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A major challenge for recommender systems is to generalize to cold-start 

prediction tasks, where no behavior data is available for the active user or the 

item. Content-based filtering is able to attack to this problem, while collaborative 

filtering ends up with accurate recommendations where high quality feedback is 

available. 

 Considering the domain of a prediction task can vary, an ensemble 

learning-based hybrid recommender model is described. The combined model 

learns separate linear combinations from validation data sets representing each 

domain: high quality feedback available, user or item is unseen. The problem is 

illustrated by creating groups of validation and test data sets accordingly, and 

referring to three kinds of complementary recommenders: matrix factorization 

based, user demographics, and item content-based. Experiments demonstrate that 

using those separate validation data sets; the hybrid recommender model adjusts 

weights such that it converges to the individual recommender that performs the 

best on a domain. 
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ÖLÇEKLENEBİLİR TAVSİYE SİSTEMİ 
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Fen Bilimleri Enstitüsü 
Bilgisayar Mühendisliği Anabilim Dalı 

 
Danışman: Yard. Doç. Dr. Özgür YILMAZEL 

2013, 36 sayfa 
 

Tavsiye sistemlerinin temel zorluklarından bir tanesi, kullanıcı ya da ürün 

hakkında yeterli davranış bilgisi bulunmayan soğuk-başlangıç verisine 

genellemedir.  İçerik tabanlı süzgeçleme bu problemi çözebilse de, işbirlikçi 

süzgeçleme yöntemleri, yeterli davranış verisi olduğunda, daha  hatasız 

tavsiyelerde bulunur. 

Bir tavsiye sorgusunun farklı etki alanlarından birine ait olabileceği göz 

önünde bulundurularak, küme öğrenme tabanlı bir melez tavsiye sistemi 

anlatılmıştır. Bu birleşik yöntem, her biri farklı etki alanlarını (yüksek kalite 

geribildirim verisi mevcut, kullanıcı soğuk-başlangıç durumunda, ürün soğuk-

başlangıç durumunda) temsil eden doğrulama veri kümeleri üzerinde doğrusal 

kombinasyonlar öğrenir. Bu problem, uygun şekilde doğrulama ve test verisi 

oluşturularak; daha sonra üç çeşit tümleyici tavsiye sistemi (matris çarpanlarına 

ayırma tabanlı  işbirlikçi süzgeçleme, ürün içeriği tabanlı süzgeçleme, kullanıcı 

demografisi tabanlı süzgeçleme) kullanılarak gösterilmiştir. Farklı doğrulama veri 

kümeleri kullanılarak yapılan deneyler; melez yöntemin, o etki alanında en iyi 

doğruluğa ulaşan tek tavsiye sistemine yakınsayacak şekilde ağırlıklandırma 

öğrendiğini göstermektedir. 

 

Anahtar Kelimeler: Tavsiye Sistemi, Genelleme, Melez Tavsiye 



 iii 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to my advisor, Assist. Prof. Dr. Özgür 

YILMAZEL, who has guided me with his knowledge throughout this research. 

Without his patience and support, this thesis could not be completed. 

Secondly, I would like to thank to the members of the thesis committee, 

Assoc. Prof. Dr. Hüseyin POLAT and Assist. Prof. Dr. Kamil ÇEKEROL, for 

accepting to be in the committee, and for their invaluable reviews, corrections, 

and advices to improve this thesis. 

Last but definitely not least, I would like to thank to my parents and 

siblings for trusting me throughout my life, supporting me patiently, and 

encouraging me in my most difficult times. I am one of the luckiest people in the 

world for having them.  

 

Gökhan Çapan 

July, 2013 

 

 



 iv 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................. i 

ÖZET .......................................................................................................... ii 

ACKNOWLEDGEMENTS ..................................................................... iii 

TABLE OF CONTENTS ......................................................................... iv 

LIST OF FIGURES .................................................................................. vi 

LIST OF TABLES ................................................................................... vii 

 

1. INTRODUCTION 1 

 

2. RECOMMENDATION TECHNIQUES AND CHALLENGES 4 

2.1. Recommender System Definition ..................................................... 4 

2.2. Collaborative Filtering ...................................................................... 4 

2.2.1. Nearest Neighbor-based Collaborative Filtering ....................... 5 

2.2.2. Matrix Factorization Based Collaborative Filtering .................. 8 

2.3. Cold-start Problem and Content-based Filtering ............................ 10 

2.4. Hybrid Recommendation ................................................................ 11 

 

3. LEARNING ENSEMBLES OF RECOMMENDERS 13 

3.1. Recommender Systems Blending ................................................... 14 

 

4. ELEMENTS OF THE HYBRID MODEL 16 

4.1. Item Content-based Filtering .......................................................... 16 

4.2. User Demographics-based Filtering ............................................... 18 

 

  



 v 

5. DOMAIN-ADAPTIVE HYBRID MODEL 19 

5.1. A Linear Stacking Based Model ..................................................... 19 

5.2. Hybrid Recommendation of Varying Weights ............................... 19 

5.3. Relation to Other Ensemble Techniques ........................................ 22 

 

6. EXPERIMENTAL STUDY 23 

6.1. Preparing Experimentation Data ..................................................... 23 

6.2. Learning Strategy ............................................................................ 25 

6.3. Experimental Results ...................................................................... 26 

6.4. Scalability and Performance ........................................................... 30 

 

7. CONCLUSIONS AND FUTURE DIRECTIONS 31 

 

REFERENCES ......................................................................................... 32 

	
  

 
  



 vi 

LIST OF FIGURES 

5.1 Hybrid recommendation of varying weights ....................................... 21	
  

6.1 RMSE per numbers of iterations on different domains ....................... 28	
  

 

 
  



 vii 

LIST OF TABLES 

 

6.1 Domain-specific data splits ............................................................................. 23	
  

6.2 Content features .............................................................................................. 24	
  

6.3 Parameters and number of iterations for base recommenders ........................ 25	
  

6.4 Hybridization weights for different domains .................................................. 26	
  

6.5 RMSE of base recommenders and the hybrid model for each domain ........... 27	
  

6.6 RMSEs of different recommenders in half cold-start domain ........................ 29	
  

6.7 Training running times of different recommenders per iteration .................... 30	
  

 
 



 1 

1. INTRODUCTION 

Recommender systems automate personalized discovery for individuals. 

