

EFFECTS OF BINARY SIMILARITY MEASURES ON

COLLABORATIVE FILTERING

Edip ŞENYÜREK

Master of Science Thesis

Graduate School of Science

Computer Engineering Program

December, 2012

JÜRİ VE ENSTİTÜ ONAYI

Edip ŞENYÜREK’in “İkili Benzerlik Ölçütlerinin Ortak Filtrelemeye

Etkileri” başlıklı Bilgisayar Mühendisliği Anabilim Dalı’ndaki Yüksek Lisans

Tezi 30.11.2012 tarihinde, aşağıdaki jüri tarafından Anadolu Üniversitesi

Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca

değerlendirilerek kabul edilmiştir.

 Adı-Soyadı İmza

Üye (Tez Danışmanı) : Doç. Dr. Hüseyin POLAT ………………

Üye : Doç. Dr. Yusuf OYSAL ………………

Üye : Yard. Doç. Dr. Ahmet YAZICI ………………

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu’nun

……………. tarih ve ………………… sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

i

ÖZET

Yüksek Lisans Tezi

İKİLİ BENZERLİK ÖLÇÜTLERİNİN ORTAK FİLTRELEMEYE

ETKİLERİ

Edip ŞENYÜREK

Anadolu Üniversitesi

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Hüseyin POLAT

2012, 59 sayfa

İnternet’in popülerliği arttıkça, İnternet üzerinden sanal satıcılar

aracılığıyla alışveriş yapmak da artan bir ilgi görmektedir. Müşteriler kendilerine

uygun ürünleri satın almak isterler. Diğer bir deyişle, beğenebilecekleri ürünleri

seçmeye çalışmaktadırlar. Müşterilerine bu süreçte yardımcı olmak için birçok

sanal şirket ortak filtreleme sistemlerinden yararlanmaktadır. Bu sistemler iki tür

hizmet sunmaktadır. Bunlar tahmin ve en-iyi-N öneri üretmedir. Bu hizmetlerin

kalitesi temel olarak ortak filtreleme algoritmalarının en benzer varlıkları

belirlemede kullandığı benzerlik ölçütlerine dayanmaktadır. Ortak filtreleme

işlemleri için derlenen veriler sayısal ya da ikili değerler içerebilir. Sayısal

değerler için önerilen benzerlik ölçütlerini karşılaştırmak üzere birçok çalışma

sunulmuştur. Ancak ikili değerler üzerinde işlem yapan birçok benzerlik ölçütü

bulunmasına rağmen, bunların ortak filtreleme sistemlerinin doğruluğu ve

performansı üzerindeki etkisi detaylı biçimde çalışılmamıştır.

Bu tezde yedi adet ikili oy-tabanlı benzerlik ölçütünün, tahmin üretme ve

en-iyi-N listeleri önerisi için hem doğruluk hem de çevrimiçi performans kriterleri

bakımından değerlendirmesi yapılmıştır. Yediden daha fazla sayıda ölçüt

bulunmasına rağmen, birçok veri madenciliği uygulamalarında sıkça kullanılanlar

üzerine yoğunlaşılmıştır. Bu ölçütleri doğruluk ve verimlilik açısından

karşılaştırabilmek için iki iyi bilinen gerçek veri seti üzerinde birçok deneyler

yapıldı. Farklı benzerlik ölçütlerini, her defasında farklı en benzer kullanıcıların

tercihlerinin dahil olduğu ortak filtreleme süreçlerini kullanarak tahminler ve en-

iyi-N listeleri üretildi. Ayrıca farklı benzerlik ölçütleriyle, değişen kontrol

parametrelerinin performansa olan etkisi araştırıldı. Deneysel sonuçlar doğruluk

ve performans açısından analiz edildi.

Anahtar Kelimeler: Benzerlik ölçütü, tahmin, en-iyi-N önerisi, doğruluk,

performans.

ii

ABSTRACT

Master of Science Thesis

EFFECTS OF BINARY SIMILARITY MEASURES ON

COLLABORATIVE FILTERING

Edip ŞENYÜREK

Anadolu University

Graduate School of Sciences

Computer Engineering Program

Supervisor: Assoc. Prof. Dr. Hüseyin POLAT

2012, 59 pages

With increasing popularity of the Internet, shopping over the Internet

through several online vendors is also receiving increasing attention. Customers

want to purchase the appropriate products. In other words, they try to select those

products that they might like. In order to help their customers, many online

companies utilize collaborative filtering systems. Such systems provide two

services, namely prediction and top-N recommendations. Quality of these two

services mainly depends on similarity measures that collaborative filtering

algorithms use in order to determine the most similar entities. Data collected for

collaborative filtering purposes might include either numeric or binary ratings.

Several studies have been conducted to compare different similarity measures

proposed for numeric data. Although there are various binary ratings-based

similarity metrics, their effects on accuracy and performance in collaborative

filtering systems have not been deeply studied.

In this thesis, we investigate seven binary ratings-based similarity metrics

in terms of both accuracy and online performance while providing predictions for

single items and top-N lists. Although there are more than seven measures, we

consider the most widely used ones in various data mining applications. To

compare them in terms of correctness and efficiency, we perform several

experiments based on two well-known real data sets. We produce both predictions

and top-N lists while using different similarity metrics, where we propose to

modify prediction and top-N recommendation algorithms in such a way so that the

most similar users’ data are involved in collaborative filtering process. We also

study how varying controlling parameters affect overall performance with

different similarity metrics. We analyze our empirical results in terms of

preciseness and performance.

Keywords: Similarity measures, prediction, top-N recommendation, accuracy,

performance.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Assoc. Prof. Dr. Hüseyin Polat for his

guidance and support during my study. I also would like to thank Dr. Cihan Kaleli

for his valuable scientific support. Additionally, I would like to thank the thesis

committee members Assoc. Prof. Dr. Yusuf Oysal and Assist. Prof. Dr. Ahmet

Yazıcı. Lastly, I would like to thank my family and fellow workers for their

decent support.

30.11.2012

iv

CONTENTS

ÖZET i

ABSTRACT ii

ACKNOWLEDGEMENTS iii

CONTENTS iv

LIST OF FIGURES v

LIST OF TABLES vi

ABBREVATIONS vii

1. INTRODUCTION 1

2. RELATED WORK 9

3. BACKGROUND 12

4. EFFECTS OF SIMILARITY MEASURES ON

THE QUALITY OF PREDICTIONS 15

4.1. Data Sets 15

4.2. Evaluation Criteria 16

4.3. Our Methodology 16

4.4. Experiments 20

4.5. Discussion 29

5. EFFECTS OF SIMILARITY MEASURES ON

THE QUALITY OF TN 30

5.1. Top-N Recommendation Method 30

5.2. Our Methodology 31

5.3. Experiments 32

5.4. Discussion 40

6. CONCLUSIONS AND FUTURE WORK 42

REFERENCES 44

v

LIST OF FIGURES

1. Collaborative filtering architecture 8

2. F1 values with varying k values (Jester & n = 2,000) 20

3. CA values with varying k values (ML & n = 2,000) 21

4. T values with varying k values (ML & n = 2,000) 22

5. CA values with varying k values (Jester & n = 500) 22

6. F1 values with varying k values (ML & n = 500) 23

7. T values with varying k values (ML & n = 500) 24

8. CA values with varying k values (Jester & n = 124) 24

9. F1 values with varying k values (ML & n = 124) 25

10. T values with varying k values (ML & n = 124) 25

11. CA values with varying m values 27

12. F1 values with varying m values 28

13. T values with varying m values 28

14. Hit ratio values with varying k values (Jester & n = 2,000) 32

15. Hit ratio values with varying k values (ML & n = 2,000) 33

16. T values with varying k values (Jester & n = 2,000) 33

17. T values with varying k values (ML & n = 2,000) 34

18. Hit ratio values with varying k values (Jester & n = 500) 35

19. Hit ratio values with varying k values (ML & n = 500) 35

20. T values with varying k values (Jester & n = 500) 36

21. T values with varying k values (ML & n = 500) 37

22. Hit ratio values with varying k values (Jester & n = 124) 37

23. Hit ratio values with varying k values (ML & n = 124) 38

24. Hit ratio values with varying m values 39

25. T values with varying m values 40

vi

LIST OF TABLES

1. