
SCALABLE RECOMMENDER SYSTEM
THAT IMPROVES GENERALIZATION

Gökhan ÇAPAN
Master of Science Thesis

Graduate Program of Computer Engineering

July, 2013

JÜRİ VE ENSTİTÜ ONAYI

Gökhan Çapan’ın “Scalable Recommender System that Improves

Generalization” başlıklı Bilgisayar Mühendisliği Anabilim Dalındaki, Yüksek

Lisans Tezi 10.07.2013 tarihinde, aşağıdaki jüri tarafından Anadolu Üniversitesi

Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca

değerlendirilerek kabul edilmiştir.

 Adı-Soyadı İmza

Üye (Tez Danışmanı) : Yard. Doç. Dr. ÖZGÜR YILMAZEL

Üye : Doç. Dr. HÜSEYİN POLAT

Üye : Yard. Doç. Dr. KAMİL ÇEKEROL

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu’nun

........................... tarih ve sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

 i

ABSTRACT

Master of Science Thesis

SCALABLE RECOMMENDER SYSTEM THAT
IMPROVES GENERALIZATION

Gökhan ÇAPAN

Anadolu University

Graduate School of Sciences
Computer Engineering Program

Supervisor: Assist. Prof. Dr. Özgür YILMAZEL

 2013, 36 pages

A major challenge for recommender systems is to generalize to cold-start

prediction tasks, where no behavior data is available for the active user or the

item. Content-based filtering is able to attack to this problem, while collaborative

filtering ends up with accurate recommendations where high quality feedback is

available.

 Considering the domain of a prediction task can vary, an ensemble

learning-based hybrid recommender model is described. The combined model

learns separate linear combinations from validation data sets representing each

domain: high quality feedback available, user or item is unseen. The problem is

illustrated by creating groups of validation and test data sets accordingly, and

referring to three kinds of complementary recommenders: matrix factorization

based, user demographics, and item content-based. Experiments demonstrate that

using those separate validation data sets; the hybrid recommender model adjusts

weights such that it converges to the individual recommender that performs the

best on a domain.

Keywords: Recommender System, Generalization, Hybrid Recommendation

 ii

ÖZET

Yüksek Lisans Tezi

GENELLEMEYİ İYİLEŞTİREN
ÖLÇEKLENEBİLİR TAVSİYE SİSTEMİ

Gökhan ÇAPAN

Anadolu Üniversitesi

Fen Bilimleri Enstitüsü
Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yard. Doç. Dr. Özgür YILMAZEL

2013, 36 sayfa

Tavsiye sistemlerinin temel zorluklarından bir tanesi, kullanıcı ya da ürün

hakkında yeterli davranış bilgisi bulunmayan soğuk-başlangıç verisine

genellemedir. İçerik tabanlı süzgeçleme bu problemi çözebilse de, işbirlikçi

süzgeçleme yöntemleri, yeterli davranış verisi olduğunda, daha hatasız

tavsiyelerde bulunur.

Bir tavsiye sorgusunun farklı etki alanlarından birine ait olabileceği göz

önünde bulundurularak, küme öğrenme tabanlı bir melez tavsiye sistemi

anlatılmıştır. Bu birleşik yöntem, her biri farklı etki alanlarını (yüksek kalite

geribildirim verisi mevcut, kullanıcı soğuk-başlangıç durumunda, ürün soğuk-

başlangıç durumunda) temsil eden doğrulama veri kümeleri üzerinde doğrusal

kombinasyonlar öğrenir. Bu problem, uygun şekilde doğrulama ve test verisi

oluşturularak; daha sonra üç çeşit tümleyici tavsiye sistemi (matris çarpanlarına

ayırma tabanlı işbirlikçi süzgeçleme, ürün içeriği tabanlı süzgeçleme, kullanıcı

demografisi tabanlı süzgeçleme) kullanılarak gösterilmiştir. Farklı doğrulama veri

kümeleri kullanılarak yapılan deneyler; melez yöntemin, o etki alanında en iyi

doğruluğa ulaşan tek tavsiye sistemine yakınsayacak şekilde ağırlıklandırma

öğrendiğini göstermektedir.

Anahtar Kelimeler: Tavsiye Sistemi, Genelleme, Melez Tavsiye

 iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Assist. Prof. Dr. Özgür

YILMAZEL, who has guided me with his knowledge throughout this research.

Without his patience and support, this thesis could not be completed.

Secondly, I would like to thank to the members of the thesis committee,

Assoc. Prof. Dr. Hüseyin POLAT and Assist. Prof. Dr. Kamil ÇEKEROL, for

accepting to be in the committee, and for their invaluable reviews, corrections,

and advices to improve this thesis.

Last but definitely not least, I would like to thank to my parents and

siblings for trusting me throughout my life, supporting me patiently, and

encouraging me in my most difficult times. I am one of the luckiest people in the

world for having them.

Gökhan Çapan

July, 2013

 iv

TABLE OF CONTENTS

ABSTRACT ... i

ÖZET .. ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES .. vi

LIST OF TABLES ... vii

1. INTRODUCTION 1

2. RECOMMENDATION TECHNIQUES AND CHALLENGES 4

2.1. Recommender System Definition ... 4

2.2. Collaborative Filtering .. 4

2.2.1. Nearest Neighbor-based Collaborative Filtering 5

2.2.2. Matrix Factorization Based Collaborative Filtering 8

2.3. Cold-start Problem and Content-based Filtering 10

2.4. Hybrid Recommendation .. 11

3. LEARNING ENSEMBLES OF RECOMMENDERS 13

3.1. Recommender Systems Blending ... 14

4. ELEMENTS OF THE HYBRID MODEL 16

4.1. Item Content-based Filtering .. 16

4.2. User Demographics-based Filtering ... 18

 v

5. DOMAIN-ADAPTIVE HYBRID MODEL 19

5.1. A Linear Stacking Based Model ... 19

5.2. Hybrid Recommendation of Varying Weights 19

5.3. Relation to Other Ensemble Techniques .. 22

6. EXPERIMENTAL STUDY 23

6.1. Preparing Experimentation Data ... 23

6.2. Learning Strategy .. 25

6.3. Experimental Results .. 26

6.4. Scalability and Performance ... 30

7. CONCLUSIONS AND FUTURE DIRECTIONS 31

REFERENCES ... 32

	

 vi

LIST OF FIGURES

5.1 Hybrid recommendation of varying weights 21	

6.1 RMSE per numbers of iterations on different domains 28	

 vii

LIST OF TABLES

6.1 Domain-specific data splits ... 23	

6.2 Content features .. 24	

6.3 Parameters and number of iterations for base recommenders 25	

6.4 Hybridization weights for different domains .. 26	

6.5 RMSE of base recommenders and the hybrid model for each domain 27	

6.6 RMSEs of different recommenders in half cold-start domain 29	

6.7 Training running times of different recommenders per iteration 30	

 1

1. INTRODUCTION

Recommender systems automate personalized discovery for individuals.

Users are recommended a small, ranked subset of a very large set of previously

unseen items, where ranking is based on the predicted interest of theirs in those

items. To predict that interest, a typical recommender infers a function that scores

a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair.

One way to infer the user-item scoring function is collaborative filtering,

which leverages community’s past behavior. Sources other than collaborative

activity to score a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair include content of users’ favorite items, user

demographics, and contextual information. Item content-based recommender

predicts the score based on content characteristics of the items that the user

positively rated before. User demographics-based estimates how likely the active

item may fit the user characteristics. Another technique is contextual

recommendation, where the idea is scoring a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair in a particular

context, which may depend on location, time, certain task, and so on.