Users are recommended a small, ranked subset of a very large set of previously 

unseen items, where ranking is based on the predicted interest of theirs in those 

items. To predict that interest, a typical recommender infers a function that scores 

a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair. 

One way to infer the user-item scoring function is collaborative filtering, 

which leverages community’s past behavior. Sources other than collaborative 

activity to score a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair include content of users’ favorite items, user 

demographics, and contextual information. Item content-based recommender 

predicts the score based on content characteristics of the items that the user 

positively rated before. User demographics-based estimates how likely the active 

item may fit the user characteristics. Another technique is contextual 

recommendation, where the idea is scoring a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair in a particular 

context, which may depend on location, time, certain task, and so on.  

Contextual recommendation can be added on an existing recommender, but 

content-based recommendation alternates collaborative filtering in some ways. 

Collaborative filtering is famous for its superior prediction accuracy [1], and 

ability to discover serendipitous recommendations. However, problems occur 

when behavior data lack high-quality feedback, that is to say, collaborative 

filtering cannot generalize to new users or items –known as the cold-start 

problem. Content-based filtering techniques can generalize to new data –as long 

as the new entity can be represented by its content or demographic 

characteristics– but they are limited where collaborative filtering is strong: they 

cannot predict as accurate as collaborative filtering under high-quality feedback 

domain, and they tend to over-specialize to the items very similar to a user history 

in content–which obviously do not help a user much, except certain use cases. In 

fact, over-specialization of content-based filtering decreases the system quality so 

much that recommending from a small category all the time dissatisfies, even 

frustrates the users [2]. 
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Still, when she wants to deploy a recommender in production, a 

practitioner would desire the system to generalize to new users and items. 

Consider a successful Web 2.0 application. The application will hopefully attract 

new users, and new items will be added. The ideal recommender system in this 

case, should be able to score a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair even when no behavioral data is 

available for one of the entities, at the same time leverage superior accuracy of 

collaborative filtering when high-quality feedback is available. As content-based 

and collaborative filtering complement each other, combining those techniques –

by merging ranked recommendation lists, averaging prediction scores of different 

recommenders as 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚  scoring function, sequentially running different 

recommenders etc.– results in a hybrid scheme that might produce accurate and 

serendipitous recommendations; and preserve the generalization capability at the 

same time. 

Consider a weighting-based hybrid recommender that combines the scores 

of collaborative, item content-based, and user demographics-based filtering 

techniques. Let this system learn an optimal weighting scheme on a validation 

data set. That recommender, when it is deployed in production, is going to 

encounter with various query domains: high-quality feedback is available for both 

user and item, user is cold-start, and item is cold-start. The problem with the 

hypothetical hybrid recommender is that the weighting scheme is identical for all 

these domains; even though collaborative filtering should outweigh others in the 

first domain, user demographics-based in the second, and item content-based in 

the third.  

The hypothetical weighting-based recommender was an example of 

ensemble learning, particularly linear stacking [3]: learning a linear combination 

of base learners (meta-learning) on a validation data set. We may further enhance 

the ensemble, for the combination to adapt to different domains. In stacking, we 

can incorporate some meta-features to the weighted combination, such as number 

of ratings. Mixture of experts model [4] on the other hand, defines a weighting 

scheme –of complementary base learners– that depends on input query. So if the 

domain of the 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚  pair is observed and used for weighting scheme 
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selection, we can apply a mixture of experts model to achieve domain-adaptive 

recommendation. 

In this thesis, we survey the recommendation techniques those attempt to 

generalize to new users and items while preserving high accuracy of collaborative 

filtering-based recommender systems. In addition, we describe an ensemble 

recommendation approach (a method that lies between mixture of experts and 

stacking), hybrid recommendation of varying weights, and hypothesize that it can 

adapt to the input domain. The proposed technique requires that: 

- Domains, say set 𝐷, are identified upfront  

- Validation data sets, each of which reflects a particular domain, are 

created 

- |𝐷| number of recommender techniques, each of which is expected to 

perform best on one identified domain, are defined 

- Domain of a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 query can be observed at recommendation time 

Different recommenders are learned on the same training data set, and varying 

weights are inferred on mentioned validation data sets. Appropriate weighting 

scheme is selected at recommendation time. 

We test the hypothesis on a Java library that can perform matrix 

factorization-based collaborative filtering, user demographics-based filtering, and 

item content-based filtering models. We examine if the hybrid scheme converges 

to the best-performing base recommender technique in each domain, and 

outperforms all in the production case, where the test data set contains 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 

queries from different domains.  

This thesis is organized as follows: Section 2 surveys related 

recommendation techniques and approaches to improve recommender system 

generalization. In Section 3, we describe the recommendation algorithms we use, 

and the hybrid model is introduced in Section 4. In Section 5, we describe the 

experimentation methodology and present the results. Finally, Section 6 provides 

a discussion for the study, and provides future directions. 
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2. RECOMMENDATION TECHNIQUES AND CHALLENGES 

2.1. Recommender System Definition 

For a system with 𝑚 users and 𝑛 items, suppose 𝑌!×! is a sparse matrix 

where 𝑦!" is the interest indicator of user 𝑖 on item 𝑗. A recommender system aims 

to predict the missing values of the 𝑌 matrix, which may be numerical, categorical 

(binary or multi-class) or ordinal (For notational convenience, we are going to 

denote prediction for a missing interest indicator for 𝑖, 𝑗  as 𝑦!"). In other words, a 

recommender is a function 𝑓 ∶   𝑈×𝐼 → 𝑇, where 𝑈 is the set of users, 𝐼 is the set 

of items, and 𝑇 is the set of target values; for example, an interval [0,5], a set of 

categories {𝑐!, 𝑐!}, or a set of ordinal values {𝑝𝑜𝑜𝑟, 𝑓𝑎𝑖𝑟,𝑔𝑜𝑜𝑑,𝑔𝑟𝑒𝑎𝑡}. This 

function is an approximation for actual interest indicators. Besides the core-

recommending job (predicting rating for a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚  pair or producing top 𝑘 

recommendations for a user 𝑢), a recommender system has some other use cases, 

including finding most similar items to an item and finding most similar users to a 

user. 

The success of a recommender is measured by various methods [5]. 

Perhaps the most important is measuring accuracy, that is, how accurate the 

recommender estimates the unknown ratings, compared to the original rating 

matrix. 

