𝐾𝑉 (∑𝑉1𝑖 + ∑𝐶1𝑖) and 𝜉𝐾𝑉 (∑𝑉2𝑖 + ∑𝐶2𝑖).  

7. Q uniformly randomly generates two random numbers, R1 and R2; and finds 

ξKV(R1) and ξKV(R2) using an HE scheme. 

8. It adds them to the received encrypted aggregates using the homomorphic 

property, as follows: 𝑄1̅̅ ̅̅ =  𝜉𝐾𝑉  (∑𝑉1𝑖 + ∑𝐶1𝑖) ∗  𝜉𝐾𝑉(𝑅1)  = 𝜉𝐾𝑉 (∑𝑉1𝑖 +

∑𝐶1𝑖 + 𝑅1) and 𝑄2̅̅ ̅̅ =  𝜉𝐾𝑉 (∑𝑉2𝑖 + ∑𝐶2𝑖) ∗  𝜉𝐾𝑉(𝑅2)  = 𝜉𝐾𝑉 (∑𝑉2𝑖 +

∑𝐶2𝑖 + 𝑅2). It then sends 𝑄1̅̅ ̅̅  and 𝑄2̅̅ ̅̅  to C. 

9. C forwards them to V, which decrypts them using its corresponding private 

key (Kv). 

10. V sends 𝑄1 = ∑𝑉1𝑖 + ∑𝐶1𝑖 + 𝑅1 and 𝑄2 = ∑𝑉2𝑖 + ∑𝐶2𝑖 + 𝑅2  aggregates 

back to C, which forwards them to Q. 

11. Since Q knows random numbers, it subtracts them from such received sums 

and gets 𝑞1 = ∑𝑉1𝑖 + ∑𝐶1𝑖 and 𝑞2 = ∑𝑉2𝑖 + ∑𝐶2𝑖 values. 

12. It finally estimates 𝑃𝑖 = 𝑞1 𝑞2⁄ . 

The improved method overcomes the weakness that the NS has. In other 

words, V prevents C from obtaining required data to estimate n predictions rather 

than one. Therefore, the ES eliminates all privacy, including geo-privacy, and 

financial concerns that the involving parties have. Since performance, privacy, and 

accuracy are three major goals that IDW interpolation methods are expected to 

achieve, the ES is analyzed in terms of these three goals. Notice that these three 

goals are conflicting with each other. Thus, utilizing privacy-preserving measures 

might make accuracy worse and introduce some extra costs affecting performance. 
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Also note that off-line costs are not critical like online costs; and moreover, unlike 

real-time applications, online performance is not that critical for IDW interpolation 

schemes. 

 

5.2. Performance and Privacy Analysis 

 

5.2.1. Performance analysis 

 

The enhanced method is investigated with respect to additional costs like 

storage, communication, and computation costs. Supplementary storage spaces are 

needed due to randomly generated fake locations. Such extra storage costs are in 

the order of O (n) because extra storage spaces are used for saving coordinates of 

n-1 random locations, randomly selected mz values for n-1 fake locations, and 

encrypted aggregates for such bogus sample points. 

 Number of communications conducted during an IDW interpolation is also 

important. Since the scheme is based on partitioned data with privacy, data holders 

need to exchange data performing more communications. In a traditional scheme, 

number of communications is two only. In the proposed method, the parties perform 

one OT and seven communications. Note that OT could be achieved with poly-

logarithmic (in n) communication complexity. Thus, due to privacy measures 

(especially OT), communication complexity increases from O (1) to O (n). 

 Without confidentiality, as seen from Eq. (2.1), C performs G number of 

multiplications, distance calculations, exponentiations, and (G + 1) divisions. 

Hence, if addition is considered negligible, computation complexity is O (G) only. 

In the proposed scheme, V performs 2n encryptions and two decryptions. Similarly, 

C conducts (2n + 2) encryptions. Q also performs four encryptions. Hence, number 

of encryptions and decryptions are (4n + 6) and two, respectively. Since the 

computations are repeated for n locations, the parties perform nG multiplications, 

exponentiations, and divisions. Hence, without cryptographic computations, the 

proposed scheme’s computation complexity is in the order of O (nG), which 

increases by n times due to bogus locations. Encryptions’ and decryptions’ running 

times can be determined using the benchmarks for the CRYPTO++ toolkit from 
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http://www.cryptopp.com/ (Canny, 2002b). Since computation costs due to 

choosing random locations and power values, and addition are insignificant 

compared to cryptographic operations, additional costs due to them are omitted. 

 

5.2.2. Privacy analysis 

 

The proposed scheme should prevent the involving parties from deriving 

information about each other’s confidential data. It is investigated to show whether 

it is able to protect private data of Q, V, and C against each other.  

 First of all, the method is analyzed in terms of Q’s privacy. Q wants to hide i 

and Pi from both C and V. To mask her real location, Q creates n-1 bogus locations; 

and sends n rather than one location to C, which forwards them to V. Although C 

and V do not know the real location i, the probability of guessing it is 1 out of n. 

Remember that Q adds random numbers, R1 and R2, to partial encrypted aggregates 

to prevent C and V from learning Pi. Since such bogus values are known by Q only, 

they cannot derive information about the partial sums q1 and q2. Recall that 

𝑞1 = ∑𝑉1𝑖 + ∑𝐶1𝑖 and 𝑞2 = ∑𝑉2𝑖 + ∑𝐶2𝑖, which are required to estimate Pi in the 

ES as follows: 𝑃𝑖 = 𝑞1 𝑞2⁄ . To learn Pi with 1 out of n probability, they must 

collude. In other words, they need to exchange partial aggregates for all n points. If 

one of the parties acts as Q, it might obtain partial aggregates necessary for future 

predictions for n locations; and it does not need the collaborating party for 

estimating predictions for such locations. Thus, one of them might lose competitive 

edge over the other. 

 V hides the measurements of sample points and their corresponding locations 

against C and Q. To do so, it first adds some randomness to mo values by uniformly 

randomly selecting mzj values over the range [mo-θ, mo+θ]. If it selects mzj values 

around mo for j = 1, 2, …, GV and sets θ to a small value, then it can ensure privacy 

while providing accurate predictions. Since smaller θ values keep mzj values around 

mo while still add randomness to optimal power values, accuracy losses becomes 

lesser due to such randomness. The value of the performance parameter θ can be 

determined based on accuracy and privacy levels that the involving parties want to 

achieve. The main motivation behind uniformly randomly selecting mzj values 



 

  50 

around mo is to prevent the parties from learning the individual sample points and 

the measurements from partial aggregates without compromising much on 

accuracy. Hence, since V uniformly randomly chooses mzj values, the other party 

cannot figure out the individual sample points and the real measurements from 

partial aggregates, which are estimated based on variable mzj values. Second, they 

cannot know how many sample points are involved in computing partial sums, 

because GV values are known by V only. Finally, after calculating partial aggregates 

using variable mzj and GV values for all n locations, V encrypts them using its public 

key. Since the corresponding private key is required to decrypt such values and that 

key is known by V only, Q and C cannot learn partial sums sent by V. Without 

learning such partial aggregates, it is impossible to derive information about the 

sample locations and their measures. Even if they learn such partial sum values, Q 

and C cannot learn GV unknowns from one known value. Thus, our scheme protects 

V’s privacy. 

 C also does not want to disclose its sample locations and their measurements 

to Q or V. To protect its confidential data, C also uses variable mzj values, which are 

uniformly randomly chosen over a range. It also utilizes inconstant numbers of 

sample points, GC values, for each n location. It computes encrypted partial sums 

after it receives required data from V. From such aggregates, it is not possible to 

determine confidential data. Also note that Q uses OT to obtain the results for i 

only. OT prevents her from learning the results for other locations. Even if V acts 

as Q to derive information about C’s private data, it cannot figure out measurements 

and their locations from a single known value. 

 Notice also that the ES uses HE and OT as privacy-preserving measures. Its 

privacy then depends on their privacy. Recall that Paillier (1999) shows that HE is 

secure and prevents malicious parties from deriving any information from the 

exchanged encrypted values. As shown by Naor and Pinkas (1999) and Cachin et 

al. (1999), OT is also secure and prevents Q from obtaining the results for bogus 

locations and avoids C from learning the values that Q receives. 
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5.2.3. Accuracy analysis: Experiments 

 

To assess the scheme in terms of accuracy, different sets of experiments are 

conducted using real data. The goal of collaboration between those companies with 

insufficient data is to improve accuracy. Thus, the experiments are performed to 

show how collaboration affects precision. Moreover, another set of trials are 

conducted to investigate how privacy measures affect accuracy. 

 

5.2.3.1. Effects of collaboration on accuracy 

 

The first set of trials are performed to verify the effects of collaboration. It is 

hypothesized that predictions on combined data are expected to be more accurate 

than the ones on split data only. To verify this hypothesis and show how much 

accuracy is improved if two parties decide to estimate predictions on their 

integrated data, real data-based experiments are conducted. Consider the data 

partitioning scenario depicted in Figure 1.2, where G is assumed to be 5 and the 

measurements for some sample locations are partitioned between C and V. If the 

party C wants to estimate Pi based on its data only, the nearest neighbors of the 

location i are SC1, SC2, SC4, SC8, and SC9. Similarly, when V wants to estimate Pi 

based on its data only, the nearest neighbors of the location i are SV1, SV2, SV5, SV6, 

and SV7. Hence, due to insufficient data, each party includes sample points that are 

further away to estimate predictions. However, if they collaborate, the nearest 

neighbors of the location i will be SV2, SC4, SV6, SC8, and SC9. In case of collaboration, 

thus, those sample points closer to the point of interest are used for interpolation, 

which give more accurate results.  

In the experiments, G values are varied from 5 to 50 to show how varying 

total amount of data, partitioned between two parties, affects accuracy. It is assumed 

that the training data are evenly partitioned between two parties. Predictions are 

first estimated using each party’s data only. Then, their errors are averaged and 

displayed as split data results. Next, all train data are used as integrated data and 

predictions are provided for the same test data. Finally, their errors are averaged 

and displayed as integrated data results. The MAEs and RMSEs are presented in 
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Table 5.1, Table 5.2, Table 5.3, and Table 5.4 in which the different columns 

represent different G values. 

 

Table 5.1. Effects of collaboration on RMSE (Illinois data set) 

 

 5 10 15 20 30 40 50 

Integrated 0.1162 0.1140 0.1136 0.1134 0.1126 0.1124 0.1124 

Split 0.1250 0.1220 0.1212 0.1207 0.1201 0.1200 0.1200 

 

Table 5.2. Effects of collaboration on MAE (Illinois data set) 

 

 5 10 15 20 30 40 50 

Integrated 0.0839 0.0823 0.0821 0.0821 0.0815 0.0814 0.0814 

Split 0.0902 0.0886 0.0880 0.0877 0.0875 0.0875 0.0876 

 

Table 5.3. Effects of collaboration on RMSE (Colorado data set) 

 

 5 10 15 20 30 40 50 

Integrated 0.3190 0.3096 0.3117 0.3124 0.3148 0.3156 0.3159 

Split 0.3318 0.3268 0.3260 0.3263 0.3271 0.3282 0.3290 

 

Table 5.4. Effects of collaboration on MAE (Colorado data set) 

 

 5 10 15 20 30 40 50 

Integrated 0.2258 0.2176 0.2199 0.2202 0.2219 0.2226 0.2231 

Split 0.2360 0.2332 0.2329 0.2336 0.2346 0.2354 0.2358 

 

The results verify the hypothesis. Quality of predictions estimated on 

integrated data is better than the ones on split data only. For example, when G is 5, 

accuracy improves from 0.1200 to 0.1125 when G is 50 for the Illinois data set in 

terms of RMSE. Similar improvements are observed for all G values in both data 

sets. Due to such gains, if data owners decide to work in pairs, they can offer more 

powerful prediction services. Such improvements make collaboration attractive. 
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5.2.3.2. Effects of unevenly partitioned data 

 

It is assumed that data are equally split between two companies. However, 

data might be unevenly partitioned. Thus, trials are done to assess the effects of 

unevenly partitioned data. For this purpose, β is defined as splitting percentage. It 

is assumed that βC percent of the sample points are held by C and the remaining are 

held by V. Notice that when βC is 50, data are evenly partitioned. After computing 

MAE and RMSE values for varying βC values, they are displayed in Table 5.5, 

Table 5.6, Table 5.7, and Table 5.8 in which the different rows represent different 

βC values. The related outcomes for integrated data are displayed in the last row. 

