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ABSTRACT 
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PRIVACY-PRESERVING DISTRIBUTED COLLABORATIVE 

FILTERING 

Cihan KALELİ 

Anadolu University 

Graduate School of Sciences 

Computer Engineering Program 

 

Supervisor: Assoc. Prof. Dr. Hüseyin POLAT 

2012, 162 pages 

 

In order to provide accurate and dependable recommendations, online vendors 

need to have adequate data; however, due to the nature of online shopping and 

increasing amount of e-commerce sites, data collected for collaborative filtering 

purposes might be distributed among various companies, even competing ones. 

Those online vendors holding distributed data might want to offer predictions 

based on integrated data collaboratively. However, concerns regarding protecting 

private data, financial fears due to revealing valuable assets, and legal regulations 

imposed by various organizations prevent them from alliance.  

In this dissertation, various solutions are proposed to enable online vendors’ 

collaboration for estimating recommendations on vertically or horizontally 

distributed data while preserving their confidentiality. The proposed solutions 

mainly employ randomized and cryptographic techniques for protecting privacy. 

To improve online performance, which may become worse due to collaboration, 

preprocessing methods such as clustering, dimensionality reduction, and trust are 

utilized. The recommended methods are analyzed in terms of privacy. Also, 

superfluous loads caused by privacy concerns are examined. Finally, real data-

based trials are performed for evaluating the proposed schemes in terms of the 

quality of predictions. The analyses and experimental outcomes demonstrate that 

the methods preserve confidentiality, cause insignificant overheads, and offer 

accurate recommendations.  

Keywords:  Privacy, Distributed Data, Collaborative Filtering, SOM, Naïve  

                     Bayesian Classifier, Random Projection, and Performance.   
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ÖZET 

Doktora Tezi 

GİZLİLİĞİ KORUYARAK DAĞITIK ORTAK SÜZGEÇLEME 

Cihan KALELİ 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Danışman: Doç. Dr. Hüseyin POLAT 

2012, 162 sayfa 

 

Doğru ve güvenilir öneriler üretebilmek için sanal alışveriş siteleri yeterli veriye 

ihtiyaç duyarlar. Fakat sanal alışverişin doğası gereği ve e-ticaret sitelerinin 

sayısındaki artış nedeniyle ortak süzgeçleme amacıyla toplanmış veriler çeşitli 

siteler arasında dağıtık olmuş olabilir. Bu dağıtık veriye sahip e-ticaret siteleri 

bütünleştirilmiş veri üzerinden ortak öneriler sunmak isteyebilirler. Fakat gizli 

verilerini koruma düşüncesi, finansal korkular ve yasal zorunluluklardan dolayı 

bu siteler işbirliği yapmak istemeyebilirler. 

Bu doktora tez çalışmasında, yatay veya dikey dağıtık veri üzerinden veri 

sahiplerinin gizliliklerini koruyarak öneriler üretmek için işbirliğini sağlayacak 

çeşitli çözümler önerilmiştir. Gizliliği korumak için rasgele karıştırma ve 

kriptografi tabanlı çözümler kullanılmıştır. İşbirliği nedeniyle kötüleşebilecek 

çevrim içi performansı artırmak için kümeleme, boyut indirgeme ve güven tabanlı 

benzerlik gibi ön işleme metotları kullanılmıştır. Önerilen yöntemler gizlilik 

açısından analiz edilmiştir. Ayrıca, gizlilik endişesi nedeniyle ortaya çıkan ilave 

yükler irdelenmiştir. Son olarak, çeşitli gerçek veriye dayalı deneyler yapılmış ve 

önerilen çözümler doğruluk açısından incelenmiştir. Yapılan analizler ve deney 

sonuçları önerilen çözümlerin gizliliği koruduğunu, önemsenmeyecek miktarda 

ilave yükler getirdiğini ve kaliteli öneriler üretebildiğini göstermiştir.  

Anahtar Kelimeler: Gizlilik, Dağıtık Veri, Ortak Süzgeçleme, SOM, Basit     

                                   Bayes Sınflandırıcı, Rastgele Projeksiyon ve       

                                   Performans. 
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1. INTRODUCTION 

Technological developments simplify individuals’ lives. It is possible to carry out 

daily tasks such as searching an unknown topic, following written and visual 

media, constructing friendship, shopping etc. through the Internet. Since people 

are interested in conveniences of the Internet, there are lots of competing web 

sites; and it causes information overload that diminishes people’s decision-making 

ability. Therefore, it is inevitable to be confused while choosing the right 

information. To overcome the information overload problem, information filtering 

schemes are proposed. As the information filtering systems are utilized in various 

applications, recommender systems, which are implemented in commercial and 

non-profit web sites to predict the user preferences, utilize such schemes. 

Collaborative filtering (CF) is the most popular information filtering method 

employed in recommender systems.  

1.1. Collaborative Filtering 

CF aims to help people choose right products while shopping online. CF phrase is 

firstly introduced by developers of one of the first recommender systems called 

Tapestry (Goldberg et al., 1992). Many customers choose various products to buy, 

books to read, music CDs to listen, foods to eat, and so on over the Internet. 

Hence, there are many online vendors and they employ CF techniques to enhance 

their customers’ satisfaction. CF depends on users’ preferences about various 

items and assumes that who agree in the past tend to agree in the future (Grcar, 

2004). The main functions of CF algorithms include analyzing user data and 

extracting useful information for further predictions.  

CF algorithms perform on a database including preferences of users about 

various products to generate recommendation requested by an existing or new 

user for a selected item. The database, which is generally large-scale, consists of n 

users’ preferences on m items. The preferences can be collected either explicit 

indications given by users, or implicit clues from log-based data. Since online 

vendors have huge amount of items, it is not possible to have users’ preferences 

for all m items; thus, the database is sparse. 

There are two general classes of CF algorithms, which are memory or 

model-based schemes (Breese et al., 1998). The former operates on entire user-
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item matrix and it is based on correlation between users. However, the latter 

utilizes the database for constructing an underlying model of user preferences and 

predictions are inferred from the model. These two different kinds of classes have 

their own advantages and disadvantages. Memory-based algorithms produce more 

accurate predictions than model-based ones. On the other hand, model-based 

algorithms’ online performance is better than memory-based ones.  

The first algorithms  proposed for CF (Goldberg et al., 1992; Resnick et al., 

1994; Shardanand and Maes, 1995) are in class of memory-based algorithms. In 

this kind of algorithms, similarity scores between users are calculated and k 

nearest neighbors (k-nn) are selected according to similarity values   for any user 

requesting prediction. Predictions are generated by weighting k users’ ratings 

proportionally to their similarity to the user. To compute correlation between 

users, there are various similarity metrics. One of them and the most popular one 

in CF processes is Pearson correlation coefficient (PCC) employed by Resnick et 

al. (1994). Besides correlation-based similarity, researchers also utilize vector 

cosine-based similarity (Sarwar et al., 2001). Researchers study on examining 

algorithmic framework of CF and they make suggestions about using right 

components in memory-based CF (Breese et al., 1998; Herlocker et al., 1999). 

Sarwar et al. (2001) introduce a different way to employ memory-based 

algorithms. They propose to use item-based CF algorithm in which user-item 

matrix is analyzed to identify relationships between items. Firstly, the correlation 

between items are determined and then relationships are employed when 

recommendations are generated.  

Generally, ratings are discrete numbers from a pre-defined range; however, 

it is possible to utilize binary ratings in CF. Therefore, Miyahara and Pazzani 

(2002) develop an algorithm based on naïve Bayesian classifier (NBC) for 

generating recommendations in binary data. Jin et al. (2004) present an algorithm 

to automatically determine appropriate weights for different items for CF. 

Chandrashekhar and Bhasker (2007) introduce a new memory-based approach. 

Unlike existing memory-based CF approaches, their approach exploits the 

predictable portions of even some complex relationships between users while 

selecting the mentors for a user through the use of the novel notion of selective 



 

 3 

predictability, which can be measured using the entropy measure. Su and 

Khoshgoftaar (2009) make a detailed survey about CF covering development in 

memory-based CF algorithms. 

Model-based CF algorithms depend on training data and learning model. 

The algorithms are proposed to handle with shortcomings of memory-based 

algorithms. Data mining tasks such as classification, clustering, dimension 

reduction, and regression are employed for constructing models. Bayesian belief 

networks are also used in recommendation process of CF (Heckerman et al., 

2001; Su and Khoshgoftaar, 2006). These networks are capable of handling 

missing value problems (Su and Khoshgoftaar, 2009). To collect similar users or 

items into the same group, researchers propose various clustering-based CF 

algorithms (Ungar and Foster, 1998; Chee et al., 2001; Roh et al., 2003; Xue et 

al., 2005). By clustering, they aim to improve scalability of recommender 

systems. To decrease dimension of available data, dimension reduction-based 

methods are proposed. Principle component analysis (PCA) and singular value 

decomposition (SVD) are examples of dimension reduction methods utilized in 

CF applications (Sarwar et al., 2000; Goldberg et al., 2001). Vucetic and 

Obradovic (2005) propose a regression-based method for CF. Their method 

computes similarities between users by building a linear model.  

In addition to memory and model-based CF algorithms, researchers also 

propose hybrid methods that combine content-based filtering with CF (Pazzani, 

1999). Content-based recommender systems make recommendations by analyzing 

the content of textual information. This kind of recommender systems gather 

require information from documents, URLs, web logs, item descriptions, profiles 

about users’ tastes, and preferences (Pazzani, 1999). To join both recommender 

systems’ advantages, researchers front to propose hybrid CF algorithms. Melville 

et al. (2002) introduce a content boosted CF algorithm to generate more accurate 

recommendations. Although combining content-based filtering with CF increases 

recommendation accuracy, these hybrid models have an increased complexity of 

implementation (Pazzani, 1999; Popescul et al., 2001; Burke, 2002). Besides 

content-based models, methods joining memory and model-based CF algorithms 

are also proposed. A hybrid probabilistic memory-based CF combines memory 
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and model-based techniques to reduce complexity with decent accuracy (Yu et al., 

2004). Pennock et al. (2000) propose a hybrid algorithm to retain both methods 

advantages. Su et al. (2007) propose hybrid CF algorithms, sequential mixture CF 

and joint mixture CF, each combining advice from multiple experts for effective 

recommendation generation. 

1.2. Challenges of Collaborative Filtering 

Recommender systems take an important role in e-commerce. However, there is 

no completely perfect system that serves recommendation without any drawbacks. 

Although CF is the most popular and widely used information filtering method in 

e-commerce, it has some important challenges. To produce high quality 

recommendation, problems of CF must be overcome. Main challenges of CF are 

listed below: 

Data Sparsity: CF systems operate on large-scale data due to having huge 

amount of items. Therefore, collected data for CF purposes is sparse and it causes 

several challenges. One of the challenges is called cold start problem, which 

generally occurs when a new user is inserted to the database. Since there is not 

enough information about the user, forming neighborhood step in 

recommendation process becomes hard. Also, it is not possible to produce referral 

for a new item due to lack of users having rating for that item. This is called 

coverage problem, where coverage shows the percentage of items that 

recommender system can provide predictions. Consequently, data sparsity 

problem is caused by having inadequate data and it must be overcome to produce 

accurate and dependable referrals (Ahn, 2008). 

Individuals’ Privacy: The proposed algorithms for filtering purposes need 

customers’ preference data to produce recommendations. Hence, the individuals 

share their data with e-companies (servers), so there are several risks for 

individuals’ privacy (O’Cranor, 2003). Such risks occur due to unauthorized use 

of the users’ confidential data by vendors. Since data holders have their 

customers’ preference data, they might attempt to get benefit by unsolicited 

marketing. Another risk is that users’ profiles might be used in criminal cases. 

Customer preference data are valuable assets for companies, and when companies 

fall into a financially difficult situation, they might sell this asset to get rid of 



 

 5 

bankruptcy. According to privacy survey (Westin, 1999), the privacy 

fundamentalists concern about any use of their data and they are generally 

unwilling to provide their data to web sites. The pragmatic people are also 

concerned about usage of their private data, but less than the fundamentalists.  If 

privacy anxieties are not dispelled, users might hesitate to provide actual 

preference data. Besides central server-based CF applications, users have 

confidentiality concerns in peer-to-peer (P2P) network-based CF applications, 

too. Although users have full control on their private data in P2P networks, it still 

requires having a privacy protection mechanism while collaborating with other 

people. Consequently, to feel comfortable while utilizing recommendation 

services, privacy concerns of individuals must be alleviated. If users’ anxieties are 

overcome, they send their actual preferences; thus, CF algorithms produce more 

accurate recommendations. 

Privacy Concerns of Data Holders: In CF, not only individuals have 

concerns about their privacy, but also vendors might have the same concerns. In 

order to overcome problems caused by having inadequate data, data holders might 

need data belonging to another vendor.  In the case of collaboration of companies, 

data holders might hesitate to work together due to privacy, financial, and legal 

concerns. Since collected data are valuable assets, revealing them might cause 

losing competitive edge.  According to reports published by the Organization for 

Economic Co-operation and Development (OECD) (2000; 2005), exposing of 

customers’ privacy is very serious issue, and the companies are obliged to protect 

the data. In order to enable collaboration of companies, their confidentiality must 

be protected. Hence, privacy is an important challenge for both individuals and e-

companies. 

Scalability: Since e-commerce is independent from space and it is easy to 

exhibit huge amount of product through the Internet, product scope of e-

commerce grow enormously. In addition to products, millions of people are able 

to do shopping through e-companies. Hence, CF algorithms face with serious 

scalability problems. Complexity of CF algorithms is generally in the order of  

O(nm) and it is not an easy task forming neighborhood of users online from such 
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huge data. Receiving predictions in a reasonable time for users is an inevitable 

requirement; thus, CF service providers must overcome scalability problems. 

Other Challenges: Like sparsity, privacy, and scalability, CF systems suffer 

from synonymy, gray sheep, and shilling attacks (Su and Khoshgoftaar, 2009). 

Synonymy problem occurs when the same or similar items in different companies 

have different names. Sometimes, a user’s or a group of users’ opinions are not 

common with remaining users. This situation is called gray sheep and it is a 

challenge for service providers to form such users’ neighborhood. In order to 

sabotage a recommender system, malicious users or companies, especially rival 

ones, employ shilling attacks. Their aim is breaking the success of 

recommendation system. 

1.3. Solutions for Eliminating Challenges 

Researchers study the aforementioned challenges of CF schemes because such 

schemes are widely used in recommender systems. They propose several solutions 

alleviating such weaknesses. In this section, the solutions are explained in the 

following. 

Data Sparsity: To alleviate data sparsity problem, several approaches are 

suggested. Since data in CF have large dimensions, researchers propose methods 

for reducing dimension of the data. By reducing dimension, their goal is removing 

effects of insignificant users or items. Besides SVD and PCA (Billsus and 

Pazzani, 1998; Goldberg et al., 2001), latent semantic indexing is also employed 

as a reduction process (Hofmann, 2004). Another method for overcoming sparsity 

problem is proposed by Chen et al. (2009). In their method, orthogonal non-

negative matrix tri-factorization is applied to CF to alleviate sparsity via matrix 

factorization. As mentioned previously, hybrid methods are presented to improve 

CF results. Ziegler et al. (2004) propose a hybrid method to exploit useless 

information to address the sparsity problem in CF. Melville et al. (2002) introduce 

a content-boosted CF algorithm to alleviate cold start problem.  

Traditional similarity measures cannot compute correlation between users if 

data are sparse. To cope with this challenge, Ahn (2008) propose a new similarity 

metric, which alleviates cold start problem. In addition to Ahn’s study, Bobadilla 

et al. (2011) also present a new similarity metric to measure similarity between 
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users. According to their results, the method improves prediction quality. Another 

method proposed by Kim et al. (2010) to deal with sparsity is deriving 

recommendations from user-created tags. With improvement of social networks, 

trust metric is introduced by researchers (Hwang and Chen, 2007; Massa and 

Avesani, 2007; Lathia et al., 2008; Walter et al., 2009). It is investigated that there 

is a relationship between similarity and trust; and shown that trust can be used 

instead of similarity. According to researchers’ results, trust-based CF handles 

problems caused by sparse data. 

Individuals’ Privacy: The notion of privacy-preserving CF (PPCF) is firstly 

introduced by Canny (2002a; 200b). To achieve privacy, Canny proposes to use 

some cryptographic approaches. Polat and Du (2003; 2005) employ randomized 

perturbation techniques (RPT) to achieve PPCF. In their schemes, users perturb 

their data by adding randomly created numbers to their numerical ratings. Since 

the users perturb their data, data collectors cannot learn the original ratings.  Polat 

and Du (2006) utilize randomized response techniques (RRT) to perturb users’ 

data while still producing binary ratings-based referrals with decent accuracy. The 

users either send their true ratings or the exact opposite of their ratings with a 

probability. In another study, Polat and Du (2007) propose a PPCF scheme based 

on inconsistently masked data. Each user variably disguises their private data 

using different methods. Their scheme is still able to offer predictions from 

inconsistently disguised data. Zhang et al. (2006) introduce a two-way 

communication privacy-preserving scheme for CF in which users perturb their 

ratings for each item based on the server’s guidance instead of using an item-

invariant perturbation. Parameswaran and Blough (2007) propose a framework for 

obfuscating sensitive information in such a way that it protects individual secrecy 

and also preserves the information content required for CF. Kaleli and Polat 

(2007b) propose a method for producing private referrals using NBC-based CF. 

They propose to use RRT for preserving users’ confidentiality. According to their 

empirical results, the method is able to produce predictions with decent accuracy. 

Yakut and Polat (2007) investigate how to achieve predictions using Eigentaste 

without greatly exposing users’ privacy. Ahmad and Khokhar (2007) propose an 

architecture, which attempts to restore user trust in these services by introducing 
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the notion of distributed trust. This essentially means that instead of trusting a 

single server, a coalition of servers is trusted. Distributions of trust make the 

proposed architecture fault resilient and robust against security attacks. Aïmeur et 

al. (2008) introduce a recommender system called Alambic, which is a hybrid 

recommender system combining content-based, demographic, and CF techniques 

and preserves users’ privacy. In another study, Shokri et al. (2009) suggest that 

individuals modify their preference vector by merging it with a profile of a similar 

user before sending it to server. Calandrino et al. (2011) increases robustness of 

CF according to profile inference attacks. Xie et al. (2007) work on efficiency 

problem of distributed predictions in P2P systems and propose a scheme, which is 

an efficient neighbor-location algorithm for distributed database predictions. 

Berkovsky et al. (2005; 2006; 2007) also present solutions for P2P 

recommendation systems in which users obfuscate their data and get private 

referrals. Lathia et al. (2007) offer a solution, which computes similarity between 

users by estimating the number of concordant, discordant, and tied pairs of ratings 

between two users on distributed data without exposing parties’ privacy. Ahn and 

Amtriain (2010) introduce private and fully distributed CF settings. They develop 

Rich the Internet Application (RIA) based on linked data. In addition to P2P 

network solutions, authors propose private solutions for social networks. 

Dokoohaki et al. (2010) introduce a solution for producing private 

recommendations on a trust-aware social network. Their method preserves 

individuals’ privacy in a social network. Machanavajjhal et al. (2011) present and 

quantify a trade-off between accuracy and privacy of any social recommendation 

algorithm that is based on any general utility function. Researchers (Li et al., 

2011) study producing privacy-preserving recommendations for online social 

communities. In the study, an interest group-based privacy-preserving 

recommender system called Pistis is proposed. Pistis generate recommendations 

based on aggregated judgments of group members and local personalization. 

Erkin et al. (2011) present an efficient privacy-preserving recommender system 

for a social trust network.   

Data Holders’ Privacy: Researchers introduce private solutions while data 

are partitioned between two parties. Kaleli and Polat (2007a) propose privacy-
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preserving schemes to produce NBC-based recommendations on partitioned data 

between two online vendors. Polat and Du (2008) present a solution, which 

enables two data owners produce binary ratings-based top-N recommendations on 

partitioned data without violating their privacy. Their methods help recommender 

systems offer top-N lists. Yakut and Polat (2010) introduce SVD-based referrals 

on partitioned data between two parties only while protecting data holders’ 

privacy. Yakut and Polat (2012a; 2012b) study arbitrarily partitioned data-based 

recommendations while preserving data owners’ privacy.  

Besides partitioned data-based solutions, researchers study methods for 

producing recommendations from distributed data among multiple parties. Zhang 

and Chang (2006) introduce a method based on secure multi computation and 

random oracle to produce recommendations from distributed data. Zhan et al. 

(2008) solve confidentiality problem of data holders by employing scalar product 

protocol to produce recommendations from distributed data. In another work, 

Zhan et al. (2010) address how to avoid privacy disclosure in collaboration of 

recommender systems on horizontally distributed data (HDD). In this study, 

major cryptology approaches are compared and an efficient privacy-preserving 

method based on the scalar product protocol is proposed. Hsieh et al. (2008) 

introduce an ElGamal homomorphic encryption (HE)-based method to merge 

recommender system databases. Weighted slope one predictor for item-based CF 

is proposed by Basu et al. (2011a; 2011b). They propose solutions for both 

vertical and horizontal distributed data among multiple parties.  Basu et al. (2012) 

suggest a solution for collaboration of data holders on HDD within a cloud. The 

study presents a performance case-study on implementing the building blocks of a 

PPCF scheme in Java on the Google App Engine (GAE/J) cloud platform.  

Scalability: Dimension reduction-based solutions, proposed to solve data 

sparsity problem, also overcome scalability problem. In addition to the solutions 

presented previously, similar methods are proposed to overcome scalability. To 

enhance online performance of memory-based CF algorithms, Sarwar et al. (2001) 

propose an item-based CF algorithm. Clustering is also among the methods that 

are applied to CF to improve online efficiency. Data analyzers can explore large 

amounts of data in order to discover useful information using clustering (Berry 
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and Linoff, 2000). Hence, researchers offer predictions online based on the 

clustered data. Ungar and Foster (1998) introduce clustering methods for CF. 

O’Connor and Herlocker (2001) show that items can be clustered instead of users 

in CF to improve performance. Roh et al. (2003) propose a method for producing 

self-organizing map (SOM) clustering-based referrals. Their method improves 

accuracy and efficiency of memory-based recommendation algorithm. Xue et al. 

(2005) employ smoothing-based clustering to increase online performance of 

recommendation process. In another study, discrete wavelet transform (DWT) is 

utilized to reduce dimension of data to enhance scalability of memory-based CF 

(Russell and Yoon, 2008).  

In order to improve scalability of PPCF, researchers introduce solutions. 

The limitation of privacy-preserving NBC-based scheme is significantly improved 

by studies employing preprocessing techniques (Kaleli and Polat, 2009; Bilge and 

Polat, 2010). Also, Bilge and Polat (2011) enhance the central server-based PPCF 

schemes utilizing preprocessing of profiling users. They aim to overcome the 

sparsity and scalability of the proposed schemes by profiling user data. In another 

study, the same authors enhance both accuracy and online performance of PPCF 

by reducing data with DWT (Bilge and Polat, 2012).  

1.4. Privacy-Preserving Distributed Data Mining 

Privacy of data holders is not a challenge in CF applications only. Since there are 

lots of different data mining tasks, privacy-preserving distributed data-based 

functionalities have been also receiving increasing attention. Researchers 

introduce private methods for carrying out several data mining tasks on 

distributed data while preserving data holders’ privacy. In this section, brief 

literature review about privacy-preserving distributed data mining (PPDDM) is 

given. 

Clifton et al. (2002) suggest a toolkit of components that can be combined 

for specific PPDDM applications. The authors present some components as a 

toolkit, and show how they can be used to solve several PPDDM problems. 

Vaidya and Clifton (2004) address the classification problem while data are 

vertically distributed; and they introduce a private NBC algorithm. Yang and 

Wright (2006) provide an efficient privacy-preserving protocol to learn Bayesian 
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networks from vertically partitioned data between two parties. They present a 

privacy-preserving protocol to construct a Bayesian network efficiently from two 

parties’ joint data. In another study, Xiong et al. (2007) present a framework for 

mining horizontally partitioned databases using a privacy-preserving k-nn 

classifier. To classify distributed data among multiple parties with k-nn algorithm, 

Zhang et al. (2009) introduce a private algorithm. Gambs et al. (2007) propose 

two algorithms for constructing a boosting classifier on distributed data with 

privacy. Dung et al. (2010) develop a cryptographic solution for classification 

rules learning methods for vertically and horizontally distributed data. 

To accomplish clustering task over distributed data, Vaidya and Clifton 

(2003) study on a private k-means clustering for vertically partitioned data. Lin et 

al. (2005) propose a technique employing EM mixture technique for clustering 

distributed data. To enhance accuracy of clustering result while preserving 

parties’ privacy, Jagannathan et al. (2006) introduce an algorithm for k-means 

clustering method for distributed data. This algorithm works on distributed data 

and guarantees privacy concerns. Kaya et al. (2007) propose a privacy-preserving 

distributed clustering protocol for HDD based on a very efficient homomorphic 

additive secret sharing scheme. Inan et al. (2007) propose private methods for 

constructing the dissimilarity matrix of objects over HDD. They propose to utilize 

this matrix for clustering, database joins, and record linkage. Lodi et al. (2010) 

introduce a private clustering method working on P2P networks. To achieve 

privacy in distributed clustering, Hajian and Azgomi (2011) use Haar wavelet 

transforms and scaling data perturbation to achieve privacy. 

In order to accomplish other data mining tasks in such distributed 

environments, researchers propose various solutions. Kantarcioglu and Clifton 

(2004) discuss privacy-preserving association rules over HDD. To determine 

global association rules on distributed data privately, Shen et al. (2006) propose a 

data distortion-based method. In another work, Wang et al. (2010) introduce a 

private framework to find collaborative recommendation association rules from 

horizontally partitioned data. Zhong (2007) addresses the way of finding frequent 

item sets in distributed data among multiple parties without revealing data 

holders’ private data. Emekci et al. (2007) enables different kinds of data owners 
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to perform decision tree learning algorithm ID3 on their distributed data without 

disclosing their private data. In another study, Vaidya et al. (2008) propose a 

technique for ID3 algorithm over VDD with privacy. Yi et al. (2006) proposes a 

trust-based privacy-preserving method for data sharing in P2P systems utilizing 

trust relations between peers in P2P system. Liu et al. (2006) suggest utilizing 

random projection (RP) in distributed data mining applications. They explore to 

use multiplicative RP matrices to preserve data holders’ privacy. RP is used to 

compute the correlation matrix of privacy sensitive data, where data owners are 

not trusted by utilizing statistical data (Kargupta et al., 2003). Vaidya and Clifton 

(2009) propose a method to compute score of vertically partitioned elements. 

Their method requires revealing only little extra information. Since there can be 

malicious users in PPDDM schemes, Duan and Canny (2009) propose solutions 

for dealing with those malicious users. To handle outliers in distributed data, 

Dung and Bao (2011) study a private solution. 

1.5. Problem Definition 

Recommender systems collect users’ preferences about various entities; and 

create an n × m user-item matrix D, where n and m represent number of users and 

items, respectively. 

Data collected for CF purposes might be distributed vertically or 

horizontally among z companies. In vertically distributed data (VDD), each party 

has the same n users’ ratings for disjoint sets of mg items, where g = 1, 2, …, z. 

While D has the size n × (m1 + m2 + … + mz), the distributed user-item matrix Dg 

has the size n × mg, which is held by each party g. Note that z is a small constant 

and z << m. More formally, D can be written in terms of Dg matrices, as follows: 

D = [D1 D2 . . . Dz]. VDD is schematized in Figure 1.1. 

In HDD, each company holds disjoint sets of ng users for the same m items, 

where g = 1, 2, …, z. Thus, the integrated data has the size (n1 + n2 + . . . + nz) × 

m, while split data held by each vendor g, has the size ng × m. Notice again that z 

is a small constant and z << n. D can be written in terms of Dg matrices, as 

follows: D = [

  

  

 
  

]. HDD scheme is displayed in Figure 1.2. 
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Figure 1.1. Basic Scheme of VDD 

 

 

Figure 1.2. Basic Scheme of HDD 

 

Those online vendors holding distributed data or inadequate data might 

want to collaborate to alleviate challenges (cold start, sparsity, lower quality 

recommendations) caused by insufficient data. However, due to privacy, legal, 

and financial concerns, e-companies might hesitate to work in partnership. Since 

users’ ratings about different entities are considered the companies’ confidential 

data, privacy concerns about revealing these data to other companies make data 

owners uncomfortable about partnership. Besides privacy concerns, e-companies 

hesitate to collaborate because of financial fears. If the vendors reveal private 

data, such data can be utilized by rival companies to profile customers and used to 

direct future sales campaigns. Thus, collected data are valuable assets; revealing 
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them might cause losing competitive edge. In addition to financial and 

confidentiality concerns, collaboration without protecting private data might cause 

legal problems. According to reports published by OECD (2000; 2005), e-

companies are obligate to preserve their customers’ privacy. Consequently, the 

main problem is how do those corporations holding insufficient data, due to 

distributed data (vertically or horizontally); provide referrals (binary and 

numerical) on their integrated data with a decent performance without disclosing 

their confidential data to each other?  