2.2. Collaborative Filtering 

Collaborative filtering predicts the unknown degree of interest of user 𝑢 in 

item 𝑖 based on other users’ declared interest in 𝑖. While recommending to user 𝑢, 

other people in the system affect the prediction for 𝑢, proportional to how much 

their tastes are similar to 𝑢’s. 

Early examples of recommender system research, particularly collaborative 

filtering as an information filtering technique, include the proposed solution of 

Goldberg et al. [6] to reduce the email overload, Tapestry; idea of producing 

recommendations based on similarities of the target user’s and other users’ 
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interest profiles, and a music album/artist recommender system implementation, 

Ringo [7]; GroupLens, an architecture of collaborative filtering on Usenet news 

[8]. Recommender systems have had a wide area of application in industry, too. 

Many successful businesses such as Amazon1 (the popular e-commerce site) and 

Netflix2 (the DVD rental service) trust recommender systems as a major part of 

their user interaction process. Netflix even organized a recommender system 

challenge to improve the accuracy of their proprietary recommender [9]. Front 

runners of the challenge state that some combination of multiple prediction 

methods, including neighborhood based and matrix factorization based, give the 

best results; since it is the ensemble of different approaches learning different 

aspects of data [10-13]. 

2.2.1. Nearest Neighbor-based Collaborative Filtering 

Neighborhood-based method is the intuitive way of producing 

collaborative filtering based recommendations. Concretely, a user neighborhood-

based recommender computes the neighborhood of the active user 𝑢, and then to 

predict her rating for item 𝑖, it outputs a weighted average of the ratings of the 

users in her neighborhood on that specific item [8, 14, 15].  Similarly, an item 

neighborhood based recommender computes the degree of similarity between the 

target item 𝑖 and the set of items in active user 𝑢’s history, and then outputs a 

weighted average of the ratings of 𝑢 on those items [16].  

To describe neighborhood-based recommenders formally, let us define 

some notation, additional to the aforementioned set. The similarity between users 

𝑢  and 𝑣,  and items 𝑖  and 𝑗  will be denoted by 𝑠𝑖𝑚(𝑢, 𝑣)  and 𝑠𝑖𝑚(𝑖, 𝑗) 

respectively. Note that the actual rating of user 𝑢 to item 𝑗 is 𝑦!" , while the 

predicted rating of 𝑢  to item 𝑖  is 𝑦!" .  An example similarity measure for 

computing pairwise user similarity is the Pearson correlation coefficient [8, 14, 

15], which is: 
                                                

1 http://www.amazon.com 

2 http://www.netflix.com 



 6 

 𝑠𝑖𝑚(𝑢, 𝑣) =   
𝑦!" −   𝑌! 𝑦!" −   𝑌!!∈!!,!

𝑦!" −   𝑌! !
!∈!!,! 𝑦!" −   𝑌! !

!∈!!,!

 (2.1)  

 

Here 𝐼!,! denotes the items those 𝑢 and 𝑣 both rated, and 𝑌!  and 𝑌!   denote 

the mean ratings for users 𝑢  and 𝑣 , respectively. To compute the similarity 

between two items 𝑖 and 𝑗, one can use adjusted cosine similarity[16], which is: 

 

 𝑠𝑖𝑚(𝑖, 𝑗) =   
𝑦!" −   𝑌! 𝑦!" −   𝑌!!∈!!,!

𝑦!" −   𝑌! !
!∈!!,! 𝑦!" −   𝑌! !

!∈!

 (2.2)  

 

where 𝑈!,!  is the set of users who rated both 𝑖 and 𝑗. 

With user similarities, one can compute the predicted rating of user 𝑢 to 

item 𝑖 with the following equations. Following equations compute the predicted 

rating with user neighborhood and item neighborhood based techniques, 

respectively [15, 16]. 

 

 𝑦!" = 𝑌! +
𝑠𝑖𝑚 𝑢, 𝑣 𝑦!" − 𝑌!!∈!!

𝑠𝑖𝑚(𝑢, 𝑣)!∈!!
   (2.3)  

 

 𝑦!" = 𝑌! +
𝑠𝑖𝑚 𝑖, 𝑗 𝑦!" − 𝑌!!∈!!

𝑠𝑖𝑚(𝑖, 𝑗)!∈!!
   (2.4)  

 

 Here 𝑈! represents the set of users who rated item 𝑖, where 𝐼! means those 

items rated by user 𝑢. Following is the list of alternative strategies of populating 

𝑈!s and 𝐼!s: 

- One may allow 𝑈!  include all users who rated 𝑖, excluding the users 

having a zero (or undefined) similarity with the active user 𝑢. Similarly, a 

𝐼! may be a subset of all items rated by 𝑢, each of which has a non-zero 

similarity with the target item 𝑖. 

- The first option may be constrained by users/items whose similarities 

with the active user/target item are above a threshold value. 
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- Other alternative is to keep only the top 𝑘 users/items in terms of their 

similarities with the active user/target item in the sets mentioned in the 

first option. 

Neighborhood based collaborative filtering uncovers relationship those 

other models sometimes cannot. In addition, recommendations from a 

neighborhood model are explainable, that is, the system can tell its users why they 

saw the recommended items [17].  

However, there are some liabilities. Computing the neighborhood and 

predicting the score upon a recommendation request is expensive; and pre-

computing similarities may be an option. But they cannot provide up-to-date 

recommendations if this pre-computation phase is infrequent. Item-based 

neighborhood models are more advantageous since item sets are relatively static, 

and one can at least use the updated user history on online rating prediction phase. 

Even if the pre-computation method works, neighborhood models are still costly 

with frequent updates on the model. 

The pre-computation of similarities step will, for each user, loop through 

the candidate neighbors of that user, and compute the similarity. Since the 

similarity of two users 𝑢 and 𝑣 is non-zero only if there is at least one item that 

they both have rated, one can only consider the candidates, rather than all other 

users. For users who rated a little number of items, this approach can result in a 

huge performance gain.  

In summary, neighborhood-based collaborative filtering has advantages, 

yet it is limited: 

- Generalization: 

A neighborhood based collaborative filtering system cannot compute the 

user neighborhood if the user has not rated an item before. Besides, it 

cannot recommend an item if the item has not been rated by any user yet. 

- Performance: 

Neighborhood computation is expensive, and there is a trade-off between 

keeping the recommender up to date and avoiding neighborhood 

computation at recommendation time. Item neighborhood-based 
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recommenders are more advantageous than the user neighborhood based 

ones in that case. 