Contextual recommendation can be added on an existing recommender, but

content-based recommendation alternates collaborative filtering in some ways.

Collaborative filtering is famous for its superior prediction accuracy [1], and

ability to discover serendipitous recommendations. However, problems occur

when behavior data lack high-quality feedback, that is to say, collaborative

filtering cannot generalize to new users or items –known as the cold-start

problem. Content-based filtering techniques can generalize to new data –as long

as the new entity can be represented by its content or demographic

characteristics– but they are limited where collaborative filtering is strong: they

cannot predict as accurate as collaborative filtering under high-quality feedback

domain, and they tend to over-specialize to the items very similar to a user history

in content–which obviously do not help a user much, except certain use cases. In

fact, over-specialization of content-based filtering decreases the system quality so

much that recommending from a small category all the time dissatisfies, even

frustrates the users [2].

 2

Still, when she wants to deploy a recommender in production, a

practitioner would desire the system to generalize to new users and items.

Consider a successful Web 2.0 application. The application will hopefully attract

new users, and new items will be added. The ideal recommender system in this

case, should be able to score a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair even when no behavioral data is

available for one of the entities, at the same time leverage superior accuracy of

collaborative filtering when high-quality feedback is available. As content-based

and collaborative filtering complement each other, combining those techniques –

by merging ranked recommendation lists, averaging prediction scores of different

recommenders as 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 scoring function, sequentially running different

recommenders etc.– results in a hybrid scheme that might produce accurate and

serendipitous recommendations; and preserve the generalization capability at the

same time.

Consider a weighting-based hybrid recommender that combines the scores

of collaborative, item content-based, and user demographics-based filtering

techniques. Let this system learn an optimal weighting scheme on a validation

data set. That recommender, when it is deployed in production, is going to

encounter with various query domains: high-quality feedback is available for both

user and item, user is cold-start, and item is cold-start. The problem with the

hypothetical hybrid recommender is that the weighting scheme is identical for all

these domains; even though collaborative filtering should outweigh others in the

first domain, user demographics-based in the second, and item content-based in

the third.

The hypothetical weighting-based recommender was an example of

ensemble learning, particularly linear stacking [3]: learning a linear combination

of base learners (meta-learning) on a validation data set. We may further enhance

the ensemble, for the combination to adapt to different domains. In stacking, we

can incorporate some meta-features to the weighted combination, such as number

of ratings. Mixture of experts model [4] on the other hand, defines a weighting

scheme –of complementary base learners– that depends on input query. So if the

domain of the 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair is observed and used for weighting scheme

 3

selection, we can apply a mixture of experts model to achieve domain-adaptive

recommendation.

In this thesis, we survey the recommendation techniques those attempt to

generalize to new users and items while preserving high accuracy of collaborative

filtering-based recommender systems. In addition, we describe an ensemble

recommendation approach (a method that lies between mixture of experts and

stacking), hybrid recommendation of varying weights, and hypothesize that it can

adapt to the input domain. The proposed technique requires that:

- Domains, say set 𝐷, are identified upfront

- Validation data sets, each of which reflects a particular domain, are

created

- |𝐷| number of recommender techniques, each of which is expected to

perform best on one identified domain, are defined

- Domain of a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 query can be observed at recommendation time

Different recommenders are learned on the same training data set, and varying

weights are inferred on mentioned validation data sets. Appropriate weighting

scheme is selected at recommendation time.

We test the hypothesis on a Java library that can perform matrix

factorization-based collaborative filtering, user demographics-based filtering, and

item content-based filtering models. We examine if the hybrid scheme converges

to the best-performing base recommender technique in each domain, and

outperforms all in the production case, where the test data set contains 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚

queries from different domains.

This thesis is organized as follows: Section 2 surveys related

recommendation techniques and approaches to improve recommender system

generalization. In Section 3, we describe the recommendation algorithms we use,

and the hybrid model is introduced in Section 4. In Section 5, we describe the

experimentation methodology and present the results. Finally, Section 6 provides

a discussion for the study, and provides future directions.

 4

2. RECOMMENDATION TECHNIQUES AND CHALLENGES

2.1. Recommender System Definition

For a system with 𝑚 users and 𝑛 items, suppose 𝑌!×! is a sparse matrix

where 𝑦!" is the interest indicator of user 𝑖 on item 𝑗. A recommender system aims

to predict the missing values of the 𝑌 matrix, which may be numerical, categorical

(binary or multi-class) or ordinal (For notational convenience, we are going to

denote prediction for a missing interest indicator for 𝑖, 𝑗 as 𝑦!"). In other words, a

recommender is a function 𝑓 ∶ 𝑈×𝐼 → 𝑇, where 𝑈 is the set of users, 𝐼 is the set

of items, and 𝑇 is the set of target values; for example, an interval [0,5], a set of

categories {𝑐!, 𝑐!}, or a set of ordinal values {𝑝𝑜𝑜𝑟, 𝑓𝑎𝑖𝑟,𝑔𝑜𝑜𝑑,𝑔𝑟𝑒𝑎𝑡}. This

function is an approximation for actual interest indicators. Besides the core-

recommending job (predicting rating for a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair or producing top 𝑘

recommendations for a user 𝑢), a recommender system has some other use cases,

including finding most similar items to an item and finding most similar users to a

user.

The success of a recommender is measured by various methods [5].

Perhaps the most important is measuring accuracy, that is, how accurate the

recommender estimates the unknown ratings, compared to the original rating

matrix.

2.2. Collaborative Filtering

Collaborative filtering predicts the unknown degree of interest of user 𝑢 in

item 𝑖 based on other users’ declared interest in 𝑖. While recommending to user 𝑢,

other people in the system affect the prediction for 𝑢, proportional to how much

their tastes are similar to 𝑢’s.

Early examples of recommender system research, particularly collaborative

filtering as an information filtering technique, include the proposed solution of

Goldberg et al. [6] to reduce the email overload, Tapestry; idea of producing

recommendations based on similarities of the target user’s and other users’

 5

interest profiles, and a music album/artist recommender system implementation,

Ringo [7]; GroupLens, an architecture of collaborative filtering on Usenet news

[8]. Recommender systems have had a wide area of application in industry, too.

Many successful businesses such as Amazon1 (the popular e-commerce site) and

Netflix2 (the DVD rental service) trust recommender systems as a major part of

their user interaction process. Netflix even organized a recommender system

challenge to improve the accuracy of their proprietary recommender [9]. Front

runners of the challenge state that some combination of multiple prediction

methods, including neighborhood based and matrix factorization based, give the

best results; since it is the ensemble of different approaches learning different

aspects of data [10-13].

2.2.1. Nearest Neighbor-based Collaborative Filtering

Neighborhood-based method is the intuitive way of producing

collaborative filtering based recommendations. Concretely, a user neighborhood-

based recommender computes the neighborhood of the active user 𝑢, and then to

predict her rating for item 𝑖, it outputs a weighted average of the ratings of the

users in her neighborhood on that specific item [8, 14, 15]. Similarly, an item

neighborhood based recommender computes the degree of similarity between the

target item 𝑖 and the set of items in active user 𝑢’s history, and then outputs a

weighted average of the ratings of 𝑢 on those items [16].