In this dissertation, privacy of parties is defined, as follows: The parties 

should not be able to learn the true rating values and the rated and/or unrated 

items held by each other while providing recommendations based on their 

distributed data. In the suggested methods, true ratings are considered 

confidential because they can be used to profile customers and they represent 

users’ opinion about commercial goods. Moreover, rated entities (accordingly 

unrated products) are also regarded as private because special offers and discounts 

can be made for those unsold merchandises. E-companies do not want to reveal 

such data to others while conducting collaborative works. Hence, in distributed 

data-based recommendation processes, the ratings and the rated items held by 

each retailer are considered private. Unlike them, entity IDs, like user and item 

IDs, can be viewed as public. The company, which returns the predictions to a, is 

called the master company (MC). Since a customer sends her corresponding data 

to related parties, her data also become confidential for such companies, as well. 

Thus, they are obliged to estimate predictions collaboratively without divulging 

the customer’s data to each other.  

1.6. Utilized Collaborative Filtering Algorithms 

In this dissertation, two widely used CF algorithms are studied to provide 

predictions on distributed data with privacy. One of them is used to provide 

predictions using numeric data while the other is used to produce binary ratings-

based recommendations.  

The k-nn-based CF algorithm proposed by Herlocker et al. (1999) is utilized 

for producing referrals based on numeric ratings. In this algorithm, when an active 

user (a) asks a prediction for a target item (q), referred to as paq, she sends her 
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known rating vector (A) and a query (q). The system computes the correlations 

between a and each user in the database. It then forms the neighborhood for a. To 

form neighborhood, the algorithm use two different approaches. First one is 

selecting the most similar k users as neighbors. If algorithm utilizes the second 

approach, users having a similarity score which is bigger than a predefined 

threshold value (τ) are included a’s neighborhood. Finally, paq is estimated on her 

neighbors’ data using a recommendation algorithm. The basic scheme is described 

in Figure 1.3. 

 

Figure 1.3. Basic Scheme of k-nn Algorithm 

 

Correlations between various entities can be estimated using the PCC, as 

follows:  

    
∑ (      ̅̅̅̅ )(      ̅̅̅̅ )    

      
     (1.1) 

where      and      are the ratings of a and user u for item j, J is the set of 

commonly rated items by both users, and   ̅̅ ̅ and   ̅̅ ̅ are the a’s and user u’s mean 

votes. Besides finding similarities with PCC, it is also possible to use adjusted 

cosine measure (Sarwar et al., 2001) in recommendation process. By employing 

adjusted cosine, correlation between users is computed, as follows: 

    
(      ̅̅ ̅)   (      ̅̅ ̅)

√∑ (      ̅̅ ̅)
 

     √∑ (      ̅̅ ̅)
 

    

    (1.2) 

where · is the scalar dot product. In this dissertation, both similarity measures are 

employed. After estimating the similarities, the best k users are selected as nearest 

neighbors. paq finally can be calculated, as follows:   
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       ̅̅ ̅   
∑ (      ̅̅̅̅ )         

∑           
    (1.3) 

where NN is the set of a’s neighbors who rated q. 

Miyahara and Pazzani (2002) propose an approach for CF based on NBC, 

where they define two classes, like and dislike. Since customers vote items as like 

(1) or dislike (0), the sparse user ratings matrix includes Boolean values indicating 

whether the user rated items as 1 or 0. In the user ratings matrix, other users 

correspond to features and the matrix entries correspond to feature values. The 

naïve assumption states that features are independent, given the class label. Thus, 

the probability of an item belonging to classj (cj), where j is like or dislike, given 

its y feature values, can be written, as follows:∝ 

 (  |          )  ∝   (  )∏  (  |  )
 
   (1.4) 

where ∝ shows proportionality and both p(cj) and (  |  ) can be estimated from 

training data and fi corresponds to the feature value of q for user i. To assign q to a 

class, the probability of each class is computed, and the example is assigned to the 

class with the highest probability. 

1.7. Utilized Privacy-Preserving Techniques 

In this section, privacy-preserving measures that are utilized to achieve 

privacy are explained.  

Randomization Techniques: Randomized methods have been widely used 

in PPCF schemes for data masking. Randomization-based approaches are useful 

when aggregate data are interested in. There are three randomization schemes 

applied to CF algorithms for preserving privacy, as follows: 

i. Randomized Perturbation Techniques (RPT): RPT method attempts to 

preserve privacy by modifying data items with a randomization process 

(Agrawal and Srikant, 2000). RPT perturbs a specific value by adding a 

random number. If the value x is wanted to be hidden, then to perturb x 

with RPT, a random number r is added to it and new perturbed value is 

used instead of x. Adding random numbers, which are drawn from over a 

specified range and distribution like uniform or Gaussian, perturbs the 

original data. In place of utilizing actual preferences of users, perturbed 
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data values are employed in CF process. Such techniques are suitable for 

numeric ratings-based schemes and widely used in PPCF.   

ii. Randomized Response Techniques (RRT): RRT is first introduced by 

Warner (1965) as a technique to estimate the percentage of people in a 

population that has a specific attribute. The interviewer asks each 

respondent two related questions, the answers to which are opposite to 

each other. Respondents are able to choose one of the questions to 

answer using a randomizing device. With probability θ, respondents 

choose the first question while with probability 1- θ; they select the 

second question to answer. Although the interviewer learns the responses, 

she does not know which question was answered. RRT can be used to 

mask users’ binary ratings. Ratings vectors usually contain binary ratings 

for rated items and blank cells for unrated items. An example of ratings 

vector for a user u is Vu = (1 1 0 – 0 1 – 0 0 1 1), where “–” means not 

rated. To mask Vu using RRT, u uniformly randomly chooses a random 

number over the range [0, 1]. If it is less than or equal to θ, then user u 

sends Vu. Otherwise, the user sends the false data. In other words, she 

sends the exact opposite of the ratings, which is called   
 ,  where   

  = (0 

0 1 – 1 0 – 1 1 0 0). With probability θ, true data is sent while false data 

is sent with probability 1- θ. Since users only know random numbers, the 

data collector does not know whether the received data is true or not. 

Users might decide to put their ratings into multiple groups; and mask 

ratings in each group independently to increase privacy level.  

iii. Random Filling (RF): In addition to perturbing real ratings, it is also 

crucial to mask rated and/or unrated item cells. To do so, PPCF schemes 

also utilize RF in which some uniformly randomly chosen cells are filled 

with some default votes or noise data. 

Homomorphic Encryption (HE): HE is a form of encryption, where a 

specific algebraic operation performed on the plaintext is equivalent to another 

algebraic operation performed on the cipher-text. Depending on one’s viewpoint, 

this can be seen as either a positive or negative attribute of the cryptosystem. HE 

schemes are malleable by design. The homomorphic property of various 
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cryptosystems can be used to create secure voting systems, collision-resistant hash 

functions, and private information retrieval schemes and enable widespread use of 

cloud computing by ensuring the confidentiality of processed data. In this 

dissertation, an efficient HE scheme proposed by Paillier (1999) for protecting 

data owners’ confidential data is utilized. Suppose that ξ is an encryption function 

and K is a public key, there are two plain texts x1 and x2, which are desired to be 

encrypted. Paillier’s HE scheme provides performing addition or multiplication 

operations on encrypted data values, as follows: ξK(x1) × ξK (x2) = ξK (x1 + x2) and 

x1 × ξK (x2) = ξK (x1 × x2). 

Private Neighborhood Formation Algorithm (PNFA): In order to sort 

similar users according to their weights without divulging the weights, a sorting 

algorithm is proposed. Multiple companies can sort users while sharing some 

virtual weights rather than actual weights. Although collaborating companies are 

able to estimate partial similarity weights, they do not want to share them to find 

the sorted list of them. PNFA allows them to sort the similar users without 

exposing true weights.    

1.8. Contributions 

There are limited numbers of studies for performing CF on partitioned data 

between two parties only. However, data might be distributed among multiple 

parties. In this dissertation, various schemes are proposed to provide distributed 

data-based CF services with privacy. To achieve confidentiality, techniques like 

RPT, RRT, RF, HE, PNFA, and so on are employed. Privacy analyses show that 

the proposed schemes are secure and they do not violate privacy requirements. In 

order to improve online performance, that might get worse due to distributed data-

based CF with privacy, clustering, data reduction, and trust methods are utilized. 

It is shown that such approaches improve online performance. To test accuracy of 

the proposed schemes, real data-based experiments are performed. Empirical 

analyses show that it is still possible to produce recommendations with a decent 

accuracy from distributed data without jeopardizing data owners’ privacy. Also, 

additional costs caused by collaboration and privacy-preserving measures are 

analyzed in the suggested schemes. The analyses show that additional costs are 

negligible and the companies are still able to produce referrals efficiently. 
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In order to improve online performance, SOM clustering is employed. This 

solution provides producing SOM-based recommendations from distributed data 

while considering data holders’ privacy. Protocols for clustering VDD or HDD 

privately with SOM are introduced (Kaleli and Polat, 2012a; 2012b).  Also 

methods for constructing an off-line recommendation model for parties are 

provided and protocols for utilizing the off-line model to produce online 

recommendations are explained. 

It is shown that RP can be utilized in order to improve online performance 

of CF systems. RP is also a very powerful tool to enhance privacy. Thus, it is 

investigated that RP can be carried out to preserve confidentiality of parties while 

they collaborate. In this solution, a protocol which is used for sorting distributed 

weights privately in order to obtain k-nn of any user in CF process is introduced. 

Finally, online protocols for producing RP-based recommendations are provided. 

In this dissertation, it is shown that a trust network can be constructed from 

HDD or VDD without revealing collaborating parties’ privacy. The trust network 

is created off-line; hence, performance problems caused by online neighborhood 

forming step of CF schemes can be handled. In order to relieve privacy concerns, 

secure protocols for multi-party schemes are proposed (Kaleli and Polat, 2011).  

In the case of binary ratings, protocols enabling data holders to employ 

NBC-based CF algorithm on their distributed data privately are introduced. P2P-

based scheme is a special kind of HDD in which n = z. In this dissertation, a 

solution for producing NBC-based recommendations for users in a P2P network 

without jeopardizing their privacy is studied (Kaleli and Polat, 2010). 

1.9. Organization of the Dissertation 

In Chapter 2, producing SOM-based recommendations from distributed data is 

studied. In the following chapter, distributed CF solutions based on RP-based 

dimensionality reduction are introduced. In Chapter 4, trust-based distributed CF 

schemes are described. To produce binary recommendations from distributed 

data, privacy-preserving solutions are introduced in Chapter 5. In Chapter 6, a 

special kind of HDD is studied and P2P CF based on binary ratings with privacy 

is explored. Finally, in Chapter 7, conclusions are presented and future research 

directions are explained.   
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2. PRIVACY-PRESERVING SOM-BASED RECOMMENDATIONS ON 

DISTRIBUTED DATA 

In this chapter, providing SOM clustering-based predictions on distributed data 

without deeply jeopardizing their confidentiality is investigated. Users are first 

grouped into various clusters off-line using SOM clustering while preserving the 

collaborating parties’ privacy. With privacy concerns, predictions are produced 

based on distributed data using k-nn CF algorithm. The proposed privacy-

preserving schemes are analyzed in terms of privacy and supplementary costs. The 

analyses show that the methods offer recommendations without greatly exposing 

data holders’ privacy and cause negligible superfluous costs caused by privacy 

concerns. To evaluate the schemes in terms of accuracy, real data-based 

experiments are performed. Empirical results demonstrate that the schemes are still 

able to provide truthful predictions. 

2.1. Introduction 

To enhance performance of CF systems, clustering methods can be employed. 

SOM clustering is one of such methods. Roh et al. (2003) propose to employ SOM 

clustering for improving k-nn CF algorithm’s efficiency. SOM is an unsupervised 

competitive learning method used for clustering and data visualization. It works 

well on dividing an input data into closest clusters. According to the study in (Roh 

et al., 2003), SOM clustering approach alleviates online computational complexity 

and improves scalability of the recommendation process. 

In this thesis, SOM-based methods for providing predictions on distributed 

data without greatly jeopardizing data holders’ privacy are introduced. Firstly, users 

are grouped into various clusters using SOM clustering off-line. After determining 

a’s cluster, those users in that cluster are considered the best similar k users to a. 

Since off-line costs are not critical for the overall success of CF, the schemes 

perform some computations off-line. As explained before, in one hand, those 

companies holding HDD or VDD might want to collaborate to overcome the 

problems caused by scarce data. On the other hand, they do not want to work 

together due to privacy, legal, and financial concerns. The schemes make it possible 

for such data holders to provide predictions on integrated data without disclosing 

their confidential data to each other. Using the methods, the parties can overcome 
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coverage and accuracy problems through partnership. Additionally, since they do 

not reveal their private data to each other, they do not face with privacy, financial, 

and legal issues. 

2.2. SOM Clustering and Collaborative Filtering 

Roh et al. (2003) state that SOM-based CF scheme provides higher quality 

predictions than other comparative models. In addition to providing high quality 

recommendations, SOM has capability of clustering large-scale databases and 

handles with high dimensional data in recommender systems (Mao & Jain, 1996). 

SOM is introduced by Kohonen (1995). The SOM architecture consists of two fully 

connected layers: an input layer and a Kohonen layer. The steps of SOM clustering 

algorithm are described in the following (Gan et al., 2007):  

i. Determine values of initial constants: η0, σ0, τ1, and τ2, as follows: η0 = 0.1, 

σ0 = 3/2, τ1 = 1,000/log σ0, and τ2 = 1,000, which are configured by Haykin 

(1999). Note that η is the learning rate, σ represents the radius of the 

lattice, and τ1 and τ2 are the time constants. 

ii. Find the winning Kohonen layer neuron. In this step, a random object x is 

selected from input data X and the winning Kohonen Neuron (KNi) is 

determined by the computed minimum Euclidean distance between x and 

Wj using Eq. (2.1), as follows. Notice that Wj represents initial weights 

chosen randomly among objects in X for j = 1, 2, …, H, where H shows 

number of neurons in Kohonen layer and s shows an iteration:   

KNi (s) = min ||x(s) - Wj (s)||    (2.1) 

    where ||x|| shows norm of x. 

iii. Update the weight vectors of all neurons by using Eq. (2.2), as follows: 

Wj (s+1) = Wj (s) + η(s)hji(s) (x - Wj (s))    (2.2) 

where hji(s) is the neighborhood function. η(s) and hji(s) are computed 

using Eq. (2.3) and Eq. (2.4), as follows: 

η(s) = η0exp(-s/τ2), s   0  1  2    ,    (2.3) 

hji(s) = exp(-
)(2 2

2

,

s

d ji


) and σ(s) = σ0(-s/τ1)  (2.4) 

iv. Repeat from step 2 until there is no noticeable change in the future maps. 
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In SOM-based CF scheme, as shown in Figure 2.1, users are clustered off-

line, where nc shows number of clusters. To obtain paq, a sends A and q to the 

server that first computes the distances between A and each cluster center using 

Euclidean distance measure. It then assigns a to the closest cluster. Those users in 

that cluster are considered a’s neighbors. After estimating paq, it finally sends it to 

a.  

 

Figure 2.1. SOM-based Collaborative Filtering Scheme 

 

2.3. Private SOM-based Recommendations on VDD 

 Since a sends her data to the MC holding q, the MC is responsible for protecting 

a’s data, as well. To provide predictions on VDD without deeply violating data 

owners’ privacy, various protocols are proposed, as follows:  

 SOMP: Collaborating companies first need to cluster data using SOM 

clustering off-line. The protocol, called private SOM clustering on multi-party 

vertically distributed data (SOMP), enables them to cluster distributed data without 

exposing their privacy, as follows: 

i. The parties decide nc and decide the initial constant values. 

ii. One of the parties then uniformly randomly chooses nc users whose data 

form initial weight (Wj) values and a user as o, among the users in its 

database; and informs the others. Due to VDD, each party knows the 
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values of the initial weights Wjs and o it holds and does not know the 

values that the other parties hold. 

iii. To determine KNi, the parties need to estimate distances between o and 

each Wj using the Euclidean distance measure. Since data are vertically 

distributed, each company g = 1, 2, …, z can compute ‖       ‖ values 

using the data items it holds for all Wjs. They then exchange such 

aggregate values. After calculating the sums of such aggregate values, they 

take their square roots and find the distances. Each party then determines 

the KNi. Note that distance between any two vectors, X and Y, whose 

elements are vertically distributed between z companies can be estimated, 

as follows using the Euclidean distance measure:  

‖    ‖  

 √∑ (     )
 
  ∑ (     )

 
 

  
         ∑ (     )

   
        

  
     

where ng values represent the average number of elements held by 

company g. As seen from the above equation, due to VDD, the parties 

compute partial sums and exchange them. 

iv. Using Eq. (2.2), each party updates the corresponding parts of the Wjs 

without sharing any information with other parties due to VDD. 

v. They repeat steps 3 and 4 until no noticeable change in the future map. 

Each party ends up with the corresponding parts of the cluster centers and 

each user’s cluster. 

vi. The parties finally exchange such distributed centers with each other so 

that each company now has the whole cluster centers. 

DPP: Data holders need to compute item and user mean votes and vector 

lengths. In such computations, the parties can derive confidential data. In order to 

prevent them from gaining private data, the vendors perturb their data. On one 

hand, such data masking should hide confidential data. On the other hand, it still 

allows generating correct outcomes. Data perturbation protocol (DPP) can be used 

by each party g to mask its data set (Dg) containing users’ preferences about various 

items, as follows: 

i. Uniformly randomly chooses a random value, θg, over the range (0, 100]. 
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ii. Selects a random value, βg, over the range (0, θg] uniformly randomly. 

iii. Uniformly randomly picks βg percent of the unrated cells. 

iv. Finally, fills such chosen cells with fake ratings and obtains   
 . 

Data collected for CF purposes are usually sparse. Using some methods 

(average, the most probable value, and so on), which handle missing values, the 

parties fill some of the empty cells of their databases. The DPP includes using fake 

ratings as part of data disguising process. Either the parties can use non-

personalized votes (user, item, or overall mean votes) or personalized ratings 

estimated using a CF algorithm. It is proposed to use personalized votes to fill 

blank cells because personalized ratings are more likely represent users’ 

preferences than non-personalized ratings, where such ratings can be computed 

using the algorithm proposed by Herlocker et al. (1999). Each company can 

determine personalized or even non-personalized ratings using the available ratings 

it holds without the help of other companies. Thus, each vendor can estimate them 

off-line without revealing any information to others and they can mask their data 

using the DPP off-line.  

UMRP: In SOM-based CF on VDD, k-nn-based CF algorithm with adjusted 

cosine similarity measure is employed.  As seen from Eq. (1.2) and Eq. (1.3), the 

parties need to compute item and user mean ratings for normalizing votes. Like 

personalized ratings estimation, each party can find the item mean votes of those 

items it holds without the help of other parties because it knows the required data. 

In other words, due to VDD, each party has the ratings for any item it holds. Thus, 

each company can determine non-personalized item mean ratings for each item it 

holds off-line without disclosing data to other parties. However, the parties need to 

collaborate with each other to estimate user mean ratings due to the nature of data 

distribution. For a user u, her average rating can be computed, as follows: 

  ̅̅ ̅  
∑        

| |
      (2.5) 

where J shows the set of ratings u has, vuj represents u’s rating for item j, and |J| 

shows the number of ratings u has. As seen from Eq. (2.5),   ̅̅ ̅ can be calculated in a 

distributive manner using distributive measures like sum and count. Since data are 

vertically distributed among z parties, Eq. (2.5) can be written, as follows: 



 

 25 

  ̅̅ ̅  
∑           ∑               ∑          

|  |  |  |     |  |
   (2.6) 

where Jg shows the set of user u’s ratings held by the party g. As seen from Eq. 

(2.6), in order to find   ̅̅ ̅ values for n users, data owners need to exchange partial 

sums like ∑           and |  | values. The vendors can estimate user mean votes off-

line using the following protocol, called user mean ratings protocol (UMRP), as 

follows, without deeply jeopardizing their privacy: 

i. They first perturb their data sets using the DPP, which elaborated 

previously. 

ii. They then compute interim aggregate results, sum and count, (∑           

and |  |) for all n users. 

iii. Next, they exchange such partial aggregates with other parties. 

iv. After receiving the required data from other parties, they finally compute 

mean votes for all n users using Eq. (2.6). 

VLP:  As seen from Eq. (1.2), the parties need user ratings vector lengths in 

order to estimate similarity weights. For any user u, her ratings vector length 

(‖  ‖) can be computed, as follows: 

‖  ‖   √∑    
 

        (2.7) 

As seen from Eq. (2.7), vector length can be calculated in a distributive 

manner using distributive measure sum. Since data are vertically distributed among 

z parties and ratings are normalized, Eq. (2.7) can be written, as follows:  

‖  ‖  √∑        ̅   ∑        ̅     ∑        ̅                     (2.8) 

As seen from Eq. (2.8), each party g needs to compute interim aggregate sum 

values, ∑        ̅ 
 

     
, for all n users. The companies can estimate vector lengths 

off-line using the following protocol, called vector lengths protocol (VLP), while 

preserving their privacy: 

i. They first mask their data sets using the DPP, as described before. 

ii. Then, they calculate item mean ratings and normalize their ratings by 

subtracting item mean votes. 
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iii. Next, they compute interim aggregate results, √∑        ̅        values, 

for all n users. 

iv. After that they exchange them with other parties. 

v. After receiving the necessary data from others, they finally compute vector 

lengths for all n users using Eq. (2.8). 

The protocols described so far are used during off-line phase. In other words, 

data holders cluster their distributed data, mask their data, estimate personalized 

and non-personalized ratings, and compute vector lengths off-line using the 

proposed protocols. Note that the MC collaboratively estimates paq based on a’s 

neighbors’ data using Eq. (1.3), which can be written, as follows: 

       ̅̅ ̅   
∑         

 
    

∑        
   ̅̅ ̅          (2.9) 

Similarly, Eq. (1.3) can be written, as follows because the vendors know item 

mean ratings and vector lengths and they can normalize their ratings: 

    ∑    
        

  
         (2.10) 

where    
    and    

   represent the normalized ratings of user a and u, respectively. 

Notice that the ratings can be normalized by first subtracting corresponding item 

mean vote and dividing the result by user ratings vector length. Paq in Eq. (2.9) can 

be written, as follows: 

    
∑  [∑    

        
  

    ]     
 

    

∑ ∑     
        

  
        

 
∑         

  [∑    
        

 
     ]

∑         
  [∑    

        ]
  (2.11) 

Since data are vertically distributed among z parties, Eq. (2.11) can be 

written, as follows: 

    ∑
∑          

  [∑    
        

 
     ]

∑          
  [∑    

        ]

 
    .   (2.12) 

As seen from Eq. (2.12), the parties can compute    [∑    
        

 
     ] 

and     [∑    
        ]  values for all target items off-line in order to enhance 

online performance. This is like constructing a model off-line to improve online 

efficiency. Notice that q can be any of m items. Also note that items are distributed 

among z parties due to vertical distribution. The following protocols called PN 

protocol (PNP) and PD protocol (PDP) are proposed to be utilized off-line to 

construct a model. 
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PNP: PN values can be estimated for all target items off-line, as follows: For 

each party g = 1, 2, …, z, they do the followings assuming the g
th

 party is the MC. 

For each target item q = 1, 2, …, mg (mg is the number of items held by g): 

i. The MC and the other parties mask their data sets using the DPP, as 

explained before. 

ii. The MC then encrypts each value in the column vector of q using ξ with 

its KMC. 

iii. It then sends such encrypted values (    
    

  ) to other parties. 

iv. For all items j = 1, 2, …, mg held by each collaborating party g, each 

collaborating vendor computes     
(   

 )     
   and obtains     

(   
  

   
  ) values using the HE property. 

v. Each party then permutes     
(   

     
  ) values for each item they hold 

using a row permutation function (Fgr). 

vi. Then, the collaborating vendors permute the items they hold using a 

column permutation function (Fgc). 

vii. They then send the encrypted and the permuted (both row and column) 

results to the MC. 

viii. Since the MC knows the KMC, it can decrypt the encrypted results. 

ix. For each item j, the MC finds column sums (the PN values) from permuted 

ones. Note that the order does not matter to find them. 

x. The MC then sends the permuted PN values to the corresponding parties. 

xi. Since each collaborating vendor knows the column permutation functions, 

they order the received PN values and obtain the nominator part of the 

model.  

PDP: After estimating PN values, the parties should compute PD values, as 

well. They can compute PD values for all target items, as follows: For each vendor 

g = 1, 2, …, z, they do the followings based on the mask data: For each target item 

q = 1, 2, …, m, 

i. Calculate normalized ratings using the item mean votes and vector lengths 

determined previously and obtain    
   values for all j = 1, 2, …, m and u = 

1, 2, … , n. Note that    
    (      ̅) √∑    

 
    ⁄ . 
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ii. Determine only those rows containing ratings for q (NN). Such users’ data 

are used to generate prediction for q. The parties know which rows have 

ratings for q due to the PNP. However, they do not know actual ratings due 

to encryption and rated items due to filled cells. 

iii. Find column sums,     ∑    
  

        values, for j = 1, 2, …, m. 

PRP: After the parties construct the model (estimating PN and PD values off-

line), they can now start providing referrals online. After the MC receives A and q 

from a, it first assigns a to the closest cluster by estimating distances between A 

and each cluster center. Since all parties know cluster centers, the MC can easily 

compute such distances. Finally, the MC initiates the final recommendation 

estimation process and returns paq to a after collaborating with other parties. The 

proposed scheme, called private recommendation protocol (PRP), can be described, 

as follows: 

i. The MC disguises a’s ratings vector using the DPP like data owners do for 

masking their databases. 

ii. It normalizes her data and obtains    
   values, where 

   
    (      ̅) √∑    

 
    ⁄ . 

iii. After encrypting each    
   value using ξ and KMC, it sends the 

corresponding values to the collaborating companies. 

iv. Each collaborating party similarly inserts item average normalized ratings 

into uniformly randomly selected empty cells of the received normalized 

data. In other words, they similarly perturb the received data. 

v. They then encrypt such default values using ξ and KMC. 

vi. Each collaborating party g finds     
(   

  )   [∑    
        

 
     ]  

    
(   

     [∑    
        

 
     ]) and     

(   
  )   [∑    

  
     ]  

    
(   

     [∑    
  

     ]) for all j in Ja, which is the set of a’s ratings 

including the fake ones. 

vii. After computing such encrypted aggregated results for nominator and 

denominator, each collaborating vendor g permutes them using Fg and 

sends them to the MC. 
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viii. The MC decrypts them and finds the overall sums for nominator and 

denominator. It finally estimates paq and sends it to a. 

2.4. Private SOM-based Recommendations on HDD 

Data holders firstly cluster the HDD to construct a model for further 

recommendations while preserving privacy. To cluster the data, companies employ 

private distributed SOM clustering protocol (PDSOM). 

PDSOM: The details of the protocol are given below: 

i. Data owners decide nc and determine the sequence of active company 

(Initial Company-IC) in clustering operation.  

ii. The first IC initializes Wj vectors for all j = 1, 2, …, nc  by selecting 

random rating values and decides the constant parameters. 

iii. The IC starts clustering operation by selecting a random user among its 

users. After finding winning neuron in Kohonen layer using Eq. (2.1), it 

updates Wj vectors using Eq. (2.2). It then increases s by one. 

iv. It repeats step 2 until all users it holds are assigned to a cluster. It finally 

sends the updated Wj vectors and s to the second party in the sequence. 

v. Since the updated value of s and Wj vectors are enough to continue 

clustering, the second party repeats step 2 as IC does. When all users it 

holds are assigned to a cluster, it sends new s and updated Wj vectors to 

the next party. 

vi. After receiving s and Wj vectors, each party updates them like IC does. 

When all parties assign their users to a cluster, an epoch is completed. The 

last party then sends the updated Wj vectors to the IC.  

vii. Steps 3 - 6 are repeated until no noticeable change in the future map.  

The IC initially chooses Wj vectors and updates them s times. Since it sends 

the updated Wj vectors to the next party, that company cannot learn the true ratings 

and the rated and/or unrated items held by the IC. Although number of users held 

by the IC is known by the second company, it cannot derive any information about 

data held by the IC, because it does not know which users have rated which items 

and the distances between users and Wj vectors. Similar argument is also true for 

other companies. The parties only exchange the updated Wj vectors and the updated 

s values. The parties after the second one cannot learn the number of users held by 
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the previous company without colluding with the one coming before the previous 

one in the sequence. Without revealing useful information to each other, the parties 

can determine their users’ clusters using PDSOM protocol off-line. 