2.2.2. Matrix Factorization Based Collaborative Filtering 

Given a matrix 𝑌, matrix factorization is the process where 𝑌 is factorized 

into two matrices, 𝑊 and 𝐻, such that 𝑌   ≈𝑊𝐻. Given 𝑌 is an 𝑚×𝑛 matrix, 𝑊 

and 𝐻  are 𝑚×𝑟  and 𝑟×𝑛  matrices, respectively. Generally 𝑟 << 𝑚𝑖𝑛 𝑚,𝑛 , 

implying that the two factor matrices together construct a compressed version of 

𝑌 [18]. To compute 𝑌!" from 𝑊 and 𝐻, the following dot product is used: 

 𝑌!" ≈   𝑊!𝐻!
! = 𝑊!"×𝐻!

!"

!

!!!

 (2.5)  

For performing collaborative filtering, the sparse interest matrix 𝑌 is decomposed 

into two factor matrices, Α!"# and Β!"#. The Α matrix is the factor matrix for 

users, and the Β matrix is the factor matrix for items. Suppose that the estimated 

interest matrix is 𝑌 = ΑΒ. Then to find a good estimate for 𝑌, one needs to 

minimize a cost function with respect to Α and Β. For predicting numerical 

ratings, a proper optimization objective is minimizing the squared distance, which 

is: 

 min
!,!

1
2 (𝑦!" − 𝑦!")!

!,!

 (2.6)  

For that sparse interest matrix Y whose non-empty elements are denoted by 𝑦!,!, 

𝛼! (row 𝑖  of the Α matrix) and 𝛽!! (column 𝑗 of the Β matrix) vectors are need to 

be learned. Since the estimated rating 𝑦!" = 𝛼!𝛽!!, the optimization objective for 

factor matrices becomes the following: 

 min
!,!

1
2 (𝑦!" − 𝛼!𝛽!!)!

!,!

 (2.7)  

Several minimization approaches may be used to find the optimal 𝛼!s and 𝛽!!s, 

including alternating least squares [19] and stochastic gradient descent [20]. We 

apply stochastic gradient descent algorithm here to incrementally train the model. 

For each rating 𝑦!", the factor vectors 𝛼! and 𝛽!s are updated. The update rules for 
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𝑘th indices of 𝛼! and 𝛽!! are shown in (2.8) and (2.9). Note that the updates should 

be performed for each 𝑘 from 1 to 𝑟, and done simultaneously. 

 

𝛼!" ← 𝛼!" −   
1
2 𝑙𝑟

𝜕
𝜕𝛼!"

[(𝑦!" − 𝛼!𝛽!!)
!] 

 

=   𝛼!" + 𝑙𝑟(  𝑦!" − 𝛼!𝛽!!)𝛽
!
!" 

(2.8)  

 

  

 

𝛽!" ← 𝛽!" −   
1
2 𝑙𝑟

𝜕
𝜕𝛽!"

[(𝑦!" − 𝛼!𝛽!!)
!] 

 

=   𝛽!" + 𝑙𝑟(  𝑦!" − 𝛼!𝛽!!)𝛼!" 

(2.9)  

Here 𝑙𝑟 is the learning rate, and should be determined on validation data. 

Matrix factorization for collaborative filtering introduces 𝑟(𝑛 +𝑚) 

number of parameters, making the learning process prone to overfitting. The 

learning process may yield a model that fits to training data too well, and causes 

the loss of generalization. One way to avoid overfitting is applying regularization, 

that is, introducing additional parameters to penalize the updates. The objective 

defined in (2.7) becomes the following when 𝐿2  norm regularization is applied: 

 min
!,!

1
2 𝑦!" − 𝛼!𝛽!!

!

!,!

+
𝜆
2 (𝛼!")!

!,!

+ (𝛽!!")
!

!,!

 (2.10)  

where  𝜆 is the regularization rate. The regularized versions of the update rules for 

𝛼!" and 𝛽!" are as follows:  

 
𝛼!" ← 𝛼!" + 𝑙𝑟 𝑦!" − 𝑦!" 𝛽!!" − 𝜆𝛼!"  

𝛽!!" ← 𝛽!!" + 𝑙𝑟 𝑦!" − 𝑦!" 𝛼!" − 𝜆𝛽!!"  
(2.11)  

Adding bias terms for each user and item is proven to improve the 

accuracy of matrix factorization based recommenders. The biased model is as 

follows [21]: 

 𝑦!" = 𝑏(!)! + 𝑏(!)! + 𝛼!𝛽!! (2.12)  
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In [21], the bias terms are trained by incorporating a parameter called 

𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑒𝑎𝑛 originally, but we utilize them as simple intercept terms here: 

 
𝑏 !

!" ← 𝑏 !
!" + 𝑙𝑟 𝑦!" − 𝑦!" − 𝜆!𝑏 !

!"  

𝑏(!)!" ← 𝑏(!)!" + 𝑙𝑟 𝑦!" − 𝑦!" − 𝜆!𝑏(!)!"  
(2.13)  

where 𝜆! is the regularization parameter for bias terms. 

 Finally, we list some techniques to improve matrix factorization model, 

and refer to the original work for details: 

- Incorporating user and item side information [19] 

- Incorporating context information [22]  

- Incorporating temporal dynamics [23] 

- Modeling through binary implicit feedback [24] 

2.3. Cold-start Problem and Content-based Filtering 

One challenge a collaborative filtering based recommender system faces 

with is the cold-start problem: the generalization inability to new data (inputs 

including a new user or item). Consider a successful recommender system that 

hopefully welcomes new users regularly. The system cannot satisfy those new 

users unless it takes care of the new-user case of the cold-start problem. The new 

item problem might be negligible for systems having static item set, but, systems 

consisting of user-generated content, items with short lifetimes or systems 

constantly adding new content suffer from the new item case of the cold-start 

problem.  

 A recommender system would be able to recommend to new users by 

utilizing user profiles. Demographic information of users may be included to 

those user profiles, which allows us to find a match between types of users with 

items [25-27]. Also, social connections of users may include valuable signals 

while providing recommendations for users [28].  

Item profiles, constructing the basis of content-based recommender 

systems may provide information while deciding whether an item is worth 

recommending to a user [29]. An item profile includes category, popularity, title, 

age, price, genre, and so on. Pazzani and Billsus [29] mention that user profiles 
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might include content properties of positively interacted items. For instance, in a 

movie-recommendation domain, knowing that a user likes to watch horror 

movies, we may recommend him a recent horror movie that she has not seen yet, 

and has not received adequate feedback to be recommended using collaborative 

filtering.  