To describe neighborhood-based recommenders formally, let us define

some notation, additional to the aforementioned set. The similarity between users

𝑢 and 𝑣, and items 𝑖 and 𝑗 will be denoted by 𝑠𝑖𝑚(𝑢, 𝑣) and 𝑠𝑖𝑚(𝑖, 𝑗)

respectively. Note that the actual rating of user 𝑢 to item 𝑗 is 𝑦!" , while the

predicted rating of 𝑢 to item 𝑖 is 𝑦!" . An example similarity measure for

computing pairwise user similarity is the Pearson correlation coefficient [8, 14,

15], which is:

1 http://www.amazon.com

2 http://www.netflix.com

 6

 𝑠𝑖𝑚(𝑢, 𝑣) =
𝑦!" − 𝑌! 𝑦!" − 𝑌!!∈!!,!

𝑦!" − 𝑌! !
!∈!!,! 𝑦!" − 𝑌! !

!∈!!,!

 (2.1)

Here 𝐼!,! denotes the items those 𝑢 and 𝑣 both rated, and 𝑌! and 𝑌! denote

the mean ratings for users 𝑢 and 𝑣 , respectively. To compute the similarity

between two items 𝑖 and 𝑗, one can use adjusted cosine similarity[16], which is:

 𝑠𝑖𝑚(𝑖, 𝑗) =
𝑦!" − 𝑌! 𝑦!" − 𝑌!!∈!!,!

𝑦!" − 𝑌! !
!∈!!,! 𝑦!" − 𝑌! !

!∈!

 (2.2)

where 𝑈!,! is the set of users who rated both 𝑖 and 𝑗.

With user similarities, one can compute the predicted rating of user 𝑢 to

item 𝑖 with the following equations. Following equations compute the predicted

rating with user neighborhood and item neighborhood based techniques,

respectively [15, 16].

 𝑦!" = 𝑌! +
𝑠𝑖𝑚 𝑢, 𝑣 𝑦!" − 𝑌!!∈!!

𝑠𝑖𝑚(𝑢, 𝑣)!∈!!
 (2.3)

 𝑦!" = 𝑌! +
𝑠𝑖𝑚 𝑖, 𝑗 𝑦!" − 𝑌!!∈!!

𝑠𝑖𝑚(𝑖, 𝑗)!∈!!
 (2.4)

 Here 𝑈! represents the set of users who rated item 𝑖, where 𝐼! means those

items rated by user 𝑢. Following is the list of alternative strategies of populating

𝑈!s and 𝐼!s:

- One may allow 𝑈! include all users who rated 𝑖, excluding the users

having a zero (or undefined) similarity with the active user 𝑢. Similarly, a

𝐼! may be a subset of all items rated by 𝑢, each of which has a non-zero

similarity with the target item 𝑖.

- The first option may be constrained by users/items whose similarities

with the active user/target item are above a threshold value.

 7

- Other alternative is to keep only the top 𝑘 users/items in terms of their

similarities with the active user/target item in the sets mentioned in the

first option.

Neighborhood based collaborative filtering uncovers relationship those

other models sometimes cannot. In addition, recommendations from a

neighborhood model are explainable, that is, the system can tell its users why they

saw the recommended items [17].

However, there are some liabilities. Computing the neighborhood and

predicting the score upon a recommendation request is expensive; and pre-

computing similarities may be an option. But they cannot provide up-to-date

recommendations if this pre-computation phase is infrequent. Item-based

neighborhood models are more advantageous since item sets are relatively static,

and one can at least use the updated user history on online rating prediction phase.

Even if the pre-computation method works, neighborhood models are still costly

with frequent updates on the model.

The pre-computation of similarities step will, for each user, loop through

the candidate neighbors of that user, and compute the similarity. Since the

similarity of two users 𝑢 and 𝑣 is non-zero only if there is at least one item that

they both have rated, one can only consider the candidates, rather than all other

users. For users who rated a little number of items, this approach can result in a

huge performance gain.

In summary, neighborhood-based collaborative filtering has advantages,

yet it is limited:

- Generalization:

A neighborhood based collaborative filtering system cannot compute the

user neighborhood if the user has not rated an item before. Besides, it

cannot recommend an item if the item has not been rated by any user yet.

- Performance:

Neighborhood computation is expensive, and there is a trade-off between

keeping the recommender up to date and avoiding neighborhood

computation at recommendation time. Item neighborhood-based

 8

recommenders are more advantageous than the user neighborhood based

ones in that case.

2.2.2. Matrix Factorization Based Collaborative Filtering

Given a matrix 𝑌, matrix factorization is the process where 𝑌 is factorized

into two matrices, 𝑊 and 𝐻, such that 𝑌 ≈𝑊𝐻. Given 𝑌 is an 𝑚×𝑛 matrix, 𝑊

and 𝐻 are 𝑚×𝑟 and 𝑟×𝑛 matrices, respectively. Generally 𝑟 << 𝑚𝑖𝑛 𝑚,𝑛 ,

implying that the two factor matrices together construct a compressed version of

𝑌 [18]. To compute 𝑌!" from 𝑊 and 𝐻, the following dot product is used:

 𝑌!" ≈ 𝑊!𝐻!
! = 𝑊!"×𝐻!

!"

!

!!!

 (2.5)

For performing collaborative filtering, the sparse interest matrix 𝑌 is decomposed

into two factor matrices, Α!"# and Β!"#. The Α matrix is the factor matrix for

users, and the Β matrix is the factor matrix for items. Suppose that the estimated

interest matrix is 𝑌 = ΑΒ. Then to find a good estimate for 𝑌, one needs to

minimize a cost function with respect to Α and Β. For predicting numerical

ratings, a proper optimization objective is minimizing the squared distance, which

is:

 min
!,!

1
2 (𝑦!" − 𝑦!")!

!,!

 (2.6)

For that sparse interest matrix Y whose non-empty elements are denoted by 𝑦!,!,

𝛼! (row 𝑖 of the Α matrix) and 𝛽!! (column 𝑗 of the Β matrix) vectors are need to

be learned. Since the estimated rating 𝑦!" = 𝛼!𝛽!!, the optimization objective for

factor matrices becomes the following:

 min
!,!

1
2 (𝑦!" − 𝛼!𝛽!!)!

!,!

 (2.7)

Several minimization approaches may be used to find the optimal 𝛼!s and 𝛽!!s,

including alternating least squares [19] and stochastic gradient descent [20]. We

apply stochastic gradient descent algorithm here to incrementally train the model.

For each rating 𝑦!", the factor vectors 𝛼! and 𝛽!s are updated. The update rules for

 9

𝑘th indices of 𝛼! and 𝛽!! are shown in (2.8) and (2.9). Note that the updates should

be performed for each 𝑘 from 1 to 𝑟, and done simultaneously.

𝛼!" ← 𝛼!" −
1
2 𝑙𝑟

𝜕
𝜕𝛼!"

[(𝑦!" − 𝛼!𝛽!!)
!]

= 𝛼!" + 𝑙𝑟(𝑦!" − 𝛼!𝛽!!)𝛽
!
!"

(2.8)

𝛽!" ← 𝛽!" −
1
2 𝑙𝑟

𝜕
𝜕𝛽!"

[(𝑦!" − 𝛼!𝛽!!)
!]

= 𝛽!" + 𝑙𝑟(𝑦!" − 𝛼!𝛽!!)𝛼!"

(2.9)

Here 𝑙𝑟 is the learning rate, and should be determined on validation data.

Matrix factorization for collaborative filtering introduces 𝑟(𝑛 +𝑚)

number of parameters, making the learning process prone to overfitting. The

learning process may yield a model that fits to training data too well, and causes

the loss of generalization. One way to avoid overfitting is applying regularization,

that is, introducing additional parameters to penalize the updates. The objective

defined in (2.7) becomes the following when 𝐿2 norm regularization is applied:

 min
!,!

1
2 𝑦!" − 𝛼!𝛽!!

!

!,!

+
𝜆
2 (𝛼!")!

!,!

+ (𝛽!!")
!

!,!

 (2.10)

where 𝜆 is the regularization rate. The regularized versions of the update rules for

𝛼!" and 𝛽!" are as follows:

𝛼!" ← 𝛼!" + 𝑙𝑟 𝑦!" − 𝑦!" 𝛽!!" − 𝜆𝛼!"

𝛽!!" ← 𝛽!!" + 𝑙𝑟 𝑦!" − 𝑦!" 𝛼!" − 𝜆𝛽!!"
(2.11)

Adding bias terms for each user and item is proven to improve the

accuracy of matrix factorization based recommenders. The biased model is as

follows [21]:

 𝑦!" = 𝑏(!)! + 𝑏(!)! + 𝛼!𝛽!! (2.12)

 10

In [21], the bias terms are trained by incorporating a parameter called

𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑒𝑎𝑛 originally, but we utilize them as simple intercept terms here:

𝑏 !

!" ← 𝑏 !
!" + 𝑙𝑟 𝑦!" − 𝑦!" − 𝜆!𝑏 !

!"

𝑏(!)!" ← 𝑏(!)!" + 𝑙𝑟 𝑦!" − 𝑦!" − 𝜆!𝑏(!)!"
(2.13)

where 𝜆! is the regularization parameter for bias terms.

 Finally, we list some techniques to improve matrix factorization model,

and refer to the original work for details:

- Incorporating user and item side information [19]

- Incorporating context information [22]

- Incorporating temporal dynamics [23]

- Modeling through binary implicit feedback [24]

2.3. Cold-start Problem and Content-based Filtering

One challenge a collaborative filtering based recommender system faces

with is the cold-start problem: the generalization inability to new data (inputs

including a new user or item). Consider a successful recommender system that

hopefully welcomes new users regularly. The system cannot satisfy those new

users unless it takes care of the new-user case of the cold-start problem. The new

item problem might be negligible for systems having static item set, but, systems

consisting of user-generated content, items with short lifetimes or systems

constantly adding new content suffer from the new item case of the cold-start

problem.

 A recommender system would be able to recommend to new users by

utilizing user profiles. Demographic information of users may be included to

those user profiles, which allows us to find a match between types of users with

items [25-27]. Also, social connections of users may include valuable signals

while providing recommendations for users [28].

Item profiles, constructing the basis of content-based recommender

systems may provide information while deciding whether an item is worth

recommending to a user [29]. An item profile includes category, popularity, title,

age, price, genre, and so on. Pazzani and Billsus [29] mention that user profiles

 11

might include content properties of positively interacted items. For instance, in a

movie-recommendation domain, knowing that a user likes to watch horror

movies, we may recommend him a recent horror movie that she has not seen yet,

and has not received adequate feedback to be recommended using collaborative

filtering.

Content-based filtering is the recommender system technique where the

prediction of the unknown degree of interest of user 𝑢 in item 𝑖 is calculated based

on the similarity between profile of 𝑢 and content of 𝑖. This approach may be

performed by applying relevance feedback techniques, where a user profile is

updated with each 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 interaction [2, 29-31]. Probabilistic learning

methods, such as naïve Bayes algorithm, can also be used to construct the user

model [32, 33].

Content-based filtering can generalize to new items, however, they

introduce some problems, for instance, over-specialization [25]. Consider a video

recommendation site that trusts content-based filtering for recommendation. It

would not surprise its user, since it would consistently recommend videos in the

same small category (or another content dimension) that is the user’s favorite.

2.4. Hybrid Recommendation

Hybrid (content-based and collaborative) recommender systems aim to

overcome the cold-start problem while preserving high-quality recommendations

of collaborative filtering.

One way to implement hybrid recommender systems is combining results

of collaborative and content-based recommenders. Claypool et al. [1] proposed an

approach for predicting user interests in online newspaper articles based on a

weighted average of content-based and collaborative filtering based

recommenders. Pazzani’s method is aggregating ranked results lists of different

recommenders [27].

In addition, performing content-based discovery techniques prior to

collaborative filtering based recommenders provides a solution to overcome the

cold-start problem, too. Li and Kim [34] used a clustering approach discovering

 12

similar existing items to a new item, to use the past behavior data related to those

existing items as if they are related to the new item. In their Content Boosted

Collaborative Filtering approach, Melville et al. [35] provided a way to compute

neighborhood of users more intelligently. They extended the user-item interest

matrix, whose missing elements are filled with content-based predictions. They

then performed collaborative filtering using the extended matrix.

Unified hybrid approaches may combine collaborative and content-based

features in the same recommendation model. Basu et al. [36] represented a

𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair as a combination of collaborative, content-based, and hybrid

features; and applied binary classification (𝑙𝑖𝑘𝑒𝑑,𝑑𝑖𝑠𝑙𝑖𝑘𝑒𝑑) to make

predictions. Park and Chu [37] proposed a regression approach that benefits from

all possible side information of users and items, together with collaborative

features, providing a solution to both new user and new item situations of cold

start problem.

Matrix factorization based models naturally allow integrating content

features of users or items into the factor model, and learning the parameters on

those content features [19].

 Some other noteworthy approaches are, definition of new similarity

measures that work better than traditional ones for users who rated only a few

items [38], and filling the user-item interest matrix with automatic bots [39].

 13

3. LEARNING ENSEMBLES OF RECOMMENDERS

Consider a machine learning problem for which we have a number of

alternative algorithms to model. An ensemble learner refers to a combination of

those multiple learners. We expect from an ensemble model, if it is composed of

complementary base learners, to be more accurate than individual learners [40].

Techniques of combining multiple learners vary, and we list here the

related ensemble techniques:

- Voting [40]:

In voting, where the prediction domain is numerical, a weighted average

of results from individual learners is used to compute the final prediction.

Formally, a voting based numerical prediction model is as follows:

 𝑦(𝑥) = 𝑤!𝑦!(𝑥)
!

!!!

 (3.1)

where ∀𝑤! ≥ 0 and 𝑤!!
!!! = 1 . Here, 𝑦(𝑥) is the prediction model, 𝐿 is

the number of individual learners, and 𝑤! is the weight assigned to the

base learner 𝑖.

- Mixture of Experts [4, 40]:

Mixture of Experts is a variant of voting, where the base learners are

expected to be complementary, and the weighting scheme depends on the

input. For a partition of the input space, one base learner performs the

best. So if an input resembles partition 𝑖 , we expect that learner 𝑖

outweighs other learners in the weighting scheme, for that particular input.

Formally, a mixture of experts ensemble model is as the following:

 𝑦(𝑥) = 𝑤!(𝑥)𝑦!(𝑥)
!

!!!