To compute similarities between users, z-scores are employed in PCC 

(Herlocker et al., 1999), as follows: 

     ∑         
 
                 (2.13) 

where zsaj and zsuj show z-scores (zs) values of item j of users a and u, respectively, 

J shows commonly rated items set, and wau is similarity weight between users a and 

u. The zs values can be found, as follows:       (      ̅̅ ̅)   ⁄ , where   ̅̅ ̅ and σu 

show the mean and the standard deviation of user u’s ratings, respectively. After 

similarity computation, predictions again are produced using Eq. (1.3). 

To request a referral, a asks a prediction for q from MC. Once the MC 

receives a’s data and her query, it provides the prediction after estimating it through 

collaboration with other parties online. Note that each party knows the Wj vectors 

and the clusters of their users. The MC first determines a’s cluster by calculating 

the distances between a and each cluster center. It assigns a to the closest cluster. 

The users’ data in that cluster is then used to estimate a prediction for a using Eq. 

(2.13) and Eq. (1.3). As seen from such equations, zsuj and deviation from mean 

ratings of q (vduq) are needed. Notice that               ̅̅ ̅ , where vuq is user u’s 

ratings for item q. Thus, in order to improve online performance, each party 

computes both z uj and vduq values off-line and stores them. They can compute such 

values because they have the data required to calculate them. Eq. (1.3) can be 

written as        ̅̅ ̅   , where P is: 

                              

   
∑ [∑         

 
   ]    

 
   

∑ ∑         
 
   

 
   

  
∑     

 
   [∑         

 
   ]

∑     [∑     
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    (2.14) 

 

As seen from Eq. (2.14), since the MC is able to compute zsaj values and   ̅̅ ̅ 

value, it can estimate paq. However, since data are horizontally distributed among z 

parties, P can be written, as follows:   

                                

   
∑     [∑           ∑            ∑         
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∑     [∑       ∑          ∑     
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  (2.15) 
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where k1, k2, …, kz show the number similar users held by the first, second, …, and 

the z
th

 party, respectively, who rated q. The MC, which is asked by a for 

recommendation, needs aggregate data from other z-1 companies to estimate 

recommendations. If the MC sends a’s data to other parties, they can easily 

compute the required data. However, since a’s ratings are valuable and will be 

added to the MC’s database; and her data will be used for prediction generation in 

the following queries, it does not send them to collaborating companies. Thus, such 

companies should compute ∑         
 
    and ∑     

 
    aggregate values for all j 

= 1, 2, …, m-1, and send them to the MC without greatly jeopardizing their privacy. 

Therefore, the parties follow the following private distributed k-nn CF protocol 

(PDKNN) to offer predictions. 

PDKNN: The details of the protocol are, as follows: 

i. The MC assigns a to the closest cluster. It sends target cluster (Ca) and q to 

other parties. 

ii. Each party including the MC computes ∑         
 
    and ∑     

 
    

aggregate values based on those users’ data that are in Ca. They then send 

them to the MC.  

iii. The MC then is able to estimate P using Eq. (2.15) after collecting 

required aggregate data from other parties.  

iv. It finally estimates paq and returns it to a. 

The parties can succeed recommendation process based on HDD. However, 

PDKNN has the following shortcomings: 

i. Since the MC has the required partial results for the Ca to estimate paq, it 

can use them for producing referrals for those active users who will be in 

that cluster and ask prediction for q.  

ii. The MC can collect aggregate data values for fake active users over a time 

in order to derive information about other parties’ databases.   

To overcome the aforementioned shortcomings, the parties follow the 

following steps to compute aggregate values in the step 2 of PDKNN protocol, 

where the new protocol is called as the IPDKNN (Improved PDKNN). 

IPDKNN: The details of the protocol are, as follows: 
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i. Each party g uniformly randomly selects a random number (βg) over the 

range (0, γ]. They then uniformly randomly choose βg percent of the users 

who did not rate q, where the probability of selecting any user is 

proportional to the number ratings she has due to accuracy concerns. In 

other words, the chance of selecting a user with more ratings is bigger than 

the chance of selecting a user with fewer ratings.  

ii. Each party then fills selected users’ cells for q with non-personalized 

ratings (vd). Since vd values are estimated based on available ratings, when 

selecting users, giving higher probability to those users with more ratings 

makes sense. The parties generate vd values using the distribution of users’ 

ratings, which can be considered as a Gaussian distribution with mean (μ) 

and standard deviation (σ). 

iii. Before calculating ∑         
 
    and ∑     

 
    aggregate values for all 

m-1 items, each party uniformly randomly selects some of its zsuj values, 

removes their values, and replaces with zero. For this purpose, each data 

holder g uniformly randomly selects a random number (αg) over the range 

(0, δ]. They then uniformly randomly choose αg percent of their zsuj values, 

remove their values, and replace with zero.   

iv. Each party then estimates the required aggregate values based on its 

modified database. They finally send them to the MC.  

When the parties follow the aforementioned protocols, they preserve their 

privacy against each other and such protocols force them to collaborate whenever a 

asks a prediction from one of them. They can produce accurate and dependable 

predictions. In one hand, the parties increase the amount of data involved in 

aggregate data computation by inserting vd values in some q’s empty cells. On the 

other hand, the amount of data involved in such computations is reduced due to 

removed zsuj values. In each query, data owners choose different β and α so that 

unpredictable randomness is added to their databases. Each party will compute 

different partial results for a cluster in different recommendation processes. 

Therefore, they collaborate with each other to answer queries until they have 

enough data to offer accurate and dependable recommendations by themselves. 
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2.5. Privacy Analysis 

In this section, the proposed schemes are analyzed in terms of privacy according to 

privacy definition. 

Analysis of the VDD Protocols: Note that each party tries to hide their true 

ratings and the rated items from each other. Thus, throughout the proposed privacy-

preserving schemes, actual votes and the rated items are considered private; while 

s, cluster centers, user mean ratings, and vector lengths are considered public. The 

DPP and the PDP are secure because data owners do not exchange any data during 

such protocols. Each party itself can conduct them without the help of others. It is 

impossible to derive information about each other’s data through them. However, 

the parties exchange data while performing other protocols. 

SOMP is secure due to following reasons: First, as explained previously, the 

parties determine the initial constant values without exchanging any data they hold. 

Second, each party g computes Σj(ogj – wgj)
2
 based on the corresponding parts of 

any user’s data (object o) and weight vector it holds to estimate the distance 

between any user vector and each weight vector. They then exchange such 

aggregate values. Since j, ogj, and wgj values are known by the party g only, the 

parties cannot derive any useful information from such aggregate sum values. 

Third, after every iteration, each data holder updates the corresponding part of Wj it 

holds without collaboration by utilizing Eq. (2.3). Therefore, other parties cannot 

obtain any useful information during updating step. And finally, at the end of the 

clustering, the parties reveal Wgj vectors updated s times to each other to get the 

entire Wj vectors. Since Wgj vectors are updated by using Eq. (2.3) based on each 

party’s data, the data owners cannot get any useful information about each other’s 

data even if some vendors collude. 

In UMRP, the parties exchange sum and count aggregates. Since each party 

disguises its data set using the DPP, the parties cannot learn true rating values from 

such sum values. Such aggregate values are the sum of the true ratings and inserted 

personalized votes. Even if the number of filled cells is guessed, the collaborating 

parties cannot estimate their sum because such personalized ratings are known by 

the party only that generates them off-line. However, any party can guess the filled 

cells or the rated items held by a collaborating party based on the count value came 
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from that party. The probability of guessing the correct βg is 1 out of 100. After 

guessing it, the party can estimate number of filled cells or the rated items (mrg). 

Finally, the probability of guessing which items are rated is 1 out of        
      , 

where      
 

 represents the number of ways of picking w unordered outcomes 

from f possibilities. Therefore, for any company, the probability of guessing the 

rated items based on the received count is 1 out of 100 ×        
     .  

VLP includes utilizing DPP and working on aggregates. The parties exchange 

aggregated sums estimated from filled vectors. The collaborating companies cannot 

learn true ratings and the rated items from received aggregates because such values 

are the sum of the squares of normalized votes. Moreover, the item means are used 

for normalization are known by the parties only who own such items. Thus, the 

VLP is secure. 

In PNP, privacy is achieved through DPP, encryption, and permutation. Each 

party utilizes HE to hide the true values of their private data. Since it is shown that 

HE is secure (Paillier, 1999), the parties cannot derive information from encrypted 

values. Although the MC inserts fake ratings into q’s votes, collaborating parties 

can guess the number of filled cells and the rated items of q held by the MC. The 

probability of guessing the correct βg is 1 out of 100. Then, number of filled cells of 

q, mqg, can be estimated. Finally, the probability of guessing which items are rated 

is 1 out of        

  
 

, where   
  shows the number of ratings including the fake ones 

of q. The MC can guess the rated items held by each collaborating party after 

receiving encrypted data. For the MC, estimating the probability of guessing the 

rated items of one item held by a collaborating company can be explained, as 

follows: The probability of guessing the correct βg is 1 out of 100. The MC then can 

estimate number of filled cells of that item, mrg. The probability of guessing the 

correct position of the item vector is 1 out of mi! Similarly, the probability of 

guessing the correct position of the values in a column vector is 1 out of       

  
  

!, 

where   
   shows the number of encrypted values that the MC sends and mq shows 

the number of values in the received column vector because such values are 

computed between commonly rated items only. Finally, the probability of guessing 

which items are rated is 1 out of        

  
. The probability of guessing the true 
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values of normalized ratings can be estimated similarly. However, since only the 

results on commonly rated items are exchanged, the MC cannot learn other values. 

The security of the PRP depends on inserting default values into a’s ratings 

vector, encryption, and permutation. The PN and PD values are parts of model 

distributed among multiple parties; and they are considered private. The parties 

including the MC can use privacy attacks to derive data during the PRP. To 

overcome such attacks, fake values are introduced. First of all, the MC disguises 

a’s data to prevent the collaborating parties acting as an a in multiple scenarios to 

derive its data. The basic idea of this type of attack, called the colluded 

collaborating companies (3C), is to change only one rating of those items held by 

the MC in each prediction process by acting as an a. After multiple interactions, the 

collaborating parties can learn the PN and PD values held by the MC. Second, the 

collaborating parties also masks a’s ratings vector due to the similar reasons. This 

time the MC acts maliciously to learn the PN and PD values held by a victim 

company. The MC changes only one rating of those items held by the target or the 

victim party in each prediction process by acting as a. After multiple interactions, 

the MC can learn such values held by the victim. And finally, in a different type of 

3C attack, the victim can be one of the collaborating parties other than the MC. 

Similarly, the colluding parties can learn the victim’s data. In each recommendation 

process or PRP conducted online, the parties mask a’s data differently so that they 

can defend themselves against the aforementioned attacks. The collaborating 

parties cannot learn the MC’s data encrypted using the KMC, because decryption 

key is known by the MC only. The MC can compute the number of inserted fake 

values by a collaborating party g, referred to as mfg, and it knows the number of 

items held by that party, referred to as mg. Thus, the probability of guessing which 

item cells are filled is 1 out of        

  
. However, due to permutation, the server 

first needs to determine the correct positions. The probability of guessing such 

positions is 1 out of mag!, where mag shows the number of data values including the 

fake ones in the corresponding part of a’s ratings vector held by the party z. 

Analysis of the HDD Protocols: To analyze the proposed approach in terms 

of privacy, possible privacy attacks caused by the parties and vulnerabilities are 

determined. Then, proposed solutions against such attacks and weaknesses are 
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introduced; and how private the scheme is shown. Such attacks and vulnerabilities 

can be described, as follows: 

i. A1: Parties can coalesce for capturing a target party’s data: In this attack, 

z-1 companies can coalesce for capturing a target site’s private data. Since 

the target party acts as the MC, it collects partial results, combines them 

with its own ones, and returns a recommendation to a. Therefore, other 

parties can derive its partial results from the output prediction value for a 

in multiple scenarios. One of the corrupted parties can act as an a and 

requests referrals for some target items in several settings to derive data 

about the target party. After they get at least m-1 recommendations for the 

same item, they are able to figure out target party’s partial results. Once 

they determine such partial results calculated for different target items, 

such corrupted parties can derive information about the target items’ 

ratings. If it is conducted, A1 can jeopardize the MC’s privacy. To defend 

itself against A1, the MC also should utilize IPDKNN protocol like 

auxiliary parties do. Since the MC adds arbitrariness to its private data in 

each recommendation computation process, corrupted parties cannot get 

exact partial results to derive information about the MC’s database. 

ii. A2: Paying-off: This attack is similar to A1. Instead of acting as an a in 

multiple states, z-1 corrupted parties can bribe a to gather the target party’s 

useful information for themselves. Moreover, since the databases are 

updated periodically by inserting active users’ ratings and removing some 

old ratings, the spoiled companies utilize such bribed users’ data in order 

to derive information about the target party’s data. As explained 

previously, if data owners including the MC follow the IPDKNN protocol, 

they can defend themselves against A2. Since each party including the MC 

can bribe any active user, any induced user can be corrupted again by 

offering more incentives. Therefore, this attack might become expensive 

and data obtained through this attack are more likely questionable.   

iii. V1: Not able to return any result: To be part of the recommendation 

process, each party should return partial results. To do that, each assisting 

party must have at least one user who rated q. One or more parties might 
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not be able to return any partial results to the MC. This phenomenon 

happens when such auxiliary parties face with extreme cases in which they 

may have no rating for q. Such cases definitely leak information about 

secondary parties’ data. In other words, the MC learns that such parties, 

that are not able to return any partial results, do not have any rating for q. 

This absolutely violates data owners’ privacy. If the MC knows the users 

held by that party who did not send any partial results, it can offer special 

discounts to them for selling q. In order to resolve V1, each party should 

return results to the MC even if they do not have any rating for q. If such 

parties follow the proposed IPDKNN protocol properly, they can easily 

overcome this weakness.  

iv. V2: Missing values in aggregate values vector: This limitation occurs 

when some assisting parties face with another type of extreme case. When 

such parties do not have any ratings for items other than q, aggregate 

values for them will be 0. If this is the case, similar to the V1, the MC 

concludes that they do not have any ratings for such items. It then can 

exploit this information to make financial benefits. This vulnerability can 

be easily fixed. When any party faces with V2, they just fill some of the 

randomly chosen cells of such items with non-personalized votes. Thus, 

the MC cannot learn whether they have any items without any ratings. 

The proposed scheme contains distributed data-based SOM clustering, which 

preserves data owners’ confidentiality. The parties are able to cluster their users 

without exchanging private data. They exchange updated weight vectors and s 

values. Thus, the parties cannot learn useful information about each other data 

during clustering. Each party learns the number of users held by the previous party 

in the sequence. However, that information does not cause any privacy, financial, 

or legal problems. Even if they have such information, they cannot use it to 

determine true ratings and rated and/or unrated items held by the assisting 

company. 

As explained above, proposed scheme is able to preserve data owners’ 

confidentiality against the aforementioned privacy attacks and vulnerabilities. If 

each party including the MC follows the proposed protocols, they defend 
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themselves against A1 and A2; and they are able to overcome vulnerabilities V1 and 

V2. Due to the randomness they add, the MC and the auxiliary parties preserve their 

privacy. In addition, the scheme utilizes normalized values (zs and deviation from 

mean values), which are computed by each party alone. Since computations are 

performed on such normalized values, even if they are derived, it becomes difficult 

to learn true ratings because attacking party does not know the mean and standard 

deviation values. Also, the parties exchange aggregate values rather than individual 

data items. Finally, due to randomness, which added in each prediction generation 

process, the MC cannot keep the interim results collected from other parties for 

future recommendation processes. It must collaborate with other companies for 

upcoming predictions. 

2.6. Supplementary Cost Analysis 

Due to privacy protection measures, extra costs like storage, communication, and 

computation costs are inevitable because privacy, accuracy, and performance 

conflict with each other. Note that off-line computation and communication costs 

are not critical for overall performance. Therefore, it is better to conduct as many 

computations as possible off-line in order improve online efficiency. However, in 

order to provide new recommendations after users provide new ratings, the 

collaborating parties need to update their databases by inserting new votes. In other 

words, to get new ratings involved in prediction process so that new referrals can be 

estimated, the companies should update their model (clustering users conducted 

off-line) periodically. They then provide recommendations online using the up-to-

date model and the ratings.  

Analysis of the VDD-based Scheme: Supplementary costs due to privacy are 

important for efficiency. Extra storage, communication and computation costs are 

analyzed. The proposed scheme introduces additional storage costs, as follows: 

Storage costs for saving cluster centers are in the order of O(mnc) and O(zmnc) in 

the original and the proposed schemes, respectively; where notice that nc shows 

number of clusters. Thus, storage costs needed to save cluster centers increase by z 

times because each company needs to save cluster centers. Due to the non-

personalized ratings used in the UMRP, additional storage costs are in the order of 

O(nc). The parties estimate a model off-line by utilizing the PNP and PDP. Due to 
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storing PN values estimated using the PNP, extra storage costs are in the order of 

O(m
2
). Similarly, additional costs are in the order of O(m

2
) due to storing PD 

values.  

Due to privacy concerns, the scheme introduces extra communication costs. 

In the SOMP, number of communications the parties need to make is in the order of 

O(ez
2
), where e shows the number of epochs. In the UMRP and the VLP, number 

of communications are both in the order of O(z
2
), where the parties exchange 

interim aggregate results. Additional communication costs conducted during the 

PNP are in the order of O(zm). The PDP does not cause any communication costs. 

Notice that since all protocols except PRP are performed off-line, supplementary 

communication costs due to privacy concerns are not critical for online 

performance. However, the PRP is conducted online and number of 

communications made during online phase is imperative. During the PRP, there are 

2(z−1) communications made online. Although the number of extra 

communications made online is in the order of O(z), they are made simultaneously 

between the MC and each collaborating company. 

The proposed scheme introduces extra computations. However, not all of 

these computations are performed online and directly affect the performance of 

recommendation process. Also note that, since the parties conduct computations 

simultaneously, execution time for total computations in all protocols will be 

determined by the party, which owns the maximum number of items (mmax). All 

protocols except the PRP are performed off-line, their computation costs are not 

that critical for recommendation process. The SOMP does not cause any extra 

computation cost. During the DPP, the computations costs for choosing random 

values and selecting some of the unrated item cells are negligible. However, 

additional computation costs due to estimating personalized ratings are in the order 

of O(m
2
n). Due to the UMRP and the VLP, there are no supplementary 

computation costs. In the PNP, extra computation costs are inevitable due to HE. 

Number of encryptions and decryptions performed in the PNP are  ̅   m   (m + 1) 

and  ̅m
2
, respectively, where  ̅ shows the average number of ratings for each item 

including the inserted false ones. Unlike the PNP, there are no supplementary 

computation costs due to the PDP. The PRP is performed online and causes extra 
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computation costs due to HE. Number of encryptions and decryptions conducted 

online during the PRP are 3 ̅ and 2 ̅, respectively, where  ̅ shows the number of 

ratings including the inserted ones in a’s rating vector. Although supplementary 

online computation costs are inevitable, again notice that such computations are 

performed in parallel by the collaborating parties. To determine the running times 

of cryptographic algorithms, benchmarks for the CRYPTO++ toolkit from 

www.cryptopp.com/ can be used (Canny, 2002a). According to study conducted by 

Yakut and Polat (2012a), it takes 80 milliseconds to perform an encryption and 

decryption using the abovementioned benchmarks. 

Analysis of the HDD-based Scheme: To improve online performance, the 

parties compute normalized values off-line and store them. Due to their storage, 

extra storage cost is in the order of O(nm). Since each party uses the cluster centers, 

they save them in z matrices with size nc × m. Accordingly, additional storage cost 

is in the order of O(m) because z and nc are constants. Although the scheme seems 

to cause further storage costs; however, the parties should save such information 

after calculating off-line to improve online performance even if they offer referrals 

by themselves. 

Providing recommendations is an online process. Performing CF tasks 

efficiently is imperative. For this reason, the proposed scheme must not introduce 

significant extra computation costs that might harm the efficiency of CF schemes. 

Due to clustering, which is conducted off-line, additional costs are not critical. 

During online phase, data owner insert some default votes, which increases the 

amount of computations, while they remove some of the z-scores, which decreases 

the amount of computations. Generally speaking, applying these two different 

randomness processes surpass their effects on the amount of computations. 

Furthermore, data used in CF are distributed in the scheme and online computations 

are done simultaneously. Traditional k-nn-based scheme’s online computation time 

(without the use of clustering) is in the order of O(nm), while the proposed scheme 

improves online computation costs by z × nc times without considering 

communication costs due to clustering and simultaneous computations.  

 The proposed scheme introduces extra online communication costs. In 

traditional CF schemes, a sends a message to a server, which returns a single 
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prediction. Hence, number of communications is two only. In the distributed 

scheme, a sends the same message to the MC as in traditional systems. However, 

the MC sends Ca and q to z-1 companies so that they return partial results (two 

vectors containing m-1 aggregate values). In other words, number of 

communications is 2z in the scheme or in the order of O(z), where z is a constant. 

Therefore, communication costs increase by z times. Supplementary costs can be 

considered negligible because auxiliary parties simultaneously communicate with 

the MC. 

2.7. Accuracy Analysis: Experiments 

To show how accurate the proposed scheme-based predictions are, several 

experiments are conducted using real data sets. Three well-known data sets called 

MovieLens (ML), Jester, and EachMovie (EM) were constructed for CF purposes. 

ML was collected by GroupLens research team at the University of Minnesota. ML 

and EM (Billsus and Pazzani, 1998) have ratings for movies while Jester data set 

contains ratings for jokes (Gupta et al., 1999). These data sets are described in 

Table 2.1. Since Jester data set is very dense, it is not utilized in VDD scheme’s 

experiments. To measure accuracy performance of HDD, experiments are 

performed on Jester and ML data sets while VDD scheme’s experiments are 

performed on ML and EM data sets. 

 

Table 2.1. Data Sets 

Name Item Size (n × m) 
Total 

Votes 

Density 

(%) 
Range Type 

Jester Joke 24,983 × 100 1,810,455 72.47 [-10, 10] Continuous 

ML Movie 6,040 × 3,900 1 million 4.22 [1, 5] Discrete 

EM Movie 72,916 × 1,628 
2.8 

millions 
2.29 [0, 1] Discrete 

 

To measure the quality of the referrals, mean absolute error (MAE) and 

normalized mean absolute error (NMAE) are used, which happen to be the most 

popular statistical accuracy measures. They are widely used in CF systems. To 

compute NMAE, MAEs are normalized by dividing them the difference between 

the maximum and the minimum ratings. The lower the MAE and the NMAE, the 
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more accurate the outcomes are. They measure how close the predictions with 

privacy concerns to the true ones. Since collaboration among multiple parties 

increases the amount of data involved in prediction process for HDD, the parties 

are able to generate predictions for more items and they might overcome cold start 

problem. Thus, to show how collaboration affects the number of items for which 

predictions could be provided, coverage metric is utilized, which is the percentage 

of items for which a CF algorithm can provide referrals. Coverage can be 

calculated, as follows: Coverage =          ⁄ , where vres and vtest stand for the 

number of predictions returned and the number of test ratings, respectively. Finally, 

statistical t-tests are applied in order to show that the results are statistically 

significant and they are not occurred by chance. First of all, a t value is computed. 

Then, a p-value from t-distribution table is found. If the p-value chosen for some 

significance level (usually 0.10, 0.05, or 0.01) is less than the calculated t value, 

then it is concluded that the improvements are statistically significant and they are 

not happened by chance. 

Before performing the experiments, firstly, users having at least 50 items are 

determined. Then, they are uniformly randomly divided into two disjoint sets, 

training and test sets. For each test user, five rated items are uniformly randomly 

chosen. After withholding their true ratings, their entries are replaced with null; and 

recommendations are provided for them using the train users’ data. It is assumed 

that data are distributed among z companies, where z might in [1, 10]. Thus, in 

VDD, any data owner g has n train users with about m/z items while it has n/z 

users’ ratings for m items in HDD. In the following, experiments for VDD are 

explained. 

Experiment 1: To show how accuracy changes due to collaboration among z 

parties, experiments using ML and EM data sets are conducted. 500 and 1,000 

users are used for testing and training, respectively, where m is 1,600 for both data 

sets. To determine the best k neighbor, optimum cluster number is set at 3. As 

shown by Roh et al. (2003), clustering data into three clusters happens to give the 

best results. After clustering train data, for each test users, five predictions are 

generated for randomly chosen five rated items based on split data only and 
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integrated data. z is changed from 1 to 7. NMAEs are displayed for both data sets in 

Figure 2.2 after computing overall averages. 

 

Figure 2.2. NMAEs with Varying Number of Collaborating Vendors  

 

As seen from Figure 2.2, the quality of the recommendations improves with 

collaboration of parties. In other words, if data owners provide predictions on their 

integrated data, they offer more accurate recommendations. When data are 

distributed among multiple parties, amount of data held by each party is not enough 

for precise referrals. However, as seen from the results, data owners are able to 

offer better recommendations if they collaborate with each other. With increasing z 

values or decreasing amount of ratings held by each party, accuracy diminishes. For 

example, when users’ ratings are distributed among seven parties for EM data set, 

the NMAE is about 0.2187 for each individual party, while it is about 0.1928 when 

they collaborate. In other words, due to collaboration, accuracy improves by about 

10%. For ML data set, if data are distributed among seven parties, the NMAE is 

about 0.2157. However, accuracy improves to 0.1938 if the parties collaborate. For 

both data sets, accuracy develops due to providing referrals on combined data. 

Thus, integrating split data definitely enhances accuracy. To show if the 

improvements due to collaboration are statistically significant, t-tests are 

conducted. The values of t are 3.29 and 2.95 for EM and ML, respectively, where z 

is 7. Those values are statistically significant for 99% confidence intervals for both 

data sets.  
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Experiment 2: The effects of randomly inserted fake ratings into the train 

data are investigated. Note that the parties can disguise their data using the DPP 

protocol. Again, 500 users for testing and 1,000 users for training for both data sets 

are used. θ values are varied from 0 to 100 and personalized votes estimated from 

available data by each party are employed as fake ratings. The experiments are run 

100 times. After calculating overall averages for both data sets, the outcomes are 

presented for varying θ values in Figure 2.3.  

 

Figure 2.3. NMAEs with Varying θ Values for Train Data 

 

The results in Figure 2.3 show that accuracy diminishes with increasing 

number of fake ratings for both data sets. Since ML is very sparse and it has more 

items than EM, with increasing θ values, more fake ratings are added. As a result, 

accuracy losses due to such inserted votes are greater for ML than for EM with 

larger θ values. However, according to the results, it is still possible to produce 

accurate recommendations when data owners hide their ratings by inserting fake 

ratings according to θ values. Note that since privacy and accuracy are conflicting 

goals, the parties can determine the optimum θ values that they use according to the 

privacy and accuracy levels they want. Thus, 30 can be chosen as the optimum θ 

value for masking train data.  

Experiment 3: To show the effects of adding fake ratings into the test users’ 

rating vectors, another set of trials are performed. The same methodology is used. θ 

values are varied from 0 to 100 while using 500 users for testing and 1,000 users 

for training. Train users again are clustered into three clusters. Trials are run 100 



 

 45 

times for both data sets. Overall averages of NMAE values are shown for varying θ 

values in Figure 2.4. 

 

 Figure 2.4. NMAEs with Varying θ Values for Test Data  

 

According to results shown in Figure 2.4, accuracy diminishes with 

increasing number of fake ratings inserted into the test users’ data, as expected. 

With increasing θ values, randomness increases; and that makes accuracy worse. 

However, accuracy losses are small for smaller θ values (values less than or equal 

to 30) and that helps the parties provide accurate recommendations. As previously 

mentioned, the optimum θ value for masking test data can be determined. In the 

following experiments, θ is set at 30 to mask test data.  

Experiment 4: After showing the effects of varying θ values used to mask 

train and test data separately, trials are run to show the joint effects of such values 

while varying n. Both θ values are set at 30 and experiments are conducted using 

500 users for testing while varying n from 250 to 1,000 for both data sets. 

Predictions are estimated for randomly selected five rated items for each test user. 

NMAEs values are presented for both data sets in Figure 2.5 and the MAEs for ML 

in Figure 2.6. 
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 Figure 2.5. NMAEs with Varying n Values  

 

 Figure 2.6. MAEs with Varying n Values  

 

In Figure 2.5 and Figure 2.6, the NMAE and the MAE values show that the 

proposed solution produces accurate predictions while preserving privacy with 

increasing n values. According to the results, for EM data set, if data are distributed 

among seven parties, the accuracy of recommendations is about 0.2187 without 

privacy concerns when n is 1,000. However, when data owners collaborate and 

produce predictions using the proposed scheme, accuracy improves to 0.1989, 

where n is 1,000 and θ values are 30. The results are similar for ML, as well. When 

data are distributed among seven parties and the parties collaborate without 

jeopardizing their privacy, the MAE is about 0.7882. If they do not collaborate, 

accuracy decreases to 0.8004. As shown previously, accuracy improves due to 

collaboration and decreases due to privacy concerns. However, for larger n values 

(n is 1,000), accuracy gains due to collaboration outweigh accuracy losses due to 
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privacy concerns. To show if the improvements due to collaboration with privacy 

concerns are statistically significant, t-test is conducted. The t value is about 2.72 

for EM when n is 1,000 and m is 1,600, where data are distributed among seven 

parties. Similarly, the t value is 1.98 for MLM when m is 3,900. Those values are 

statistically significant for 99% and 95% confidence intervals for EM and ML, 

respectively. Thus, although accuracy becomes worse due to privacy concerns, 

accuracy gains are still significant due to distributed CF with privacy concerns. The 

introduced scheme can produce accurate recommendations without deeply 

jeopardizing data owners’ privacy.  

After describing the experiments for VDD, the conducted experiments for 

HDD are explained in the following. 

Experiment 1: Trials are performed to demonstrate how coverage changes 

with varying n and z values. In other words, how collaboration affects overall 

performance is tested firstly. It is hypothesized that the parties are able to provide 

predictions for more items if they integrate their split data through collaboration. To 

verify this hypothesis, experiments are performed while changing n from 250 to 

1,000 and z from 1 to 10. It is assumed that if there is at least one rating for q and at 

least two commonly rated items between a and those users who rated q, the CF 

system can provide referrals for q. Coverage values are found for data owners 

based on data sets they own only (split data) and combined data (collaboration) for 

both data sets. Since Jester is a dense data set (the density of the set is about 72%), 

coverage is 100% even if n is 250 and z is 10. However, since ML is a very sparse 

set (the density is about 4%), coverage is significantly affected by varying available 

data. In Figure 2.7, average coverage values for ML with varying n and z values are 

presented.  

As expected, coverage significantly improves with increasing n values for 

sparse data set ML. If n increases, amount of ratings involving in recommendation 

process also increases; that makes coverage better. As seen from Figure 2.7, due to 

integrating split data, coverage enhances. When 250 users’ data horizontally 

distributed among 10 parties, coverage is about 42%. If they integrate their data 

through collaboration, coverage increases to 78%. Note that when z is 1, data are 

held by a single party. In other words, when z = 1, it means that the parties decide 
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to collaborate. For sparse data sets, collaboration among various parties definitely 

improves coverage. 

 

Figure 2.7. Coverage with Varying n & z Values 

 

Experiment 2: To show how accuracy changes due to collaboration among 

multiple parties, experiments are conducted using both data sets. It is wanted to 

compare the results with and without collaboration. 500 users for testing are used 

while 250, 500, or 1,000 users are used for training, where z is varied from 1 to 10. 

Notice again that when z = 1, it means that data owners collaborate and provide 

predictions on integrated data. If z = 2, 3, and so on, then it means that data are 

partitioned between two, three parties, and so on, respectively. With increasing z 

values from 2 to 10, the parties provide predictions on their split data only. Number 

of users held by each party decreases with increasing z values. Train data is 

clustered using SOM clustering into three clusters. Predictions for test items are 

estimated firstly for all test users using the data held by each party only. Then, 

predictions are estimated for the same items using the integrated data. MAE values 

are computed for both cases; and displayed them in Figure 2.8a and Figure 2.8b for 

Jester and ML data sets, respectively.  
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Figure 2.8a. MAEs with Varying n & z Values (Jester)  

 

Figure 2.8b. MAEs with Varying n & z Values (ML)  

 

As seen from Figure 2.8a and Figure 2.8b, when data owners decide to 

collaborate, they achieve the best results (the outcomes for z = 1). The MAE 

values improve with decreasing z values. In other words, if data owners provide 

predictions on their integrated data via collaboration, they offer more accurate 

recommendations. Similarly, accuracy enhances with increasing n values, as 

expected. When data are distributed among various parties, each party uses its data 

to provide predictions. Since available data decrease, accuracy becomes worse. If 

they decide to collaborate, they are able to use more data for referral generation. 

That makes accuracy better. When n is 1,000 and data are distributed among 10 

parties, the MAE is about 0.83 for ML, while it is about 0.75 if they collaborate. 

Thus, integrating split data definitely enhances the quality of the predictions. For 
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both data sets, accuracy develops due to providing referrals on combined data. In 

order to show whether the improvements due to collaboration are statistically 

significant or not, t-tests are conducted. For example, for ML, the improvements 

are statistically significant for n = 1,000 and z = 10 because the value of t is 5.94, 

which is still greater than the value of t for significance level = 0.01 in the t-table. 

Similarly, for Jester, the value of t is 9.51, which is still greater than the value of t 

in the t-table for significance level being 0.01. For both data sets, the 

improvements are still statistically significant for z = 5 for significance level = 

0.01. 

Experiment 3: In the following trials, it is assumed that data are distributed 

between 10 vendors. To protect each data owners’ privacy and let them collaborate 

for future recommendations, they add randomness to train data. As explained 

previously, data owners add default ratings into randomly chosen some of the 

unrated cells of q. Each party g selects a random number βg over the range (0, γ] to 

fill randomly chosen βg percent of unrated cells of q with default votes. Trials are 

performed for both data sets while varying γ from 0 to 100 to show how accuracy 

changes with various amount of randomness. 1,000 and 500 users are used for 

training and testing, respectively for both data sets. Since uncertainty is added, 

trials are performed 100 times. After the outcomes are computed in terms of MAE 

values, they are shown in Table 2.2 for both data sets. Note that γ being 0 

represents the case without privacy concerns.  

 

Table 2.2. MAEs with Varying γ Values 

γ 0 6.25 12.50 25 50 100 

Jester 3.2880 3.2980 3.3120 3.3140 3.3220 3.3360 

ML 0.7552 0.7560 0.7576 0.7604 0.7652 0.7864 

 

As seen from Table 2.2, with increasing γ values, the quality of the 

recommendations generally becomes poorer. As expected, adding randomness to 

original data makes accuracy worse. However, the results are still promising 

because default votes are inserted in order to add randomness. Such votes are non-

personalized ratings and they might represent users’ true preferences. For ML, 



 

 51 

increasing γ values make accuracy worse. For Jester, although the MAE values 

become poorer with increasing γ values, accuracy losses due to inserting default 

votes are very small compared to ML. The parties can append uncertainty into 

their partial results by inserting non-personalized votes into unrated cells of q 

without greatly sacrificing on accuracy. 

Experiment 4: Besides inserting default ratings into unrated cells of q, data 

owners randomly select some of their z-scores and then remove them. To do this, 

each party g uniformly randomly selects αg over the range (0, δ]. Removing some 

of the z-scores affects accuracy because the amount of ratings involved in 

recommendation process decreases. Therefore, in order to show how removing 

various amounts of z-scores affect the outcomes, experiments are run while 

varying δ from 0 to 100. In the experiments, uniformly randomly selected αg 

percent of the z-scores from train sets are removed. Again the same train and test 

users as in the previous trial are used. After MAE values are computed, they are 

displayed in Figure 2.9a and Figure 2.9b for Jester and ML data sets, respectively. 

Note again that δ being 0 means that the parties do not remove any z-scores. 

 

Figure 2.9a. MAEs with Varying δ Values (Jester) 
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Figure 2.9b. MAEs with Varying δ Values (ML) 

 

As seen from Figure 2.9a and Figure 2.9b, MAE values become worse with 

escalating δ values. However, compared to losses in ML, accuracy losses in Jester 

due to removing z-scores are very small. The reason for this phenomenon can be 

explained with the density of Jester. Since Jester is much more dense set than ML, 

removing some of the z-scores does not significantly affect the quality of the 

predictions. Even if δ is 100, the MAE increases from 3.2875 to 3.3057 for Jester. 

Although MAE values become worse with increasing δ values for ML, the results 

are hopeful when δ is smaller than 12.5. To achieve better results in terms of 

accuracy, 3.125 is determined as the optimum value of δ for both data sets. 

However, the parties can use different δ values in order to achieve required levels 

of privacy and accuracy.   

Finally, experiments to show the joint effects of γ and δ values with varying 

n values are conducted. Although the optimum values of γ and δ in the previous 

trials are determined, they are varied from 0 to 12.5 to show how overall 

performance changes with various γ and δ values. Also, n is varied from 250 to 

1,000. The same 500 test users are used. After the trials for both data sets are 

performed, MAE values are computed; and they are displayed in Figure 2.10a and 

Figure 2.10b for Jester and ML data sets, respectively. 
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Figure 2.10a. Joint Effects of Varying γ and δ Values on MAEs (Jester) 

 

Figure 2.10b. Joint Effects of Varying γ and δ Values on MAEs (ML) 

 

Figure 2.10a and Figure 2.10b show that the joint effects of such measures 

on accuracy are negligible. It is still possible to offer accurate recommendations 

with privacy concerns. As shown previously, due to collaboration among various 

parties even competing companies, improvements in accuracy are statistically 

significant. On the other hand, privacy-preserving measures cause losses in 

accuracy. Such losses should not surpass the gains due to alliance. Compared to 

the enhancements, accuracy losses are smaller.  

To show whether privacy-preserving distributed scheme develops accuracy 

significantly or not, t-tests are performed. The results on split data are compared 

with the ones on the proposed scheme. For ML data set, for example, the 

improvements are statistically significant for n = 1,000, γ = δ = 3.125, and z = 10 
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because the value of t is 5.63, which is still greater than the value of t for 

significance level = 0.01 in the t-table. In the same case, for Jester, the value of t is 

7.62, which is still greater than the value of t in the t-table. Even if z is 5, the 

improvements are still statistically significant for both data sets. As the t-tests 

show, the distributed data-based scheme with privacy improves accuracy. When 

data holders offer predictions on their split data only, accuracy diminishes due to 

the insufficient amount of ratings. However, if they collaborate, accuracy enhances 

even if they apply privacy-preserving measures because of increasing amount of 

available ratings. 

2.8. Conclusions 

In this chapter, privacy-preserving schemes are described in order to offer accurate 

recommendations using the SOM-based CF algorithm from vertically or 

horizontally distributed data. The schemes help data owners produce referrals 

based on their combined data without greatly jeopardizing their privacy. Several 

protocols or building blocks are presented to achieve privacy. It is shown that the 

protocols are secure and the scheme is able to offer predictions while preserving 

data owners’ privacy. Due to collaboration and privacy-preserving measures, 

additional costs are inevitable. Hopefully, it is demonstrated that supplementary 

costs due to the schemes are negligible and the companies are still able to produce 

referrals efficiently. Various experiments are performed to show how accuracy 

enhances due to collaboration. The results demonstrate that the quality of the 

predictions significantly improves due to collaboration. Since accuracy diminishes 

due to privacy concerns, trials are conducted to investigate how privacy concerns 

affect the outcomes. As shown by the experimental results, the companies are able 

to offer recommendations with decent accuracy when they mask their data to 

achieve privacy. To sum up, the parties holding VDD or HDD can use the 

proposed schemes to produce accurate predictions efficiently without deeply 

jeopardizing their privacy. 



 

 55 

3. PRIVACY-PRESERVING RANDOM PROJECTION-BASED 

RECOMMENDATIONS ON DISTRIBUTED DATA 

This chapter presents the solution proposed for enabling data owners’ partnership 

in recommendation process while preserving their privacy using RP. Since RP is a 

dimension reduction method, besides confidentiality defending, it also reduces 

data in recommendation process and improves performance of collaboration. The 

solution eliminates the aforementioned anxieties of data owners, so that the 

vendors can work in partnership. Data owners can produce recommendations 

privately from vertically or horizontally distributed data by utilizing the proposed 

schemes.  

3.1. Introduction 

RP is a powerful and computationally simple dimensionality reduction method. 

Employing it does not cause considerable overhead costs. Online performance, 

which is very critical for overall performance of recommender systems, can be 

significantly enhanced when user-item matrix is reduced by using RP. Likewise, 

distributed data can be reduced by using it. Moreover, since it contains 

randomness in its nature, reducing dimensionality through RP also improves 

privacy protection level of private data. If the original data is projected onto a 

random subspace using RP, original form of data is changed; however, its 

statistical characteristics are preserved. Therefore, RP hides original data while 

reducing it. Due to these dual gains, RP is a good choice to reduce dimensions of 

distributed data with privacy.  

RP projects m-dimensional data into a d-dimensional subspace, where d << 

m. The main idea behind random mapping in RP depends on the Johnson-

Lindenstrauss lemma (Bingham and Mannila, 2001), which proposes that if points 

in any vector space are projected to a randomly selected subspace, the distance 

between the points will be nearly the same. To reduce data, RP is utilized a 

random m × d matrix R whose columns have unit lengths (Bingham and Mannila, 

2001). If the original data is Dn×m, which can be reduced to RDn×d by using Rm×d, 

as follows: 

RDn×d = Dn×m  ×  Rm×d    (3.1) 
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To select elements of rij of R, there are different approaches. R is usually 

generated from elements having Gaussian distribution; but, according to 

Achlioptas (2001), a simple distribution can be used, as follows to choose rij: 

      

{
 
 

 
 √                         

 

 

0                            
 

 

 √                       
 

 

     (3.2) 

This distribution still satisfies the Jahnson-Lindenstrauss lemma (Bingham 

and Mannila, 2001). Bingham and Manila (2001) compare the experimental 

results of utilizing two different distributions; and they suggest using the Gaussian 

distribution-based R matrix if data are dense and the distribution proposed by 

Achlioptas if data are sparse. Since data used in recommendation algorithms are 

generally sparse, the distribution proposed by Achlioptas (2001) is utlized.  

RP is one of the widely used methods in various data mining applications. 

RP-based dimension reduction provides decent accuracy in clustering and 

estimating similarities (Kaski, 1998; Achlioptas, 2001). Bingham and Mannila 

(2001) apply RP to reduce dimension of image and text data. They show that RP-

based data reducing gives good results for image and text data. Fern and Brodley 

(2003) investigate how RP can be used for clustering high dimensional data. Liu 

et al. (2006) suggest utilizing RP in distributed data mining applications. They 

explore to use multiplicative RP matrices to preserve data holders’ privacy. Their 

technique is successful for applying to different types of privacy-preserving data 

mining applications over horizontally or vertically partitioned data. Oliveira and 

Zaїane (2007) utilize RP to cluster distributed data while preserving the parties’ 

privacy. In their method, they reduce dimension of data with RP. In another study, 

RP is used to compute the correlation matrix of privacy sensitive data (Kargupta 

et al., 2003).  

In this chapter, solutions for producing recommendations on multi-party 

distributed data without disclosing data owners’ confidential data to each other are 

proposed. The proposed methods help cooperating firms hide the true ratings and 

the rated entities against each other. To carry out privacy, RP is suggested. The 

goal is to offer accurate referrals efficiently while preserving privacy. Hence, the 

suggested solutions should bring equilibrium among such divergence goals. The 
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methods are flexible rather than rigid schemes. The solutions are evaluated in 

terms of privacy; and shown that they do not violate data owners’ confidentiality. 

Online performance analysis shows that supplementary loads caused by privacy 

measures are insignificant. Real data-based experiments are conducted to assess 

the schemes in terms of the quality of the recommendations. The outcomes 

demonstrate that the results are promising. The schemes are able to provide 

accurate referrals efficiently while preserving privacy.  

3.2. VDD-based Recommendations with Privacy 

Computations performed for estimating predictions can be grouped as off-line and 

online calculations. The detail descriptions of them are given in the following. 

Off-line Computations: Collaborating sites first need to reduce their split 

data using RP in such a way so that confidential data remain private. The 

following private dimension reduction protocol on random projection is proposed 

(PD2RP): 

i. Decide the value of d (dimension of reduced data). 

ii. Each party g generates a random matrix Rg with the size mg × d, using the 

distribution proposed by Achlioptas (2001). Note that the random matrix 

R = [

  

  

 
  

].   

iii. Then, each party g estimates RDg = Dg × Rg, where RD = RD1 + RD2 + 

… + RDz. 

iv. To allow continual collaboration, the parties exchange partial RDg with 

each other in such a way so that the RDn×m is vertically distributed 

among z parties (Each party g holds RDgv with the size n × mg, where mg, 

on average, equals d/z). The first party keeps RD11 (with the size n × m1), 

sends RD12 (with the size n × m2), RD13 (with the size n × m3), and so on 

to the second, third, and other parties, respectively. Also, the second 

party keeps RD22 (with the size n × m2), sends RD21 (with the size n × 

m1), RD23 (with the size n × m3), and so on to the first, third, and other 

parties, respectively. All collaborating vendors do the same thing.      

v. At the end, each party g adds the partial RDg matrices, gets RDgv; and 
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stores them. Thus, RD is distributed among z parties.    

After reducing the user-item matrix, the vendors are supposed to estimate 

the user mean and standard deviation values based on the condensed data because 

such aggregates are needed during similarity computations. They are estimated 

off-line so that online performance improves. Due to the nature of data 

distribution, reduced data are distributed among z parties. Hence, the corporations 

need each other to estimate such values in a distributive manner. The user mean 

values on reduced data, referred to as   ̅, can be estimated, as follows, where it is 

assumed that m = mg: 

  ̅   
∑ ∑     

 
   

 
    

 
    (3.3) 

where      shows the value of reduced vote for item j of user u held by the party 

g. As seen from Eq. (3.3), each party g finds partial sum values (∑     
 
   ) for 

each user and sends them to other parties. After receiving required data from 

others, each party estimates user mean values on reduced data. Similarly, the 

users’ ratings standard deviation on reduced data (σru) can be estimated, as 

follows: 

σru = √
  

 
∑ ∑         ̅  

 
     

       (3.4) 

Each party can easily normalize the reduced data by subtracting user mean 

values from corresponding data items because they know such user mean values 

estimated formerly. They then find the squares of each normalized data items for 

all users. Next, each party sends the partial sum values for all items to all other 

collaborating parties. They finally estimate σru values for all users using Eq. (3.4). 

Online Computations: Due to VDD, when a wants a prediction for q, she 

sends corresponding parts of her ratings vector A, referred to as Ag, to the related 

parties. She also sends the query q to MC holding the ratings of q. The process 

continues, as follows: 

i. a sends Ag to each collaborating vendor g. 

ii. After receiving Ag, each party g reduces a’s data and obtains RAg = Ag × 

Rg. 

iii. The parties then are supposed to collaboratively estimate a’s ratings 
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mean and standard deviation based on reduced data. They can achieve 

such task as they do for estimating mean and standard deviation values 

for other users off-line. 

iv. Parties try to compute PCC given in Eq. (1.1) between users and a. Each 

party g finds       
∑ (       ̅̅̅̅ )(       ̅̅̅̅ )     

      
 values for all users, where 

    
∑ (       ̅̅̅̅ )(       ̅̅̅̅ )     

      
 + 

∑ (       ̅̅̅̅ )(       ̅̅̅̅ )     

      
 + … 

+ 
∑ (       ̅̅̅̅ )(       ̅̅̅̅ )     

      
. Although sending such partial similarity weight 

values to MC does not reveal any confidential data; however, if MC 

receives them, it does not need other parties when the same active user 

asks predictions for those items held by MC. Thus, the parties do not 

send such partial sums to MC. 

v. Since MC does not have the similarity weights, it cannot determine a’s 

neighborhood alone. a’s neighbors can be determined using the private 

neighborhood formation algorithm (PNFA), explained in the following 

subsection.  

vi. After forming the neighborhood using the PFNA, MC can estimate paq 

employing the private recommendation protocol (PRP), explained in the 

following subsection.  

vii. MC finally returns that prediction to a. 

Private Neighborhood Formation Algorithm (PNFA): Collaborating 

companies are able to estimate partial similarity weights between a and each user 

in their databases because they have the required data. Due to the wishes for 

continual collaboration, they do not want to send such aggregate values to MC. 

On the other hand, a’s neighborhood should be formed in order to compute 

predictions. The parties can determine a’s neighbors using the following scheme, 

called PNFA: 

i. Each vendor g computes partial similarity weights (waug) for all users u = 

1, 2, …, n. 

ii. Then, each company g sorts the users according to waug values in 

descending order. 

iii. They then associate each user in the ordered list with a virtual weight 
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starting from the first one, as follows: Since there are n users, the first 

user in the list is associated with the virtual weight n × (maxwp-minwp), 

the second one gets (n-1) × (maxwp-minwp), and so on. The last user in the 

list is associated with 1 × (maxwp-minwp), where maxwp-minwp is the 

difference between the maximum and the minimum partial similarity 

weight values. 

iv. Next, each party exchanges such virtual weights together with user IDs 

with other retailers. 

v. For all users, each corporation then finds the sum of the virtual weights 

assigned by each party.    

vi. The companies sort the users according to the sum of the virtual weights. 

In case of equality, prefer those users with lower IDs.  

vii. The first k users are finally chosen as neighbors for a. Notice that each 

corporation ends up with the same neighborhood.   

 Private Recommendation Protocol (PRP): After neighborhood formation, 

MC can collaboratively estimate paq. Note that the similarity weights of a’s 

neighbors are distributed among the collaborating companies. Due to the 

distributed weights, Eq. (1.3) can be written, as follows: 

       ̅̅ ̅   
∑ (      ̅̅̅̅ )         

∑           
 =   ̅̅ ̅  

∑ (      ̅̅̅̅ )                           

∑                            
.   (3.5) 

As seen from Eq. (3.5), in order to estimate predictions, either MC 

sends (      ̅̅ ̅) values to collaborating parties or cooperating vendors send waug 

values to MC. The following protocol is proposed to estimate paq without 

violating data owners’ privacy: 

i. MC finds Vuq = (      ̅̅ ̅) values for all a’s neighbors who rated q. 

Notice that the user u is one of a’s neighbors and rated q. 

ii. It then encrypts Vuq values using a HE scheme and obtains     
(Vuq) 

values. Next, MC sends them to the collaborating parties. 

iii. Using HE, each party g computes     
(Qg) = ∏     

      
      

   , 

where ka is the set of a’s neighbors who rated q. 

iv. Each cooperating vendor g also estimates     
     = ∏     

      
  
    

using HE property. 
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v. Then, each party sends such encrypted partial sum values to MC, which 

can decrypt them using its private key and obtains Qg and Wg values. 

vi. MC finally computes         ̅̅ ̅   
∑    

∑    
, and returns it to a. 

While conducting the PRP, the vendors should not be able to derive 

information about each other’s data. However, since MC sends encrypted data of 

those users who rated q only, other parties can figure out which neighbors of a did 

not rate q. That violates the privacy definition. PRP can be improved if some 

arbitrariness is added using non-personalized votes, as follows:  

i. MC determines the number of a’s neighbors who did not rate q and 

unrated cells of q, which are called blank cells.   

ii. It uniformly randomly selects a θ value over the range [1, β], where β is 

an integer between 1 and 100 and called performance parameter. 

iii. Then, it uniformly randomly chooses θ percent of the blank cells. 

iv. It finally fills such chosen blank cells with item average default rating, 

which is a non-personalized vote. 

Note that off-line computations are not that critical for the overall 

performance. Therefore, the parties try to perform as many computations as 

possible off-line to enhance online performance. An example that showing 

distributed computations and data exchanges in our proposed VDD-based 

recommendations with privacy scheme is given in Figure 3.1. 

3.3. HDD-based Recommendations with Privacy 

In addition to vertical distribution, data can be distributed horizontally among 

multiple vendors. The proposed scheme can be similarly used to offer HDD-based 

predictions. The computations carried by the collaborating vendors can be divided 

into two main phases, as follows: 

Off-line Computations: The first thing that should be executed by the 

vendors is reducing the distributed data without disclosing confidential data to 

each other using RP. They can achieve such task, as follows: 

i. Decide the value of d (dimension of reduced data). 

ii. Construct a random matrix, Rm×d having the distribution proposed by 

Achlioptas (2001). 

iii. Each party g finds RDg = Dg × R; and stores the partial reduced data RDg  
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Figure 3.1. Example of VDD-based recommendations with privacy with 3 Parties 
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After estimating reduced data without disclosing the confidential data, the 

companies can now compute the means and the standard deviations of users’ 

ratings, which are required for recommendation estimation. Due to the nature of 

the distribution, each vendor is able to compute such values without the help of 

other companies based on reduced data that it holds. Thus, each party finds out 

the mean and standard deviation of those users’ ratings values held by it; and 

stores them. 

Online Computations: During an online interaction, a sends A and q to one 

of the collaborating companies to get a recommendation for item q. Due to the 

HDD, Eq. (1.3) can be written, as follows: 

      ̅̅ ̅   
∑ ((      ̅̅̅̅ )   )        ∑ ((      ̅̅̅̅ )   )              

∑             
∑                 ∑            

  (3.6) 

where NN1, NN 2, …, NNz   are the sets of a’s neighbors held by each company. 

paq can be collaboratively estimated while preserving privacy, as follows: 

i. MC reduces A; and obtains RA = A×R. 

ii. It forwards RA and q to the collaborating parties. 

iii. Each party including MC computes the similarity weights between a and 

each user in their databases based on the reduced data using Eq. (1.1).  

iv. They then choose those users as neighbors whose similarity weights 

satisfy a τ value.  

v. Next, each party g calculates partial aggregate results, ∑ ((           

  ̅̅ ̅)   ) , ∑ ((      ̅̅ ̅)   )       
, …,  ∑ ((      ̅̅ ̅)   )       

; 

and ∑           
, ∑ ((      ̅̅ ̅)   )       

, …,  ∑           
 values.  

vi. The collaborating vendors send such aggregate partial sums to MC, 

which estimates paq using Eq. (3.6); and sends it to a.   

Notice that the collaborating parties are not able to derive truthful 

information from a’s reduced data due to random projection. Due to the nature of 

data distribution, the parties are able to estimate the users’ mean ratings and their 

ratings’ standard deviation without exchanging any data. Prediction estimation 

performed online is achieved by exchanging aggregate data. An example that 
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showing distributed computations and data exchanges in our proposed HDD-

based recommendations with privacy scheme is given in Figure 3.2. 

 

Figure 3.2. Example of HDD-based recommendations with privacy with 3 Parties 

 

3.4. Privacy Analysis 

In this section, the proposed schemes are analyzed in terms of privacy. It is shown 

that the schemes do not violate data owners’ confidentiality in terms of the criteria 

determining how an algorithm enforces the main goals of PPDM (Bertino et al., 

2008). The criteria consist of privacy level indicating how sensitive information 

can be acquired from hidden data, referred to as hiding failure (HF), which is 

measured as a percentage of sensitive information that is still discovered after 

perturbation of private data; and data quality showing how hidden data are still 

useful for data mining purposes (Oliveira et al., 2002; Bertino et al., 2008). RP-
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based data perturbation’s privacy level is analyzed deeply by Liu et al. (2006). 

According to their results, RP-based data perturbation technique guarantees 

original data’s confidentiality. Their results prove that, even if the parties know R, 

it is impossible to acquire exact values of the confidential data hold by any party 

and they cannot identify any parties’ private data by a random guess of R, unless 

R is disclosed. 

Due to the property of underlying data masking method, VD2RP scheme 

preserves data owners’ confidentiality. In VD2RP, each data owner produces its 

own random matrix Rg. Thus, the parties cannot derive any information about 

other companies’ data even if the resulted RD matrix is vertically distributed, 

because each data owner holds its corresponding part of RD. As explained by Liu 

et al. (2006), by having resulted RD matrix, data owners cannot identify the 

original data even if they guess the random matrix randomly. Therefore, utilizing 

RP-based data reduction process on VDD does not violate data owners’ privacy. 

Note that the companies compute means and standard deviations of the users in 

RD matrix by exchanging partial aggregates. Although they exchange such 

consolidated results, it does not jeopardize HF, because they are acquired from 

RD not from the sensitive data. Hence, computing user means and standard 

deviations from RD does not violate data owners’ privacy and HF. The PNFA 

algorithm can similarly be analyzed. In this algorithm, the parties exchange virtual 

weights rather than true weight values. It is not possible to derive information 

from such virtual weights. Utilizing PNFA algorithm only discloses virtual 

weights; and that does not decrease privacy level of VD2RP and jeopardize HF. 

Another algorithm employed in VD2RP is PRP algorithm in which HE is utilized 

to preserve data owners’ privacy. The parties cannot derive sensitive information 

from the encrypted values. In PRP, MC inserts fake ratings to q’s votes, thus, 

privacy level of PRP depends on how collaboration parties can guess the number 

of actual ratings and fake ratings.  Remember that MC adds fake ratings to θ 

percent of blank cells. Probability of guessing the correct θ value is 1 out 100. 

Then, guessing probability of the exact position of filled cells in vector of item q 

is       

  , where qf shows the number of fake ratings while qa shows all encrypted 

values send by MC. Since adding fake ratings increases inconsistency of the 
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received encrypted values, privacy level of VD2PR increases. Data quality in 

VD2RP is affected by adding fake ratings to q’s rating vector while utilizing RP. 

However, such ratings are considered non-personalized votes and they might 

represent users’ preferences. PRP method preserves data quality.  

Due to the findings presented by Liu et al. (2006), the proposed HD2RP 

scheme is able to preserve data owners’ confidentiality. Since the resulted RD in 

HD2RP is horizontally distributed without any disclosure, the privacy level of the 

scheme is enforced. Moreover, in HD2RP method, all parties compute mean and 

standard deviations of their users in RD without any collaboration; and the parties 

send aggregate partial sums to MC only while producing recommendations 

online. Thus, it can be concluded that the HF of HD2RP is zero, which is the main 

goal of a privacy-preserving algorithm. Revealing the aggregate partial sums does 

not leak any information about true ratings and the rated items. Therefore, privacy 

level is high. Although HF is zero and the privacy level is high in HD2RP scheme 

in general, extreme cases like in the following can violate data owners’ 

confidentiality. If any party has no users having rating for q, it then cannot send 

any partial sum to MC; and MC concludes that such users provide no ratings for 

q. To overcome this exception, the party has no users having rating for q can 

select random users and fill their cells for q with user mean values as proposed in 

PRP. Finally, since after RP-based data perturbation, the reduced data is still 

appropriate for performing data mining tasks such as clustering, correlation 

computation, etc. (Liu et al., 2006), data performed in HD2RP has still enough 

quality to compute correlations between users to compute weights in 

recommendation process. 

3.5. Supplementary Costs Analysis 

Supplementary costs due to privacy are important for efficiency. Unlike online 

costs, off-line costs are not that critical for the overall success of prediction 

schemes. Thus, extra storage, communication, and computation costs are 

analyzed. VD2RP scheme introduces extra storages costs in the order of O(nmg) 

and O(n) for RDg matrices and users’ mean and standard deviation values, 

respectively. Similarly, HD2RP method also introduces some extra storage costs 

for each data owner g for storing RDg matrices and user means and standard 
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deviations, which are in the order of O(ngm) and O(ng), respectively. 

Due to privacy concerns, the proposed schemes introduce extra 

communication costs. In VD2RP, during off-line phase, each party sends the 

corresponding part of their RDg matrix to related party making z-1 

communications. Therefore, total number of communications happens to be z(z-

1). In each communication, amount of data transferred is in the order of O(nmg). 

To compute users’ mean and standard deviations in RD, data owners again make 

z(z-1) communications. Since such communications are made off-line, they do not 

make online performance worse. During online computations, number of extra 

communications caused by PNFA is 2z(z-1). In PRP algorithm, data holders make 

4(z-1) communications. In HD2RP, there is no additional communications 

performed off-line. During online phase, MC makes z-1 communications to send 

RA to other parties. To obtain interim results from collaborating parties, extra z-1 

communications are made. Since all communications are made parallel during 

online phase, their effects to online efficiency of proposed scheme become 

smaller.    

The proposed schemes introduce extra computation costs due to preserving 

data owners’ confidentiality. In VD2RP protocol, during online step, reducing a’s 

data introduce extra computations. Since data owners make this reduction 

simultaneously, execution time for this computation will be determined by the 

party, which owns the maximum number of items, referred to as mmax. Thus, 

additional costs are in the order of O(dmmax
2
). Due to employing PNFA, 

supplementary computation costs are in the order of O(nlogn) for sorting n users. 

Additional costs due to addition are negligible in PNFA. During PRP, encryptions 

and decryptions are conducted. In HD2RP, reducing a’s data requires extra 

computations, which are in the order of O(dm
2
). 

3.6. Accuracy Analysis: Experiments 

In order to test the accuracy of the proposed schemes, several experiments are 

conducted using ML and EM data sets. To measure the quality of the 

recommendations, NMAE measure is employed. Since collaboration among 

multiple parties increases the amount of data involved in recommendation 

process, the parties can generate predictions for more items. In other words, 
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coverage enhances significantly. In order to demonstrate how collaboration 

improves the coverage, coverage metric is utilized.  Finally, t-tests are applied in 

order to evaluate the schemes in terms of statistical significance.  

Given the entire data sets, firstly those users who rated at least 50 items 

from ML and EM are determined; then, they are uniformly randomly divided into 

two disjoint sets, training and test sets for each data set. Finally, 1,000 and 500 

users are uniformly randomly selected for training and testing from training and 

test sets, respectively. For each test user, five rated items are uniformly randomly 

chosen as test items. After withholding their true ratings, they are replaced with 

null; and tried to provide recommendations for them using the train users’ data. It 

is assumed that data are distributed among z companies, where z might be one, 

three, five, or 10. Each data owner owns about n/z number of train users in 

HD2RP and m/z number of items in VD2RP. In HD2RP, it is decided to select 

those users as neighbors whose similarity weight with a is greater than 0.3, as 

proposed in (Herlocker et al., 1999). The experiments are run using MATLAB 

R2009b on a computer, which is Intel Core2Duo, 24.0 GHz with 4 GB RAM. 

Experiment 1: First trials are performed to demonstrate how coverage 

changes with varying z values because amount of data involving in 

recommendation process increases with decreasing z values. Since coverage 

results for ML data set is shown in the previous section, the results for EM is 

shown only. Experiments are performed while varying n from 100 to 1,000. In 

other words, z is varied from 10 to one. In Figure 3.3, the average coverage values 

are presented for EM data set with varying n values. 

 

Figure 3.3. Coverage with Varying n Values 
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As expected, coverage significantly improves with increasing n values or 

decreasing z values, thus, by collaboration, the parties are able to provide 

predictions for more items. If n increases, amount of ratings involving in 

recommendation process also increases; that makes coverage better. As seen from 

Figure 3.3, when there are 1,000 users whose data are partitioned among 10 

parties (on average, each party holds 100 users), average coverage for each party 

is about 27%. If they integrate their data, coverage values increase to 75%. Hence, 

it can be concluded that, for sparse data sets, collaboration among various parties 

definitely improves coverage. VD2RP scheme helps online vendors provide 

referrals for more items.  

Experiment 2: Online vendors might be able to provide more accurate 

predictions if they combine their HDD. To show how precision changes due to 

combining HDD, trials are conducted using both data sets while varying z values. 

1,000 users for training and 500 users for testing are used. Predictions are 

produced for all test items from train data. The experiments are run 100 times. 

During producing recommendation process, k is set at 40 as proposed by 

Herlocker et al. (1999). Then, recommendations are estimated from 1,000 train 

users (integrated data) and the split data among three, five, or 10 parties to show 

the effects of collaboration. The NMAE values are computed for both data sets 

and displayed them in Figure 3.4 for both data sets. 

 

Figure 3.4. Effects of Collaboration in HD2RP Scheme 
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As seen from Figure 3.4, NMAE values improve due to collaboration of 

parties for both data sets. If data are distributed among 10 parties (n = 100) and 

they produce recommendations from their own data only, NMAE values are 

0.1923 and 0.2046 for ML and EM, respectively. On the other hand, if these 10 

parties collaborate (n = 1,000), their recommendations’ accuracy improves to 

0.1837 and 0.1921 for ML and EM, respectively. Hence, alliance definitely 

enhances the quality of the referrals. To show if the improvements due to 

partnership are statistically significant, t-tests are conducted. The values of t are 

3.27 and 2.45 for ML and EM, respectively, where z is five. Those values are 

statistically significant for 99% confidence intervals for both data sets. 

Experiment 3: To show how accuracy changes due to collaboration when 

data are vertically distributed, trials are performed using both data sets. Again 

1,000 train users and 500 test users are used for experiments. Five test items are 

randomly selected for each test user. The experiments are run 100 times, where k 

is set at 40. After computing overall averages, the NMAEs are shown in Table 

3.1. Note again that the last column in Table 3.1 shows the results for integrated 

data. First, second, and third columns represent the results for z being 10, five, and 

three, respectively.   

Table 3.1. Effects of Collaboration in VD2RP Scheme 

z 1 3 5 10 

ML 0.1837 0.1876 0.1940 0.2042 

EM 0.1921 0.2006 0.2072 0.2551 

 

According to the results presented in Table 3.1, data owners provide more 

accurate results if they collaborate. With decreasing number of cooperating 

vendors (increasing number of m values), the quality of the referrals enhances. In 

case of split data, amount of data held by a single party only is not sufficient for 

offering precise recommendations. However, as seen from the empirical 

outcomes, the parties are able to offer better recommendations if they collaborate 

with each other. When 10 companies decide to work in groups, accuracy enhances 

from 0.2042 to 0.1837 for ML. The improvements for EM for the same case are 

even better. The outcomes verify that the hypothesis is true. To show how 

significant such improvements are, t-tests are employed. t values are found as 6.39 
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and 5.34, which are statistically significant for 99% confidence intervals, for ML 

and EM, respectively when z is 10. 

Experiment 4: The proposed approach utilizes RP to achieve privacy and 

improve online performance through data reduction. Since it reduces high-

dimensional data to d-dimensional, it is vital to determine the optimum value of d 

experimentally. To show how varying d values affect accuracy and find out its 

optimum value, trials are performed using both data sets while changing d values. 

1,000 and 500 users for training and testing are used, respectively. The 

experiments are run 100 times for each d value with different R matrix; and 

computed user similarities from reduced data while producing referrals for each 

test item. Overall averages of NMAE are computed values and the online time in 

seconds required for estimating predictions. The outcomes are displayed in Table 

3.2 and Table 3.3 for ML and EM, respectively. 

 

Table 3.2. Effects of Varying d Values (ML) 

d 100 250 500 1,000 2,000 3,900 

NMAE 0.1882 0.1854 0.1845 0.1840 0.1836 0.1836 

T(sec) 10 11 14 18 27 60 
 

Table 3.3. Effects of Varying d Values (EM) 

d 50 100 200 400 800 1,600 

NMAE 0.2074 0.2048 0.1944 0.1994 0.1976 0.1921 

T(sec) 8 8 9 10 15 27 

 

As expected, online performance enhances with decreasing d values for both 

data sets. Due to data reduction, online efficiency of RP-based scheme improves. 

In addition to the enhancements in T, the results show that predictions with decent 

accuracy can be provided on reduced data. As seen from Table 3.2, the NMAE is 

0.1836 for d = 3,900, while it is 0.1882 for d = 100. Although accuracy becomes 

worse by amount of 0.0046, online performance improves by a factor of six for 

the same case. The reason for enhancements in time is the fact that user-user 

similarities are estimated on reduced data. Similarly, the phenomenon why there 

are no noteworthy losses due to data reduction can be explained in terms of the 

nature of RP, which keeps statistical information of actual data. The similar 
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findings are obtained for EM, as well, as seen from Table 3.3. Although accuracy 

slightly becomes worse with decreasing d values, online performance improves. 

In terms of preciseness and online efficiency, 500 and 200 are selected as the 

optimum values of d for ML and EM, respectively.  

After performing experiments to determine the effects of collaboration and 

figuring the optimum values of d for both data sets, various trials are conducted to 

demonstrate how the privacy-preserving measures affect the overall performance. 

In the following experiments, 1,000 and 500 train and test users are used, 

respectively and d is set at its optimum values. 

Experiment 5: To show the effects of privacy solution in HD2RP scheme, 

experiments are performed using both data sets. τ value is proposed to use for 

determining neighbors instead of selecting k most similar ones, where it is set at 

0.3, as proposed by Herlocker et al. (1999). Similarly, d is set at its optimum 

values for both data sets. The NMAE values of 0.1851 and 0.1956 for ML and 

EM are obtained, respectively. The results show that collaboration increases 

accuracy of produced recommendations. To show the significance of the 

improvements, t-tests are conducted and the results showed that the improvements 

are statistically significant for at least 95% confidence intervals.  

Experiment 6: In the VD2RP scheme, PNFA is proposed to utilize in order 

to determine a’s neighbors. Thus, experiments are conducted to evaluate the 

effects of PNFA on accuracy for both data sets. In these experiments, k is varied 

from 20 to 160. Also the values of z are changed from one to 10. Note that when z 

is one, it means that the data held by a single party. In other words, the results for 

z being one are the base results for assessing PNFA. The trials are conducted 100 

times. After finding overall averages, the outcomes are displayed in Figure 3.5 

and Figure 3.6 for ML and EM, respectively. 
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Figure 3.5. Effects of PNFA on Accuracy (ML) 

 

 

Figure 3.6. Effects of PNFA on Accuracy (EM) 

 

According to experiment results shown in Figure 3.5 and Figure 3.6, the 

outcomes are very stable for varying z values for both data sets. In other words, 

PNFA algorithm is able to form consistent neighborhoods even if the number of 

collaborating parties increases. As seen from Figure 3.5 and Figure 3.6, the results 

usually become worse with decreasing k values. For both data sets, the outcomes 

are very promising for k values of 80 and 160. The best results occur when k is 80 

for EM, while they are the best when it is 160 for ML. Compared to the base 

results (where z is one), the quality of the recommendations on PNFA are 

comparable for both data sets for larger k values. The proposed PNFA algorithm 

can be used to determine a’s neighbors without sacrificing on accuracy while 

preserving confidentiality. 
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Experiment 7: After scrutinizing PNFA’s effects on accuracy, trials are 

conducted to show how talented PNFA is to determine the best neighbors. In 

traditional k-nn prediction algorithms, the most similar k users are chosen as 

neighbors. Using PNFA, cooperating companies determine such neighbors 

without jeopardizing their privacy. 1,000 users are used for training while 500 

users are used for testing. The trials are run 100 times while varying z and k 

values. The hit ratio representing the percentage of actual neighbors chosen by 

PNFA as the best similar users is calculated. In case of one party, k users are 

selected as neighbors. It is shown that what percentages of such k users are also 

chosen by PNFA, as well with varying z values. After calculating overall 

averages, the hit ratios are displayed as percent for both data sets in Table 3.4. 

 

Table 3.4. PNFA’s Hit Ratio (%) vs. k & z 

z 1 3 5 10 

k=20 
ML 100 69.58 62.63 59.68 

EM 100 66.92 63.43 61.33 

k=40 
MLM 100 72.47 68.09 65.47 

EM 100 71.84 69.73 66.60 

k=80 
MLM 100 76.42 73.98 70.65 

EM 100 77.46 76.21 72.50 

k=160 
MLM 100 82.26 80.42 76.19 

EM 100 84.94 82.20 77.96 

 

As seen from Table 3.4, PNFA’s ability to determine the actual neighbors 

decreases with increasing z values, while it improves with increasing k values for 

both data sets. In conventional k-nn recommendation algorithms, the best 40 users 

are selected as neighbors. When k is 40 and z is three, PNFA is able to choose 

about 72% of actual neighbors for both data sets. If there are five vendors, 68% 

and 70% of true neighbors are selected by PNFA for ML and EM, respectively. 

Although the hit ratios of PNFA cannot be considered as promising in general; 

however, it is previously shown that accuracy losses due to PNFA are 

insignificant. Another set of experiments are performed to verify why PNFA is 

able to provide predictions with decent accuracy even though it has somehow 
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poor hit ratios. In a k-nn prediction algorithm, the best k users’ data are used for 

estimating predictions. With increasing k values up to some point, changes in 

accuracy are very stable. Almost the same level of accuracy can be obtained even 

if it is used let say, uniformly randomly chosen 40 of the best 100 users. To verify 

this, experiments are conducted using both data sets while uniformly randomly 

selecting 40 nearest neighbors from the most similar 100 users to each test user. 

The trials are run 1,000 times and computed the overall averages. The NMAE 

values of 0.1838 and 0.1960 for ML and EM are obtained, respectively. The first 

40 best similar are used users as neighbors; corresponding NMAE values are 

0.1937 and 0.1921. For ML, almost the same results are obtained. Similarly, for 

EM, there are only 0.0039 deviations. Hence, it is concluded that similar 

outcomes can be offered even if some of the selected best users are used rather 

than the first k best users. This result strengthens the approach why utilizing 

PNFA does not cause significant accuracy losses. 

Experiment 8: One of the controlling parameters that are used in the 

VD2RP scheme is β. In order to show the effects of β, experiments are conducted 

using both data sets while varying β from zero to 100. 1,000 and 500 users are 

used for training and testing, respectively. Predictions are estimated for all test 

items, where the trials are run 100 times. k is set at 40 and d is set at its optimum 

values for both data sets. After computing the overall averages, the final NMAE 

values are presented for both data sets in Figure 3.7. 

 

 

Figure 3.7. Accuracy vs. Varying β Values 
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As expected and seen from Figure 3.5, the quality of the recommendations 

diminishes with increasing β values due to augmenting randomness. However, 

such losses are very stable for both data sets for β values less than or equal to 60. 

Although accuracy becomes worse with increasing β values, confidentiality level 

improves. Since accuracy and privacy are conflicting goals, the parties can decide 

the value of β according to their requirements. In this sense, the scheme is flexible 

and allows data owners to determine the values of controlling parameters.  

Experiment 9: Finally, trials are performed to show the joint effects of 

using PNFA and β using both data sets while varying z. β is set at 40, k is set at 

40, and d is set at its optimum values. The best neighbors are selected utilizing 

PNFA and masked q’s ratings based on β. The NMAEs are compared on split data 

only (No Collaboration-NC) and the ones on VD2RP. After running the trials 100 

times, the overall averages are computed and displayed in Table 3.5 for both data 

sets. 

Table 3.5. Overall Performance of the Proposed Schemes 

z 3 5 10 

Scheme NC VD2RP NC VD2RP NC VD2RP 

ML 0.1876 0.1849 0.1940 0.1861 0.2042 0.1882 

EM 0.2006 0.1945 0.2072 0.1969 0.2551 0.2039 
 

Note that if data owners collaborate without privacy concerns, NMAEs are 

0.1837 and 0.1921 for ML and EM, respectively. According to results in Table 

3.5, the proposed schemes provide more accurate results than the results on split 

data only. Due to collaboration without any privacy concern, accuracy enhances. 

Since confidentiality and preciseness are conflicting, accuracy slightly becomes 

worse due to the privacy-preserving measures. However, the results are still better 

than the ones on split data only. t values are found as 2.34, 5.13, and 9.89 for z is 

three, five, and 10, respectively for ML. They are 1.57, 2.06, and 8.47 for EM. 

According to t-test results, the improvements in accuracy for both data sets are 

statistically significant at least 95% confidence level.  

3.7. Conclusions  

Privacy-preserving schemes based on RP are presented to provide referrals on 

distributed data. To achieve data reduction and confidentiality, RP is proposed to 

utilize. In the schemes, it is assumed that data are vertically or horizontally 
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distributed between more than two parties. Collaboration is imperative. However, 

due to some reasons, vendors do not want to disclose their private data to each 

other. Schemes are proposed to offer recommendations on distributed data 

without deeply violating privacy. 

It is shown that the schemes do not violate data owners’ privacy. They can 

be used to offer predictions on distributed data without disclosing private data. 

Due to privacy measures, additional costs are inevitable. It is demonstrated that 

supplementary costs introduced by the schemes are negligible. The empirical 

results on two real data sets show that accuracy significantly improves due to 

collaboration. Although privacy measures make preciseness slightly worse, the 

gains are still statistically significant.    
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4. PRIVACY-PRESERVING TRUST-BASED RECOMMENDATIONS ON 

DISTRIBUTED DATA 

Providing trust-based recommendations has been receiving increasing attention. 

Due to data sparsity in recommender systems, it is challenging to estimate 

similarities between any two entities and forming good neighborhoods. 

Researchers propose alternative approaches like examining trust between any two 

users from their rating profile. Although it is trivial to provide trust-based 

predictions when data collected for recommendation purposes held by a central 

server; however, it becomes a challenge to offer trust-based recommendations on 

distributed data between multiple parties due to privacy, legal, and financial 

reasons. Without privacy-preserving measures, data holders do not feel 

comfortable to estimate predictions on distributed data collaboratively. This 

chapter covers trust-based solutions enabling data owners’ collaboration when 

producing recommendations on VDD or HDD.   

4.1.  Introduction 

Traditionally, CF systems employ similarity metric to compute correlation 

between users and this correlation can be computed if they have commonly rated 

items. With increasing number of items, it is less likely to find co-rated products. 

To associate any two entities, researchers propose to utilize trust rather than 

similarity (Hwang and Chen, 2007; Massa and Avesani, 2007; Lathia et al., 2008; 

Walter et al., 2009). In order to investigate the relationship between trust and 

similarity, Ziegler and Goldbeck (2007) present frameworks and make empirical 

analysis. Exploiting trust in CF handles with problems caused by sparse data. 

Since it is possible to compute indirect trust value between any two users, it is 

possible to obtain correlation between them by trust propagation even if they have 

no commonly rated items (Hwang and Chen, 2007; Massa and Avesani, 2007). 

The methods proposed so far to estimate recommendations on trust networks can 

be used by central server-based CF systems (Hwang and Chen, 2007; Lathia et al., 

2008). In addition to overcoming sparse data problems, utilizing trust networks 

for predictions also improves online performance because trust values between 

users can be computed off-line. 
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In social networks, reputations and implicit trust information are utilized 

while performing CF algorithms. Researchers introduce several solutions, which 

provide producing recommendations in a social network. Massa and Avesani 

(2004; 2005; 2007) introduce the implicit trust-based CF algorithms and its real 

world application. O’Donovan and Smyth (2005) show the importance of 

trustworthiness of users and present two computational models of trust. Walter et 

al. (2008) present a model, which uses agents to reach social network information 

and relationships to produce trust-based recommendations. Yuan et al. (2010) 

show that trust network is a small-world network and nodes are highly clustered.  

They propose solutions to overcome weaknesses of trust-aware recommender 

systems. Liu and Lee (2010) develop a solution to increase effectiveness of 

recommendation systems by utilizing user rating data with social network 

relationship. Besides implicit trust-based studies, researchers introduce methods 

for extracting trust values between users by utilizing their rating profiles (Hwang 

and Chen, 2007; Lathia et al., 2008). They also show that trust can be propagated 

so that it is possible to compute trust between two users having no commonly 

rated items.  

In this dissertation, solutions are introduced for producing trust-based 

recommendations on VDD or HDD without jeopardizing data owners’ 

confidentiality. The schemes first construct a trust network of the users off-line 

from distributed data while preserving their privacy. They then form neighbors for 

each user in the database off-line without greatly violating confidentiality. They 

finally estimate predictions with privacy in a distributive manner online. The 

solutions are evaluated in terms of privacy and it is shown that they preserve data 

owners’ confidentiality. Online performance analysis displays that supplementary 

loads caused by privacy measures are insignificant. Real data-based experiments 

are conducted to assess the scheme in terms of the quality of the predictions. The 

outcomes demonstrate that the results are promising. 

4.2.  Trust-based Collaborative Filtering Algorithm 

According to Hwang and Chen (2007), trust between two users having commonly 

rated items is computed by employing a simple prediction formula introduced by 

Resnick et al. (1994), which is shown in Eq. (4.1):  
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     ̅̅ ̅  (       ̅̅ ̅)    (4.1) 

where    ̅̅̅̅  and   ̅̅ ̅ refer to the mean  ratings of users a and u, respectively, and     

is the rating of item j given by u. Hwang and Chen (2007) employ this simple 

prediction calculation for computing trust between users, as follows: 

     
 

    ⋂   
  ∑  1   

|   
        |

 
      ⋂       (4.2) 

where Ia and Iu refer to the set of rated items of a and u, respectively, and b is the 

size of the rating range and      is trust value, which shows how much a trusts u. 

The authors propose trust propagation metric to compute trust between users 

having no co-rated items, as follows (Hwang and Chen, 2007): 

  
 
               

    ⋂             ⋂        

    ⋂         ⋂   
  (4.3) 

where users s and h do not have commonly rated items but there is a user v who 

has co-rated items with both s and h. For each user v, the computations are 

performed and average of the inferred trusts is assigned for     . After computing 

trust between users recommendations are produced, as follows: 

                  ̅̅̅̅   
∑ (       ̅̅̅̅ )            

∑          
                    (4.4) 

 

4.3. Trust-based Recommendations on VDD 

In the proposed distributed data-based approaches, there are off-line and online 

computation phases. In both parts, data holders conduct some computations in a 

distributive manner while preserving their privacy. Overall steps of the proposed 

scheme can be described, as follows: 

I. Off-line 

i. Constructing Trust Network (Estimating Trusts) 

a. Direct 

b. Indirect-Trust Propagation 

ii. Forming Neighborhoods 

II. Online: Estimating Recommendations 

In VDD scheme, since data is vertically distributed among multiple parties, 

the parties can construct sub-trust networks from their own data. Although data 

owners can construct sub-trust networks by themselves, they need to know each 
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user’s rating mean and number of commonly rated items by any two users. Data 

holders can collaboratively compute them and then exchange them. Since such 

values are aggregates, sharing them with collaborating parties does not violate 

privacy constraints. Thus, the parties first calculate the mean values and the 

number of commonly rated items between any two users off-line with privacy. 

Computing Row Mean with Privacy: For a user u, her average rating (  ̅̅ ̅) 

can be computed, as follows: 

  ̅̅ ̅  
∑       

| |
                              (4.5) 

where I shows the set of ratings u has, vuj represents u’s rating for item j, and |I| 

shows the length of set I. Since data are distributed among z parties vertically, Eq. 

(4.5) can be written, as follows: 

  ̅̅ ̅  
∑          ∑             ∑        

|  |  |  |     |  |
    (4.6) 

where Ig shows the set of user u’s ratings held by the party g. As seen from Eq. 

(4.6), each party g finds interim aggregate results (∑         and |  | values) for 

all u = 1, 2,…, n. After exchanging them with all collaborating parties, each 

company then computes   ̅̅ ̅ values for each user u.  

Computing Number of Commonly Rated Items with Privacy: Data owners 

can collaboratively compute number of co-rated items between any two users a 

and u (#au), as follows: 

        ⋂          ⋂             ⋂     (4.7) 

After computing interim aggregates, the parties exchange them and find #au values 

for all any two users in their databases. Notice that the parties cannot derive 

ratings and the rated items held by each other from such exchanged interim 

aggregate values during the above computations. The parties can now compute 

trust values between any two users based on commonly rated items explained in 

the following. 

Privacy-Preserving Direct Trust Computation on VDD (PPDTCV): If any 

two users have commonly rated items, trust between them can be calculated using 

direct trust computation given in Eq. (4.1) and Eq. (4.2). Since the parties know 

user mean votes, they can compute    
   values by themselves. On the other hand, 
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due to VDD, they can compute direct trust value between users a and u (     , 

using Eq. (4.2), as follows: 

     
 

   
 [∑ (1  

|   
        |

 
)     ⋂      ∑ (1  

|   
        |

 
)          ⋂    

 ∑ (1  
|   

        |

 
)      ⋂    ]        (4.8) 

Remember that data holders have     values estimated before. Due to vertical 

distribution, each party g can compute 
 

   
∑  1   

|   
        |

 
      ⋂     values by 

itself. Note that if     is zero, then corresponding partial trust is also zero. After 

computing such interim aggregates, each party g then saves them in an n × n 

adjacency matrix ADg, which shows partial trust values between users. Note that 

computing partial direct trust values does not violate data holders’ confidentiality. 

When they sum such partial trust values without exposing their privacy, they 

obtain the trusts between users. In other words, AD = ∑    
 
   . 

If partial trust values for any two users a and u are zero, then it means that 

these two users have no co-rated items and there is no direct edge between them 

in trust network. To compute trust between users having no commonly rated 

items, data owners utilize trust propagation metric given in Eq. (4.3), as follows, 

where they use adjacency matrix in order to exploit direct trust values: 

Privacy-Preserving Trust Propagation on VDD (PPTPV): The parties can 

compute trust propagation, as follows: 

i. First, collaborating companies determine those user pairs having no co-

rated items by scanning their adjacency matrices. 

ii. After determining such user pairs, the parties then search out possible 

paths between such users. They can find the possible paths from 

intersection of each user’s directly connected users. For example, 

suppose that there is no edge between users a and u. Also, assume that 

there is an edge between users a and u1; and an edge between u1 and u. 

Then, the possible path might be a u1 u. 
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iii. Next, data owners compute interim trust values for such disjoint users in 

a distributive manner using Eq. (4.3), as follows: 

  
 
               

∑ (     ⋂               ⋂          ) 
   

∑ (     ⋂          ⋂     ) 
   

           (4.9) 

iv. Finally, they perform the previous step for each user providing a path 

between any two disjoint users; and each data owner g stores average of 

these partial indirect trust values into the corresponding cells of the 

adjacency matrix ADg.  

Since each data owner g knows     ⋂      and     ⋂     values, and 

partial      
and      

 values in their own trust network; they can compute 

partial indirect trust values between user s and h if user v provides a path between 

them.   

Now each party g has ADg including partial trust values between any two 

users in the network. In other words, trust network, constructed off-line, is 

distributed among them. Once they have partial trust values, they now can form 

neighborhoods for each user in the network using such sub aggregates without 

jeopardizing their privacy.  

Privacy-Preserving Neighborhood Formation on VDD (PPNFV): The 

second step in a traditional trust-based prediction scheme is forming 

neighborhoods. After computing partial trust values between users, the parties can 

now determine each user’s neighbors by selecting the most trusted k users based 

on trust values. Note that trust values are distributed among z parties. The 

following protocol is proposed, referred to as distance-based private sorting 

algorithm (DPSA), in order to sort users based on distributed trust values without 

disclosing partial trusts. In the following, how to find neighbors for any user a is 

explained, where it is assumed that a is the first user in the adjacency matrix A: 

i. Each vendor g computes the average of the partial trust values between a 

and each user u in the trust network, as follows: 

   ̅̅ ̅̅  
∑      

   
   

  1
 

 In other words, each party g computes mean of the first row of their 

adjacency matrix ADg. 
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ii. Then, each company g normalizes      
values using deviation from 

approach and obtains      
         

-    ̅̅ ̅̅  values. These differences 

show how much partial trust values deviate from average. 

iii. After each vendor g calculates     ∑ |     
 |   

    values, they then 

normalize      
 values, as follows: 

     
   

     
 

   
 

iv. After exchanging      
  values with collaborating companies, each party 

g finds the sum of the normalized trust values between a and for all users 

u = 2, 3, …, n, as follows: 

    
   ∑      

  

 

   

 

v. Finally, they sort these sums in descending order and select the first k 

users as the most trusted users for a. 

During off-line process, the parties utilize DPSA protocol n times to 

determine neighbors for all n users. DPSA helps data owners sort distributed trust 

values. Note that each party g first normalizes its partial trusts using deviation 

from mean approach. They then normalize them again by dividing them with the 

sum of the normalized partial sums. Also, notice that partial sums range from 0 to 

1. This type of normalization does not change the order of the sum of such 

distributed values. 

Private Recommendation Protocol on VDD (PRPV): After off-line 

computations, the parties can now provide recommendations online using private 

recommendation protocol (PRP). In this protocol, HE scheme is utilized for 

protecting data owners’ confidential data. The parties follow the following steps 

to estimate a trust-based prediction to a for item q (paq), as follows: 

i. a sends a prediction request for q to the MC. Suppose that the first party 

is MC. 

ii. MC first informs collaborating parties about a. 
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iii. Then, MC computes Vuq = (       ̅̅ ̅) values for all u = 1, 2, …, k users 

who are a’s neighbors. 

iv. It then encrypts Vuq values using an HE scheme and its public key KMC; 

and obtains     
(Vuq) values. After that, it sends them to the 

collaborating parties. 

v. Using an HE scheme, each party g computes     
(Qg) = 

∏      
      

       
   and     

(Tg) = ∏      
      

     
   values, 

where k is the set of a’s neighbors and      
 is the partial trust value 

held by g.  

vi. Then, each party sends such encrypted partial aggregates to MC. 

vii. Meanwhile, MC computes Q1 = ∑        
        

  and T1 = 

∑      

 
   values.  

viii. MC then decrypts the received encrypted aggregates using its 

corresponding private key and obtains Qg and Tg values for all g = 2, 3, 

…, z. 

ix. Finally, MC computes        ̅̅ ̅   
∑   

 
   

∑   
 
   

, and returns it to a. 

4.4.Trust-based Recommendations on HDD 

In HDD, data holders first compute direct and indirect trust values among their 

own users by employing Eq. (4.1) – (4.3). Thus, they construct their own users’ 

trust network. Since data holders have users’ whole rating data, they do not need 

to collaborate at this stage. Unlike VDD, HDD does not require collaboration 

while computing   ̅̅ ̅ for any user u, because required data are held by the related 

vendor. After constructing their own trust networks for those users held by the 

same company, any pair of parties follow the below protocol for computing direct 

trust among the users held by them. 

Privacy-Preserving Direct Trust Computation on HDD (PPDTCH): 

Suppose that A and B represent any two vendors want to construct trust network 

between users held by them. A and B follow this protocol to compute trust values 

between any pair of users a and u held by A and B, respectively. Since trust 
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computation has distributive property, collaborating parties can compute partial 

trust values based on vertically split data. Therefore, each party divides their own 

data into two halves vertically, referred to as left (L) and right (R). A holds sub 

trust computed from L, while B holds the one inferred from R. This way, the trust 

values are distributed between them. Hence, Eq. (4.2) can be written as follows: 
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where        and        show the sub-trust values computed from L and R 

respectively. Notice that user a’s ratings are held by A, while user u’s ratings are 

held by B due to horizontal distribution.         ,    , and     refer to the sets of 

rated items of corresponding part of a and u in L and R. If Eq. (4.10) is extended, 

then Eq. (4.11) is obtained, as follows:  
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If Eq. (4.11) is simplified by assigning    
  (

       ̅̅̅̅

  
) and    

  (
       ̅̅̅̅

  
), Eq. 

(4.12 ) is get, as follows:   

     
1

    ⋂   
 ( ∑ (1   |   

      
 |)

      ⋂    

 ∑ (1   |   
      

  |)

      ⋂    

) 

    4.12) 

In PPDTCH protocol, the parties perform the required computations in Eq. 

(4.12) to compute      between each pair of users a and u in their database, as 

follows: 

i. The parties need to determine commonly rated items of a and u. Hence, 

A and B employ efficient and secure protocol for determining set 

intersection of two parties private data without jeopardizing their privacy 

proposed by Sang and Shen (2009). The protocol helps two data owners 

determine the common items in their databases without violating their 

privacy.  



 

 87 

ii. For the left part of their data, the parties perform the following steps: 

a. A computes    
  values based on the data in left part of its data; and 

sends them to B after encrypting them with its own public key KA 

using a HE function ξ. 

b. B similarly computes    
  values based on the data in left part of its 

data. It then multiplies them with -1 and encrypts the results with 

KA using an HE function ξ. After that B computes    
(   

 )    

   
(   

 )  =    
(   

      
 ) for each item j using the HE property 

to find the required values in encrypted form in Eq. (4.12). 

c. B permutes the encrypted values found in previous step using a 

permutation function FB. Then, B uniformly randomly chooses θ 

percent of them and multiplies them with -1 using HE scheme. 

Note that multiplying -1 does not change the outcome of taking 

absolutes, but rather improves privacy. 

d. Next, B sends them to A. 

e. Since A knows the related decryption key, it decrypts the received 

encrypted values and finds their absolutes. A then subtracts each 

value from 1 and computes ∑ (1   |   
      

 |)      ⋂    ; it then 

finally divides it by     ⋂   . 

iii. For the right part of their data, the parties perform the same steps while 

they switch their roles. 

Any two party, holding different users’ data and want to estimate the trust 

between them, can conduct PPDTCH protocol, as explained before. After they 

employ this protocol, trust values between two users held by different parties are 

partitioned between two data owners. When there are commonly rated items 

between any two users, trust values between them can be computed using 

PPDTCH protocol. However, there might be users who do not share any 

commonly rated items, which might lead incomplete trust network. Therefore, 

data owners search their sub-trust networks and determine the pair of users having 

no trust value. In this case, for such users, they then follow trust propagation 

protocol described in the following.  
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Privacy-Preserving Trust Propagation on HDD (PPTPH): When there are 

common ratings between any two users, the trust value between them can be 

estimated using PPDTCH protocol without violating their privacy. If there is no 

any commonly rated item between them, they then follow the privacy-preserving 

trust propagation on HDD (PPTPH) protocol, as follows: 

i. By scanning the sub-trust networks constructed after direct trust 

computation, the parties determine those user pairs having no co-rated 

items. 

ii. After determining such user pairs, the parties then search out all possible 

paths between them. They can find those users who have common ratings 

with these two users. Since there are different numbers of users having 

common ratings with them, there might be various paths depending on 

such number. Therefore, they determine all possible paths for any two 

users having no common ratings.  

iii. According to number of users sharing commonly rated items between 

those two users, Eq. (4.3) can be written in a distributive manner. For 

example, if it is assumed that user u1 constructs a path between a and u, 

then A computes the following partial trust value using Eq. (4.3): 

       
 (  ⋂   

)          (   
⋂  )        

 (  ⋂   
)   (   

⋂  )
 

where       shows partial trust value computed from left half of rating 

vectors of a and u.    

iv. Similarly, B computes the following:  

       
 (  ⋂   

)          (   
⋂  )        

 (  ⋂   
)   (   

⋂  )
 

where        shows partial trust value computed from right half of 

rating vectors of a and u. 

v. After finding all necessary trust propagations, the parties now have the 

complete trust network. Notice that when a, u1, and u are held by the 

same party, it is an easy task to compute trust propagation. However, 

when a and u are held by any two parties, A and B; and u1 is held by one 
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of them, the parties can estimate partial trust values between a and u1 or 

u1 and u using the PPDTCH protocol. 

Privacy-Preserving Neighborhood Formation on HDD (PPNFH): After 

computing direct and indirect trust values between any two users, each party g has 

partial trust values between its users and other users in the network. Once parties 

have partial trust values, they now need to determine the NN to use in online 

recommendation process. Since data distribution configuration in HDD is 

different from VDD, the private neighborhood formation protocol proposed for 

VDD does not work for HDD. In traditional CF algorithms, there are two widely 

used schemes for selecting the best similar users. The first method chooses k most 

similar users while the second one chooses those users whose similarity weights 

are greater than τ. In the HDD-based schemes, the neighborhood is formed by 

utilizing the latter approach. The idea behind setting a threshold for trust values is 

identical with the one proposed by Herlocker et al.  (1999). Since trust values 

between users are partitioned, the parties follow the steps below in order to 

determine whether the sum of partial trust values is greater than or equal to τ or 

not without jeopardizing their privacy. The scheme is explained in terms of A 

only. Other companies can follow the same steps. 

i. Suppose that the collaborating parties agree on an interval over which the 

parties can uniformly randomly select the related threshold value τ. Since 

the trust values are between 0 and 1, the parties can choose the threshold 

values over the range [0.5, α], where α < 1. Thus, A first uniformly 

randomly selects τA over the range [0.5, α].     

ii. To determine the neighbors of its users, A considers each user in its 

database as an active user a. A subtracts all partial trust values for each 

user a in its data from τA. There might be three possible cases for each 

user u in D being a neighbor of a: 

a. If the result is less than or equal to zero, then that partial trust is 

already greater than or equal to τA; it means that u is one of a’s 

neighbors. 

b. If the result is greater than zero, then A and the party having the 

partial trust value of user u employ the solution for Yao’ 
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millionaires’ problem proposed by Shundong et al. (2008) to 

determine whether partial trust value in other party is greater than 

or equal to subtracted value in A. If partial result is greater than or 

equal to the subtracted value, then u belongs to a’ neighborhood. 

c. Otherwise, u does not belong to a’s neighborhood. 

iii. A repeats step 2 for all users in its database. 

All parties follow the same steps for determining their users’ 

neighborhoods. In order to improve privacy, the parties might utilize different 

thresholds for each user. 

The computations conducted so far are done off-line. Compared to online 

costs, off-line costs are not that critical for the overall performance. The parties 

now can provide predictions based on trust values. 

Private Recommendation Protocol on HDD (PRPH): In off-line 

computations, data holders make required computations for online 

recommendations; and when an active user a requests a prediction for an item q, 

the parties follows the following steps: 

i. a sends a prediction request for q to the MC.  

ii. MC first informs the collaborating parties about a and q; and computes 

∑ (       ̅̅ ̅)             and ∑           for each user u in NN in its 

own data. 

iii. Each party g computes ∑ (       ̅̅ ̅)               
 and 

∑              if it holds information for L and a; otherwise, it 

computes ∑ (       ̅̅ ̅)               
 and ∑             . It then 

sends the partial results to MC. 

iv. MC computes    from received interim results and sends the prediction 

to a.  

4.5.  Privacy Analysis 

In this section, the proposed schemes are analyzed in terms of privacy. It is 

explained why the schemes do not jeopardize data holders’ confidentiality in 
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terms of the criteria determining how an algorithm enforces the main goals of 

PPDM, HF and data quality.  

 In the scheme for VDD, firstly mean values are estimated based on 

distributed data. During privacy-preserving mean computation, data owners 

exchange aggregate data (sum and number of ratings) without introducing any 

randomness. Given an aggregate, which is the sum of mr values, it is not possible 

to learn such values. Since the parties also exchange mr, the probability of 

guessing the rated items is 1 out of       

  , where mr and mt are the number of 

rated items and total items held by one company. While estimating commonly 

rated items between any two users, the parties again switch aggregate data with no 

randomness. From number of commonly rated items, the parties can guess the 

rated items with a probability given above. Since such probabilities are very low, 

it can be concluded that HF is also very low. Data quality does not change, 

because data owners do not add randomness. 

As explained previously, during partial trust computations (either direct or 

indirect) in VDD, vendors do not exchange any data. Therefore, HF is zero and 

data quality does not change. In DPSA protocol, data owners exchange 

normalized values. It is not possible to derive true partial trust values from 

received normalized quantities without knowing the average and sum of the 

absolute values of the deviations. Hence, DPSA does not violate the privacy 

constraints. The parties can only learn the sorting of partial trust values. This does 

not help them find out exact partial trusts. Finally, the scheme utilizes PRPV, 

which is basically based on HE. There is no information leakage during PRPV. 

Moreover, due to encryption, which does not add randomness to original data, 

data quality is preserved. 

In HDD solution, the parties employ PPDTCH protocol to compute direct 

trust values in which a secure set intersection method proposed by Sang and Shen 

(2009) is utilized. The method is based on evaluating a randomized polynomial Y 

whose roots set contains the intersection. The authors propose to employ building 

blocks against possible attacks. According to their analysis, the secure set 

intersection protocol does not violate data holders’ confidentiality. On the other 

hand, at the end of the secure set intersection protocol, the parties learn their 
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users’ commonly rated items, which can be named as hiding failure of PPDTCH 

protocol. Other computations in PPDTCH are computed using an HE; and since 

HE is secure, it does not introduce any hiding failure and also it does not affect 

data quality. Also, permutation and multiplication by -1 prevents revealing sum of 

   
  or    

  values, which can be harmful for data holders. Besides strengthen 

privacy level of users, these operations do not affect final results of computations.  

In PPTPH protocol, the parties work on their private data, thus, there is no 

privacy risk in this protocol. PPNFH protocol depends on the selected τ value 

range, which is determined empirically and to enhance privacy level of parties, a 

wide range is determined for τ. With increasing range and precision, it becomes 

difficult to guess exact τ values. The parties employ a secure solution to Yao’s 

millionaires’ problem (Shundong et al., 2008) for determining the greater value 

from given two private numbers. The solution for Yao’s millionaires’ problem 

utilizes pseudo-random sequence, guessing permutation function of the sequence 

very low and it cannot be broken in polynomial time. Thus, employing the Yao’s 

millionaires’ problem solution (Shundong et al., 2008) does not cause any hiding 

failure and also as parties do not add any randomness, data quality is preserved.  

However, depending on selection of τ, accuracy of scheme might be affected. In 

the experiments section, the effects of different τ values on accuracy are shown. 

Although PRPH protocol does not include any randomness or encrypted 

computations, it does not violate data owners’ confidentiality. Since the parties 

send aggregates, which are the sum of multiple values, it is not possible to derive 

any information from a single aggregate, as explained previously.   

4.6.  Supplementary Costs Analysis 

The methods proposed for both VDD and HDD cause extra storage costs because 

each company need to save partial trust values. Hence, supplementary storage 

costs are in the order of O(n
2
z), where note that z is a small constant. In a 

traditional trust-based recommendation scheme, a asks a prediction and the 

system returns a result. Thus, total number of communications during online 

phase is two only. In the proposed methods, on the other hand, MC sends a 

message to z-1 companies and they return some aggregates to MC during PRPV 

and PRPH protocols. Hence, additional communication costs due to the proposed 
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scheme are 2z-2 or in the order of O(z). In other words, communication costs 

increase by a factor of z-1 times. Although the method introduces extra 

communication costs during online process, making such communications 

simultaneously reduces their effects to online performance.  

Collaborating companies compute trust values, construct trust network, and 

form neighborhoods off-line in the scheme. The protocols run in online phase are 

PRPV and PRPH protocols. In a central server-based scheme, O(k) 

multiplications are conducted during online phase, where k is the number of a’s 

neighbors. In PRPV, however, there are O(kz) multiplications, O(kz) 

exponentiations, O(k) encryptions, and O(z) decryptions performed online. Note 

that z is a constant and multiplications and exponentiations are performed 

concurrently by collaborating parties. Since both k and z are small constants, 

additional computation costs due to cryptographic functions are small. In PRPH, 

all computations are performed parallel, thus, O(k) computations in a central 

server-based scheme are done by z parties in parallel.  

Due to privacy, additional costs are inevitable. Protecting privacy and 

providing predictions efficiently are two conflicting goals. Improving one makes 

the other worse. The proposed schemes cause additional online costs. However, 

they are negligible and they still make it possible to offer recommendations 

efficiently. Moreover, providing trust-based predictions while preserving privacy 

outweigh the performance losses caused by the proposed schemes.  To sum up, 

the proposed schemes still are able to offer predictions efficiently even if they 

introduce inevitable extra costs. 

4.7.  Accuracy Analysis: Experiments 

To evaluate the overall performance of the method, several experiments are 

conducted using ML data set. To measure the quality of the recommendations, 

MAE is employed. Also, average relative error (ARE) is utilized to show the 

percentage of improvements due to collaboration. In addition to MAE and ARE, a 

reliability measure is used, as follows: Reliability can be defined as the average 

number of commonly rated items by a and train users in the trust network. In 

order to demonstrate how collaboration improves coverage, coverage metric is 
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utilized. Finally, t-tests are applied in order to evaluate the schemes in terms of 

statistical significance. 

Firstly, those users who rated at least 50 movies are determined. 1,000 users 

are uniformly randomly chosen among them. Leave-one-out methodology is used 

in the experiments. In this methodology, each user in the data set acts as a and the 

remaining users are used as training users. For each test user, five rated items are 

uniformly randomly selected as test items, their entries are replaced with null, 

withheld their true votes; and predictions are produced for them. After 

recommendations are estimated, they are compared with the true withheld votes 

and MAE and ARE values are calculated. The experiments are performed 100 

times using randomly selected 1,000 users and test items. According to Hwang 

and Chen’s empirical results (Hwang and Chen, 2007), the best MAE is obtained 

when the most trusted 70 users are assigned as the nearest neighbors; and one, 

two, or three trust propagation level provides similar results, one level is used. 

Thus, in the experiments, one level and the most trusted 70 users are used.  

Experiment 1: Experiments are performed to show how collaboration 

affects the quality and the reliability of predictions. When data are horizontally 

distributed, it becomes a challenge to form good neighborhoods and find enough 

similar users. Likewise, when data are vertically distributed, trust values estimated 

on available data might be unreliable and they may not be accurate enough due to 

scarce available ratings. Then, neighbors determined based on such values might 

be untrustworthy. Finally, the quality of recommendations generated on selected 

neighbors’ data might be inaccurate and unreliable. Data are assumed to be 

distributed among z companies, where z is varied from 1 to 10. As a result, each 

data owner owns about 3,900/z number of items belonging to 1,000 users for 

VDD and 1,000/z users for HDD when data are distributed. The same 

methodology is followed and overall averages of MAE values are computed. 

Results are displayed in Figure 4.1 for both VDD and HDD. 
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Figure 4.1. Effects of Collaboration on Accuracy with Varying z Values 

As seen from Figure 4.1, the quality of recommendations improves with 

decreasing z values. In other words, collaboration among vendors significantly 

enhances accuracy. Notice that when data are distributed among 10 parties 

vertically, MAE is about 0.8448 while it is about 0.7732 if they decide to provide 

referrals on integrated data. Similarly, MAE improves from 0.8235 to 0.7732 if 10 

parties decide to collaborate when data are distributed among them horizontally. 

Thus, it can be concluded that collaboration makes accuracy better. Accuracy 

improvements are stable while changing z from 10 to 7. However, such 

improvements are significant if z is changed from seven to five, three, or one. To 

show if the improvements due to partnership are statistically significant, t-tests are 

conducted. The values of t are 3.75 and 2.62 for VDD and HDD, respectively, 

where z is five. Those values are statistically significant for 99% confidence 

intervals for both partitioning cases. The t-test results for other z values are similar 

and they show that the schemes through collaboration significantly improve 

accuracy of recommendations while preserving data owners’ privacy.  

In addition to MAE, ARE values are estimated as percent. The percentage 

of improvements due to collaboration is wanted to show. For this purpose, overall 

averages of AREs are computed and displayed in Figure 4.3 for both VDD and 

HDD. As seen from Figure 4.2, working jointly helps the quality of predictions 

improve. For smaller z values, AREs are larger. With increasing z values, 

improvements due to collaboration become stable. When z is changed from five to 

one (or five companies decide to collaborate), accuracy improves by about 6.91% 
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and 3.08% for VDD and HDD, respectively. To sum up, if data owners decide to 

provide trust-based predictions on integrated data, preciseness definitely improves 

due to collaboration.   

Reliability values with varying z values in VDD schemes are also estimated. 

Notice that reliability does not change when data are horizontally distributed. 

Hence, experiments are performed for VDD only to evaluate the schemes in terms 

of reliability. The same methodology is followed in which z is varied from one to 

10. After computing reliability values, they are displayed in Figure 4.3. As seen 

from Figure 4.3 and as expected, number of commonly rated items increases if the 

parties decide to collaborate. When data are held by a single party (or the parties 

collaborate), reliability enhances significantly. It becomes more likely to find 

larger number of commonly rated items. Trust values estimated direct or trust 

propagation then become more reliable. When data are vertically distributed, it 

becomes a challenge to find commonly rated products. Thus, besides accuracy, 

collaboration also improves reliability. 

 

Figure 4.2. ARE Values with Varying z Values 
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Figure 4.3. Effects of Collaboration on Reliability with Varying z Values 

 

Experiment 2: Due to the nature of the privacy-preserving measures that are 

employed in the schemes, in general, do not affect accuracy. The only privacy-

preserving measure that might affect the quality of the predictions is utilizing 

variable τ values in HDD-based schemes. Hence, finally, experiments are 

conducted to demonstrate how varying τ values affect accuracy. Notice that τ is 

uniformly randomly selected over an interval by data owners to protect their 

privacy when data are horizontally distributed. As explained previously, τ values 

can be uniformly randomly chosen over the range [0.5, α]; and observed the 

changes in accuracy. The same methodology is followed and overall averages are 

computed for varying α value from 0.5 to 0.9. Results are displayed in Figure 4.4. 

According to results shown in Figure 4.4, varying α value from 0.5 to 0.7 does not 

affect accuracy too much. The changes on accuracy are stable. However, for α 

values larger than 0.7, accuracy significantly becomes worse. Hence, it is 

suggested choosing τ values between 0.5 and 0.7. Since selecting those values as τ 

does not diminishes accuracy, it is possible to produce recommendations based on 

a trust threshold value. 
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Figure 4.4. Effects of Varying α Values on Accuracy 

 

4.8.  Conclusions 

Privacy-preserving schemes are presented in order to provide trust-based 

recommendations from distributed data. The methods help data owners construct 

trust networks off-line without violating their confidentiality. They can also 

determine the neighborhoods for each user in their trust network off-line. Like 

off-line computations, the vendors can provide predictions collaboratively during 

online phase without deeply jeopardizing their privacy. The proposed protocols do 

not significantly affect accuracy. However, since preciseness and performance are 

conflicting goals, they introduce some supplementary costs. On the other hand, 

creating trust network off-line improves online performance of recommendation 

process and due to simultaneous computations; the vendors can offer referrals 

efficiently using the scheme. Empirical results show that accuracy and reliability 

significantly improves due to working jointly.  
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5. PRIVACY-PRESERVING NAÏVE BAYESIAN CLASSIFIER-BASED 

RECOMMENDATIONS ON DISTRIBUTED DATA 

In addition to numerical ratings, CF systems utilize binary preferences in which 1 

represents like and 0 represents dislike.  To produce recommendations from binary 

data, NBC-based CF algorithm is introduced (Miyahara and Pazzani, 2002). In 

this chapter, privacy-preserving solutions for generating NBC-based 

recommendations from VDD or HDD are proposed. In the introduced methods, 

confidentiality of data holders is preserved through various protocols. To analyze 

the overall performance of the proposed schemes, experiments are performed on 

real data; and suggestions are provided. Empirical results show that it is still 

possible to produce true NBC-based predictions without deeply jeopardizing data 

owners’ secrecy on distributed data. 

5.1.  Introduction 

To provide true CF services efficiently, various techniques have been proposed. 

NBC is among such techniques applied to CF (Miyahara and Pazzani, 2002). It is 

one of the most successful machine learning algorithms in many classification 

domains (Miyahara and Pazzani, 2002). Despite its simplicity, it is shown to be 

competitive with other complex approaches, especially in text categorization and 

content-based filtering tasks. Moreover, it is stable with respect to small changes 

to training data and it does not require large amounts of data before learning. 

In this chapter, providing NBC-based predictions from horizontally or 

vertically partitioned data among multiple parties while protecting their privacy 

are investigated. Estimated recommendations should be accurate and provided 

efficiently without greatly jeopardizing data owners’ secrecy. However, accuracy, 

privacy, and efficiency are conflicting goals. Thus, a good balance among them is 

wanted to achieve. The proposed privacy-preserving schemes eliminate data 

owners’ privacy, legal, and financial concerns. Through privacy measures, online 

vendors are able to hide their true ratings and the rated items. Moreover, since 

each e-company has responsibility of protecting their own users’ privacy, sharing 

their data with another company might cause legal problems (Oliveira et al., 

2004). However, if they utilize the proposed schemes, they can get rid of legal 

issues. Finally, competing companies try to derive data from each other for 
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providing true and dependable predictions so that they can recruit new customers 

and make more money. The proposed schemes prevent them from deriving 

information about each other’s databases so that they do not worry about financial 

loses. Real data-based trials are performed to assess the schemes. Then, empirical 

results are analyzed and some suggestions are provided. Due to privacy measures 

and distributed computations, extra storage, computation, and communication 

costs are inevitable. Since off-line costs are not critical, the schemes are 

scrutinized in terms of online extra costs only. Also, it is shown that the schemes 

are secure. In other words, online vendors’ privacy is not deeply violated while 

offering true referrals.  

5.2. Protecting Active User’s Data 

To get predictions from the MC, a should send A and q to it. Moreover, the MC 

should share her data with the collaborating companies to estimate a 

recommendation. However, once the MC obtains a’s ratings, such data become its 

private data. Like it tries to hide the ratings it holds and the rated items while 

estimating recommendations through collaboration, it is also responsible for 

protecting a’s ratings and the rated items. The following protocols are suggested 

to hide both a’s rated items and her true ratings provided to the MC. Hiding rated 

items (HRI) protocol is described, as follows: 

i. The MC first finds the number of empty cells (e) in A. 

ii. It selectively or uniformly randomly chooses β over the range (1, 100].   

iii. It then uniformly randomly selects a value, λ, over the range (1, β].  

iv. Then, it can fill randomly selected λ percent of these e number of empty 

cells in a’s ratings vector, where h = eλ /100. 

v. The MC finally fills such randomly selected cells with fake ratings.  

Although two methods are proposed to use, random and default vote, to fill 

such cells, since default votes (vds) are non-personalized ratings, filling empty 

cells with vds is more insightful. In random method, the MC uniformly randomly 

selects 1s and 0s; and fills empty cells with them. In default vote method, the MC 

determines vds for each item using the ratings it holds and fills them with 

corresponding vd. In HDD, the MC finds the number of 1s (t) and 0s (s) for each 

item. It then compares t and s values. If t > s then vd for that item is 1, it is 0 
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otherwise. In VDD, the MC determines vds based on a’s corresponding data. For 

each distribution, similarly, it finds the number of 1s (t) and 0s (s) in a’s ratings 

vector’s corresponding part. It then compares t and s values. If t > s then vd for 

that partition is 1, it is 0 otherwise. The MC can determine vds off-line in HDD 

because it owns required data to calculate them. Since off-line performance is not 

critical, it can compute them off-line and store them. Note that with increasing 

randomness, accuracy diminishes while confidentiality improves. With increasing 

h values, randomness increases; thus, accuracy diminishes. The values of h 

depend on how much privacy and accuracy the parties want. Also remember that 

the MC follows such steps in each prediction computation process to be secure 

against previously mentioned attacks other than the extreme cases.    

After masking the rated items, the MC should perturb a’s known ratings, as 

well. To prevent other parties from learning a’s true rating values, RRT is 

utilized. RRT can be applied to perturb a’s data, referred to as RRT protocol, as 

follows: 

i. The MC first decides number of groups (NG).  

ii. It then divides A into NG groups. 

iii. For each group, it uniformly randomly selects two random values (θj and 

rj) over the range (0, 1], where j = 1, 2, …, NG. 

iv. For each group j, it then compares θj and Rj. If θj < Rj, it sends true data; 

otherwise, it sends the exact opposite of the ratings. In other words, when 

θj  > rj, it reverses 1s into 0s and 0s into 1s in A.   

Since the MC disguises each group j independently, the received data are 

true with probability θj for each group j. After disguising a’s data, the MC can 

now send them to the collaborating companies.  

5.3. Privacy-Preserving NBC-based HDD Schemes 

Since data are horizontally distributed, Eq. (1.4) can be written, as follows: 

 (  |          )   (  )∏  (  |  )
 
  

                         ∏  (  |  )
  
    ∏  (  |  )  ∏  (  |  )

  
   

  
                    (5.1) 

where yg represents the known feature values of q held by company g, where g = 

1, 2, …, z. As seen from Eq. (5.1), since each company g knows the users’ ratings 

for q they hold, they can easily compute  (  |  ) conditional probabilities for both 
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like and dislike classes and for all g = 1, 2, …, yg; and compute ∏ (  |  ) values 

for both classes if they know a’s ratings.  However, the MC sends them masked 

data, as explained previously. Thus, conditional probabilities should be computed 

first. They can be calculated, as follows:  

   (  |  )   
 (  |  ) 

   
                                        (5.2) 

where  (  |  ) shows the number of similarly rated items of cj as the feature value 

of q for corresponding user; and #cj represents the number of commonly rated 

items as j. Since a’s data are grouped into NG groups, conditional probabilities 

can be computed, as follows: 

 (  |  )   
   (  |  )     (  |  )       (  |  ) 

           (  )            
   (5.3) 

where    (  |  ) shows the number of similarly rated items of cj as the feature 

value of q for corresponding user’s data in group Ps; and #Ps(cj) is the number of 

commonly rated items between a’s and corresponding user’s data in group Ps as j. 

In each group, since the received data can be true or false, each party computes 

   (  |  ) and #Ps(cj) values twice: one for assuming the received data are true 

and one for assuming the received data are false. Once  (  |  )  values are 

computed for both like and dislike classes, the MC can easily calculate p(cj) 

values and determine the prediction for a on q  because it owns a’s ratings vector 

and the required probability values. The scheme producing a prediction for an a 

on q on distributed data among z parties while preserving privacy can be 

described, as follows: 

i. a sends A, q to one of the companies from which she wants 

recommendation. This company acts as the MC. Suppose that the z
th

 

party is the MC. 

ii. As explained before, the MC first masks A and obtains A'. It then sends 

A' (including how A is divided into how many sub-vectors) and q to 

other z-1 companies, which have decided to collaborate with the MC 

beforehand. 

iii. Since each company owns the known fi values of q, for each class like 

and dislike and fi values of q, they can compute    (  |  )  and #Ps(cj) 
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values assuming the received data are true; and    
 
(  |  )  and #P's(cj) 

values assuming the received data are false.  

iv. After each party calculates the required interim aggregate values (AVs) 

for both like and dislike classes and for all known ratings of q, they then 

send them to the MC.  

v. After receiving such values, the MC selects and finds the required data to 

find the conditional probabilities because it knows what groups include 

true data and which ones contain false data.  

vi. It finally computes p(cj) values and estimates paq; and sends it back to a. 

The MC does not know which users rated q, commonly rated items, and true 

ratings. Thus, it cannot learn any information about other companies’ data from 

the received interim aggregate values in one prediction process. However, it can 

get information in consecutive recommendation process. Therefore, once each 

party receives data from the MC, they can use the HRI protocol to fill uniformly 

randomly chosen some of the empty cells of the received data with vds. Using the 

available ratings, such column default ratings can be determined by each party 

off-line like the MC does. In each prediction process, each party fills different 

numbers of empty cells so that the MC cannot derive data about their ratings and 

rated items from interim results. 

When any party has no ratings for q, it is not able to compute conditional 

probabilities and cannot send any result. The MC then concludes that any user 

held by that party does not rate item q. Similarly, when the parties send interim 

results based on the users’ data who rated q, the MC can learn how many ratings 

are available for q. To overcome this challenge and prevent the MC from learning 

how many users rated q, any company g first determines the density of the data set 

(dg) it holds. It then selectively or uniformly randomly chooses a random number 

(Qg) over the range (1, 4dg]. It then uniformly randomly selects a random number 

(Vg) over the range (1, Qg]. It then uniformly randomly chooses Vg percent of its 

users and fills their corresponding cells for q with their row vds. On average, it 

sustains the density of the data set. Finally, the company computes interim 

aggregate results based on filled data and sends the result to the MC. Therefore, 

the MC cannot learn whether any user rated q or not, how many users rated it; and 
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which user rated it. Since online performance is critical, the parties can compute 

vds off-line.  

When any company does not have any user rated q but having no commonly 

rated items with a, it selectively or uniformly randomly chooses a random number 

(Xg) over the range (1, 4dg] in order to maintain the same density of its data set. It 

then uniformly randomly selects a random number (Wg) over the range (1, Xg]. It 

then uniformly randomly chooses Wg percent of corresponding users’ empty cells 

and fills them with corresponding item vds. Finally, the company computes 

interim aggregate results based on filled data and sends them to the MC. 

5.4. Privacy-Preserving NBC-based VDD Schemes 

In VDD scheme, a sends her ratings vector A and a query q to the company, 

which owns q. That company acts as the MC. Since data is vertically split, all 

ratings of q are held by the MC. After receiving A and q, the MC first masks A. It 

then sends the corresponding groups and q to those companies, which have 

decided to collaborate beforehand. They perform required computations and send 

results to the MC. Finally, the MC finds prediction by combining results from 

other companies and sends it back to a. 

In order to determine whether a will like q or not, conditional probabilities 

should be computed first, as described in Eq. (5.2). Since data are vertically split 

and the A is grouped into NG groups by the MC, such conditional probabilities 

can be computed using Eq. (5.3). 

After receiving a’s corresponding data and q from the MC, the companies 

not having q should be able to compute    (  |  ) and #Ps(cj)  values for both 

classes twice because they do not know whether data in Ps are true or false in such 

a way to prevent the MC deriving information from their data. The privacy-

preserving scheme computes such values based on vertically distributed data 

among z parties can be described, as follows:  

i. a sends A and q to the company having q (the MC).  

ii. The MC first finds the corresponding parts of A for each party according 

to items they hold. It then perturbs the corresponding parts of A and gets 

A' for each party. It then sends masked a’s ratings vector’s corresponding 

parts (A'i) to those z-1 companies, which have decided to join the 
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prediction computations beforehand.  

iii. Since such companies do not know feature values of q, which is held by 

the MC only, they compute    (  |  ) and #Ps(cj) values for all features. 

Moreover, they do compute them twice, for fi = 1 and fi = 0 because they 

do not know the feature values of q. However, since  (   1|  )  

  (   0|  )  1, they do compute such values for each classes for only 

fi being 1 or 0. Furthermore, since such parties do not know the received 

data in each group are true or false, they compute such interim aggregate 

results twice. After computing such values for both like and dislike 

classes, they send them to the MC.  

iv. After receiving such values, the MC selects the required data because it 

knows the feature values of q and the actual content of each group. It 

then calculates the conditional probabilities for both classes. 

v. It finally estimates paq and sends it back to a. 

Since a sends A to the MC; and it masks it using the HRI and RRT 

protocols, it knows how many 1s, 0s, and empty cells are in A'. Such information 

may help the MC to derive information about other z-1 companies’ data. 

Therefore, such companies must compute    (  |  ) and #Ps(cj) values in such a 

way to prevent the MC deriving data from their databases. To achieve such goal, 

each party should selectively or uniformly randomly fill some of the empty cells 

in the received ratings vector. Thus, each party can utilize the HRI protocol to 

reach their goal. As vds, the parties can use column or item vds because they own 

necessary ratings due to vertical partitioning. Since off-line costs are not critical, 

they can find such votes off-line to improve online performance. 

In both PPHDD and PPVDD schemes, the parties cannot calculate 

conditional probabilities directly using their own data due to partitioning and 

masked A. The parties compute interim aggregated results and send them to the 

MC, which combines such results using Eq. (5.3) to produce recommendations for 

active users.  
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5.5.  Privacy Analysis 

In the schemes, the parties should not be able to learn true ratings and the rated 

items held by each other. Note that a’s data are held by the MC. Nothing except q 

and NG can be public for all parties. 

The parties other than the MC are not able to learn a’s true ratings and rated 

items due to the filled cells and disguising using RRT. However, they can guess 

the randomly selected unrated items. The probabilities of guessing the correct β 

and λ are 1 out of 100 and 1 out of β, respectively. After guessing them, they can 

compute h. The probability of guessing the w randomly selected cells among e 

empty cells is 1 out of      
 . Since the parties do not know the vd values, the 

probability of guessing the inserted vd values for one item is 1 out of 2. Thus, the 

probability of guessing the randomly selected empty cells and their ratings is 1 out 

of (100 × β × (1/2) × h ×      
 ). Since RRT is used to disguise A, the parties 

need to determine θj values to guess the actual ratings in each group. Since MC 

selects θj values over the range (0, 1], the probability of guessing the true θj values 

is 1 out of 10
l
, where l shows the number of digits used for precision. With 

probability θj, the received data are true, otherwise they are false.  

Calculating item or user vds does not reveal any useful information. Each 

party including the MC can find such votes without the help of other parties. 

Thus, such computations do not greatly jeopardize companies’ privacy.  

In both schemes, the parties insert some fake ratings into the received data 

from the MC. The collaborating companies are able to disguise a’s data in such a 

way to achieve required levels of privacy and accuracy. In the recommendation 

generation processes, the MC does not know the rated items and the true rating 

values held by each party due to randomly selected empty cells and vds. Since the 

parties utilize the HRI like the MC does to disguise a’s data, the MC can guess the 

randomly selected unrated items. Thus, as explained before, the probability of 

guessing the randomly selected empty cells and their ratings is 1 out of (100 × βi × 

(1/2) × w ×     
 ). In case of the extreme cases and hiding the users who rated 

the q in PPHDD scheme, the parties similarly mask the available ratings of q. The 

MC does not know Wg and Vg values, which are known by party g only. 

Moreover, it does not know fake ratings and which users’ data involved in 
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computations. Therefore, the probability for the MC to figure out who rated q can 

be determined similarly.  

Due to partial interim results, it is difficult for the MC to derive information 

from such results. In both PPHDD and PPVDD schemes, even if the MC knows 

a’s ratings, since only commonly rated items between a and other users are used 

for recommendation computations; it will not be able to derive any data held by 

other companies. Due to the HRI protocol utilized in each recommendation 

process, acquiring any information about any unknown user cannot be successful 

even if the MC utilizes consecutive queries. When some of the companies 

coalesce to acquire the other company’s data, they cannot succeed it due to the 

HRI protocol and vds. 

5.6. Supplementary Cost Analysis 

Accuracy, privacy, and performance are conflicting goals. Due to privacy 

measures, proposed schemes introduce extra off-line and online costs. Since off-

line costs are not critical for overall performance, online supplementary costs of 

proposed schemes are analyzed. Such costs can be storage, computation, and 

communication costs in terms of both number of communications and amount of 

transferred data. 

First of all, the costs of the NBC algorithm based on a central server are 

discussed. The storage cost to save ratings collected from n users for m items is in 

the order of O(nm). Similarly, when predictions generated on n × m user-item 

matrix, the computation cost of producing NBC-based recommendations is in the 

order of O(nm). Since a sends her data and gets back a prediction, the number of 

communications is 2 or in the order of O(1); and the amount of data transferred 

between the CF system and a is in the order of O(m). 

In the proposed multi-party schemes, additional storage costs are expected 

due to vds. In the PPHDD scheme, each company saves the item and user vds. 

Thus, supplementary storage cost due to vds is in the order of O(m) for each 

company assuming that number of users they hold is less than m. Similarly, in the 

PPVDD scheme, extra storage cost is in the order of O(mg) for each company g. 

Compared to O(nm), additional costs can be considered negligible. 
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In PPHDD schemes, after receiving data from the MC, the companies 

perform computations simultaneously.  Therefore, the computation cost is in the 

order of O(nmaxm), where nmax shows the maximum number of users involving in 

the recommendation process in one of the companies’ database. When extreme 

cases occur, the companies fill some of the target item’s cells (let say w cells) with 

corresponding vds. If w is bigger than Nmax, then the computation cost will be in 

the order of O(wm); otherwise it will not change. Note that since a’s data are 

masked; collaborating companies should perform computations twice. However, 

due to concurrent executions, running time of multi-party scheme is still better 

than the running time of centralized scheme. In PPVDD schemes, since the 

companies other than the MC does not know the feature values of q, they compute 

required values for both fg is being 1 and 0. They also calculate such values for all 

features because they do not know which features are known. Furthermore, they 

fill some of a’s ratings vector’s empty cells with vds. And finally, they perform 

each computation twice because a’s data are masked. However, like in PPHDD 

scheme, since prediction computations are conducted simultaneously by all 

companies in the PPVDD scheme, as well, the computation cost is in the order of 

O(nmmax), where mmax shows the maximum number of items involving in the 

recommendation process in one of the companies’ database. 

In privacy-preserving multi-party schemes, a communicates with the MC, 

while the MC exchanges data with the z-1 companies. Therefore, the numbers of 

communications are 2z for both PPHDD and PPVDD schemes. In other words, 

they are in the order of O(z), where notice that z is a constant. Although z is 

defined less than m or n, for practical purposes, it is a small constant. Also note 

that it can be said that the communications between the MC and the other parties 

are conducted simultaneously. In PPHDD schemes, the maximum amount of data 

to be transferred is a’s rating vector plus q. Therefore, the amount of data 

transferred in a communication message will be the same with the central server-

based scheme. In PPVDD schemes, since the MC sends a’s rating vector’s 

corresponding parts to the other companies, there is no additional communication 

costs per messages in terms of amount of data transferred. 
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5.7. Accuracy Analysis: Experiments 

To evaluate the schemes in terms of accuracy and online performance, various 

experiments based on real data sets are performed. Unlike off-line performance, 

online performance is critical for the overall success of CF. Therefore, the 

schemes are investigated in terms of online efficiency. Accuracy shows how 

precise privacy-preserving schemes-based predictions are. Similarly, online 

performance points how much effort is employed for producing private referrals 

using the schemes. Performance and preciseness are very important for 

customers’ pleasure. Therefore, several experiments are conducted for testing the 

proposed schemes’ effects on them. 

Experiments are run using Jester and EM data sets. To measure accuracy, 

classification accuracy (CA) and F1 metric are used. CA is the ratio of the number 

of correct classifications to the number of classifications. F1 is a weighted 

combination of precision (P) and recall (R), which are categorized as 

classification accuracy metrics by Herlocker et al. (2004), where F1 = (2PR) / (P 

+ R). The higher the CA and F1, the better the results are. To determine the 

schemes’ online performances, T is defined in seconds as online time required 

offering recommendations. Coverage is also used as a metrical indicator to show 

the effectiveness of the NBC-based CF on multi partitioned data. A basic measure 

of coverage is the percentage of items for which predictions are available. Low 

number of users and neighbors results in low coverage. 

Firstly the numerical ratings are transformed into binary ones (Miyahara and 

Pazzani, 2002). For EM data set, items are labeled as 1 if the numerical rating for 

the item is bigger than 0.5 or 0 otherwise. Items are labeled as 1 if the numerical 

rating for the item is above 2.0 or 0 otherwise in Jester. For training and test sets, 

3,000 and 2,000 users are selected randomly, respectively, among those users who 

have rated at least 50 and 60 items from Jester and EM, respectively. Training 

data is divided up to five groups. Five rated items are randomly selected from test 

users’ ratings vectors as test items for both schemes. Trails are run trials using 

MATLAB 7.6.0 on five computers, which are Intel Core2Duo, 2.0 GHz with 1 

GB RAM. 
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Experiment 1: Trials are performed to show how integrating different 

amounts of horizontally or vertically distributed data among varying numbers of 

companies affect the results. n, m, and z values are varied to show how accuracy 

and T change. 

By combining HDD, it is more likely to find large enough neighborhoods 

for more accurate and reliable referrals. Experiments are performed using both 

data sets based on randomly chosen 100, 250, 500, and 1,000 train users, where it 

is assumed that data are held by 1, 3, or 5 parties.  Randomly selected 500 users 

are used for testing. For each test user, five rated items are randomly selected, 

withheld their ratings and produced recommendations for them based on split data 

alone and integrated data. The outcomes are shown in Table 5.1a through Table 

5.1d and in Table 5.2a through Table 5.2d for Jester and EM, respectively. In the 

tables, Dist. means Distributed and Integ. means Integrated. In Table 5.1a and 

Table 5.2a, how overall performance changes are shown with varying z values for 

Jester and EM, respectively when n equals 100. 

 

Table 5.1a. Overall Performance by Integrating HDD (Jester, n = 100)  

 z 

 1 2 3 5 

  Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 63.76 62.68 63.76 62.43 63.76 62.05 63.76 

F1 (%) 62.78 61.18 62.78 61.04 62.78 61.01 62.78 

T(sec) 0.76 0.37 0.44 0.27 0.38 0.18 0.23 

ni 100 50 100 33 100 20 100 
 

Table 5.2a. Overall Performance by Integrating HDD (EM, n = 100) 

 z 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 65.61 64.25 65.61 63.25 65.61 62.86 65.61 

F1 (%) 66.98 66.04 67.38 65.78 67.38 64.76 67.38 

T(sec) 2.45 1.36 1.53 0.96 1.23 0.67 0.84 

ni 100 50 100 33 100 20 100 

 

In Table 5.1b and Table 5.2b, similarly, overall performance changes are 

shown with varying z values for Jester and EM, respectively when n = 250. 
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Table 5.1b. Overall Performance by Integrating HDD (Jester, n = 250) 

 z 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 65.24 64.90 65.24 64.17 65.24 63.48 65.24 

F1 (%) 63.85 63.64 63.85 63.26 63.85 62.74 63.85 

T(sec) 1.98 0.82 0.95 0.60 0.74 0.37 0.48 

ng 250 125 250 83 250 50 250 
 

Table 5.2b. Overall Performance by Integrating HDD (EM, n = 250) 

 z 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 66.14 65.22 66.14 64.42 66.14 64.13 66.14 

F1 (%) 68.35 67.34 68.35 66.16 68.35 65.73 68.35 

T(sec) 6.30 2.53 2.95 1.85 2.26 1.42 1.76 

ng 250 125 250 83 250 50 250 

 

Accuracy and online computation time changes are demonstrated with 

varying k values for Jester and EM in Table 5.1c and Table 5.2c, respectively 

when n = 500. Finally, accuracy and online computation time changes are 

demonstrated with varying k values for Jester and EM in Table 5.1d and Table 

5.2d, respectively when number of users is 1,000. 

 

Table 5.1c. Overall Performance by Integrating HDD (Jester, n = 500) 

 z 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 66.13 65.57 66.13 64.88 66.13 63.65 66.13 

F1 (%) 64.31 63.97 64.31 63.94 64.31 62.53 64.31 

T(sec) 4.31 1.71 1.86 1.12 1.43 0.68 0.85 

ng 500 250 500 167 500 100 500 

 

Table 5.2c. Overall Performance by Integrating HDD (EM, n = 500) 

 z 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 67.12 66.03 67.12 65.82 67.12 65.18 67.12 

F1 (%) 69.32 68.21 69.32 67.68 69.32 66.91 69.32 

T(sec) 13.07 6.27 6.74 3.11 3.46 2.53 2.84 

ng 500 250 500 167 500 100 500 
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Table 5.1d. Overall Performance by Integrating HDD (Jester, n = 1,000) 

 z 

 1 2 3 5 

  Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 67.12 66.45 67.12 65.64 67.12 64.35 67.12 

F1 (%) 65.34 64.64 65.34 64.21 65.34 63.67 65.34 

T(sec) 8.45 4.17 4.84 2.20 2.87 1.34 1.52 

ng 1,000 500 1,000 333 1,000 200 1,000 
 

Table 5.2d. Overall Performance by Integrating HDD (EM, n = 1,000) 

 C# 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 68.16 66.59 68.16 66.27 68.16 66.17 68.16 

F1 (%) 70.58 68.94 70.58 68.29 70.58 68.37 70.58 

T(sec) 28.19 13.68 14.15 9.54 9.87 6.18 6.51 

ng 1,000 500 1,000 333 1,000 200 1,000 

 

As seen from Table 5.1a-5.1d and Table 5.2a-5.2d, collaboration between 

different parties helps e-companies improve the quality of the recommendations. 

The outcomes demonstrate that with increasing amount of data, accuracy 

improves. It becomes easy to form dependable and precise neighborhoods through 

collaboration; that leads to improved recommendations. Overall gains for EM are 

larger than the ones for Jester because Jester is denser compared to EM. As seen 

from the results, T improves with increasing z values. Since computations are 

conducted simultaneously by the companies involving in the CF process, T is 

expected to improve with increasing number of parties participating in the 

distributed computations. To sum up, if parties collaborate and join in distributed 

CF, they can produce more accurate results more efficiently than if they perform 

such tasks on their individual data only. 

Experiment 2: By integrating VDD, similarities between a and other users 

become more dependable and accurate. When online vendors collaborate over 

VDD, it is more likely to have more commonly rated items between users because 

number of items increases. To validate how overall performance changes with 

varying amounts m or integrating VDD, several experiments are conducted. Since 

Jester has limited number of items (it has only 100 items), EM data set is 

employed only in these experiments. 1,000 train users are used while varying m 
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from 400 to 1,648. For each of the 500 test users, five predictions are generated 

for randomly chosen five rated items based on split data alone and integrated data. 

It is assumed that data held by one party or VDD among 1, 3, or 5 companies. The 

results are shown in Table 5.3a through Table 5.3c. 

 

Table 5.3a. Overall Performance by Integrating VDD (EM, m = 400) 

 z 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 64.16 62.69 64.16 62.15 64.16 61.31 64.16 

F1 (%) 65.02 64.14 65.02 63.49 65.02 62.19 65.02 

T(sec) 4.89 2.37 5.32 1.89 4.26 1.27 2.98 

mg 400 200 400 133 400 80 400 

 

Table 5.3b. Overall Performance by Integrating VDD (EM, m = 800) 

 z 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 65.64 64.45 65.64 63.16 65.64 62.53 65.64 

F1 (%) 67.98 65.36 67.98 64.81 67.98 63.27 67.98 

T(sec) 11.99 5.18 12.67 3.59 9.35 1.72 4.11 

mg 800 400 800 267 800 160 800 

 

Table 5.3c. Overall Performance by Integrating VDD (EM, m = 1,648) 

 z 

 1 
2 3 5 

Dist. Integ. Dist. Integ. Dist. Integ. 

CA (%) 68.16 65.56 68.16 64.24 68.16 63.83 68.16 

F1 (%) 70.58 67.84 70.58 66.69 70.58 66.17 70.58 

T(sec) 28.12 11.83 25.19 6.74 14.52 4.67 10.65 

mg 1,648 824 1,648 549 1,648 330 1,648 

 

As seen from Table 5.3a-5.3c, if data owners collaborate when data 

collected for CF purposes are vertically distributed, they are able to provide more 

precise recommendations in less time. The reason why accuracy improves can be 

explained, as follows: By increasing number of companies participating in CF 

process when their data are vertically distributed, amount of items and commonly 

rated ones increases, which help e-companies find more trustworthy and accurate 

similarities between users. Dependable and truthful similarities then lead to better 
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predictions. Improvement in T can be explained with distributed computations. 

With increasing z values, T gets better because number of companies joining in 

distributed computations increases and each party works on fewer amounts of 

data. Note again that communication costs are ignored while calculating z values. 

In conclusion, the results show that when data collected for CF are distributed 

vertically among various parties, such parties can produce more precise 

recommendations in less time if they collaborate. 

 Experiment 3: When a company is not able to return any result to the MC, 

it should use the proposed schemes in order to prevent the MC from deriving 

information about its data. In case of the having no rating for q, the company 

uniformly randomly chooses some of the users it holds and fills their cells for q 

with row vds, thus, they add random users to recommendation process. Since such 

case occurs when data are sparse, experiments are performed using EM only 

because almost 97 percent of the ratings are missing. 500 train and 500 test users 

are uniformly randomly selected among those users who rated more than 60 

items. Since such users as train users are selected, it is ended up with a data set 

whose density is about 4%. Therefore, d is set at 4. For each test user, five 

referrals are generated for five rated items. It is assumed that data are distributed 

among five companies and the ratings of q in one of the companies are removed 

in randomly selected one of the companies. Then the proposed scheme is utilized. 

In order to show how accuracy changes with varying randomness, Qg is changed 

from d to 8d. Trials are run 100 times and the overall averages are displayed in 

Table 5.4. 

Table 5.4. Effects of Adding Random Users 

Qg 0 2d 4d 8d 

CA (%) 66.24 67.52 67.32 67.16 

F1 (%) 68.25 69.85 69.68 69.51 

 

In Table 5.4, Qg is 0 means that the predictions are generated on four 

parties’ data. In other words, the party having no rating for q does not join the CF 

process. As seen from Table 5.4, the quality of the referrals improves when the 

fifth vendor joins the prediction process. As expected, recommendations 

generated based on all five companies’ data are more accurate than the ones on 



 

 115 

four parties’ data. Since inserted row vds are non-personalized ratings, filling 

empty cells of q with them and letting the fifth company join the distributed 

computations makes accuracy better. Although with increasing Qg values from 2d 

to 8d, accuracy slightly becomes worse, they are still better than when Qg is 0. 

Experiment 4: In addition to the adding random users, one of the companies 

might have users who rated q but not any common ratings with a. To overcome 

this challenge, parties add random ratings to the users’ rating vector having rating 

for q.  In order to investigate how overall performance changes when the proposed 

scheme is utilized to overcome this problem, various trials are performed. It is 

assumed that data are distributed among five companies and one of them faces 

with the problem. Therefore, the ratings of those users who rated q are removed in 

randomly selected one of the companies, where only the ratings of q are kept. 

Then some of their randomly chosen cells are filled with corresponding column 

vds as explained previously. Xg is varied from d to 8d in order to show how 

accuracy changes with varying randomness. The experiments are performed 100 

times and shown the results in Table 5.5.  

 

Table 5.5. Effects of Adding Random Ratings 

Xg 0 2d 4d 8d 

CA (%) 66.24 68.10 68.21 68.36 

F1 (%) 68.25 70.30 70.32 70.39 

 

As seen from Table 5.5, both CA and F1 values improves when the fifth 

vendor participates in the distributed computations. With increasing Xg values, the 

quality of the referrals slightly increases. This is due to the similar reasons that are 

explained for the previous experiments. To sum up, the results show that the 

PPHDD schemes preserve data owners’ privacy while allowing them to offer 

accurate predictions. 

Experiment 5: To prevent the collaborating companies from deriving 

information about a’s data, the MC fills uniformly randomly selected some of a’s 

unrated cells with vds. Similarly, to avoid data owners from deriving data from 

privacy attacks in PPVDD schemes, the parties that need to send sub-results to the 

MC insert vds into some of the randomly selected empty cells of a’s ratings vector. 
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Although such fake ratings are non-personalized ratings, filling such empty cells 

with them might affect accuracy. To show how different βg values affect the 

quality of the referrals, experiments are performed using both data sets. Since the 

results are similar, results based on EM data set are shown only. 1,000 and 500 

train and test users are used, respectively, where the users who rated more than 60 

items randomly selected among them. Referrals are estimated for randomly 

selected five rated items for each test user. The experiments are run for 100 times, 

overall averages of CA and F1 values are calculated; and they are displayed in 

Table 5.6. 

Table 5.6. Overall Performance with Varying βg Values 

Βg 0 25 50 75 100 

CA (%) 68.16 69.52 68.40 67.86 67.14 

F1 (%) 70.58 71.23 70.63 69.72 69.48 

 

In Table 5.6, βg is 0 means that the parties do not utilize any privacy-

preserving scheme. As seen from Table 5.6, when βg is less than or equal to 50, 

the results with privacy measures are better than the ones without privacy 

concerns. However, with increasing randomness from βg is being 25 to 100, 

accuracy becomes worse. When βg is bigger than 50, the results with privacy 

concerns are worse than the results without privacy concerns. Although this is the 

case, accuracy losses are at most 1% only. Generally speaking, privacy-preserving 

schemes for VDD still generate promising results. Moreover, data owners can 

determine the value of βg based on how much accuracy and privacy they want. 

The proposed schemes preserve online vendors’ privacy when they join the 

distributed CF processes while still allowing them to offer recommendations with 

decent accuracy. 

5.8. Conclusions 

Online vendors, especially newly founded ones, might have insufficient data for 

dependable and precise predictions. They might face with cold start problem. To 

overcome such problem and produce better CF services, such companies might 

decide to collaborate. However, due to privacy, legal, and financial reasons, such 

parties may not want to collaborate. 
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In this chapter, privacy-preserving schemes are proposed to achieve NBC-

based recommendations when data are horizontally or vertically distributed 

among more than two parties. The proposed schemes, PPHDD and PPVDD, make 

it possible for data owners to offer accurate and dependable referrals without 

greatly jeopardizing their privacy. Since efficiency is another goal that must be 

achieved by the schemes, they are analyzed in terms of online supplementary 

costs. It is demonstrated that online additional costs due to privacy concerns are 

small and the schemes are still able to produce recommendations efficiently. In 

order to evaluate the general performances of the schemes, real data-based 

experiments are performed. The results show that distributed computations or 

collaborations among multiple parties improve accuracy. Moreover, the proposed 

schemes produce referrals with decent accuracy while protecting online vendors’ 

privacy. Data owners are able to use different values of privacy protection 

measures in order to achieve required levels of privacy and accuracy. According 

to their requirements, they adjust the values of such measures.  
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6. PRIVACY-PRESERVING NAÏVE BAYESIAN CLASSIFIER-BASED 

P2P COLLABORATIVE FILTERING 

In this chapter, a privacy-preserving scheme is proposed for achieving 

recommendations with privacy, where data is distributed among n peers. In other 

words, a special kind of HDD is covered. In this kind of data distribution, 

individuals control their own preference data. There is no central server holding 

users’ data, where z = n. Individuals utilize P2P networks to get 

recommendations; thus, they collaborate via a P2P network. Researches propose 

several privacy-preserving P2P network-based CF schemes work on numerical 

ratings. However, there is no study covering P2P solutions for binary rating-based 

CF applications. Hence, in this chapter, an NBC-based CF method working on 

P2P networks is proposed. To overcome privacy concerns of users, the method 

employ RRT method. The introduced scheme is analyzed in terms of accuracy, 

privacy, and efficiency. Real data-based results show that the schemes offer 

accurate NBC-based predictions with privacy eliminating central server. 

6.1. Introduction 

CF and PPCF schemes proposed so far are generally executed with a central 

server. Since users must send their ratings vectors to a central server for producing 

recommendations, the server controls all of the ratings. Therefore, there is a threat 

for users’ privacy. The server performs all computations and provides many 

recommendations to loads of users during an online interaction. Using a central 

server for CF purposes is not desirable for privacy and performance reasons. With 

increasing popularity of the Internet, users are able to construct small networks to 

exchange and share various information over the Web. Decentralized approaches 

have advantageous like workload sharing, easy information exchange, eliminating 

control of central servers, controlling their own data, and so on. Therefore, P2P 

network is proposed to use to generate NBC-based referrals. In a close 

community, users can construct a P2P network. The members of the network 

might academicians in a university, practitioners in a hospital, students in a 

school, workers in a company, etc. Anyone’s friends in her messenger list might 

be a good example for a P2P network. Peers in the network help each other to 

produce recommendations. Users in the P2P network might have ratings vectors 
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for different categories like movies, books, music CDs, etc. Using such ratings, 

they are able to involve predictions processes for their peers. 

In this chapter, how to produce NBC-based CF services while preserving 

users’ privacy without using a central server are investigated. A P2P network 

among various peers is proposed to use to generate recommendations without 

violating their privacy. The privacy risks that might occur among such peers while 

providing predictions over a P2P network are studied. To overcome such risks, 

privacy-preserving schemes are proposed. Due to privacy concerns, accuracy 

might be affected. To show how overall performance of the proposed schemes 

changes with privacy concerns, real data-based experiments are conducted. The 

scheme is analyzed in terms of accuracy, privacy, and efficiency. Finally, the 

findings are displayed and suggestions are provided. 

6.2.  P2P NBC-based Collaborative Filtering with Privacy 

NBC is one of the most successful learning algorithms. Although it is applied to 

CF productively; however, with increasing number of users/items, its performance 

degrades significantly. Kaleli and Polat (2007b) show how to provide NBC-based 

predictions while preserving users’ privacy. However, in their scheme, a central 

server collects disguised users’ ratings. It controls all of the data and conducts all 

computations online to offer recommendations. Since data is valuable asset, the 

server can use them for malicious purposes. Users mask their data in the same 

way in order to have consistently masked data. They propose to use one- and 

multi-group schemes. With increasing number of groups, however, their schemes’ 

performances decrease considerably. In the proposed scheme, each user or peer 

controls her own data. The control of central server is broken. Moreover, 

recommendation computation workload is distributed among the peers. Therefore, 

performance improves noticeably. Unlike the schemes proposed by (Kaleli and 

Polat, 2007b), data is masked differently and the schemes are still able to provide 

predictions from such inconsistently perturbed data.  

 The introduced scheme should preserve users’ privacy and provide 

accurate recommendations efficiently. Although it is a challenge to define privacy 

succinctly, it can be defined, as follows: All peers or users including active users 

should not be able to learn the true values of other peers’ ratings. Moreover, since 
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learning rated items might be more damaging, they should not learn rated items. 

To achieve privacy, RRT is utilized. Due to privacy concerns and RRT, it is 

expected that accuracy might get worse. However, recommendations provided 

with privacy concerns should still be accurate. Therefore, predictions estimated 

from masked data while preserving privacy should be as close as possible to true 

ratings. In other words, accuracy losses due to privacy concerns should be small 

and make it possible to offer acceptable recommendations. It is desirable to offer 

many referrals to loads of users during an online interaction. Therefore, the 

schemes’ online computation times should be small and make it possible to 

generate referrals to various peers. Compared to centralized privacy-preserving 

NBC-based CF schemes, decentralized schemes are expected to achieve higher 

performance because online computations are split among different peers. To 

produce a recommendation without privacy concerns over a P2P network, the 

peers follow the following steps: 

i. When a or a peer who wants a prediction for q, she sends a request 

including q to other peers in the network.  

ii. Those peers who rated q and want to involve CF process send their 

responses back to a.  

iii. After determining train users or peers, a sends her ratings vectors to 

them. She then computes p(cj) values for both classes. 

iv. Each peer then computes  (  |  ) values for each class based on a’s and 

their ratings and q. They then send the calculated values to a. 

v. After receiving all values from all peers, a computes  (  |  |          ) 

probabilities for both classes using Eq. (1.4). She finally assigns her 

target item to the class with the highest probability. 

With privacy concerns, a should not be able to learn the true ratings and the 

rated items of train users; and the train users should not learn a’s ratings and rated 

items. Note that it is also important to hide rated items because it might be more 

damaging to reveal which items are rated. To increase privacy level, a perturbs 

her private data differently for each peer. To mask her data, a follows the 

following steps before sending her data to the train peers: 

i. a first finds number of rated (mr) and unrated (m-mr) items. 



 

 121 

ii. She decides a random integer (αa) between 0 and 100. She then 

uniformly randomly chooses another random integer (δa) over the range 

[0, αa].  

iii. She uniformly randomly selects δa percent of her unrated items’ cells (w) 

and then fills half of them with 1s and the remaining cells with 0s. With 

increasing αa values, a adds more randomness to her ratings vector. That 

might make accuracy worse while increasing privacy level. Therefore, 

she is able to decide αa value in such a way to achieve a required balance 

between accuracy and privacy. 

iv. a uniformly randomly chooses np × NGt number of θ (θagNG) values over 

the range [0, 0.5] because complementary θag values produce the same 

results in terms of the randomness, where np shows the number of peers 

sending response to a to involve prediction process, g = 1, 2, … , np, and 

NGt shows the total number of groups. 

v. To determine number of groups for each peer, a uniformly randomly 

selects np number of NG (NGag) values over the range [2, γ], where NG is 

a positive integer and γ should be a small number because as stated in 

(Kaleli and Polat, 2007b), when NG is bigger than 5, performance 

becomes worse. 

vi. After determining NGag values for each peer, a divides her ratings into 

NGag groups. She then uniformly randomly selects NGag random numbers 

(ragNG) for each peer over the range [0, 1]. Then, she compares ragNG 

random values with corresponding θag values. If ragNG is bigger than θag, 

then a reverses her ratings in the corresponding group; otherwise, she 

keeps the same ratings values, as explained previously.  

vii. And finally, a sends her masked data to each peer together with the 

corresponding NGag values. Remember that a masks her data differently 

for each peer and NGag values are needed to compute probability values. 

The peers cannot learn true ratings and rated items of a, because they do not 

know randomly selected blank cells and random numbers. Once they received 

perturbed ratings, q, and NGag values from a, each peer estimates  (  |  ) values, 

as follows: Since the train peers receive NGag values, they know each possible 
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situations of a’s perturbed vector. For example, if NGag is 3, a’s disguised ratings 

vector can have eight possible situations like TTT, TTF, TFT, etc, where T and F 

represent true and false data, respectively. For each possible case, the peers 

estimate  (  |  ) values for both classes. For NGag is 3, the peer g estimates eight 

 (  |  ) values for both classes by considering eight possibilities. After each peer 

computes such values for both classes by considering each possible case, they 

then send them to a. Since a knows how she disguised her data for each peer, she 

considers those values that represent true ratings for both classes and then 

disregards the remaining values. Moreover, a can easily compute  (  |  ) values. 

And finally, a calculates  (  |  |          ) values; and assigns q to the class 

with the highest probability. 

Due to data disguising by grouping ratings into multiple groups using RRT, 

there is no accuracy losses, because the peers consider all possible cases and a 

uses the values for true ratings vector. However, since a fills some of her blank 

cells for unrated items with vad, accuracy might become worse because vad might 

not represent true votes for unrated items. 

6.3. Privacy Attacks 

In the proposed scheme, explained previously, although data is masked, the peers 

including the active peer might pose various privacy risks. Such risks might come 

from the train peers because they receive data from active peers and they might 

try to learn the true ratings and the rated items. The active peer might be able 

derive data from the results, which she receives from various train peers. In 

multiple scenarios, active peers can derive useful information about the train 

peers’ data from  (  |  ) values. Privacy risks are divided into two groups, as 

follows: 

Train Peers’ Privacy Attacks: After receiving a disguised ratings vector 

from a, any train peer tries to learn the true ratings and the rated items. Since θag 

and rag values, number of blank cells, and the blank cells are known by a only, 

each peer cannot learn the true ratings and the rated items by herself. Although 

each peer cannot do anything to a’s data, however, they might decide to 

collaborate to derive a’s data. With increasing number of peers involving the 

collaboration, the chances they might learn a’s data increase. 
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The following solution is suggested against this privacy risk: a should select 

θag values over the range [0, 1] in such way that the mean value of θ for those 

groups including the same items should be 0.5. In this way, when the train peers 

collaborate to learn the true ratings of the same items fall into the same group, the 

probability of the received ratings to be true will be 0.5. Since the ratings are 

binary, this value does not help them at all. The peers cannot increase the chance 

to learn the rated items by collaboration, because a fills the same unrated items’ 

cells for all peers. Prediction generations continue as any peer asks referrals. The 

active peer asks recommendations for different items time to time. In each 

process, she sends her masked data to each train peer. However, this might violate 

her privacy. Therefore, the active peer starts with the masked ratings vector. In the 

subsequent each recommendation process, she removes the oldest ratings and 

adds new ratings. Note that customers frequently buy items like movies, CDs, 

books, and so on over the Internet. Their ratings vectors include more and more 

ratings as they purchase new items. As shown by (Kim et al., 2008), using the 

recent ratings leads better quality recommendations. Therefore, the peers might 

decide to remove the oldest ratings and utilize the newest ratings to obtain high 

quality predictions. Since the ratings vectors employed in recommendation 

processes are changed in each prediction generation process, this prevents the 

peers from deriving data about each other’s ratings through multiple prediction 

processes.  

Active Peer’s Privacy Attacks: The attacks posed by an active user a can be 

briefly explained, as follows: 

i.  a can learn which peers rated the q and which did not because when she 

sends a request to her peers on the P2P network for producing 

predictions, only those peers who rated the q send responses to her to 

involve in the process. By asking predictions for various items in 

multiple scenarios, a can learn which peers rated which items. 

 To get meaningful and trustworthy predictions, it is not possible to 

completely resolve this attack, because those peers who rated q should 

involve in prediction process. However, the following solution is 

proposed based on randomness to partially overcome this problem: When 
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a request is sent by a, each peer on the network uniformly randomly 

selects a random value (λg) and a random number (rg) over the range [0, 

1]. If rg is less than λg, then the peer g sends a response to a to participate 

in prediction process. On the average, half of the peers on the network 

join in referral computation. If they did not rate the q, they use their 

default vote (vgd) to fill its entry. Since a does not know λg and rg values, 

she cannot learn which peers rated or not rated the q. 

ii. In multiple scenarios, a might decide to use fake ratings and by changing 

the values of a single cell in her ratings vector each time to derive data 

about other peers’ data. Since a gets  (  |  ) values, which are computed 

on other peers’ and a’s data, by changing the value of a single cell each 

time, a is able to derive other peers’ data. 

 The following scheme is introduced to overcome this attack: In each 

recommendation process, each peer first decides a random integer (αg) 

between 0 and 100. They then uniformly randomly choose another 

random integer (δg) over the range [0, αa]. They finally uniformly 

randomly select δg percent of their unrated items’ cells and fill half of 

them with 1s and half of them with 0s like active peers. Since a does not 

know αg and δg values and each time the peers utilize different values, she 

cannot derive information about the train peers’ data in multiple 

scenarios. 

iii. Unlike previous attack, a might be able to derive data from  (  |  ) 

values  computed for both classes and all possible cases without using 

fake ratings and without making any malicious change in her ratings 

vector. She can compare the results of multiple recommendation 

processes to learn the true ratings and the rated items of other peers. 

However, she cannot derive useful information through this attack, 

because the train peers fill some of their randomly selected unrated 

items’ cells with fake votes, as explained in the previous attack. 

6.4.   Privacy Analysis 

The proposed scheme is analyzed in terms of privacy, as follows: The train peers 

do not figure out the rated items due to randomly filled unrated items’ cells with 



 

 125 

bogus ratings. Note that a masks the same vector differently and sends it to each 

peer. The peers might guess the randomly filled cells. The probability of guessing 

αa is 1 out of 100 because it is determined over the range [0, 100]. After guessing 

it, the probability of guessing the correct δa is 1 out of αa. After that they can 

figure out the number of filled cells (w) with the help of the blank cells in the 

perturbed vector when it is not totally filled. Since the peers know that half of the 

filled cells (w/2) filled with 1s and the remaining w/2 cells filled with 0s, the 

probabilities of guessing which cells filled with 1s and 0s are 1 out of       

   

and       

  , where m1 and m0 represent the numbers of 1s and 0s, respectively; 

w1 and w0 show the numbers of randomly filled cells with 1s and 0s, respectively; 

and      
  shows the number of ways of selecting r outcomes from o 

possibilities. Therefore, the probability of figuring out the filled unrated items’ 

cells is 1 out of [100 × αa ×       

   ×       

  ]. After that they can easily learn 

the rated items. 

Each peer is not able to figure out a’s true ratings by herself. They might 

decide to collaborate to increase the chance of guessing the true ratings. However, 

due to the underlying data disguising and selection of θag values explained 

previously, they are not able to do that. Since the peers do not know the θagNG 

values and the random numbers (ragNG), they cannot learn whether the received 

data is true or false in the same group. Even if they figure out the ratings in one 

group, they cannot learn the votes in other groups, because data is perturbed 

independently in different groups. Thus, with increasing number of groups, 

privacy enhances.  

Remember that a receives  (  |  )values rather than the peers’ ratings 

vectors, the peers fill some of their randomly selected blank cells with fake 

ratings, they fill different cells in each process, and they estimate  (  |  ) values 

on filled vectors. Therefore, a is not able to learn the true ratings and the rated 

items through  (  |  ) values. 

Finally, a might try to learn who rated the target item q or not. However, 

since the peers on the network decide to join the recommendation process or not 
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based on the comparisons on λg and rg values and they are known by the peers 

only, a cannot figure out who really rated the q or not. 

6.5.  Supplementary Costs Analysis  

Due to the proposed scheme, extra costs like storage, communication, and 

computation costs are expected. In order to reach higher performance, additional 

costs due to privacy concerns should be small. Unlike off-line costs, online costs 

are critical for overall performance. Therefore, overhead online costs due to 

privacy-preserving schemes should still make it possible to offer predictions 

efficiently.  

The scheme introduces additional storage costs, however, they are 

negligible. The peers on the network should save their default votes. Extra storage 

costs due to privacy concerns for each peer are order of 1 because each peer saves 

her default rating in a 1×1 matrix. Therefore, extra storage costs for all peers to 

save their default ratings are negligible. However, a should additionally save her 

filled ratings vector in a 1× m vector. Moreover, she should save NGag, θag, and 

ragNG values. Therefore, on average, additional storage costs for a are order of np× 

γ. Since γ is a small constant, due the privacy-preserving schemes, extra storage 

costs are small. 

Due to privacy concerns, the proposed schemes do not cause any extra 

number of communications. However, amount of information exchanged between 

a and the train peers increases due to the proposed scheme. a additionally sends 

her filled ratings and NGag values to other peers. The train peers sends p(fi|classj) 

values for all possible cases rather than single values for both classes to a. 

Therefore, on average, overhead communication costs in terms of the amount of 

data are order of 2
γ/2

. Note again that γ is a small constant and a should be able to 

determine its value in such a way to achieve required levels of privacy and 

efficiency.   

Supplementary computation costs due to data disguising are negligible. 

However, the train peers compute p(fi|classj) values, on average, 2
γ/2 

times for 

both classes rather than a single value. Therefore, additional computation costs are 

order of 2
γ/2

. Remember that that γ is a small constant and the overhead costs are 

split among all train peers in the P2P network-based schemes. In the schemes 
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proposed by (Canny, 2002a), with increasing NG values, computation costs 

increase exponentially, because the central server conducts all computations. 

However, in the schemes, all train peers join the computation and the costs are 

split among them. They perform such computations in parallel.  

To sum up, supplementary costs due to privacy concerns are inevitable, 

because privacy, accuracy, and performance are conflicting goals. Extra costs are 

negligible and the introduced scheme is still able to provide predictions 

efficiently. Moreover, the peers can determine the values of data disguising 

parameters in such a way to reach required levels of privacy and performance. 

6.6. Accuracy Analysis: Experiments 

Due to privacy concerns, accuracy might become worse. To evaluate how various 

privacy concerns and their solutions on randomization affect the accuracy of P2P 

NBC-based schemes, various experiments are performed using Jester and EM. To 

measure the accuracy of the schemes, CA and F1 metric are used.  

Firstly, numerical ratings are transformed into binary. Using the similar 

methodology in (Miyahara and Pazzani, 2002), if the numerical rating for the item 

is bigger than 0.5 are labeled as 1, or 0 otherwise in EM, while if the numerical 

rating for the item is above 2.0 are labeled as 1, or 0 otherwise in Jester. The users 

who rated more than 60 items from both data sets are selected. They are randomly 

divided into two disjoint sets, training and test. For each experiment, the required 

numbers of train and test users from train and test sets are randomly selected, 

respectively, based on the experiment requirements. For each test user (active user 

or peer), five rated items are randomly picked, they are replaced with null, and are 

tried to predict. Predicted votes are compared with true withheld ratings. Each 

trial is performed 100 times to obtain trustworthy results. After computing CA 

and F1 values, final overall outcomes are demonstrated. As stated in (Kim et al., 

2008), using the latest ratings makes accuracy better. After a certain point, old 

ratings reflect the current ratings and leads to lower predictions quality. Therefore, 

using recent ratings enhance accuracy (Kim et al., 2008). In the proposed scheme, 

the most up to date ratings are proposed to use and the dated ratings are removed 

to prevent privacy attacks. Since the effects of using current ratings are explained 

in (Kim et al., 2008), experiments are not performed for this purpose. 
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 Experiment 1: To show how filling some of a’s unrated items’ cells with 

fake ratings affects accuracy, trials are performed using both data sets. 1,000 and 

500 training and test users are employed, respectively, from both data sets. αa is 

varied from 0 to 100 to show how different δa values affect accuracy. Note that 

when αa is 0, a does not fill any unrated items’ cells.  Once αa is determined, δa is 

uniformly randomly selected over the range [0, αa]. After CA and F1 values are 

calculated for both data sets with varying αa values, they are displayed in Figure 

6.1 and Figure 6.2, respectively. 

 

Figure 6.1. CA with Varying αa Values 

 

Figure 6.2. F1 with Varying αa Values 

 

As seen from Figure 6.1 and Figure 6.2, accuracy slightly becomes worse 

with increasing αa values. Although the same number of 1s and 0s are inserted 

into some of the unrated items’ cells, such fake ratings might not represent a’s 

true preferences about those unrated items. Therefore, it can be said that 

randomness boosts with augmenting αa values; and it is expected that the quality 
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of the predictions becomes poorer. However, accuracy losses due to inserting fake 

ratings into some randomly selected unrated items’ cells are negligible and it is 

still possible to offer referrals with decent accuracy. For Jester, when αa is 60, CA 

losses are 2% only. When it is 100, they are more than 3%. In terms of F1 metric, 

the results are slightly better compared to CA. The results are similar for EM data 

set.  

Experiment 2: In the second set of experiments, how inserting bogus votes 

into the train users’ randomly selected unrated items’ cells affects the results are 

demonstrated. Due to the same reasons explained in the first set of experiments, 

quality of the predictions might be affected by inserting false votes into train 

users’ unrated items’ cells. To show such affects, trials are performed using both 

data sets. Again the same 1,000 and 500 training and test users are utilized, 

respectively from both sets. αg is varied from 0 to 100 to show how different δg 

values affect accuracy. Once again, after αi is determined, δg is uniformly 

randomly selected over the range [0, αi]. After CA and F1 values are calculated 

for both data sets, the outcomes are demonstrated in Figure 6.3 and Figure 6.4, 

respectively. 

 

 

Figure 6.3. CA with Varying αg Values 
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Figure 6.4. F1 with Varying αg Values 

 

As seen from Figure 6.3 and Figure 6.4; and as expected, the quality of the 

recommendations gets worse with increasing αg values. For both data sets, the 

results in terms of CA and F1 are similar and get somewhat worse. Due to the 

same reasons explained previously, randomness increases with augmenting αg 

values. As expected, accuracy worsens with increasing randomness. However, as 

seen from figures, accuracy losses due to privacy concerns are small and the 

proposed schemes still make it possible to offer accurate referrals.  

Experiment 3: Finally, experiments are performed to show how different 

numbers of the peers involving the prediction computations affect the overall 

performance of the schemes. Remember that the peers decide whether to join the 

recommendation process or not based on the comparison of λg and rg values. 

Experiments are conducted using both data sets while numbers of train peers (np) 

are varied from 100 to 2,000 for both data sets. 500 test users are employed. 

Overall averages of CA and F1 values are calculated. Since the results are similar, 

CA values are displayed only in Figure 6.5. Note that without privacy concerns, 

those peers who rated q involve in prediction generation. However, with privacy 

concerns, the peers join the recommendation process based on the comparison of 

λg and rg values. If they did not rate q, they fill its cell with their default vote (vgd). 
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Figure 6.5. CA with Varying np Values 

 

Without privacy concerns, for both data sets, the quality of the 

recommendations turns out to be better with increasing np values. Although with 

increasing number of peers involving in recommendation computations, CA 

enhances; however, after 500 peers, such improvements become stable. Once 

there are enough peers to generate referrals, increasing the number of train peers 

does not enhance the results too much. Although the results barely become worse 

with privacy concerns for EM data set, accuracy somewhat improves for Jester. It 

is expected that the quality of the predictions worsens with privacy concerns due 

to randomness. Improvements in Jester with privacy concerns might be explained 

the density of Jester. EM data set is sparse while Jester is a dense set; and 50% of 

all ratings are available. Therefore, vid values can be estimated with decent 

accuracy and they may represent peers’ true preferences. Moreover, number of 

peers involving recommendation processes increase. To sum up, the results are 

promising; and they make it possible to generate truthful predictions. 

6.7. Conclusions 

In this chapter, how to provide accurate P2P network-based referrals efficiently 

using NBC are investigated. Moreover, it is still possible to generate such 

recommendations while preserving the users’ privacy is shown. Also, it is 

demonstrated that NBC-based predictions can be provided without a central 

server. Close community groups are able to construct P2P network for various 

purposes including CF. Without a central authority, the control of the central 

server is broken; and the recommendation computation workload is split among 
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the peers. Therefore, performance is expected to enhance significantly. Real data-

based experiments are performed to evaluate the overall performance of the 

scheme. The results show that accuracy losses due to privacy concerns are 

negligible and make it possible to offer accurate recommendations. Also, the 

scheme is analyzed in terms of privacy and overhead costs. It is shown that the 

scheme is secure and the overhead costs are small. 
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7. CONCLUSIONS AND FUTURE WORK 

In this dissertation, various solutions are proposed to overcome challenges caused 

by having inadequate data via collaboration among multiple parties while 

preserving their confidentiality. The proposed schemes are analyzed in terms of 

privacy, supplementary costs, and accuracy. Real data-based experiments are 

conducted. In order to test significance of the experimental outcomes, t-tests are 

performed. 

According to experimental results, it is possible to produce accurate 

recommendations form distributed data (vertically or horizontally) among 

multiple parties without jeopardizing their confidentiality. It is shown that 

collaboration of parties handles cold start and coverage problems. Besides 

overcoming challenges caused by data sparsity, partnership increases accuracy of 

recommendations. Thus, e-companies can employ the proposed solutions until 

they have sufficient user data.   

In order to provide privacy, randomized perturbation techniques, 

randomized response techniques, cryptographic methods, random filling, private 

sorting algorithm, and so on are employed. Although cryptographic methods do 

not affect accuracy of recommendations, randomized methods have impact on 

quality of referrals. Hence, several experiments are performed to determine effects 

of randomized techniques. The outcomes demonstrate that although utilizing 

randomized methods might decrease recommendation accuracy, they are useful 

for keeping confidentiality of data holders. Furthermore, increase in accuracy 

provided by collaboration is higher than losses in accuracy due to randomization. 

Consequently, the utilized privacy-preserving techniques provide confidentiality 

to parties while partnership increases accuracy significantly.  

Another important obstacle against collaboration is scalability. In this 

dissertation, several solutions are proposed to enhance performance of 

partnership. Distributed recommendation processes are divided into two groups, 

off-line and online, and many of the required distributed computations are done 

off-line. Thus, in each solution, an off-line model is constructed. The solution in 

Chapter 2 employs self-organizing map clustering to determine the nearest 

neighbors of an active user in collaborative filtering. Besides clustering, 
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dimension reduction techniques are utilized to reduce dimension of data used in 

recommendations process. To reduce dimension, random projection is carried out. 

In Chapter 3, secure protocols for random projection-based distributed 

collaborative filtering are introduced. According to experimental results, random 

projection improves online performance of not only distributed recommendations 

but also improves scalability of general collaborative filtering schemes. A private 

secure multi-party protocol, which determines the nearest neighbors of active 

users from distributed values, is introduced. In Chapter 4, it is shown that it is 

possible to increase scalability by constructing a distributed off-line trust network. 

The trust values are employed instead of similarity in recommendation process. 

Again, secure multi-party protocols are proposed to compute distributed trust 

values. Although constituting off-line models improves performance of 

collaboration, note that the parties need to update their models periodically to 

insert new users’ data into the models. 

Besides numerical ratings-based solutions, methods for enabling 

collaboration of parties for producing binary recommendations are introduced in 

Chapter 5. The experimental outcomes are promising and collaboration enhances 

accuracy of referrals. Compared to numerical ratings, it is more common to 

collect binary ratings via market basket analysis. The proposed solutions help 

online vendors provide predictions on distributed binary ratings without 

jeopardizing their confidentiality.   

In Chapter 6, a special kind of horizontally distributed data is studied. The 

proposed solution enables individuals to control their own rating data and get 

private binary recommendations. Since workload of recommendation process is 

distributed among the users in P2P network, scalability of the system enhances 

significantly. 

There are remaining works to be done in order to show the effects of 

overlapped ratings in the distributed databases. In order to enhance cryptographic 

techniques-based solutions, new secure-multi party computation protocols might 

be suggested. Also, in order to improve online performance of collaboration, new 

methods can be proposed. Besides horizontal or vertical distributions, data might 

be distributed arbitrarily among multiple parties. Thus, solutions are needed to be 
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introduced enabling partnership when data distribution is arbitrary. Besides 

privacy of individuals in P2P networks, protocols for protecting privacy of users 

utilizing mobile devices to get recommendations should be studied.  
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