Content-based filtering is the recommender system technique where the 

prediction of the unknown degree of interest of user 𝑢 in item 𝑖 is calculated based 

on the similarity between profile of 𝑢 and content of 𝑖. This approach may be 

performed by applying relevance feedback techniques, where a user profile is 

updated with each 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚  interaction [2, 29-31]. Probabilistic learning 

methods, such as naïve Bayes algorithm, can also be used to construct the user 

model [32, 33].  

Content-based filtering can generalize to new items, however, they 

introduce some problems, for instance, over-specialization [25]. Consider a video 

recommendation site that trusts content-based filtering for recommendation. It 

would not surprise its user, since it would consistently recommend videos in the 

same small category (or another content dimension) that is the user’s favorite.  

2.4. Hybrid Recommendation 

Hybrid (content-based and collaborative) recommender systems aim to 

overcome the cold-start problem while preserving high-quality recommendations 

of collaborative filtering.  

One way to implement hybrid recommender systems is combining results 

of collaborative and content-based recommenders. Claypool et al. [1] proposed an 

approach for predicting user interests in online newspaper articles based on a 

weighted average of content-based and collaborative filtering based 

recommenders. Pazzani’s method is aggregating ranked results lists of different 

recommenders [27].  

In addition, performing content-based discovery techniques prior to 

collaborative filtering based recommenders provides a solution to overcome the 

cold-start problem, too. Li and Kim [34] used a clustering approach discovering 
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similar existing items to a new item, to use the past behavior data related to those 

existing items as if they are related to the new item. In their Content Boosted 

Collaborative Filtering approach, Melville et al. [35] provided a way to compute 

neighborhood of users more intelligently. They extended the user-item interest 

matrix, whose missing elements are filled with content-based predictions. They 

then performed collaborative filtering using the extended matrix. 

Unified hybrid approaches may combine collaborative and content-based 

features in the same recommendation model. Basu et al. [36] represented a 

𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair as a combination of collaborative, content-based, and hybrid 

features; and applied binary classification ( 𝑙𝑖𝑘𝑒𝑑,𝑑𝑖𝑠𝑙𝑖𝑘𝑒𝑑 ) to make 

predictions. Park and Chu [37] proposed a regression approach that benefits from 

all possible side information of users and items, together with collaborative 

features, providing a solution to both new user and new item situations of cold 

start problem.  

Matrix factorization based models naturally allow integrating content 

features of users or items into the factor model, and learning the parameters on 

those content features [19]. 

 Some other noteworthy approaches are, definition of new similarity 

measures that work better than traditional ones for users who rated only a few 

items [38], and filling the user-item interest matrix with automatic bots [39]. 
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3. LEARNING ENSEMBLES OF RECOMMENDERS 

Consider a machine learning problem for which we have a number of 

alternative algorithms to model. An ensemble learner refers to a combination of 

those multiple learners. We expect from an ensemble model, if it is composed of 

complementary base learners, to be more accurate than individual learners [40]. 

Techniques of combining multiple learners vary, and we list here the 

related ensemble techniques: 

- Voting [40]: 

In voting, where the prediction domain is numerical, a weighted average 

of results from individual learners is used to compute the final prediction. 

Formally, a voting based numerical prediction model is as follows: 

 𝑦(𝑥) = 𝑤!𝑦!(𝑥)
!

!!!

 (3.1)  

where ∀𝑤! ≥ 0 and 𝑤!!
!!! = 1 . Here,  𝑦(𝑥) is the prediction model, 𝐿 is 

the number of individual learners, and 𝑤! is the weight assigned to the 

base learner 𝑖. 

 

- Mixture of Experts [4, 40]: 

Mixture of Experts is a variant of voting, where the base learners are 

expected to be complementary, and the weighting scheme depends on the 

input. For a partition of the input space, one base learner performs the 

best. So if an input resembles partition 𝑖 , we expect that learner 𝑖 

outweighs other learners in the weighting scheme, for that particular input. 

Formally, a mixture of experts ensemble model is as the following: 

 𝑦(𝑥) = 𝑤!(𝑥)𝑦!(𝑥)
!

!!!

 (3.2)  
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- Stacking [3]: 

In stacking, we combine the base learners’ outputs with a separate learning 

process, level-1 learning, which may incorporate other features and need 

not to be linear. Level-1 learning is performed on a separate validation 

data set. 

3.1. Recommender Systems Blending 

Ensemble learning for recommendation, or blending, has been shown to 

improve recommender system accuracy and generalization. 

Yu et al. [41] show that a hierarchical Bayesian approach for blending 

collaborative and content based filtering techniques improves recommender 

system accuracy. 

[42] hybridizes item neighborhood-based collaborative filtering and 

content-based filtering techniques using a decision template based combination, 

which has been shown to perform well for classification[43]. 

[11] describes the details of the winning solution for the Netflix Prize from 

the The BellKor Pragmatic Chaos team. The solution performs a complex 

blending method on over 100 recommendation techniques, Gradient Boosted 

Decision Tree, and achieves a higher accuracy than any base recommender [44, 

45]. 

In [46], the authors mention that a hybrid system should adjust the 

combination of different recommenders based on the properties of the input (the 

𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pairs), and they applied stacking on user-based collaborative, item-

based collaborative, and content-based filtering techniques. The level-1 learner 

incorporates runtime meta-features, and they used three different techniques 

(linear regression, model tree, and bagged model trees) as a level-1 learner. 

Reported results show that stacked generalization improves recommender system 

performance. From different methods of level-1 learning process, linear 

regression performs worst. 

Sill et al. [47] presented a linear regression approach for performing 

stacking based ensemble as a recommender blend. The level-1 learner they 

describe also incorporates meta-features, features based on individual 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 
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pairs. It models the weights of level-0 learner outcomes as linear functions of 

meta-features, and the approach yields accurate results as non-linear blending 

techniques, yet benefits from the advantages of linear regression. Writing the 

weight of a learner 𝑖 on input 𝑥 as a function of meta-features is formalized as: 

 𝑤!(𝑥) = 𝑣!"𝑓! 𝑥
!

 (3.3)  

The blending model then becomes: 

 𝑦(𝑥) = 𝑤!(𝑥)𝑔!(𝑥)
!,!

 (3.4)  

where 𝑦(𝑥) is the prediction model for an input 𝑥, and 𝑔!(𝑥) refers to learner 𝑖’s 

output for input 𝑥.  