 (3.2)

 14

- Stacking [3]:

In stacking, we combine the base learners’ outputs with a separate learning

process, level-1 learning, which may incorporate other features and need

not to be linear. Level-1 learning is performed on a separate validation

data set.

3.1. Recommender Systems Blending

Ensemble learning for recommendation, or blending, has been shown to

improve recommender system accuracy and generalization.

Yu et al. [41] show that a hierarchical Bayesian approach for blending

collaborative and content based filtering techniques improves recommender

system accuracy.

[42] hybridizes item neighborhood-based collaborative filtering and

content-based filtering techniques using a decision template based combination,

which has been shown to perform well for classification[43].

[11] describes the details of the winning solution for the Netflix Prize from

the The BellKor Pragmatic Chaos team. The solution performs a complex

blending method on over 100 recommendation techniques, Gradient Boosted

Decision Tree, and achieves a higher accuracy than any base recommender [44,

45].

In [46], the authors mention that a hybrid system should adjust the

combination of different recommenders based on the properties of the input (the

𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pairs), and they applied stacking on user-based collaborative, item-

based collaborative, and content-based filtering techniques. The level-1 learner

incorporates runtime meta-features, and they used three different techniques

(linear regression, model tree, and bagged model trees) as a level-1 learner.

Reported results show that stacked generalization improves recommender system

performance. From different methods of level-1 learning process, linear

regression performs worst.

Sill et al. [47] presented a linear regression approach for performing

stacking based ensemble as a recommender blend. The level-1 learner they

describe also incorporates meta-features, features based on individual 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚

 15

pairs. It models the weights of level-0 learner outcomes as linear functions of

meta-features, and the approach yields accurate results as non-linear blending

techniques, yet benefits from the advantages of linear regression. Writing the

weight of a learner 𝑖 on input 𝑥 as a function of meta-features is formalized as:

 𝑤!(𝑥) = 𝑣!"𝑓! 𝑥
!

 (3.3)

The blending model then becomes:

 𝑦(𝑥) = 𝑤!(𝑥)𝑔!(𝑥)
!,!

 (3.4)

where 𝑦(𝑥) is the prediction model for an input 𝑥, and 𝑔!(𝑥) refers to learner 𝑖’s

output for input 𝑥.

In [48], the authors propose the Social Trust Ensemble, where blending is

done on results of trust-based recommendation and matrix factorization based

collaborative filtering.

Blending different techniques improve accuracy of a single

recommendation technique, and when the blending incorporates input-based

features (meta-features), the accuracy of a linear blend is further improved. We

refer to [49] for an empirical analysis on blending recommenders.

In most of the reviewed blending techniques those incorporate the meta-

features, number of ratings (by the user or for the item) affect accuracy

improvement more than other meta-features. This gave us the idea to implement

the domain-adaptive hybrid recommender, where a domain is identified in terms

of number of ratings.

 16

4. ELEMENTS OF THE HYBRID MODEL

In this section, we describe the individual recommender techniques those

are selected to perform the hybrid recommender of varying weights. We start with

defining three different domains to adapt, which are:

1. High-quality feedback is available for both user and item

2. Item cold-start

3. User cold-start

The domain-adaptive hybrid model learns a weighted combination of the

individual recommenders for each domain, which hopefully results in a model

where the best-performing individual recommender outweighs others. To this end,

we refer to three different recommender techniques, each of which is expected to

result in most accurate recommendations for one domain:

- Matrix factorization based collaborative filtering (Domain 1)

- Item content-based filtering (Domain 2)

- User content-based filtering (Domain 3)

The models we use share some common properties:

- They work on numerical feedback data

- They minimize the squared error function

- They can be trained using online learning techniques

We use the same matrix factorization based collaborative filtering model

defined in (2.12), where training is performed as in (2.11) and (2.13).

4.1. Item Content-based Filtering

In item content-based filtering, we represent users and items with profiles.

Suppose that an item profile, 𝑡! is the content characteristics vector of the item,

such as description, category, price, and so on. We have multiple alternatives to

compute recommendations, some of which are:

- Representing a user by its rating history, and replacing the similarity

computation in the item neighborhood-based collaborative filtering

 17

approach with content similarity. This way, we can calculate content-

based user-item scores using the (2.4).

- Representing a user with a vector of the same dimensionality with the item

characteristics vector, whose values are determined by the content

characteristics of the items those the user positively rated before. This

way, we can combine the user and item vectors to score a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair.

- Representing a user by a parameter vector, 𝛼! on the item content vector,

𝑡! and learning the parameters on user history with an appropriate

supervised learning algorithm. This way, we can combine the user

parameter vector and the item content vector to score a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pair.

We use the third approach to learn user profiles. Note that this approach

introduces 𝑚×𝑛 number of parameters to be learned, where 𝑛 is the

dimensionality of an item content vector. The model that scores an 𝑖, 𝑗 pair is as

the following:

 𝑦!" = 𝛼!! + 𝛼!"𝑡!"

!

!!!

 (4.1)

Using regularized ordinary least squares (linear regression), the objective

function is as follows:

 min
!!"

1
2 𝑦!" − 𝑦!"

!

!,!

+
𝜆
2 (𝛼!!"

!

!!!!

) (4.2)

Here, a 𝑦!" is only available if the user 𝑢 actually provided feedback for

item 𝑖. One can train the model with each incoming feedback using an online and

scalable approach, stochastic gradient descent method such that:

 𝛼!" = 𝛼!" + 𝑙𝑟(𝑦!" − 𝑦!" 𝑡!" − 𝜆𝛼!") (4.3)

Training is done simultaneously for all 𝑘.

 18

4.2. User Demographics-based Filtering

To estimate how an item 𝑗 fits user 𝑖 characteristics vector, we use the

following model:

 𝑦!" = 𝜋!! + 𝜋!"𝑥!"

!

!!!

 (4.4)

where a 𝜋! denotes the parameter vector representing the item 𝑗’s weights on

content features, 𝑥! is the user 𝑖′ s characteristics features, and 𝑚 is the

dimensionality of a user content features vector. The optimization objective and

stochastic gradient descent update rules are straightforward, and shown in (4.5)

and (4.6), respectively:

 min
!!"

1
2 (𝑦!" − 𝑦!")!

!,!

+
𝜆
2 (𝜋!!"

!

!!!!
) (4.5)

 𝜋!" ← 𝜋!" + 𝑙𝑟(𝑦!" − 𝑦!" 𝑥!" − 𝜆𝜋!") (4.6)

 19

5. DOMAIN-ADAPTIVE HYBRID MODEL

5.1. A Linear Stacking Based Model

We can combine selected three recommenders in the following way, and

estimate the weighting scheme from the validation data as the level-1 learner:

 𝑦!" = 𝑤!𝑟! 𝑖, 𝑗 + 𝑤!𝑟! 𝑖, 𝑗 + 𝑤!𝑟!(𝑖, 𝑗) (5.1)

where 𝑤!s represent the weights, and 𝑟!s the numerical scoring models of base

recommenders. Note that the model combines results from different

recommenders, which means prior to learning hybridization weights, the base

recommenders need to be learned already.

The weights are learned using a separate validation data set. The optimal

model can be found by minimizing a squared error function on validation data:

 min
!!

1
2 (𝑦!" − 𝑦!")!
!,! ∈!

 (5.2)

here 𝑉 denotes the validation data set (not included in training data) consisting of

ratings.

If the base recommender set includes user demographics based and item

content-based recommenders, this hybridization approach can generalize to new

users and items, but for example, is not as accurate as collaborative filtering if

high-quality feedback is available.

5.2. Hybrid Recommendation of Varying Weights

Content-based and collaborative filtering techniques have their own

strengths and weaknesses. Collaborative filtering algorithms are known for

predicting accurate, serendipitous recommendations [50], but they suffer from

cold-start problem: they cannot generalize to new users and items. Content-based

filtering algorithms are capable to generalize to new data, but the accuracy is

lower and the problem of over-specialization occurs [25].

 A recommender system in production encounters with various kinds of

domains that the 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 pairs are belong to:

 20

- High-quality feedback is available for both the user and the item

- No or little feedback is available for the user

- No or little feedback is available for the item

No single recommendation technique fits all listed domains, which limits a

recommender in production. Item content-based filtering approach is expected to

perform best for the third case, but it cannot predict 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 scores accurately

for the second case, and cannot perform as good as collaborative filtering for the

first case, for example.

 Hybrid recommendation of varying weights is intended to improve the

quality of a recommender, by improving accuracy and increasing generalization

performance with a model that is robust to the domain of a 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 input. To

this end, a practitioner should first identify different domains for the 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚

queries that the recommender deployed in production would encounter with. The

second step is to identify alternative recommendation techniques, each of which is

expected to perform best for one particular domain. Finally, after carefully

designing validation and test data sets representing identified domains, the

hybridization weights per domain are learned separately. See Figure 5.1 for a

graphical representation of the model.

Say we identified |𝐷| domains, and 𝑟!(𝑖, 𝑗)s, where a 𝑟! is the function we

expect to perform most accurate for inputs belonging to domain 𝑑. For instance,

for domains we identified here, 𝑟!(𝑖, 𝑗) refers to matrix factorization based

collaborative filtering algorithm. Then for a prediction task 𝑖, 𝑗,𝑑,

recommendation computation is done by:

 𝑦!"# = 𝑤!!𝑟!(𝑖, 𝑗)
|!|

!!!

 (5.3)

here 𝑤! s are domain specific hybridization weights. Those domain-specific

weights are learned using a validation data set (𝑉!), created for this particular

domain 𝑑. Since we choose 𝑟!s carefully so that an 𝑟! performs most accurate in

domain 𝑑, we expect 𝑤!s are adjusted in such a way that 𝑤!! would be the highest

weight among all 𝑤!!s.

 21

Learning 𝑤!s are performed separately for each 𝑑, using the same training

data set and custom validation and test data sets. After learning individual

recommender functions, we perform weight optimization for each domain 𝑑 on

validation data set 𝑉!such that:

 min
!!
!

1
2 (𝑦!"# − 𝑦!"#)!

(!,!)∈!!
 (5.4)

Here, 𝑦!"#s are actual rating values for 𝑖, 𝑗s in 𝑉!, and 𝑦!"# is the hybrid prediction

score as defined in (5.3). Weight optimization per domain is normally performed

once –or periodically– so any batch optimization method, such as batch gradient

descent can be used to optimize those weights.

Figure 5-1 Hybrid recommendation of varying weights

 22

5.3. Relation to Other Ensemble Techniques

Hybrid recommendation of varying weights has ties with stacking and

mixture of experts ensemble models in some ways.

In stacking, a higher-level model is learned using the outputs of base

learners, possibly incorporated with other features, on validation data. Our

approach also utilizes outputs of base recommenders, and learns a higher-level

weighting scheme on validation data. Hybrid recommender of varying weights

differ from stacking such that, one need to carefully design validation data sets

those represent identified domains.

Mixture of experts model defines a weighting scheme based on a particular

input, which is the exact case in the hybrid recommender of varying weights,

since we interpret the domain as a part of the input (𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚,𝑑𝑜𝑚𝑎𝑖𝑛). As in

mixture of experts, our method expects complementary base recommenders, each

of which performs the best on a domain.

 23

6. EXPERIMENTAL STUDY

We run our experiments on MovieLens 1M data set, which contains one

million numerical ratings of users on movies, and side information for both users

and movies. In this section, we describe the steps we perform as experiments1.

6.1. Preparing Experimentation Data

For learning domain-specific hybridization weights and testing if hybrid

recommendation model works well, first, the entire ratings data set is split into

three for each domain, as shown in Table 6.1.

Table 6.1 Domain-specific data splits

 Size (%) Description

Train1

Validation1

Test1

70

20

10

Train data for high-quality feedback domain

Feedback is available for all users and movies

Feedback is available for all users and movies

Train2

Validation2

Test2

70

20

10

Train data for item cold-start domain

Items are unseen in Train2

Items are unseen in Train2 and Validation2

Train3

Validation3

Test3

70

20

10

Train data for user cold-start domain

Users are unseen in Train3

Users are unseen in Train3 and Validation3

1 All experiments provided here can be reproduced using the commandline tools after
downloading and building the code in https://github.com/gcapan/mahout/tree/mahout-matrices.

 24

Side information of users and items are vectorized to be used by content-

based recommendation algorithms. Item content features and user characteristics

we include to the model are listed in Table 6.2. Categorical features of more than

two unique values, say 𝑐, were converted to 𝑐 binary features.

Table 6.2 Content features

 Domain Description

Genre

YearsPassed

Categorical

Numerical

Genre of a movie

Years passed since the movie was released

Gender

Occupation

Age

Categorical

Categorical

Categorical

Gender of the user

Occupation of the user

Age of the user (Discretized)

 25

6.2. Learning Strategy

We first learn 𝑟!s (base recommenders) on training data sets, as it is

described in Section 4. The 𝑙𝑟 and 𝜆 parameters we used, and iteration numbers

until the algorithms converge are shown in Table 6.3.

Table 6.3 Parameters and number of iterations for base recommenders

 Parameters Converges at

MF-based collaborative 𝜆 = 0.0007, 𝜆! = 0.0005,

𝑟 = 100, 𝑙𝑟 = 0.002

75

Item content-based 𝜆 = 0.0005, 𝑙𝑟 = 0.004 96

User demographics-based 𝜆 = 0.0005, 𝑙𝑟 = 0.007 108

 26

We use a simple, yet scalable approach for learning hybridization weights:

stochastic gradient descent. For each rating in validation data set, 𝑤!!s are updated

simultaneously, using the following formula:

 𝑤!! ≔ 𝑤!! + 𝑙𝑟 𝑦!" − 𝑦!"# 𝑟!(𝑖, 𝑗) (6.1)

Since the hybridization is actually a weighted average of different base

recommenders, when an iteration is completed, we simply transformed the learned

weights to meet non-negative constraints, and ensured that their sum is equal to 1.

Formally, we adjusted weights such that: 𝑤!!!
!!! = 1,∀𝑑 and

𝑤!! ≥ 0,∀𝑑 𝑎𝑛𝑑 ∀𝑘 . We observed that the process of learning hybridization

weights converges really fast, at typically a couple iterations. Learning rate we

used to train the hybridization scheme is 0.002.

6.3. Experimental Results

Root mean squared error (RMSE) is a widely used technique for testing the

accuracy of a numerical prediction algorithm. RMSE of the hybrid recommender

on the test data set of domain 𝑑 (𝑇𝑒𝑠𝑡!) with size |𝑇𝑒𝑠𝑡!| is calculated by:

 𝑅𝑀𝑆𝐸 =
1

|𝑇𝑒𝑠𝑡!| (𝑦!"# − 𝑦!")!

!,!,!!" ∈!"#$!
 (6.2)

We evaluated 𝑦!"# predictions on 𝑇𝑒𝑠𝑡!s, and compare the accuracy with

base recommenders, to test our hypothesis that hybrid recommender of varying

weights scheme is as accurate as the best-performing base recommender for

domain 𝑑. In the hybrid scheme, best-performing recommender outweighs the

others, as shown in Table 6.4.

Table 6.4 Hybridization weights for different domains

 𝒘𝟏 𝒘𝟐 𝒘𝟑

Domain 1 0.8890 0.1045 0.0065

Domain 2 0 1 0

Domain 3 0.12 0 0.88

 27

Figure 6.1 shows that the hybrid recommender performs as accurate as

collaborative filtering when high-quality feedback is available, and preserves the

generalization capability of content-based and demographics based recommenders

in the cold-start domains. In Table 6.5, final RMSE scores where the algorithms

converged are listed

Table 6.5 RMSE of base recommenders and the hybrid model for each domain

 Algorithm RMSE

Domain 1 MF based

User demographics-based

Item content-based

Hybrid model

𝟎.𝟖𝟓𝟕

0.981

1.018

𝟎.𝟖𝟓𝟓

Domain 2 MF based

User demographics-based

Item content-based

Hybrid model

1.586

𝟎.𝟗𝟔𝟖

2.800

𝟎.𝟗𝟔𝟖

Domain 3 MF based

User demographics-based

Item content-based

Hybrid model

2.221

2.834

𝟎.𝟗𝟗𝟔

𝟏.𝟎𝟎𝟏

 28

Figure 6-1 RMSE per numbers of iterations on different domains

 29

Finally, to illustrate that the domain-adaptive approach outperforms the

base recommenders in the production case, we split the MovieLens 1M data such

that:

- We created a training data set from the 70% of entire data.

- We created two validation data sets, each of which constitutes 10% of

entire data, where one validation set represents high-quality feedback

domain, and the other represents item cold-start domain.

- We created one test data set (10% of entire data), which include

𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 queries from both domains, that is to say, half of the queries

include cold-start items, rest of them received high-quality feedback that is

available in training data.

After learning domain-adaptive hybrid recommender, we compared its

accuracy with individual base recommenders, collaborative filtering and item

content-based filtering. Results are presented in Table 6.6, showing that the

hybrid approach outperforms base recommenders in the production case.

Table 6.6 RMSEs of different recommenders in half cold-start domain

 RMSE

MF-based collaborative High-quality feedback domain: 0.856

Real-world scenario: 𝟏.𝟔𝟕

Item content-based Item cold-start domain: 1.02

Real-world scenario: 𝟏.𝟎𝟐

Hybrid Real-world scenario: 𝟎.𝟗𝟓

 30

6.4. Scalability and Performance

We are going to give a note on scalability and runtime performance of the

algorithms described used in methods and experiments of that document. To start

with, scalability of the hybrid approach depends on the base recommenders, since

they should be already available when the ensemble learning is processed.

In the scope of this paper, we approach collaborative, item content-based,

and user demographics-based filtering problems as supervised learning problems,

and train all of them using stochastic gradient descent algorithm. Stochastic

gradient descent algorithm is an example of online learning, where the parameters

are updated with each training example. This paradigm not only solves a machine

learning task simplistically and keeps the model up to date at all time, but also

allows horizontally scalable system architecture. Updating one parameter vector

(per user or item) at a time, with a simple row lock to ensure isolation to prevent

other nodes (or threads) try to update it at the same time, allow multiple threads,

or computing nodes, to update the recommender model concurrently.

To give a sense of training performance, in Table 6.7, we report the

running time for performing one iteration on training set of 700000 ratings of

three different recommenders, and on validation set of 200000 ratings of the

hybrid recommender. The reported results are for the experiments that we run on a

UNIX personal computer, with 2.8 GHz 4-cores processor, and 8GB of memory,

1 GB of which is spared for Java Virtual Machine heap.

Table 6.7 Training running times of different recommenders per iteration

 Running time per iteration (seconds)

MF-based collaborative 7.2

User demographics-based 3.4

Item content-based 2.9

Hybrid 0.8

 31

7. CONCLUSIONS AND FUTURE DIRECTIONS

A typical recommender system learns a scoring function for a prediction

task 𝑖, 𝑗, and then when a user 𝑖 demands a list of interesting items, it ranks

unrated items based on this function, and lists the top results. When the system is

deployed in production, prediction tasks representing different domains might

limit its accuracy. For instance, the system can unify various recommender

models in a single one to generalize to cold-start data, but that approach would

hurt accuracy when high-quality feedback is available for the user and the item

involving in the task. To avoid this trade-off, we developed an ensemble of

complementary recommenders, which adapts to various, identified domains, for

which an accurate recommender technique exists.

Experimental results show that the model we described converges to the

most accurate base recommender, say 𝑟!, on the test data set representing the

identified domain 𝑑. Considering this 𝑟! performs poor for domains other than 𝑑,

the hybrid model of varying weights outperforms complementary base

recommenders on a test data set that includes prediction tasks from multiple

domains, which is the case for a recommender in production.

This approach has some limitations, too. The practitioner should carefully

identify the prediction task cases, mimic those cases by creating validation data

sets, and learn domain-specific weights separately. Besides at runtime, the system

should infer the domain of the query, other than user and item.

The model we described learns hybridization weights on separate

validation data sets subsequent to learning base recommenders. A further

improvement would be to learn domain specific weights and recommenders

simultaneously, which would eliminate the relatively complex multi-step learning

process the current model introduces.

 32

REFERENCES

 [1] Claypool, M., et al. Combining Content-based and Collaborative Filters in

an Online Newspaper. in Proceedings of ACM SIGIR Workshop on

Recommender Systems. 1999. ACM.

 [2] Balabanović, M. An interface for learning multi-topic user profiles from

implicit feedback. in AAAI-98 Workshop on Recommender Systems. 1998.

 [3] Wolpert, D.H., Stacked Generalization. Neural Networks, 1992. 5(2): 241-

259.

 [4] Jacobs, R.A., et al., Adaptive Mixtures of Local Experts. Neural

Computation, 1991. 3(1): 79-87.

 [5] Herlocker, J.L., et al., Evaluating Collaborative Filtering Recommender

Systems. ACM Transactions on Information Systems, 2004. 22(1): 5-53.

 [6] Goldberg, D., et al., Using Collaborative Filtering to Weave an

Information Tapestry. Communications of the ACM, 1992. 35(12): 61-70.

 [7] Shardanand, U. and P. Maes. Social information filtering: Algorithms for

Automating “word of mouth”. in Proceedings of the SIGCHI conference

on Human Factors in Computing Systems. 1995. ACM Press/Addison-

Wesley Publishing Co.

 [8] Resnick, P., et al. GroupLens: An Open Architecture for Collaborative

Filtering of Netnews. in Proceedings of the 1994 ACM Conference on

Computer Supported Cooperative Work. 1994. ACM.

 [9] Bennett, J. and S. Lanning. The Netflix Prize. in Proceedings of KDD cup

and workshop. 2007.

[10] Bell, R.M. and Y. Koren, Lessons from the Netflix Prize Challenge. ACM

SIGKDD Explorations Newsletter, 2007. 9(2): 75-79.

[11] Koren, Y., The Bellkor Solution to the Netflix Grand Prize. Netflix Prize

Documentation, 2009.

[12] Töscher, A., M. Jahrer, and R.M. Bell, The Bigchaos Solution to the

Netflix Grand Prize. Netflix Prize Documentation, 2009.

[13] Piotte, M. and M. Chabbert, The Pragmatic Theory Solution to the Netflix

Grand Prize. Netflix Prize Documentation, 2009.

 33

[14] Breese, J.S., D. Heckerman, and C. Kadie. Empirical Analysis of

Predictive Algorithms for Collaborative Filtering. in Proceedings of the

14th Conference on Uncertainty in Artificial Intelligence. 1998. Morgan

Kaufmann Publishers Inc.

[15] Herlocker, J.L., et al. An Algorithmic Framework for Performing

Collaborative Filtering. in Proceedings of the 22nd annual international

ACM SIGIR conference on Research and development in information

retrieval. 1999. ACM.

[16] Sarwar, B., et al. Item-based Collaborative Filtering Recommendation

Algorithms. in Proceedings of the 10th International Conference on World

Wide Web. 2001. ACM.

[17] Joseph, J.H., J.A. Konstan, and J. Riedl. Explaining Collaborative

Filtering Recommendations. in Proceedings of the 2000 ACM Conference

on Computer Supported Cooperative Work. 2000.

[18] Seung, D. and L. Lee, Algorithms for Non-negative Matrix Factorization.

Advances in Neural Information Processing Systems, 2001. 13: 556-562.

[19] Koren, Y., R. Bell, and C. Volinsky, Matrix Factorization Techniques for

Recommender Systems. Computer, 2009. 42(8): 30-37.

[20] Funk, S. Netflix Update: Try This at Home. 2006 [cited 2013; Available

from: http://sifter.org/~simon/journal/20061211.html.

[21] Paterek, A. Improving Regularized Singular Value Decomposition for

Collaborative Filtering. in Proceedings of KDD Cup and Workshop. 2007.

[22] Baltrunas, L., B. Ludwig, and F. Ricci. Matrix Factorization Techniques

for Context Aware Recommendation. in Proceedings of the 5th ACM

Conference on Recommender Systems. 2011. ACM.

[23] Koren, Y., Collaborative Filtering with Temporal Dynamics.

Communications of the ACM, 2010. 53(4): 89-97.

[24] Hu, Y., Y. Koren, and C. Volinsky. Collaborative Filtering for Implicit

Feedback Datasets. in Proceedings of the 8th IEEE International

Conference on Data Mining. 2008. IEEE.

 34

[25] Lops, P., M. de Gemmis, and G. Semeraro, Content-based Recommender

Systems: State of the Art and Trends, in Recommender Systems Handbook.

2011, Springer: 73-105.

[26] Schiaffino, S. and A. Amandi, Intelligent User Profiling, in Artificial

Intelligence. An International Perspective. 2009, Springer: 193-216.

[27] Pazzani, M.J., A Framework for Collaborative, Content-based and

Demographic Filtering. Artificial Intelligence Review, 1999. 13(5-6):

393-408.

[28] Bonhard, P. and M. Sasse, ’Knowing me, knowing you’—Using Profiles

and Social Networking to Improve Recommender Systems. BT Technology

Journal, 2006. 24(3): 84-98.

[29] Pazzani, M.J. and D. Billsus, Content-based Recommendation Systems, in

The Adaptive Web. 2007, Springer: 325-341.

[30] Balabanović, M. and Y. Shoham, Fab: Content-based, Collaborative

Recommendation. Communications of the ACM, 1997. 40(3): 66-72.

[31] Van Meteren, R. and M. Van Someren. Using Content-based Filtering for

Recommendation. in Proceedings of the Machine Learning in the New

Information Age: MLnet/ECML2000 Workshop. 2000.

[32] Mooney, R.J., P.N. Bennett, and L. Roy, Book Recommending using Text

Categorization with Extracted information, in Recommender Systems

Papers from 1998 AAAI Workshop. 1998.

[33] Billsus, D. and M.J. Pazzani. A Hybrid User Model for News Story

Classification. in Proceedings of the 7th International Conference on User

Modeling. 1999.

[34] Li, Q. and B.M. Kim. Clustering Approach for Hybrid Recommender

System. in Proceedings of the 2003 IEEE/WIC International Conference

on Web Intelligence. 2003. IEEE.

[35] Melville, P., R.J. Mooney, and R. Nagarajan. Content-boosted

Collaborative Filtering for Improved Recommendations. in 18th

International Conference on Artificial Intelligence. 2002.

[36] Basu, C., H. Hirsh, and W. Cohen. Recommendation as Classification:

Using Social and Content-based Information in Recommendation. in

 35

Proceedings of the 15th National Conference on Artificial Intelligence.

1998.

[37] Park, S.-T. and W. Chu. Pairwise Preference Regression for Cold-start

Recommendation. in Proceedings of the 3rd ACM Conference on

Recommender Systems. 2009. ACM.

[38] Ahn, H.J., A New Similarity Measure for Collaborative Filtering to

Alleviate the New User Cold-starting Problem. Information Sciences,

2008. 178(1): 37-51.

[39] Park, S.-T., et al. Naïve Filterbots for Robust Cold-start

Recommendations. in Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.

2006. ACM.

[40] Alpaydin, E., Introduction to machine learning. 2004: MIT press.

[41] Yu, K., A. Schwaighofer, and V. Tresp. Collaborative Ensemble

Learning: Combining Collaborative and Content-based Information

Filtering via Hierarchical Bayes. in Proceedings of the 19th Conference

on Uncertainty in Artificial Intelligence. 2002. Morgan Kaufmann

Publishers Inc.

[42] Tiemann, M. and S. Pauws. Towards Ensemble Learning for Hybrid

Music Recommendation. in Proceedings of the 2007 ACM Conference on

Recommender Systems. 2007. ACM.

[43] Kuncheva, L.I., J.C. Bezdek, and R.P. Duin, Decision Templates for

Multiple Classifier Fusion: An Experimental Comparison. Pattern

Recognition, 2001. 34(2): 299-314.

[44] Friedman, J.H., Greedy Function Approximation: A Gradient Boosting

Machine. Annals of Statistics, 2001: 1189-1232.

[45] Friedman, J.H., Stochastic Gradient Boosting. Computational Statistics &

Data Analysis, 2002. 38(4): 367-378.

[46] Bao, X., L. Bergman, and R. Thompson. Stacking Recommendation

Engines with Additional Meta-features. in Proceedings of the 3rd ACM

Conference on Recommender Systems. 2009. ACM.

 36

[47] Sill, J., et al., Feature-weighted Linear Stacking. arXiv preprint

arXiv:0911.0460, 2009.

[48] Ma, H., I. King, and M.R. Lyu. Learning to Recommend with Social Trust

Ensemble. in Proceedings of the 32nd International ACM SIGIR

Conference on Research and Development in Information Retrieval. 2009.

ACM.

[49] Jahrer, M., A. Töscher, and R. Legenstein. Combining Predictions for

Accurate Recommender Systems. in Proceedings of the 16th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2010. ACM.

[50] Desrosiers, C. and G. Karypis, A Comprehensive Survey of Neighborhood-

based Recommendation Methods, in Recommender Systems Handbook.

2011, Springer: 107-114.