 

Table 5.5. Effects of unevenly partitioned data on RMSE (Illinois data set) 

 

βC (%)/G 5 10 15 20 30 40 50 

20 0.1375 0.1328 0.1309 0.1301 0.1294 0.1295 0.1296 

35 0.1328 0.1297 0.1282 0.1275 0.1269 0.1266 0.1264 

50 0.1250 0.1220 0.1212 0.1207 0.1201 0.1200 0.1200 

65 0.1231 0.1202 0.1196 0.1189 0.1184 0.1182 0.1182 

80 0.1187 0.1163 0.1158 0.1152 0.1145 0.1144 0.1143 

100 0.1162 0.1140 0.1136 0.1134 0.1126 0.1124 0.1124 

 

Table 5.6. Effects of unevenly partitioned data on MAE (Illinois data set) 

 

βC (%)/G 5 10 15 20 30 40 50 

20 0.1020 0.0983 0.0969 0.0966 0.0965 0.0970 0.0972 

35  0.0966 0.0942 0.0928 0.0927 0.0925 0.0924 0.0924 

50 0.0902 0.0886 0.0880 0.0877 0.0875 0.0875 0.0876 

65  0.0886 0.0868 0.0864 0.0858 0.0856 0.0856 0.0857 

80  0.0862 0.0844 0.0842 0.0839 0.0834 0.0835 0.0835 

100  0.0839 0.0823 0.0821 0.0821 0.0815 0.0814 0.0814 
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Table 5.7. Effects of unevenly partitioned data on RMSE (Colorado data set) 

 

βC (%)/G 5 10 15 20 30 40 50 

20  0.3507 0.3428 0.3407 0.3406 0.3417 0.3430 0.3442 

35  0.3411 0.3366 0.3353 0.3351 0.3363 0.3375 0.3381 

50  0.3318 0.3268 0.3260 0.3263 0.3271 0.3282 0.3290 

65  0.3272 0.3186 0.3180 0.3190 0.3200 0.3209 0.3220 

80  0.3214 0.3140 0.3147 0.3158 0.3174 0.3178 0.3187 

100 0.3190 0.3096 0.3117 0.3124 0.3148 0.3156 0.3159 

 

Table 5.8. Effects of unevenly partitioned data on MAE (Colorado data set) 

 

βC (%)/G 5 10 15 20 30 40 50 

20  0.2538 0.2479 0.2473 0.2476 0.2489 0.2505 0.2515 

35 0.2428 0.2391 0.2383 0.2385 0.2395 0.2404 0.2410 

50  0.2360 0.2332 0.2329 0.2336 0.2346 0.2354 0.2358 

65  0.2324 0.2258 0.2257 0.2266 0.2275 0,2283 0.2290 

80  0.2281 0.2221 0.2229 0.2234 0.2246 0.2252 0.2258 

100  0.2258 0.2176 0.2199 0.2202 0.2219 0.2226 0.2231 

 

As seen from the tables, data owners holding smaller amount of 

measurements gain more benefits due to collaboration. With decreasing amount of 

data (decreasing βC for C), accuracy becomes worse. On the other hand, correctness 

improves for V because while C’s data is decreased, V’s data is augmented. 

Therefore, those holding lesser amount of measurements are expected to be more 

eager for collaboration. As seen from the tables, the outcomes based on integrated 

data are better than the outcomes on split data for all βC values. Hence, although 

accuracy advantages for the party having greater amount of data seems to be 

smaller, it still gets gains due to collaboration.  

 

5.2.3.3. Effects of masking optimum power values 

 

Remember that optimum power values are masked by random values. Instead 

of using mo values, the parties choose mzj values uniformly randomly over the range 
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[mo-θ, mo+θ]. Since randomness is added into power values; thus, finally another 

set of experiments are performed to show how varying θ values or amounts of 

randomness affect accuracy. θ values are changed from 0.05 to 0.25 to show their 

effects. Similar trends are observed with respect to RMSE and MAE values. Thus, 

RMSE and MAE values for G is 50 or 15 for the Illinois and the Colorado data sets, 

respectively are displayed in Table 5.9, Table 5.10, Table 5.11, and table 5.12, 

where minimum values are observed for both sets.  

 

Table 5.9. Effects of masking optimum power values on RMSE (Illinois data set) 

 

βC (%)/θ 0.05 0.15 0.25 

20  0.1297 0.1299 0.1303 

35  0.1265 0.1267 0.1269 

50  0.1201 0.1204 0.1207 

65  0.1182 0.1184 0.1187 

80  0.1144 0.1146 0.1148 

100  0.1125 0.1126 0.1128 

 

Table 5.10. Effects of masking optimum power values on MAE (Illinois data set) 

 

βC (%)/θ 0.05 0.15 0.25 

20  0.0972 0.0973 0.0975 

35  0.0925 0.0926 0.0927 

50  0.0876 0.0877 0.0878 

65  0.0857 0.0858 0.0859 

80  0.0835 0.0836 0.0837 

100  0.0815 0.0815 0.0816 
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Table 5.11. Effects of masking optimum power values on RMSE (Colorado data set) 

 

βC (%)/θ 0.05 0.15 0.25 

20  0.3429 0.3433 0.3437 

35  0.3367 0.3369 0.3372 

50  0.3269 0.3273 0.3278 

65  0.3187 0.3190 0.3195 

80  0.3140 0.3142 0.3145 

100  0.3097 0.3099 0.3103 

 

Table 5.12. Effects of masking optimum power values on MAE (Colorado data set) 

 

βC (%)/θ 0.05 0.15 0.25 

20  0.2480 0.2484 0.2488 

35  0.2391 0.2391 0.2393 

50  0.2332 0.2334 0.2336 

65  0.2259 0.2261 0.2263 

80 0.2221 0.2222 0.2223 

100  0.2177 0.2179 0.2182 

 

Due to privacy concerns, accuracy is expected to become worse because 

privacy and accuracy are conflicting goals. As seen from the tables, accuracy 

slightly becomes worse due to the randomness added to optimum power values. 

However, the results based on the proposed scheme are better than the ones on split 

data only. Due to privacy concerns, accuracy losses are very small. Moreover, with 

increasing G values, accuracy losses become stable and smaller. Accuracy gains 

due to collaboration compensate accuracy losses due to privacy-preserving 

measures. Therefore, the proposed method helps data owners provide accurate 

IDW-based predictions on combined data while protecting their confidentiality and 

query owner’s privacy.   
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5.3. Private IDW on Distributed Data 

 

The problem for which a solution is proposed can be described as follows: 

How to perform IDW interpolations if measurements are distributed among 

multiple parties while preserving all involving parties’ privacy? The participating 

parties include Q, master party C1 from which Q asks a prediction, and helping 

parties C2, C3, …, CM, where M represents number of collaborating companies 

including C1. The steps of the proposed scheme are as follows: 

1. In order to prevent involving companies (C1, C2, …, CM) from learning her 

real location i, Q first uniformly randomly creates n-1 bogus locations. It then 

hides her actual location i among them; and sends n locations including the 

real one to C1. 

2. C1 forwards n locations to collaborating companies (C2, C3, …, CM) agreed 

to join distributed data-based IDW interpolation. 

3. For each location s = 1, 2, …, n, each participating company C = C1, C2, …, 

CM performs the followings: 

a. Uniformly randomly selects msj over the range [θl, θu] in which θl and θu 

represent the lower and upper bound of power value m, respectively.  

b. Computes ∑ =  ∑ 𝑃𝑗 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1𝐶𝑠𝑛  and ∑ =  ∑ 1 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶

𝑗=1𝐶𝑠𝑑  

values required for determining the values of nominator and denominator 

in Eq. (2.1), respectively. Notice that GC value is known by C only and 

number of sample points involving in prediction estimation might be 

different for each party. 

c. Encrypts the calculated values using an HE scheme with its public key; 

and obtains 𝜉𝐾𝐶(∑ =  ∑ 𝑃𝑗 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1𝐶𝑠𝑛 )  and 𝜉𝐾𝐶(∑ =𝐶𝑠𝑑

 ∑ 1 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1 ) values. Note that KC is C’s public key and the related 

private key is known by C only. HE scheme proposed by Paillier (1999) 

allows data owners to conduct multiplication and addition based on 

encrypted values without decrypting them as follows: Assume that Xi and 

Yi represent some confidential data. Then, the HE scheme helps data 
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holders compute ∏ 𝜉𝐾(𝑌𝑖)
𝑋𝑖 =  𝜉𝐾(∑ 𝑋𝑖 × 𝑌𝑖

𝑛
𝑖=1 )𝑛

𝑖=1  in which K represents 

public key and 𝜉 is HE function. 

4. After computing encrypted partial sums for n locations (required fractional 

aggregates for calculating the denominator and nominator of Eq. (2.1)), each 

collaborating party sends such masked quantities for n locations to C1.  

5. Q utilizes OT and receives the encrypted partial sum values for her real 

location i. Through OT, Q gets what it needs only without letting C1 knows 

and C1 (accordingly all collaborating parties) prevents Q from obtaining 

more than it is supposed to get. 

6. Q uniformly randomly generates bogus data values, RJ and VJ values, for 

perturbing partial sums ΣCsn and ΣCsd values, respectively, where J = 1, 2, …, 

M.    

7. She adds such random values to corresponding partial sums using HE 

property and obtains 𝜉𝐾𝐶( ∑ 𝑃𝑗 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1 + 𝑅𝐽)  and 

𝜉𝐾𝐶(∑ 1 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1 + 𝑉𝐽).  

8. She then sends them to the master company C1, which forwards the 

corresponding values to related cooperating parties. 

9. Each collaborating party C decrypts the received encrypted partial sums using 

its corresponding private key and gets ∑ 𝑃𝑗 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1 + 𝑅𝐽  and 

∑ 1 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1 + 𝑉𝐽 values. Then, each party encrypts the results using Q’s 

public key (KQ), finds 𝜉𝐾𝑄( ∑ 𝑃𝑗 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1 + 𝑅𝐽)  and 

𝜉𝐾𝑄(∑ 1 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1 + 𝑉𝐽); and finally such values are gathered in C1. 

10. After collecting such encrypted values from collaborating parties, C1 

returns them, including the one found by itself, back to Q. 

11. Since Q knows the corresponding decryption key, she first decrypts them 

and gets ∑ 𝑃𝑗 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1 + 𝑅𝐽  and ∑ 1 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶

𝑗=1 + 𝑉𝐽  values. Notice 

that she also knows the added random values, RJ and VJ values. She subtracts 

corresponding random values from related partial disguised sums; and obtains 

∑ 𝑃𝑗 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1  and ∑ 1 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶

𝑗=1  values. 
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12. She adds ∑ 𝑃𝑗 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1  values up and gets ∑ [𝑃𝑗 (𝐷𝑖𝑗)

𝑚
⁄ ]𝐺

𝑗=1 . She also 

adds ∑ 1 (𝐷𝑠𝑗)𝑚𝑠𝑗⁄𝐺𝐶
𝑗=1  values up and obtains ∑

1

(𝐷𝑖𝑗)𝑚
𝐺
𝑗=1 .  

13. She finally finds 𝑃𝑖 =  
∑ [𝑃𝑗 (𝐷𝑖𝑗)

𝑚
⁄ ]𝐺

𝑗=1

∑
1

(𝐷𝑖𝑗)𝑚
𝐺
𝑗=1

, where participating parties do not 

know the estimated prediction.  

 

5.4. Performance and Privacy Analysis  

 

The aim of the proposed method is to achieve three conflicting goals: privacy, 

accuracy, and performance. Hence, it is scrutinized in terms of supplementary costs, 

which affect overall performance, privacy, and accuracy. 

 

5.4.1. Performance analysis 

 

Supplementary costs are inevitable because privacy and performance conflict 

with each other. Due to privacy-preserving measures, additional costs are expected. 

Such overheads can be storage, communication, and computation costs. It is 

important to analyze the scheme in terms of extra costs due to confidentiality. 

 In a traditional IDW interpolation, Q sends location information to C1; and 

C1 estimates a prediction using Eq. (2.1) and returns it to Q. In the proposed 

method, Q creates bogus locations and sends n location information to C1 

forwarding them to helping parties. Partial results are computed for n locations 

rather than single one. C1 must save fractional sums for n locations. Moreover, Q 

saves 2M random numbers used to hide partial aggregates. Thus, storage costs 

increase due to privacy concerns by in the order of O (n).   

 Number of communications increases as a result of privacy-preserving 

measures in the recommended scheme. Without privacy concerns, since data 

owners can integrate their data, only two communications are needed to get a 

prediction. In other words, Q sends a message to C1 asking a prediction for location 

i and C1 returns the estimated prediction. In the scheme, Q utilizes one OT, which 

could be achieved with poly-logarithmic (in n) communication complexity. In 
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addition to OT, C1 exchanges data with helping parties and Q, resulting (4M – 1) 

numbers of communications, where notice that M shows the number of 

collaborating parties. Since M is much smaller than n and it is usually a small 

constant, communication overheads occur due to OT. Hence, number of 

communications increases about by O (n) times.  

 The proposed method causes extra computations costs, as well. Compared 

to multiplications, divisions, exponentiations, and cryptographic calculations, 

computation costs due to generating random locations and numbers, additions, and 

subtractions are negligible. Hence, in the suggested approach, supplementary 

computation costs performed by Q like creating (n – 1) bogus locations and 

generating 2M random values; and performing 2M subtractions are considered 

insignificant. Similarly, overheads due to determining power values randomly are 

also trivial. Collaborating parties conduct multiplications, exponentiations, and 

distance computations in a traditional IDW interpolation, as seen from Eq. (2.1). 

Although they perform such computations for one location only when privacy is 

not a concern, they do the same calculations for n locations rather than one in the 

recommended scheme. Therefore, computation costs, consisting of multiplications, 

exponentiations, and distance computations, increase by in the order of O (n). In 

addition to such additional costs, the proposed method also includes cryptographic 

calculations like encryption and decryption. There are 4M encryptions and 2M 

decryptions. Running times of encryptions and decryptions can be determined using 

the benchmarks for the CRYPTO++ toolkit from http://www.cryptopp.com/ 

(Canny, 2002b).  

 As expected, privacy measures cause some additional costs. Storage costs 

can be handled easily due to increasing hardware technology. Communication and 

computation costs are more critical for overall performance. As stated previously, 

unlike real-time applications, online efficiency is not that critical in IDW 

interpolation. Therefore, supplementary costs caused by the recommended scheme 

are tolerable. The method helps data owners perform IDW interpolation to estimate 

accurate predictions efficiently. 
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5.4.2. Privacy analysis 

 

In order to call the recommended method as a secure one, it should satisfy all 

involving parties’ privacy requirements. Participating parties can be listed as Q, 

master party C1, and helping companies C2, C3, …, CM. First of all, it should be 

shown how the method protects Q’s privacy. Notice that Q hides her real location i 

and the estimated prediction Pi. Collaborating parties cannot know the location i 

due to bogus locations. However, they can guess it because it is hidden among (n – 

1) random locations. Thus, for cooperating companies, the probability of guessing 

i is 1 out of n. Although with increasing n values, the probability decreases, 

supplementary costs increase. Participating parties can determine the value of n 

based on their privacy and performance requirements. In order to prevent the 

cooperating companies from learning Pi, Q creates random values (RJ and VJ 

values) and adds them to the related fractional sums computed for nominator and 

denominator parts in Eq. (2.1) by each party. Since the range over which random 

numbers are generated, the bogus data, and the real location i are known by Q only, 

the parties cannot learn the partial sums and Pi, accordingly. Even if the parties 

collude to guess the estimated probability (share partial sums for n locations in 

plaintext form), the probability is still 1/n. However, if they conspire to guess one 

estimated prediction, one of the parties acting maliciously can get required data for 

computing predictions for n real locations without paying any money, which 

violates their financial constraints.  

 Collaborating parties including the master party hide their measurements 

and the related locations against Q and each other. Q cannot learn measurements 

and their locations due to the following reasons: First, it receives aggregates of GC 

measurements from each party. Given one value, it is not possible to learn GC 

unknowns. Second, Q does not know GC values, which are known by the related 

party C only. Third, received values are encrypted and Q cannot decrypt them, 

because it does not know the corresponding decryption keys. And finally, Q utilizes 

OT, which prevents it from learning more data than it needs. It is shown by Even et 

al. (1985), Brassard et al. (1987), Naor and Pinkas (1999), and Cachin et al. (1999), 
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OT prevents Q from obtaining the results for bogus locations and allows it get the 

partial sums for i only.  

 Cooperating parties other than C1 try to prevent C1 from deriving 

information about their confidential data. To achieve their privacy, first of all, they 

utilize variable power values rather than fixed ones. Since the master party or any 

party acting as Q can try to derive information through multiple IDW interpolation 

processes, the parties use varying m values, selected uniformly randomly over a 

specified range, for each sample point in every IDW interpolation process. 

Secondly, they send aggregate results rather than single values. It is not possible to 

learn more than one unknown from one cumulative value. Thirdly, number of 

sample points involved in prediction estimation process is known by the related 

party only; and moreover, that value changes for different locations. Finally and the 

most importantly, the parties encrypt their cumulative quantities using their public 

keys. In order to decrypt them, corresponding private keys are required, where they 

are known by the related parties only. It is shown by Paillier (1999) that HE 

prevents malicious parties from deriving any information from the exchanged 

encrypted values. 

 The same reasons can be listed for explaining why the cooperating parties 

cannot learn each other’s data. Encryption, variable m values, exchanging 

summative values, and variable and unknown number of samples, in general, help 

data holders protect their privacy.    

 

5.4.3. Accuracy analysis: Experiments 

 

Distributed data-based computations are expected to provide more accurate 

results. Thus, it is hypothesized that predictions on integrated data are more 

accurate than the ones on split data only. Since privacy and accuracy are conflicting 

goals, it is expected that the quality of the predictions diminishes due to our privacy-

preserving measures. However, such losses should be compensated by the gains 

due to collaboration. Furthermore, there are some controlling parameters like 

varying power values uniformly randomly selected over a range and number of 

sample points that can affect accuracy of our privacy-preserving scheme. Therefore, 
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various sets of experiments are conducted using real data to show how varying 

parameters affect correctness. 

 

5.4.3.1. Effects of collaboration on accuracy 

 

A set of experiments are run first to verify the premise about collaboration. 

To do so, given an entire training set, it is assumed that measurements are 

distributed among M parties, where M is varied from 1 to 5 (set it to 1, 3, and 5). If 

M = 1, then it means that data are held by a single company. Optimum power values 

are utilized for each G value. Overall averages are calculated and the final RMSE 

and MAE values for the Illinois data set are displayed in Table 5.13 and Table 5.14, 

respectively. The results for the Colorado data set are presented in Table 5.14 and 

Table 5.15. 

 

Table 5.13. Effects of collaboration on RMSE (Illinois data set) 

 

G 5 10 15 20 30 40 50 

Integrated 0.1162 0.1140 0.1136 0.1134 0.1126 0.1124 0.1124 

3-Party 0.1314 0.1285 0.1270 0.1263 0.1259 0.1256 0.1255 

4-Party 0.1335 0.1291 0.1281 0.1276 0.1270 0.1270 0.1272 

5-Party 0.1366 0.1325 0.1309 0.1301 0.1295 0.1296 0.1297 

 

Table 5.14. Effects of collaboration on MAE (Illinois data set) 

 

G 5 10 15 20 30 40 50 

Integrated 0.0839 0.0823 0.0821 0.0821 0.0815 0.0814 0.0814 

3-Party 0.0954 0.0932 0.0919 0.0918 0.0916 0.0917 0.0917 

4-Party 0.0979 0.0951 0.0948 0.0946 0.0944 0.0946 0.0948 

5-Party 0.1019 0.0986 0.0974 0.0971 0.0970 0.0974 0.0975 
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Table 5.15. Effects of collaboration on RMSE (Colorado data set) 

 

G 5 10 15 20 30 40 50 

Integrated 0.3190 0.3096 0.3117 0.3124 0.3148 0.3156 0.3159 

3-Party 0.3417 0.3368 0.3355 0.3355 0.3368 0.3378 0.3385 

4-Party 0.3457 0.3375 0.3368 0.3382 0.3402 0.3417 0.3430 

5-Party 0.3495 0.3415 0.3398 0.3400 0.3410 0.3424 0.3435 

 

Table 5.16. Effects of collaboration on MAE (Colorado data set) 

 

G 5 10 15 20 30 40 50 

Integrated 0.2258 0.2176 0.2199 0.2202 0.2219 0.2226 0.2231 

3-Party 0.2440 0.2400 0.2395 0.2397 0.2407 0.2414 0.2421 

4-Party 0.2482 0.2429 0.2437 0.2447 0.2462 0.2475 0.2486 

5-Party 0.2527 0.2470 0.2465 0.2468 0.2480 0.2495 0.2504 

 

As seen from the tables, the results are getting better with decreasing M 

values. These outcomes verify the hypothesis. In other words, collaboration 

definitely enhances accuracy. When data are distributed among 5 parties and they 

offer predictions based on their split data only, RMSE value is about 0.1297 when 

G is 50 for the Illinois data set and 0.3398 for the Colorado data set when G is 15. 

However, if they decide to provide IDW interpolation services on their integrated 

data, they are able to achieve RMSE of 0.1124 and 0.3117, respectively. In other 

words, accuracy enhances by about 15% for the Illinois and 9% for the Colorado 

data set due to collaboration. To sum up, the parties are able to provide more 

accurate outcomes if they offer predictions on combined data. 

 

5.4.3.2. Effects of masking optimum power values 

 

After verifying the hypothesis, another set of experiments are performed for 

evaluating the suggested scheme in terms of privacy measures. Notice that privacy 

and accuracy are conflicting goals. Therefore, due to privacy-preserving measures, 

accuracy losses are expected. It is shown how privacy measures affect accuracy in 

the following. For this purpose, trials are done while changing θ values. RMSE 
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values are computed for the Illinois and Colorado data sets and the overall averages 

are presented in Table 5.17 and Table 5.19. MAE values for both data sets are also 

displayed in Table 5.18 and Table 5.20. 

  

Table 5.17. Effects of masking optimum power values on RMSE (Illinois data set) 

 

 0.05 0.15 0.25 

Integrated 0.1125 0.1126 0.1128 

3-Party 0.1255 0.1257 0.1260 

4-Party 0.1273 0.1274 0.1276 

5-Party 0.1297 0.1300 0.1303 

 

Table 5.18. Effects of masking optimum power values on MAE (Illinois data set) 

 

 0.05 0.15 0.25 

Integrated 0.0815 0.0815 0.0816 

3-Party 0.0917 0.0918 0.0919 

4-Party 0.0948 0.0949 0.0950 

5-Party 0.0976 0.0977 0.0979 

 

Table 5.19. Effects of masking optimum power values on RMSE (Colorado data set) 

 

 0.05 0.15 0.25 

Integrated 0.3097 0.3099 0.3103 

3-Party 0.3368 0.3370 0.3374 

4-Party 0.3377 0.3382 0.3389 

5-Party 0.3416 0.3420 0.3425 

 

Table 5.20. Effects of masking optimum power values on MAE (Colorado data set) 

 

 0.05 0.15 0.25 

Integrated 0.2177 0.2179 0.2182 

3-Party 0.2399 0.2401 0.2403 

4-Party 0.2430 0.2434 0.2439 

5-Party 0.2472 0.2475 0,2478 

 



 

  66 

 

As expected, randomization decreases accuracy. If there is no randomness, 

the accuracy is 0.1297 for 5-party when G is 50. After adding random numbers to 

optimum power value, the accuracy becomes 0.1303. Therefore, there is 0.5% 

increase in accuracy. Similar observation can be observed for all cases. In addition 

to this, MAE values present the same trend as RMSE values for both data sets. To 

sum up, the suggested scheme helps data owners with smaller amount of 

measurements provide more accurate predictions on their combined data without 

violating their privacy. Even if there are accuracy losses due to our randomized 

scheme, collaboration compensates such losses. 

 

5.5. Conclusion 

 

Companies hesitate to share their private data with other parties for their 

financial future. Therefore, if there is no privacy preserving solutions for IDW 

method, they are not willing to collaborate with other parties. Due to insufficient 

measurements, as shown in the experiments, they come up with inaccurate 

predictions. However, if they use the proposed schemes, they provide more accurate 

predictions. As privacy analysis signifies that private data of both client and 

participating parties are kept confident. The recommended method encourages the 

companies to collaborate with other parties to derive reliable results.  
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6. PRIVACY-PRESERVING KRIGING ON DISTRIBUTED DATA 

 

Data collected for kriging interpolation purposes might be distributed 

between two or more parties. Coordinates of some sample points and their related 

measurements can be distributed among different companies. Such parties might 

decide to collaborate for better kriging services. However, such collaboration 

should violate their confidentiality. In this chapter, kriging-based methods are 

presented, which are proposed to provide predictions from partitioned or distributed 

data with privacy. 

 

6.1. Private Kriging on Partitioned Data 

 

Unlike traditional kriging interpolation, measurements for specific locations 

in a given region are arbitrarily held by two servers, S1 and S2. These two servers 

can collaboratively provide kriging-based predictions to their clients. The client C 

can ask a prediction from one of them, which is referred to as the master server 

(MS). Suppose that the S1 acts as the MS. It is also assumed that the servers are 

semi-honest. In other words, they follow the protocol as they are expected; 

however, they try to derive as much information as possible about each other’s 

private data from interim and final results. For the servers, measurements held by 

each other and their related coordinates are considered private. Similarly, estimated 

prediction and its corresponding location are regarded as confidential for the client. 

To achieve privacy, various methods have been used in PPDM schemes. One 

of the most extensively used methods is called OT. Hence, OT is utilized in the 

proposed scheme. In addition to OT, HE is also widely used privacy-preserving 

method. HE allows addition or multiplication of encrypted values without 

decrypting them. If ξ is an encryption function and K is a public key, and xj1 and xj2 

are private data values, then Paillier’s HE scheme allows to compute 𝜉𝐾 (X) = 

∏ (𝜉𝐾(𝑥𝑗1))𝑥𝑗2  𝑛
𝑗=1  values. 

Randomization can be used for data masking. Agrawal and Srikant (2000) 

utilize randomization to achieve privacy. To disguise a private number x, a simple 

method is to add a random value r to it; so that x + r, rather than x, will appear in 
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the database, where r is a random value drawn from some distribution. Such 

distribution might be uniform or Gaussian with zero mean and a standard deviation 

(σ). Randomization is useful for estimating aggregate data from perturbed data. 

Aggregate data can be estimated with decent accuracy from masked data. 

In the following, the recommended protocol is explained, which is referred to 

as the private kriging on partitioned data (PKPD). Although online performance is 

not that critical in kriging interpolation, the computations conducted in the protocol 

can still be grouped as off-line and online. 

Off-line Phase: This phase includes calculating distances and semi-

variances, performing binning, and creating model.        

A. Distance and Semi-variance Estimation: S1 and S2 are supposed to calculate 

distances between any two locations i and j using Eq. (2.2) and the related 

semi-variances using Eq. (2.3). Since there are G sample points in a given 

area A, it is assumed that GS1 and GS2 locations are held by S1 and S2, 

respectively, where G = GS1 + GS2. Thus, there are two cases as follows: 

I. Case I: Any two locations i and j are held by the same server: For those 

locations held by the same server, each server can estimate the distances 

between them using Eq. (2.2) and the related semi-variances using Eq. 

(2.3) without the help of the other server because the required data are held 

by that server as follows: 

1. S1 estimates distances between any two locations, i and j, where i = 1, 

2, …, GS1-1 and j = i + 1, i + 2, …, GS1. It also computes the 

corresponding semi-variances using Eq. (2.3).   

2. S2 finds distances between any two locations, i and j, where i = 1, 2, …, 

GS2-1 and j = i + 1, i + 2, …, GS2. It also finds the related semi-variances 

using Eq. (2.3).   

II. Case II: Each of any two locations i and j is held by different server: In 

this case, the servers need to exchange data to estimate distances and semi-

variances collaboratively. They first compute distances using Eq. (2.2), 

where the equation can be written as follows: 
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                                    𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

=

                  √𝑥𝑖
2 +  𝑦𝑖

2 + 𝑥𝑗
2 +  𝑦𝑗

2 + (−2)𝑥𝑖𝑥𝑗 + (−2)𝑦𝑖𝑦𝑗                       (6.1) 

 

As seen from Eq. (6.1), S1 and S2 can compute (𝑥𝑖
2 +  𝑦𝑖

2) and (𝑥𝑗
2 + 𝑦𝑗

2) 

partial sums, respectively. However, they need to collaborate to find 

(−2)𝑥𝑖𝑥𝑗 and (−2)𝑦𝑖𝑦𝑗 values. They then compute semi-variances using Eq. 

(2.3), where the equation can be similarly written as follows:  

                                 𝑠𝑖𝑗 = 0.5 × [𝑃𝑖 − 𝑃𝑗]
2

=
𝑃𝑖

2

2
+

𝑃𝑗
2

2
+ (−1)𝑃𝑖𝑃𝑗                   (6.2)                   

The steps are first described in terms of S1. For i = 1, 2, …, GS1-1, the servers 

perform the followings: 

1. S1 encrypts−2𝑥𝑖, −2𝑦𝑖, and −𝑃𝑖 values using an HE scheme with its public 

key KS1 and obtains 𝜉𝐾𝑆1(−2𝑥𝑖), 𝜉𝐾𝑆2(−2𝑦𝑖), and 𝜉𝐾𝑆1(−𝑃𝑖). It then sends 

them to S2. 

2. S2 should find a way to prevent S1 from learning the coordinates of any 

location j because the distances between j and each location i = 1, 2, …, GS1 

- 1 are estimated and S1 can determine two unknowns (the coordinates of the 

location j, xj and yj values) from GS1 - 1 equations. Hence, S2 masks the 

coordinates using randomization. To do so, S2 creates two sets of random 

numbers using uniform distribution with zero mean and σ, where each set 

includes GS2 number of random numbers. One set, including rj values, is used 

to hide xj values and the other set, including vj values, is utilized to perturb yj 

values. Thus, S2 utilizes xj + rj and yj + vj to estimate the corresponding 

distances. Using an HE method with KS1, S2 first finds partial aggregate 

𝑑𝑝𝑖𝑗 = 𝜉𝐾𝑆1[(𝑥𝑗
2 +  𝑦𝑗

2) − 2𝑥𝑖𝑥𝑗 − 2𝑦𝑖𝑦𝑗 − 2𝑥𝑖𝑟𝑗  − 2𝑦𝑖𝑣𝑗] for j = i + 1, i + 

2,…,GS2. 

3. S2 then computes the partial aggregate of the related semi-variance using an 

HE scheme and finds spij for j = i + 1, i + 2, …, GS2, where 𝑠𝑝𝑖𝑗 =

𝜉𝐾𝑆1 [
𝑃𝑗

2

2
+ (−𝑃𝑖)𝑃𝑗].  Similar argument defined in the previous step is also 

true for the related measurements. Therefore, S2 masks such partial aggregate 



 

  70 

similarly. To mask them, S2 utilizes HE scheme with KS1 and randomization; 

and finds encrypted disguised partial sum as follows: 𝜉𝐾𝑆1(𝑠𝑝𝑖𝑗) =

 𝜉𝐾𝑆1(𝑠𝑝𝑖𝑗 + 𝑢𝑖𝑗) . Recall that u represents uniformly generated random 

numbers with zero mean. S2 then sends such encrypted masked values to S1.  

4. Since S1 knows the related private key, it decrypts 𝜉𝐾𝑆1(𝑑𝑝𝑖𝑗)  and  

𝜉𝐾𝑆1(𝑠𝑝𝑖𝑗); and obtains  𝑑𝑝𝑖𝑗 =  𝑑𝑝𝑖𝑗 + 𝑟𝑣𝑖𝑗  and 𝑠𝑝𝑖𝑗 =  𝑠𝑝𝑖𝑗 + 𝑢𝑖𝑗  partial 

aggregates.  

5. S1 can now compute masked distances and semi-variances because it knows 

the other required partial values as follows: 𝑑𝑖𝑗
̅̅ ̅̅ =

√(𝑥𝑖
2 +  𝑦𝑖

2) + 𝑑𝑝𝑖𝑗 +  𝑟𝑣𝑖𝑗 =  𝑑𝑖𝑗 + 𝑈𝑖𝑗  = dij + Rij and and 𝑠𝑖𝑗̅̅ ̅ = [
𝑃𝑖

2

2
+

𝑠𝑝𝑖𝑗 +  𝑢] . Now, S1 has all necessary distances and semi-variances in 

perturbed form and the ones estimated by it. 

S1 and S2 now switch their roles and perform the above steps for j = 1, 2, …, 

GS2-1. Thus, at the end of such steps, S2 now gets all necessary distances and semi-

variances in masked form and the ones estimated by it.    

B. Binning and Model Generation: The servers follow the following steps to bin 

the distances and create the model: 

1. They decide the binning methodology. One possible methodology is to use 

equal width bins.  

2. Each server first clusters the distances and the related semi-variances found 

in Case I by each server. They then found partial aggregates and counts for 

each bin and exchange such partial aggregates. Recall that each server cannot 

learn coordinates and related measurements from such aggregates even if 

there is only one distance and related measurements fall into a single bin. 

3. They then cluster the remaining distances; and find average distances and 

related average semi-variances for each bin. Since most of the distances and 

the related semi-variances are masked by random numbers, with increasing 

number of items fall into the same bin, the effects of random numbers become 

smaller. Note that the random numbers are generated using a random number 

distribution with zero mean, the expected value of the arithmetic mean of the 

random numbers will be  zero. 
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4. Next, each server plots average semi-variances versus average distances; and 

finds the formula to estimate semi-variance at any given distance. Notice that 

the servers might not end up with the same formula due to differently masked 

data items. Thus, S1 and S2 might end up with Semi-varianceS1 = fS1 

(distance) and Semi-varianceS2 = fS2 (distance), respectively.     

5. Each server then can estimate the semi-variances between any two locations 

using the obtained function; and S1 and S2 creates ΓS1 and ΓS2 matrices, 

which are (G + 1) × (G + 1) symmetric matrices including the related semi-

variances. Notice that the last row and correspondingly the last column are 

filled with 1s, except the diagonal entry, which is set to 0.  Also note that the 

related semi-variances for those distances estimated in the Case I are 

exchanged. Since the parties do not know the semi-variance functions held 

by each other, they cannot learn the related distances from such exchanged 

data. 

6. They finally generate the models, Γ-1 matrices. Hence, S1 and S2 finds 𝚪𝐒𝟏
−𝟏 

and   𝚪𝐒𝟐
−𝟏 matrices, respectively. 

Online Phase: This phase includes weight and prediction estimations. In this 

phase, the client C is supposed to send the required data (coordinates of the location 

for which it is looking for a prediction) to the master server MS. However, such 

data are also considered confidential. Therefore, the servers and the client perform 

the followings to estimate prediction without jeopardizing their privacy. 

A. Estimating Weights: The parties and the client can estimate the weights 

collaboratively as follows:  

1. In order to hide its true location q for which C is looking for a prediction, it 

creates n-1 bogus locations and masks q among them. It then sends all n 

locations to the MS. 

2. The MS forwards all these n locations to the S2. Recall that S1 acts as MS.  

3. For each location j = 1, 2, …, n, the servers then perform the followings: 

a. Each server estimates the distances between j and each location they hold 

using Eq. (2.2). 

b. S2 encrypts each distance using an HE scheme with its public key KS2; 

and sends them to the MS. 
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c. Using an HE method, the MS finds the related semi-variances in the 

encrypted form for those distances received from S2 utilizing Semi-

varianceS1 = fS1 (distance).  

d. In the meantime, the MS also finds the corresponding semi-variances for 

those distances estimated by it. It then encrypts them using HE method 

with KS2.   

e. The MS then creates the matrix g, which is a (G + 1) × 1 matrix including 

the semi variances in encrypted form estimated between q and each 

measured location. 

f. Since the MS has the matrix 𝚪𝐒𝟏
−𝟏 and the matrix g (including encrypted 

values), it can estimate the kriging weights (λ matrix) using Eq. (2.5) by 

employing an HE scheme. Notice that λ is a (G + 1) × 1 matrix including 

encrypted weights, which are encrypted with KS2.   

B. Prediction Estimation: For each location j = 1, 2, …, n, the servers then perform 

the followings: 

1. The MS sends the required encrypted weights to S2. Since S2 knows the 

corresponding private key, it decrypts such encrypted weights and obtains 

𝜆𝑆2j values.   

2. It then finds partial aggregate of the prediction for location z (referred to as 

PPS2z) by performing a scalar dot product, as defined in Eq. (2.6). Notice that 

PPS2z can be estimated as follows:  

𝑃𝑃𝑆2𝑧 =  𝛌𝑆2𝑗 · 𝐏𝑆2𝑗 =  ∑ 𝛌𝑆2𝑗 × 𝐏𝑆2𝑗
𝐺𝑆2
𝑗=1 . 

3. Similarly, the MS also finds partial aggregate of the prediction for location z 

(referred to as PPS1z) in encrypted form by performing a scalar dot product, 

as defined in Eq. (2.6) using an HE method with KC. Notice that PPS1z can 

be estimated as follows: 

        𝜉𝐾𝐶(𝑃𝑃𝑆1𝑧) = 𝜉𝐾𝐶(𝛌𝑆1𝑗 · 𝐏𝑆1𝑗) =  𝜉𝐾𝐶[∑ 𝛌𝑆1𝑗 × 𝐏𝑆1𝑗
𝐺𝑆1
𝑗=1 ]                (6.3) 

4. The MS then sends it to S2, which then compute 𝜉𝐾𝐶(𝑃𝑗) = 𝜉𝐾𝐶(𝑃𝑃𝑆2𝑧) +

 𝜉𝐾𝐶(𝑃𝑃𝑆1𝑧) in encrypted form using the homomorphic encryption property.       

5. S2 then sends it to the MS. 

6. Once the MS obtains the predictions for all n locations, the C utilizes OT to 

get the prediction for its real location q. It finally decrypts it and obtains Pq.  
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6.2. Performance and Privacy Analysis 

 

In this section, the protocol is investigated with respect to overall 

performance (supplementary workloads) and privacy. Additional off-line and on 

line costs are inevitable because privacy and performance conflict with each other. 

Hence, the recommended scheme is analyzed in terms of such costs. Since a 

privacy-preserving method is proposed, it is shown if it protects privacy or not. 

 

6.2.1. Overall performance analysis 

 

Additional costs like storage, communication, and computation costs caused 

by privacy-preserving measures are interested in. Therefore, the protocol is 

analyzed with respect to supplementary costs. Although it consists of off-line and 

online phases and off-line costs are not that critical for the overall performance, 

online requirements are not that rigid in kriging interpolations like in some real time 

applications. In the following, the suggested method is scrutinized in terms of off-

line and online extra workloads.  

 

6.2.2. Storage costs analysis 

 

Privacy-preserving measures conducted by the PKPD protocol cause some 

supplementary storage costs. Dominant extra storage costs occur due to the random 

numbers used to mask distances and semi-variances and the additional model 

created by the servers. Additional storage costs because of random numbers are in 

the order of O (G2). Similarly, they are in the order of O (G2) for additional model. 

 

6.2.3. Communication costs analysis 

 

In a traditional central server-based kriging interpolation, number of 

communications is two only. The client sends the coordinates of the location to the 

server, which sends a prediction back to the client. In the proposed scheme, 

however, number of communications increases due to privacy concerns. In the off-



 

  74 

line phase, number of communications performed between the servers is 2(GS1 + 

GS2) = 2G. In other words, the number of communications conducted off-line is in 

the order of O (G). During online phase, the client performs one OT, which could 

be achieved with poly-logarithmic (in n) communication time, stated before. 

Moreover, the servers and the client conduct six more communications. Although 

number of communications increases during both off-line and online computations, 

they are considered acceptable due to soft real time requirements of kriging 

interpolation. 

 

6.2.4. Computation costs analysis 

 

The suggested protocol is also investigated with respect to extra off-line and 

on line workloads. Overwhelming additional computation workloads occur due to 

cryptographic computations (encryption and decryption) and multiplications. The 

costs due to random number generation, additions, and subtractions are omitted. In 

the off-line phase, number of encryptions is in the order of O (GS1GS2). Similarly, 

number of decryptions is also in the order of O (GS1GS2). In addition to encryptions 

and decryption, extra computations occur because of the additional model. Notice 

that in a traditional kriging interpolation, only one model is created. However, the 

servers create two models in the proposed method. Thus, computation costs 

increase by two times due to model generation. Number of encryptions is in the 

order of O (nG2) in the online phase. Likewise, number of decryptions is in the 

order of O (nG). Moreover, number of multiplications increases by O (n) times in 

the protocol because predictions are estimated for n locations rather than one. And 

finally, one OT is conducted. However, its computation cost can be considered 

negligible compared to workloads caused by cryptographic computations. 

 

6.2.5. Privacy analysis 

 

The proposed protocol should be able to protect the participating parties’ (the 

servers and the client) privacy. Confidential data items are measurements and their 

related locations held by the servers and the estimated prediction and the location 
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for which a prediction is sought. Thus, it is shown that the protocol protects private 

data while providing predictions on partitioned data. It is assumed that the servers 

and the client are semi-honest. They follow the protocol steps yet they try to learn 

as much information as possible about each other’s private data. 

The client C wants to hide the coordinates of the location for which she is 

looking for a prediction. To do so, she hides the true location’s coordinates among 

the randomly generated n - 1 bogus locations and utilizes OT. Therefore, the 

probability for the servers to guess the true location is 1 out of n. With increasing 

value of n, such probability becomes smaller; however, performance might get 

worse. The parties can decide the value of n according to how much privacy and 

performance they want. The estimated prediction is also regarded as confidential. 

As described previously, such prediction is protected using encryption. The servers 

cannot decrypt the encrypted value, because they do not know the related private 

key, which is held by the client. Moreover, it is hidden among n - 1 predictions for 

bogus locations. Thus, the servers cannot learn the estimated prediction.  

The measurements and their corresponding coordinates are private for the 

servers. They hide them from the client and each other. The client cannot derive 

information about them, because she receives a final aggregate from the MS. It is 

not possible to learn such data from an aggregate. In order to protect such 

confidential data from each other, the servers utilize random perturbation, 

encryption, and aggregation. Random data perturbation method helps the servers 

change the coordinate values in each distance calculation. 

Uniformly randomly generated random numbers over a range are added to 

coordinates. They are independently created for each distance calculation. Due to 

randomization and masked coordinates, the servers cannot derive information about 

the real coordinates from distances. For example, adding a random number 0.10 to 

coordinates of a location moves the real point 18 kilometers away in any direction 

(the direction of the movement is arbitrary), where the data are from the U. S. 

National Geochemical Survey Database. Moreover, due to encryption, it is not 

possible to learn truthful information from encrypted data without knowing the 

decryption key. Finally, aggregate results also prevent the servers from deriving 

useful information about each other’s data. 
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As discussed previously, HE and OT are secure and they protect confidential 

data. HE allows the parties to calculate the required kriging functions using 

encrypted data. Therefore, it prevents malicious parties from deriving information 

about each other’s data. Similarly, OT prevents the parties from learning private 

data values. 

  

6.2.6. Experiments: Accuracy analysis 

 

Different sets of experiments are conducted using two real data sets collected 

for geo-statistical purposes to evaluate the proposed solution with respect to 

accuracy. (i) Since it is hypothesized that collaboration is expected to improve 

accuracy, experiments are run to show how cooperation between two parties affects 

the accuracy of the predictions. (ii) Recall that randomization, HE, and the OT are 

utilized to achieve privacy. Encryption and the OT do not affect accuracy. However, 

randomization might because it adds randomness to real data. Also note that 

coordinates and semi-variances are masked. Hence, another set of experiments are 

performed to show how disguising coordinates with randomization only affects the 

quality of the predictions, where varying ranges of random numbers are used. (iii) 

Third, trials are done to demonstrate accuracy changes due to semi-variance 

masking only, where again the ranges of random numbers are varied. (iv) Finally, 

a set of experiments are performed to show the joint effects of the randomization. 

 

6.2.7. Experiments and empirical outcomes 

 

6.2.7.1. Experiment I: Effects of collaboration 

 

It is hypothesized that collaboration between two servers improves accuracy. 

In other words, predictions estimated from integrated data are more accurate than 

ones estimated from split data only. Therefore, a set of experiments are run to show 

how collaboration affects accuracy. In a given region, predictions can be estimated 

from G sample points and their related measurements. Recall that the partitioned 

data-based scenario assumes that such measurements are split between two servers. 
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Because data might be unevenly partitioned, it is assumed that β percent of the 

measurements are held by S1 while the remaining 100 - β percent are held by S2. 

When β is 50, it means that data are evenly partitioned between the servers S1 and 

S2. Similarly, β being 100 means that the entire measurements are held by a single 

party. In other words, the results for β being 100 represent the outcomes based on 

integrated data (the results after collaboration). If β is chosen as 20, it means that 

one server holds 20 percent of the data and the other holds the remaining 80 percent 

of the data. 

Due to uneven partitioning, accuracy gains because of collaboration are 

expected to be different. Moreover, accuracy is dependent on the number of 

measurements G. Hence, experiments are conducted by varying the β values from 

20 to 100 and the G values from 5 to 50. Given G measurements, it is assumed that 

S1 holds β percent of them. Thus, uniformly randomly selected β percent of the G 

measurements are used to estimate predictions. Then, the remaining ones are 

utilized. Due to randomness, the trials are repeated 100 times. The RMSE and MAE 

values are computed for both cases. In the case of collaboration, predictions are 

estimated from all G measurements. In other words, the servers provide predictions 

on their integrated data collaboratively. Hence, the entire measurements (β = 100) 

are used to estimate predictions. The RMSE and MAE values are computed for 

integrated data. Finally, the outcomes with respect to RMSE and MAE are 

displayed in Table 6.1 and Table 6.2, respectively, for both data sets. 

 

Table 6.1. Effects of collaboration on RMSE with varying β and G values 

 

 Illinois Data Set Colorado Data Set 

β(%)/G 5 15 30 50 5 15 30 50 

20 0.1416 0.1357 0.1345 0.1352 0.3479 0.3354 0.3368 0.3418 

35 0.1365 0.1333 0.1335 0.1338 0.3346 0.3276 0.3279 0.3293 

50 0.1304 0.1269 0.1273 0.1280 0.3237 0.3192 0.3194 0.3199 

65 0.1284 0.1251 0.1261 0.1272 0.3224 0.3141 0.3144 0.3159 

80 0.1247 0.1225 0.1228 0.1244 0.3198 0.3128 0.3132 0.3135 

100 0.1212 0.1192 0.1190 0.1215 0.3165 0.3092 0.3098 0.3113 
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Table 6.2. Effects of collaboration on MAE with varying β and G values 

 

 Illinois Data Set Colorado Data Set 

β(%)/G 5 15 30 50 5 15 30 50 

20 0.1063 0.1014 0.1012 0.1017 0.2528 0.2452 0.2471 0.2517 

35 0.1005 0.0982 0.0986 0.0991 0.2398 0.2337 0.2344 0.2360 

50 0.0964 0.0939 0.0946 0.0954 0.2328 0.2284 0.2287 0.2291 

65 0.0953 0.0920 0.0931 0.0944 0.2312 0.2242 0.2247 0.2269 

80 0.0924 0.0905 0.0909 0.0923 0.2290 0.2230 0.2232 0.2235 

100 0.0905 0.0885 0.0882 0.0905 0.2260 0.2201 0.2205 0.2207 

 

Notice that the goal is to verify the hypothesis, which states that accuracy 

improves due to collaboration. As observed from Table 6.1 and Table 6.2, 

collaboration between two servers makes accuracy better. When G is 30 in the 

Illinois data set, the accuracy improves from 0.1345 to 0.1190 for an S1 that holds 

20 percent of the measurements. Similarly, the precision increases from 0.1228 to 

0.1190 for an S2 that holds 80 percent of the measurements. Accuracy gains due to 

collaboration are higher for the server holding less data. Similar trends are observed 

in the Colorado data set. If G is 15, accuracy improves from 0.3354 to 0.3092 for 

S1 and from 0.3128 to 0.3092 for S2. When data are evenly partitioned between 

two servers for a G of 30 and 15, the RMSE values are approximately 0.1273 and 

0.3192 for the Illinois and Colorado data sets, respectively. As observed from Table 

6.2, the outcomes with respect to the MAE values also confirm the hypothesis. With 

decreasing β values, data holders benefit more from collaboration for both data sets. 

The best outcomes are observed when G is 30 and 15 for the Illinois and Colorado 

data sets, respectively, in terms of both the RMSE and MAE values. In summary, 

the servers holding partitioned data are able to provide more accurate predictions if 

they cooperate. 

 

6.2.7.2. Experiment II: Effects of disguising coordinates only 

 

To hide true coordinates, data owners add random numbers to them. Hence, 

in the second set of experiments, how adding random numbers to coordinate values 

only affects the accuracy of the model is investigated. Notice that because privacy 

and accuracy are conflicting goals, randomization might make accuracy worse. It 
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is assumed that the servers generate random numbers using a uniform distribution 

over the range [-α; α]. Experiments are conducted while varying α values from 0.05 

to 0.25, where G is set to 30 and 15 for the Illinois and Colorado data sets, 

respectively, because they provide the most accurate predictions, as shown 

previously. After running the trials 100 times, the overall averages are displayed in 

Table 6.3 for both data sets. 

 

Table 6.3. Effects of disguising coordinates only on accuracy with varying α values 

 

 Illinois Data Set Colorado Data Set 

α 0.05 0.15 0.25 0.05 0.15 0.25 

RMSE 0.1205 0.1245 0.1279 0.3093 0.3198 0.3264 

MAE 0.0896 0.0936 0.0970 0.2203 0.2288 0.2356 

 

Recall that if the servers decide to collaborate, the RMSE and MAE values 

are 0.1190 and 0.0882, respectively, for the Illinois data set; they are 0.3092 and 

0.2201, respectively, for the Colorado data set, as shown in Table 6.1 and Table 

6.2. Because privacy and accuracy are conflicting goals, accuracy is expected to 

decrease when masking coordinates. As observed from Table 6.3, the quality of the 

predictions in terms of both RMSE and MAE decreases. With increasing α values, 

accuracy losses become larger due to increased randomness. However, the 

outcomes for smaller α values (less than 0.25) are very close to the results obtained 

after collaboration without privacy concerns. Although privacy-preserving 

measures make precision worse, the results of the scheme are still promising 

because the accuracy gains due to collaboration are larger than the accuracy losses 

due to privacy concerns. 

 

6.2.7.3. Experiment III: Effects of disguising measurements only 

 

In addition to protecting coordinates using randomization, the related 

measurements are also masked via randomized perturbation. Due to data 

perturbation, the accuracy is expected to decrease. To show how masking 

measurements affect precision, another set of  trials are performed using real data 

sets. It is again assumed that the servers generate random numbers using a uniform 
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distribution over the range [- ρ; ρ]. Hence, ρ values are varied from 0.05 to 0.25 to 

show the effects of different amounts of randomness, where G is set to 30 and 15 

for the Illinois and Colorado data sets, respectively. The overall averages of 100 

trials are shown in Table 6.4 for both data sets. 

 

Table 6.4. Effects of disguising measurements only on accuracy with varying ρ values 

 
 

 Illinois Data Set Colorado Data Set 

ρ 0.05 0.15 0.25 0.05 0.15 0.25 

RMSE 0.1204 0.1299 0.1541 0.3092 0.3152 0.3313 

MAE 0.0894 0.0986 0.1221 0.2208 0.2255 0.2401 

 

As expected and observed from Table 6.4, the quality of the predictions 

decreases due to masking measurements because data perturbation has negative 

effects on accuracy. With increasing ρ values, the amount of randomness increases, 

thus, causing larger accuracy losses. Although loss of accuracy is inevitable, for 

smaller ρ values, it is still possible to obtain promising outcomes. 

 

6.2.7.4. Experiment IV: Overall performance of the proposed scheme 

 

A set of experiments is finally conducted to show the joint effects of the data 

disguising schemes. In these trials, the coordinates in distance estimations and the 

measurements in semi-variance computations are both masked, as explained 

previously. Random numbers are generated using a uniform distribution over the 

same range [- δ; δ]. The δ values are changed from 0.05 to0.25 and the trials are 

repeated 100 times. The optimum values of G are used for both data sets. The 

overall averages are demonstrated in Table 6.5. Notice again that the RMSE and 

MAE values for the kriging model on integrated data without privacy concerns are 

0.1190 and 0.0882 for the Illinois data set, respectively. Similarly, they are 0.3092 

and 0.2201, respectively, for the Colorado data set.  

 

 

 

 



 

  81 

Table 6.5. Overall performance of the protocol with varying δ values 

 
 

 Illinois Data Set Colorado Data Set 

δ 0.05 0.15 0.25 0.05 0.15 0.25 

RMSE 0.1198 0.1420 0.629 0.3092 0.3228 0.3376 

MAE 0.0899 0.1098 0.1262 0.2205 0.2339 0.2487 

 

The outcomes presented in Table 6.5 demonstrate that privacy-preserving 

measures decrease precision due to randomness. The quality of the predictions 

decreases with augmented δ values due to increasing randomness. However, for 

smaller δ values, it is still possible to obtain promising results. For example, the 

outcomes for a δ of 0.05 in the scheme are better than the outcomes for split data 

only. Hence, the parties are able to provide better outcomes in terms of accuracy 

and more dependable predictions (outcomes are generated from a greater number 

of measurements) using the proposed method if they use smaller δ values.  

Finally, the empirical outcomes are presented in Table 6.6 in order to depict 

the overall picture, where G is set to 30 and 15 for the Illinois and Colorado data 

sets, respectively and δ is selected as 0.05. The outcomes demonstrate the outcomes 

of kriging on integrated data without privacy (KID), kriging on partitioned data 

without privacy (KPD) and the proposed privacy-preserving method or PKPD. 

Without collaboration, the servers may not provide accurate and dependable 

predictions from insufficient data. On the one hand, when collaborating without 

privacy concerns, accuracy improves with respect to RMSE and MAE for both data 

sets. Collaboration definitely improves overall performance. To enhance both 

precision and trustworthiness, data owners can collaboratively generate a kriging 

model and offer predictions on integrated data. The privacy-preserving measures, 

on the other hand, make accuracy worse because privacy and precision are 

conflicting goals. With increasing randomness, privacy improves while accuracy 

degrades. However, for a small amount of randomness, as shown with empirical 

results in Table 6.6, the method is still able to provide more accurate and 

dependable predictions than the ones estimated from split data only. Accuracy 

losses due to randomness are small, as observed from Table 6.6. 
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Table 6.6. Comparison of the PKPD with kriging without privacy 

 

 Illinois Data Set Colorado Data Set 

 KID KPD PKPD KID KPD PKPD 

RMSE 0.1190 0.1273 0.1198 0.3092 0.3192 0.3092 

MAE 0.0882 0.0946 0.0899 0.2201 0.2284 0.2205 

 

6.3. Private Kriging on Distributed Data 

 

In a traditional kriging interpolation, there is one server that holds coordinate 

and measurement information. The client asks a prediction for a specific location 

and the server does all the required calculations and returns an estimated value as a 

prediction. In such scheme, there is no privacy. The client does not will to disclose 

the coordinate, where it is interested in. In addition, in some region, there might be 

more than two servers that collect data for kriging purposes. As mentioned before, 

accuracy of geo-statistical methods depends on the number of sample points. 

Therefore, the servers may want to collaborate to provide better services. This 

scheme is called distributed data-based method (PKDD), where there are M servers 

S1, S2, …, SM holds private data. The servers do not want to share their private data 

in order to survive in the future. The proposed solution gives servers an opportunity 

to come together and create more accurate geo-statistical models.  

In the following section, the steps of the protocol are described. The 

computations can be grouped as off-line and online computations, where online 

performance is not that critical.  

Off-line Phase: Calculations like distance, semi-variance, binning, and 

creating kriging model are performed in this phase.  

A. Distance and semi-variance calculation: In order to create a kriging model, 

all distance and semi-variance values for locations, the where servers have 

measurements have to be calculated. In the proposed protocol, there is a total 

number of G ( ∑ 𝐺𝑠𝑖𝑛
𝑖=1  ) sample points in region A.  The servers S1, S2, …, 

SM hold GS1, GS2, …,GSM sample points, respectively. There are two cases; 

points i and j are held by the same server and points i and j are held by two 

different servers.  

I. Case I: Any two points i and j are held by same server:  The servers do 
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not need to collaborate with others to calculate distance and semi-variance 

values for points, which are stored in its database. Therefore, each server 

calculates distance and semi-variance values using Eq. (2.2) and Eq. (2.3).  

1. Each server calculates distances between points i and j, where i = 1, 2, 

…, GSk – 1,  j = i + 1, i + 2, …, GSk  and k = 1, 2, …, M. 

2. Each server calculates semi-variance  values for  points i and j, where 

i = 1, 2, …, GSk – 1,  j = i + 1, i + 2, …, GSk  and k = 1, 2, …, M. 

II: Case II: Each of any two locations i and j is held by different server:  

The servers need to collaborate with the other servers to find distance and 

semi-variance values for points, which are held by different servers. The 

distance equation, Eq. (2.2), can be expanded as follows: 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

= √𝑥𝑖
2 +  𝑦𝑖

2 + 𝑥𝑗
2 +  𝑦𝑗

2 + (−2)𝑥𝑖𝑥𝑗 + (−2)𝑦𝑖𝑦𝑗 

The server, which possesses point (xi, yi) calculates the values 𝑥𝑖
2 and 𝑦𝑖

2 by 

itself. The corresponding server, which holds point (xj, yj) calculates  𝑥𝑗
2 and 𝑦𝑗

2. 

However, they need to collaborate to calculate values   (−2)𝑥𝑖𝑥𝑗  and (−2)𝑦𝑖𝑦𝑗 .  

Similarly, they can calculate semi-variance value. The Eq. (2.3) can be expanded 

as follows: 

𝑠𝑖𝑗 =
1

2
× [𝑃𝑖 − 𝑃𝑗]

2
=

𝑃𝑖
2

2
+

𝑃𝑗
2

2
+ (−1)𝑃𝑖𝑃𝑗  

The server, which possesses point (xi, yi) calculates value 
𝑃𝑖

2

2
 by itself.  The 

corresponding server, which holds point (xj, yj) calculates 
𝑃𝑗

2

2
. However, they need 

to collaborate to calculate the values  (−1)𝑃𝑖𝑃𝑗 .  

The steps of how to calculate distance and semi-variance values are explained 

in terms of Sk. The corresponding server will be called as Sm (m = 1, 2, …, k-1, k 

+1, ..., n).  

1. Sk calculates the values 𝜉𝐾𝑆𝑘(−2𝑥𝑖)   𝜉𝐾𝑆𝑘(−2𝑦𝑖)   and 𝜉𝐾𝑆𝑘(−𝑃𝑖)  using an 

HE method and its public key KSk. Sk sends all encrypted values to Sm.  

2. Sm masks its coordinates using randomization technique in order to prevent 

Sk from learning Sk’s private data. To do so, Sm creates two arrays (r and v) of 
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random number, which has uniform distribution with zero mean and σ. In 

each array, there are GSm numbers of random numbers. Then, Sm adds random 

numbers to its coordinates values to find xj + rj and yj +vj. After calculating 

perturbed coordinates, Sm finds 𝜉𝐾𝑆k(𝑑𝑝𝑖𝑗
̅̅ ̅̅ ̅) = 𝜉𝐾𝑆k[(𝑥𝑗

2 + 𝑦𝑗
2) +

(−2𝑥𝑖)𝑥𝑗 + (−2𝑦𝑖)𝑦𝑗 + 𝑢𝑖𝑗  ] = 𝜉𝐾𝑆k(𝑑𝑝𝑖𝑗 +  𝑢𝑖𝑗) for j = i + 1, i + 2, …, GSm.  

3. Similarly, Sm produces a random array (u) using uniform distribution with 

zero mean and σ. To hide its measurement, Sm adds these random numbers. 

Sm finds 𝜉𝐾𝑆k(𝑠𝑝𝑖𝑗̅̅ ̅̅ ̅) = 𝜉𝐾𝑆k [
𝑃𝑗

2

2
+ (−𝑃𝑖)𝑃𝑗 + 𝑧𝑖𝑗] = 𝜉𝐾𝑆𝑘(𝑠𝑝𝑖𝑗 +  𝑧𝑖𝑗)  and 

sends to Sk.  

4. Sk decrypt 𝜉𝐾𝑆𝑘(𝑑𝑝𝑖𝑗 +  𝑢𝑖𝑗)  and 𝜉𝐾𝑆𝑘(𝑠𝑝𝑖𝑗 +  𝑧𝑖𝑗)  values using its private 

key and gets 𝑑𝑝𝑖𝑗 + 𝑢𝑖𝑗 and 𝑠𝑝𝑖𝑗 + 𝑧𝑖𝑗. 

5. Sk has all necessary values to compute distances and semi-variance value for 

points, which are held by Sm. 

6. Sk repeats these process described above with other servers.  

7. The servers change their roles and all servers get distance and semi-variance 

values for all points in the region A to create a kriging model.  

B. Binning and Model Creation: After obtaining all required distance and semi-

variance values to create a kriging model, the servers execute the following 

steps:  

1. They agree on the binning methodology.  

2. Next, they calculate average distance and semi-variance values for each bin.  

3. Each server then plots average distance and semi-variance using one of the 

functions used in kriging models. They come up with a formula to describe 

the relationship between distance and semi-variance. Due to random data, 

which are used to hide coordinate and measurement values, each server might 

end up with a slightly different formula. Semi-varianceS1 = fS1 (distance), 

Semi-varianceS2 = fS2 (distance), …, Semi-varianceSn = fSn (distance), 

respectively.     

4. Each server calculates Γ matrices using the semi-variance formula and 

distance values for all points (G = ∑ 𝐺𝑠𝑖𝑛
𝑖=1   ). Γ is a (G +1) × (G +1) 

symmetric matrix. The last row and column are filled with 1’s except the 
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diagonal element. The value of diagonal element is 0.  

5. They finally find Γ-1 matrices to use in estimation phase, as explained below.   

Online Phase: In this phase, the client C sends the coordinate for which it 

needs a prediction to the MS (It is assumed that S1 acts as MS, but any server may 

act as MS). The coordinate value is considered as private data of the client. The 

servers, which have measurement values in the same region calculate kriging 

weights and produce the final estimation collaboratively.  

A. Estimating Weights: The servers and the client C calculates weights, as 

described below:  

1. The C utilizes OT to hides its true location q. Therefore, it produces n-1 bogus 

coordinate values and stores true location in n-1 bogus coordinate. Then, it 

permutes n location and sends them to the MS.  

2. The MS forwards all n coordinate values to other servers. 

3. For each location z = 1, 2, …, n, the servers perform the followings: 

a. Each server finds distances between z and each coordinate in their database 

using Eq. (2.2). 

b. The servers S1, S2, …, Sn encrypt each distance using an HE scheme with 

their public key KSi and send them to other servers.  

c. The MS finds the related semi-variance values for distances received from 

servers S2, S3, …, Sn utilizing Semi-varianceS1 = fS1(distance) in the 

encrypted form using an HE scheme.  

d. The MS then creates the matrix g, which is a (G + 1) × 1 matrix including 

the semi variances in encrypted form estimated between z and each 

measured location. 

e. Since the MS has the matrix  Г𝐒𝟏
−𝟏 and the matrix g (including encrypted 

values), it can estimate the kriging weights (λ matrix) using Eq. (2.5) by 

employing an HE scheme. Notice that λ is a (G + 1) × 1 matrix including 

encrypted weights, which are encrypted with public keys of server KS2, 

KS3, …, KSn. 

B. Prediction Estimation:  For each location z = 1, 2, …, n, the servers perform the 

followings: 
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1. The MS sends corresponding weights, which are encrypted using public keys 

to servers S2, S3, …, Sn.  The servers decrypt encrypted values using their 

private key and gets λSmj.  

2. They perform scalar dot products, defined in Eq. (2.6), to calculate partial 

aggregate of the prediction for location z (referred to as PPSmz).  PPSmz can 

be calculated as follows: 

𝑃𝑃𝑆m𝑧 =  𝛌𝑆m · 𝐏𝑆m =  ∑ 𝛌𝑆m𝑗 × 𝐏𝑆m𝑗

𝐺𝑆𝑚

𝑗=1

 

3. Then, they compute 𝜉𝐾𝐶(𝑃𝑆m𝑧) using client’s public key KC and send to the 

MS.  

4. The MS similarly calculates partial aggregate of the prediction for location z 

(referred to as PPS1z) in encrypted form by performing a scalar dot product 

using an HE scheme with client’s public key KC. PPS1z can be calculated as 

follows: 

𝜉𝐾𝐶(𝑃𝑃𝑆1𝑧) = 𝜉𝐾𝐶(𝛌𝑆1 · 𝐏𝑆1) =  𝜉𝐾𝐶 [∑ 𝛌𝑆1𝑗 × 𝐏𝑆1𝑗

𝐺𝑆1

𝑗=1

] 

5. The MS computes  𝜉𝐾𝐶(𝑃𝑃𝑧) = 𝜉𝐾𝐶(𝑃𝑃𝑆1𝑧) + 𝜉𝐾𝐶(𝑃𝑃𝑆2𝑧) +  … +

𝜉𝐾𝐶(𝑃𝑃𝑆n𝑧) when it gets all prediction values from all servers.  

6. The C gets the final prediction value for its real location q using OT. It 

decrypts using its private key and obtains prediction Pq. 

 

6.4. Performance and Privacy Analysis 

 

In this section, PKDD scheme is analyzed with respect to performance and 

privacy. PKDD scheme brings extra storage, communication, and computation cost 

to assure privacy between collaborating parties. These costs can be divided into two 

parts: off-line and online. In real life scenarios, off-line costs are less crucial than 

online costs. Moreover, these online constraints in kriging are not too rigid as 

compared to other online protocols such as recommender systems. In the last 

subsection, PKDD is analyzed in terms of privacy. 
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6.4.1.  Storage cost analysis 

 

PKDD scheme uses randomization, OT, and encryption to provide privacy. 

Randomization method increases storage cost. Parties use random numbers to 

disguise coordinate and measurement values. Each party creates three arrays storing 

random numbers for xi, yi, and Pi. Each array has a length of GSi, where i = 1, 2, …, 

m. In total, randomization requires  3 × ∑ 𝐺𝑠𝑖𝑚
𝑖=1  = 3 × 𝐺 extra storage area. In 

other words, storage costs for random numbers are in the order of O (G). In addition 

to randomization, parties need to store kriging model parameters. For Γ matrix, they 

need m × (G + 1) × (G + 1) and for λ vector, they need m × (G + 1) × 1 storage 

area. In total, extra storage requirement is 3 × G + m × (G + 1) × (G + 1) + m × 

(G + 1) ×1, which is in order of O (mG2), where m is much smaller than G.  

 

6.4.2. Communication cost analysis 

 

In real life applications, kriging requires two communications between client 

and server. The client sends the coordinate, where it needs a prediction and the 

server does all the required calculations and sends back a prediction value to the 

client. If privacy is necessary between collaborating parties, the servers are 

supposed to establish extra communications. During off-line phase, they have to 

establish 2 × (𝑚 − 1) × ∑ 𝐺𝑠𝑖𝑛
𝑖=1  = 2 × (𝑚 − 1) × 𝐺 , which is in order of O 

(mG) communications between each other. In online phase, the client performs OT, 

which can be conducted in poly-logarithmic time (in n).  Therefore, the servers have 

to make × 𝑛 + 2𝑛 × (𝑚 − 1) × 𝐺 + 𝑛 × 𝐺 , which is in order of O (mnG). In total, 

number of communications in PKDD are in the order of O (mnG). G is always much 

bigger than both m and n. Therefore, it requires O (G) extra communications.   

 

6.4.3. Computation cost analysis 

 

The proposed scheme has two phases: off-line and online. Accordingly, it is 

scrutinized with respect to two phases. The costs of some operations such as random 

number generation, subtractions, and additions are negligible. In the off-line phase, 
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order of O (GS1GS2, …,GSn) encryption should be conducted. In the similar manner, 

the decryption is in the order of O (GS1GS2, …, GSn). Moreover, additional 

computations occur due to model creation for each server. If privacy is not a 

concern, a model creation is adequate to provide a prediction; however, the 

proposed method requires n different model creations for n parties. Thus, 

computation costs increase by n times.   

The online phase demands order of O (nG2) encryptions. Likewise, number 

of decryptions is in the order of O (nG2). Additionally, number of multiplications 

increases by O (n) times because predictions are estimated for n bogus locations 

rather than just one. In the final step of the protocol, an OT is conducted. However, 

computation cost of OT can be omitted. 

 

6.4.4. Privacy analysis 

 

The proposed scheme should verify that the private data of both client and the 

servers should be kept secret. Locations and corresponding measurements held by 

the servers and the coordinate for which the client asks prediction and result of 

interpolation method are assumed as confidential data.  It is also assumed that the 

servers and the client are semi-honest. They follow the protocol steps; however, 

they try to learn as much information as possible about each other’s private data. 

The client C composes n-1 bogus coordinates and hides its true location 

among them and uses OT. The probability of guessing its true coordinate is 1 out 

of n.  If n is chosen a bigger value, it increases privacy, but causes more computation 

cost. A reliable n value can be chosen to provide adequate privacy. The final result 

is also private data of the client. Therefore, the servers should not have an idea of 

such value. Since encryption enforces private key must be known by the client only, 

the servers cannot decrypt the cipher text, which is encrypted by client’s public key. 

Hence, the servers cannot learn the final prediction value. The servers should hide 

their coordinates and measurements from others servers and the client. The client 

gets an aggregate value, which does not give information about the servers’ private 

data. The servers use random perturbation and encryption methods to hide 

confidential data. Random perturbation methods change the coordinate value for 
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distance calculation. Random values generated from a uniform distribution over a 

reliable range are added to coordinate and measurements. The servers cannot find 

the exact coordinate and measurements of other servers. Finally, aggregate results 

also prevent the servers from deriving useful information about each other’s data. 

 

6.4.5. Experiments and accuracy analysis 

 

6.4.5.1. Experiment I: Effects of collaboration 

 

It is hypothesized that collaboration between parties provide more accurate 

and dependable prediction. In order to prove this hypothesis, different sets of 

experiments are conducted using real data. It is also assumed that there are one, 

three, four, or five parties. In one party case, all measurements are held by one party. 

In three-party case, there are three parties that hold one third of all measurements. 

The distribution is held randomly. The same methodology is followed for the four 

and five-party case. For all cases, G is varied from 5 to 50. The results of RMSE 

and MAE values are presented for the Illinois data set in Table 6.7 and 6.8. Table 

6.9 and 6.10 show the RMSE and the MAE values for the Colorado data set.   

 

Table 6.7.  Effects of collaboration on RMSE with varying G values (Illinois data set) 

 

G 5 10 15 20 30 40 50 

Integrated 0.1207 0.1181 0.1185 0.1181 0.1183 0.1199 0.1208 

3-Party 0.1353 0.1330 0.1321 0.1321 0.1323 0.1323 0.1326 

4-Party 0.1380 0.1340 0.1333 0.1334 0.1329 0.1331 0.1336 

5-Party 0.1404 0.1357 0.1345 0.1337 0.1333 0.1337 0.1340 

 

Table 6.8. Effects of collaboration on MAE with varying G values (Illinois data set) 

 

G 5 10 15 20 30 40 50 

Integrated 0.0905 0.0889 0.0885 0.0877 0.0882 0.0898 0.0905 

3-Party 0.1005 0.0984 0.0982 0.0984 0.0986 0.0988 0.0991 

4-Party 0.1036 0.1005 0.1006 0.1008 0.1007 0.1008 0.1012 

5-Party 0.1063 0.1022 0.1014 0.1013 0.1012 0.1014 0.1017 
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Table 6.9. Effects of collaboration on RMSE with varying G values (Colorado data set) 

 

G 5 10 15 20 30 40 50 

Integrated 0.3165 0.3096 0.3092 0.3096 0.3098 0.3103 0.3113 

3-Party 0.3382 0.3317 0.3306 0.3306 0.3307 0.3317 0.3317 

4-Party 0.3476 0.3368 0.3344 0.3350 0.3368 0.3381 0.3385 

5-Party 0.3499 0.3378 0.3362 0.3363 0.3394 0.3427 0.3456 

 

Table 6.10. Effects of collaboration on MAE with varying G values (Colorado data set) 

 

G 5 10 15 20 30 40 50 

Integrated 0.2260 0.2205 0.2201 0.2201 0.2205 0.2206 0.2207 

3-Party 0.2419 0.2365 0.2359 0.2360 0.2362 0.2369 0.2369 

4-Party 0.2505 0.2427 0.2426 0.2434 0.2449 0.2458 0.2464 

5-Party 0.2528 0.2464 0.2462 0.2465 0.2488 0.2517 0.2544 

 

The results shown in the tables verify the hypothesis. Collaboration definitely 

provides more accurate predictions. In each column, accuracy is getting worse for 

varying G values. Therefore, if geo-statistics methods are based on more 

measurements, they produce better results with respect to accuracy. The RMSE 

value improves 13% and the MAE value increases 15% for the Illinois data set 

when G is 20. 

  

6.4.5.2. Experiment II: Overall performance of the proposed scheme 

 

The second sets of experiments analyze overall effects of randomization 

method on both coordinates and measurement values. PKDD scheme utilizes 

randomization method to disguise coordinate values. However, randomization may 

affect accuracy due to adding random numbers. On the contrary, HE and OT do not 

change accuracy.  
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Table 6.11. Overall performance with varying δ values for the Illinois data set (RMSE) 

 

 0.05 0.15 0.25 

Integrated 0.1200 0.1424 0.1633 

3-Party 0.1313 0.1527 0.1828 

4-Party 0.1328 0.1529 0.1859 

5-Party 0.1334 0.1568 0.1899 

 

Table 6.12. Overall performance with varying δ values for the Illinois data set (MAE) 

 

 0.05 0.15 0.25 

Integrated 0.0901 0.1102 0.1266 

3-Party 0.0986 0.1174 0.1432 

4-Party 0.1018 0.1194 0.1470 

5-Party 0.1022 0.1224 0.1503 

 

Table 6.13. Overall performance with varying δ values for the Colorado data set (RMSE) 

 

 0.05 0.15 0.25 

Integrated 0.3092 0.3228 0.3376 

3-Party 0.3369 0.3502 0.3615 

4-Party 0.3380 0.3527 0.3639 

5-Party 0.3394 0.3531 0.3647 

 

Table 6.14. Overall performance with varying δ values for the Colorado data set (MAE) 

 

 0.05 0.15 0.25 

Integrated 0.2205 0.2339 0.2487 

3-Party 0.2414 0.2543 0.2656 

4-Party 0.2470 0.2567 0.2685 

5-Party 0.2487 0.2583 0.2699 

 

As expected, randomization makes accuracy worse. Adding a random number 

over the range [-0.05; 0.05] does not change the RMSE and the MAE values for the 

Colorado data set when G is 15. If the range is chosen over the range [-0.25; 0.25], 

accuracy decreases 9% for the same G value. However, the RMSE value is less than 
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5-party and the MAE value is equal to 5-party case. Therefore, if the range is chosen 

less than 0.25, PKDD method will produce better result than 5-party case. In 

conclusion, adding random numbers, if they are chosen from an acceptable range, 

does not significantly affect accuracy.   

 

6.5. Conclusion 

 

To sum up, insufficient measurements lead to inaccurate model creation. If 

the kriging model generated using less data, as understood from the results of the 

experiments, accuracy of the model is not reasonable.  Therefore, companies should 

be encouraged to collaborate to join their data. However, their financial futures 

depend on such valuable data. The proposed solutions fill this gap. They enable 

companies to create a better kriging model based on measurements of two or more 

parties without revealing their private data. The privacy of the client is also taken 

into consideration. The coordinate and final prediction values are accepted as 

private data of the client. The servers cannot learn the coordinate for which the 

client needs prediction.  
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7. CONCLUSIONS AND FUTURE WORK 

 

Without privacy concerns, it is relatively simple task to offer predictions 

using either kriging or inverse distance weighting interpolation techniques. In 

traditional inverse distance weighting and kriging methods, there is no privacy 

concern. However, coordinate values, related measurements, estimated predictions, 

and their locations are usually considered confidential. Revealing such data might 

cause privacy violations and financial losses. Therefore, involving parties do not 

want to disclose their private and valuable data to each other. It then becomes 

imperative to provide predictions using interpolation methods while preserving 

confidentiality.  

In this dissertation, privacy-preserving schemes are applied to kriging and 

inverse distance weighting interpolation techniques in order to estimate 

recommendations without deeply jeopardizing the involving parties’ privacy. 

Homomorphic encryption, 1-out-of-n oblivious transfer protocol, and 

randomization are used to achieve confidentiality. The proposed methods protect 

the clients’ and the servers’ privacy. Locations and their related measurements held 

by the servers and estimated prediction and its coordinate held by the client are 

considered as confidential. Each scheme is analyzed in terms of privacy, 

supplementary costs, and accuracy. Experiments on real data are conducted to show 

whether the proposed methods provide accurate predictions or not.  

The proposed schemes should be able to provide accurate predictions 

efficiently while preserving confidentiality. In other words, there are basically three 

main goals that should be provided by the proposed methods. They are known as 

privacy, accuracy, and efficiency. Efficiency or performance requirements in 

interpolation methods are not rigid. Such methods usually do not offer 

recommendations with rigid limitations. Hence, unlike online recommendation 

schemes like collaborative filtering, efficiency or online performance is not that 

critical for interpolation techniques. The proposed methods should not cause 

significant accuracy losses due to privacy-preserving measures. Notice that privacy 

concerns usually make accuracy worse. The proposed methods are supposed to 

protect privacy without causing significant accuracy losses. Thus, the proposed 
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methods should estimate recommendations with decent accuracy while preserving 

confidentiality. Finally, the methods should not cause privacy violations. They are 

expected to protect privacy of each participating companies.  

In geo-statistical applications, partitioned data might occur due to limited 

resources like budget, time, and so on. Data collectors might not gather enough 

measurements when they have not sufficient budget and time. In case of split data, 

it is challenging for data owners to provide geo-statistics methods because they do 

not want to share their confidential data. The proposed methods overcome this 

obstacle by allowing involving parties to estimate predictions without jeopardizing 

privacy. The recommended solutions are explained for providing partitioned and 

distributed data-based schemes with privacy. It is shown that the methods are secure 

and supplementary costs due to privacy measures do not significantly affect overall 

performance. Empirical outcomes show that the methods can produce promising 

predictions. 

The proposed techniques are analyzed with respect to additional costs like 

storage, communication, and computation costs in order to show their efficiency. 

As shown by such analyses, the methods are able to efficiently provide predictions. 

In addition to performance analysis, they are also investigate in terms of privacy. 

Privacy analyses demonstrate that the schemes are secure; and they do not violate 

privacy. Finally, real data-based empirical outcomes show that the proposed 

methods provide accurate recommendations. Even if some privacy-preserving 

measures cause accuracy losses, the methods are still able to offer predictions with 

decent accuracy. 

Kriging method generally produces more accurate predictions than inverse 

distance weighting. To protect confidential data of both client and servers, 

uniformly randomly chosen random numbers are added to power values in inverse 

distance weighting solutions. Similarly, noise data are added to coordinate values 

in order to hide servers’ private data. As observed from the experiments, kriging 

results are worse for the same range of random numbers. However, if random 

numbers are chosen from a smaller range for kriging method, accuracy will be 

enhanced. A reasonable distribution range could be used without revealing 

confidential data.  
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There are several geo-statistics methods described in the literature. Future 

direction is to explore each geo-statistics methods as done for IDW and kriging. 

Therefore, there remains work to propose solutions for central-, partitioned- and 

distributed data-based schemes for each one of the geo-statistics methods. The 

proposed solutions for kriging and inverse distance weighting in this dissertation 

and future studies that will be presented in the future allow organizations to 

compute geo-statistics methods in a private way so that their outputs will be more 

accurate and dependable.  
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