In [48], the authors propose the Social Trust Ensemble, where blending is 

done on results of trust-based recommendation and matrix factorization based 

collaborative filtering. 

Blending different techniques improve accuracy of a single 

recommendation technique, and when the blending incorporates input-based 

features (meta-features), the accuracy of a linear blend is further improved. We 

refer to [49] for an empirical analysis on blending recommenders.  

In most of the reviewed blending techniques those incorporate the meta-

features, number of ratings (by the user or for the item) affect accuracy 

improvement more than other meta-features. This gave us the idea to implement 

the domain-adaptive hybrid recommender, where a domain is identified in terms 

of number of ratings.  
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4. ELEMENTS OF THE HYBRID MODEL 

In this section, we describe the individual recommender techniques those 

are selected to perform the hybrid recommender of varying weights. We start with 

defining three different domains to adapt, which are: 

1. High-quality feedback is available for both user and item 

2. Item cold-start 

3. User cold-start 

The domain-adaptive hybrid model learns a weighted combination of the 

individual recommenders for each domain, which hopefully results in a model 

where the best-performing individual recommender outweighs others. To this end, 

we refer to three different recommender techniques, each of which is expected to 

result in most accurate recommendations for one domain: 

- Matrix factorization based collaborative filtering (Domain 1) 

- Item content-based filtering (Domain 2) 

- User content-based filtering (Domain 3) 

The models we use share some common properties: 

- They work on numerical feedback data 

- They minimize the squared error function 

- They can be trained using online learning techniques 

We use the same matrix factorization based collaborative filtering model 

defined in (2.12), where training is performed as in (2.11) and (2.13). 

4.1. Item Content-based Filtering 

In item content-based filtering, we represent users and items with profiles. 

Suppose that an item profile, 𝑡! is the content characteristics vector of the item, 

such as description, category, price, and so on. We have multiple alternatives to 

compute recommendations, some of which are: 

- Representing a user by its rating history, and replacing the similarity 

computation in the item neighborhood-based collaborative filtering 
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approach with content similarity. This way, we can calculate content-

based user-item scores using the (2.4). 

- Representing a user with a vector of the same dimensionality with the item 

characteristics vector, whose values are determined by the content 

characteristics of the items those the user positively rated before. This 

way, we can combine the user and item vectors to score a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair. 

- Representing a user by a parameter vector, 𝛼! on the item content vector, 

𝑡!  and learning the parameters on user history with an appropriate 

supervised learning algorithm. This way, we can combine the user 

parameter vector and the item content vector to score a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair. 

We use the third approach to learn user profiles. Note that this approach 

introduces 𝑚×𝑛  number of parameters to be learned, where 𝑛  is the 

dimensionality of an item content vector. The model that scores an 𝑖, 𝑗 pair is as 

the following: 

 𝑦!" =   𝛼!! + 𝛼!"𝑡!"

!

!!!

 (4.1)  

Using regularized ordinary least squares (linear regression), the objective 

function is as follows: 

 min
!!"

1
2 𝑦!" − 𝑦!"

!

!,!

+
𝜆
2 ( 𝛼!!"

!

!!!!

) (4.2)  

Here, a 𝑦!" is only available if the user 𝑢  actually provided feedback for 

item 𝑖. One can train the model with each incoming feedback using an online and 

scalable approach, stochastic gradient descent method such that: 

 𝛼!" = 𝛼!" +   𝑙𝑟( 𝑦!" − 𝑦!" 𝑡!" − 𝜆𝛼!")   (4.3)  

Training is done simultaneously for all 𝑘. 

  



 18 

4.2. User Demographics-based Filtering 

To estimate how an item 𝑗 fits user 𝑖 characteristics vector, we use the 

following model: 

 𝑦!" = 𝜋!! + 𝜋!"𝑥!"

!

!!!

 (4.4)  

where a 𝜋!  denotes the parameter vector representing the item 𝑗’s weights on 

content features, 𝑥!  is the user 𝑖′ s characteristics features, and 𝑚  is the 

dimensionality of a user content features vector. The optimization objective and 

stochastic gradient descent update rules are straightforward, and shown in (4.5) 

and (4.6), respectively: 

 min
!!"

1
2 (𝑦!" − 𝑦!")!

!,!

+
𝜆
2 ( 𝜋!!"

!

!!!!
) (4.5)  

 

 𝜋!" ← 𝜋!" + 𝑙𝑟( 𝑦!" − 𝑦!" 𝑥!" − 𝜆𝜋!") (4.6)  
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5. DOMAIN-ADAPTIVE HYBRID MODEL 

5.1. A Linear Stacking Based Model 

We can combine selected three recommenders in the following way, and 

estimate the weighting scheme from the validation data as the level-1 learner: 

 𝑦!" = 𝑤!𝑟! 𝑖, 𝑗 + 𝑤!𝑟! 𝑖, 𝑗 + 𝑤!𝑟!(𝑖, 𝑗) (5.1)  

where 𝑤!s represent the weights, and 𝑟!s the numerical scoring models of base 

recommenders. Note that the model combines results from different 

recommenders, which means prior to learning hybridization weights, the base 

recommenders need to be learned already. 

The weights are learned using a separate validation data set. The optimal 

model can be found by minimizing a squared error function on validation data: 

 min
!!

1
2 (𝑦!" − 𝑦!")!
!,!  ∈!

 (5.2)  

here 𝑉 denotes the validation data set (not included in training data) consisting of 

ratings. 

If the base recommender set includes user demographics based and item 

content-based recommenders, this hybridization approach can generalize to new 

users and items, but for example, is not as accurate as collaborative filtering if 

high-quality feedback is available. 

5.2. Hybrid Recommendation of Varying Weights 

Content-based and collaborative filtering techniques have their own 

strengths and weaknesses. Collaborative filtering algorithms are known for 

predicting accurate, serendipitous recommendations [50], but they suffer from 

cold-start problem: they cannot generalize to new users and items. Content-based 

filtering algorithms are capable to generalize to new data, but the accuracy is 

lower and the problem of over-specialization occurs [25]. 

 A recommender system in production encounters with various kinds of 

domains that the 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pairs are belong to: 
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- High-quality feedback is available for both the user and the item 

- No or little feedback is available for the user 

- No or little feedback is available for the item 

No single recommendation technique fits all listed domains, which limits a 

recommender in production. Item content-based filtering approach is expected to 

perform best for the third case, but it cannot predict 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 scores accurately 

for the second case, and cannot perform as good as collaborative filtering for the 

first case, for example. 

 Hybrid recommendation of varying weights is intended to improve the 

quality of a recommender, by improving accuracy and increasing generalization 

performance with a model that is robust to the domain of a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 input. To 

this end, a practitioner should first identify different domains for the 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 

queries that the recommender deployed in production would encounter with. The 

second step is to identify alternative recommendation techniques, each of which is 

expected to perform best for one particular domain. Finally, after carefully 

designing validation and test data sets representing identified domains, the 

hybridization weights per domain are learned separately. See Figure 5.1 for a 

graphical representation of the model. 

Say we identified |𝐷| domains, and 𝑟!(𝑖, 𝑗)s, where a 𝑟! is the function we 

expect to perform most accurate for inputs belonging to domain 𝑑. For instance, 

for domains we identified here, 𝑟!(𝑖, 𝑗)  refers to matrix factorization based 

collaborative filtering algorithm. Then for a prediction task 𝑖, 𝑗,𝑑, 

recommendation computation is done by: 

 𝑦!"# = 𝑤!!𝑟!(𝑖, 𝑗)
|!|

!!!

 (5.3)  

here 𝑤! s are domain specific hybridization weights. Those domain-specific 

weights are learned using a validation data set (𝑉!), created for this particular 

domain 𝑑. Since we choose 𝑟!s carefully so that an 𝑟! performs most accurate in 

domain 𝑑, we expect 𝑤!s are adjusted in such a way that 𝑤!! would be the highest 

weight among all 𝑤!!s. 
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Learning 𝑤!s are performed separately for each 𝑑, using the same training 

data set and custom validation and test data sets. After learning individual 

recommender functions, we perform weight optimization for each domain 𝑑 on 

validation data set 𝑉!such that: 

   min
!!
!

1
2 (𝑦!"# − 𝑦!"#)!

(!,!)∈!!
 (5.4)  

Here, 𝑦!"#s are actual rating values for 𝑖, 𝑗s in 𝑉!, and 𝑦!"# is the hybrid prediction 

score as defined in (5.3). Weight optimization per domain is normally performed 

once –or periodically– so any batch optimization method, such as batch gradient 

descent can be used to optimize those weights. 

 

 

Figure 5-1 Hybrid recommendation of varying weights 
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5.3. Relation to Other Ensemble Techniques 

Hybrid recommendation of varying weights has ties with stacking and 

mixture of experts ensemble models in some ways. 

In stacking, a higher-level model is learned using the outputs of base 

learners, possibly incorporated with other features, on validation data. Our 

approach also utilizes outputs of base recommenders, and learns a higher-level 

weighting scheme on validation data. Hybrid recommender of varying weights 

differ from stacking such that, one need to carefully design validation data sets 

those represent identified domains. 

Mixture of experts model defines a weighting scheme based on a particular 

input, which is the exact case in the hybrid recommender of varying weights, 

since we interpret the domain as a part of the input (𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚,𝑑𝑜𝑚𝑎𝑖𝑛). As in 

mixture of experts, our method expects complementary base recommenders, each 

of which performs the best on a domain.  
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6. EXPERIMENTAL STUDY 

We run our experiments on MovieLens 1M data set, which contains one 

million numerical ratings of users on movies, and side information for both users 

and movies. In this section, we describe the steps we perform as experiments1. 

6.1. Preparing Experimentation Data 

For learning domain-specific hybridization weights and testing if hybrid 

recommendation model works well, first, the entire ratings data set is split into 

three for each domain, as shown in Table 6.1. 

Table 6.1 Domain-specific data splits 

 Size (%) Description 

Train1 

Validation1 

Test1 

70 

20 

10 

Train data for high-quality feedback domain 

Feedback is available for all users and movies 

Feedback is available for all users and movies 

Train2 

Validation2 

Test2 

70 

20 

10 

Train data for item cold-start domain 

Items are unseen in Train2 

Items are unseen in Train2 and Validation2 

Train3 

Validation3 

Test3 

70 

20 

10 

Train data for user cold-start domain 

Users are unseen in Train3 

Users are unseen in Train3 and Validation3 

 

  

                                                
1  All experiments provided here can be reproduced using the commandline tools after 
downloading and building the code in https://github.com/gcapan/mahout/tree/mahout-matrices. 
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Side information of users and items are vectorized to be used by content-

based recommendation algorithms. Item content features and user characteristics 

we include to the model are listed in Table 6.2. Categorical features of more than 

two unique values, say 𝑐, were converted to 𝑐 binary features. 

Table 6.2 Content features 

 Domain Description 

Genre 

YearsPassed 

Categorical 

Numerical 

Genre of a movie 

Years passed since the movie was released 

Gender 

Occupation 

Age 

Categorical 

Categorical 

Categorical 

Gender of the user 

Occupation of the user 

Age of the user (Discretized) 
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6.2. Learning Strategy 

We first learn 𝑟!s (base recommenders) on training data sets, as it is 

described in Section 4. The 𝑙𝑟 and 𝜆 parameters we used, and iteration numbers 

until the algorithms converge are shown in Table 6.3.  

Table 6.3 Parameters and number of iterations for base recommenders 

         Parameters Converges at 

MF-based collaborative 𝜆 = 0.0007, 𝜆! = 0.0005,   

𝑟 = 100, 𝑙𝑟 = 0.002 

75 

Item content-based 𝜆 = 0.0005, 𝑙𝑟 = 0.004 96 

User demographics-based 𝜆 = 0.0005, 𝑙𝑟 = 0.007 108 
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We use a simple, yet scalable approach for learning hybridization weights: 

stochastic gradient descent. For each rating in validation data set, 𝑤!!s are updated 

simultaneously, using the following formula: 

   𝑤!! ≔ 𝑤!! + 𝑙𝑟 𝑦!" − 𝑦!"# 𝑟!(𝑖, 𝑗) (6.1)  

Since the hybridization is actually a weighted average of different base 

recommenders, when an iteration is completed, we simply transformed the learned 

weights to meet non-negative constraints, and ensured that their sum is equal to 1. 

Formally, we adjusted weights such that: 𝑤!!!
!!! = 1,∀𝑑  and 

𝑤!! ≥ 0,∀𝑑  𝑎𝑛𝑑  ∀𝑘 . We observed that the process of learning hybridization 

weights converges really fast, at typically a couple iterations. Learning rate we 

used to train the hybridization scheme is 0.002.  

6.3. Experimental Results 

Root mean squared error (RMSE) is a widely used technique for testing the 

accuracy of a numerical prediction algorithm. RMSE of the hybrid recommender 

on the test data set of domain 𝑑 (𝑇𝑒𝑠𝑡!) with size |𝑇𝑒𝑠𝑡!| is calculated by: 

   𝑅𝑀𝑆𝐸 =
1

|𝑇𝑒𝑠𝑡!| (𝑦!"# − 𝑦!")!

!,!,!!"  ∈!"#$!
 (6.2)  

We evaluated 𝑦!"# predictions on 𝑇𝑒𝑠𝑡!s, and compare the accuracy with 

base recommenders, to test our hypothesis that hybrid recommender of varying 

weights scheme is as accurate as the best-performing base recommender for 

domain 𝑑. In the hybrid scheme, best-performing recommender outweighs the 

others, as shown in Table 6.4. 

Table 6.4 Hybridization weights for different domains 

 𝒘𝟏 𝒘𝟐 𝒘𝟑 

Domain 1 0.8890 0.1045 0.0065 

Domain 2 0 1 0 

Domain 3 0.12 0 0.88 

 



 27 

 
Figure 6.1 shows that the hybrid recommender performs as accurate as 

collaborative filtering when high-quality feedback is available, and preserves the 

generalization capability of content-based and demographics based recommenders 

in the cold-start domains. In Table 6.5, final RMSE scores where the algorithms 

converged are listed 

Table 6.5 RMSE of base recommenders and the hybrid model for each domain 

 Algorithm RMSE 

Domain 1 MF based 

User demographics-based 

Item content-based 

Hybrid model 

𝟎.𝟖𝟓𝟕 

0.981 

1.018 

𝟎.𝟖𝟓𝟓 

Domain 2 MF based 

User demographics-based 

Item content-based 

Hybrid model 

1.586 

𝟎.𝟗𝟔𝟖 

2.800 

𝟎.𝟗𝟔𝟖 

Domain 3 MF based 

User demographics-based 

Item content-based 

Hybrid model 

2.221 

2.834 

𝟎.𝟗𝟗𝟔 

𝟏.𝟎𝟎𝟏 
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Figure 6-1 RMSE per numbers of iterations on different domains 
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Finally, to illustrate that the domain-adaptive approach outperforms the 

base recommenders in the production case, we split the MovieLens 1M data such 

that: 

- We created a training data set from the 70% of entire data. 

- We created two validation data sets, each of which constitutes 10% of 

entire data, where one validation set represents high-quality feedback 

domain, and the other represents item cold-start domain. 

- We created one test data set (10% of entire data), which include 

𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 queries from both domains, that is to say, half of the queries 

include cold-start items, rest of them received high-quality feedback that is 

available in training data. 

After learning domain-adaptive hybrid recommender, we compared its 

accuracy with individual base recommenders, collaborative filtering and item 

content-based filtering. Results are presented in Table 6.6, showing that the 

hybrid approach outperforms base recommenders in the production case. 

Table 6.6 RMSEs of different recommenders in half cold-start domain 

 RMSE 

MF-based collaborative High-quality feedback domain: 0.856   

Real-world scenario: 𝟏.𝟔𝟕 

Item content-based Item cold-start domain: 1.02 

Real-world scenario: 𝟏.𝟎𝟐 

Hybrid Real-world scenario: 𝟎.𝟗𝟓 
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6.4. Scalability and Performance 

We are going to give a note on scalability and runtime performance of the 

algorithms described used in methods and experiments of that document. To start 

with, scalability of the hybrid approach depends on the base recommenders, since 

they should be already available when the ensemble learning is processed. 

In the scope of this paper, we approach collaborative, item content-based, 

and user demographics-based filtering problems as supervised learning problems, 

and train all of them using stochastic gradient descent algorithm. Stochastic 

gradient descent algorithm is an example of online learning, where the parameters 

are updated with each training example. This paradigm not only solves a machine 

learning task simplistically and keeps the model up to date at all time, but also 

allows horizontally scalable system architecture. Updating one parameter vector 

(per user or item) at a time, with a simple row lock to ensure isolation to prevent 

other nodes (or threads) try to update it at the same time, allow multiple threads, 

or computing nodes, to update the recommender model concurrently.  

To give a sense of training performance, in Table 6.7, we report the 

running time for performing one iteration on training set of 700000 ratings of 

three different recommenders, and on validation set of 200000 ratings of the 

hybrid recommender. The reported results are for the experiments that we run on a 

UNIX personal computer, with 2.8 GHz 4-cores processor, and 8GB of memory, 

1 GB of which is spared for Java Virtual Machine heap. 

 

Table 6.7 Training running times of different recommenders per iteration 

 Running time per iteration (seconds) 

MF-based collaborative  7.2 

User demographics-based  3.4 

Item content-based  2.9  

Hybrid  0.8 
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

A typical recommender system learns a scoring function for a prediction 

task 𝑖, 𝑗, and then when a user 𝑖 demands a list of interesting items, it ranks 

unrated items based on this function, and lists the top results. When the system is 

deployed in production, prediction tasks representing different domains might 

limit its accuracy. For instance, the system can unify various recommender 

models in a single one to generalize to cold-start data, but that approach would 

hurt accuracy when high-quality feedback is available for the user and the item 

involving in the task. To avoid this trade-off, we developed an ensemble of 

complementary recommenders, which adapts to various, identified domains, for 

which an accurate recommender technique exists. 

Experimental results show that the model we described converges to the 

most accurate base recommender, say 𝑟!, on the test data set representing the 

identified domain 𝑑. Considering this 𝑟! performs poor for domains other than 𝑑, 

the hybrid model of varying weights outperforms complementary base 

recommenders on a test data set that includes prediction tasks from multiple 

domains, which is the case for a recommender in production. 

This approach has some limitations, too. The practitioner should carefully 

identify the prediction task cases, mimic those cases by creating validation data 

sets, and learn domain-specific weights separately. Besides at runtime, the system 

should infer the domain of the query, other than user and item. 

The model we described learns hybridization weights on separate 

validation data sets subsequent to learning base recommenders. A further 

improvement would be to learn domain specific weights and recommenders 

simultaneously, which would eliminate the relatively complex multi-step learning 

process the current model introduces. 
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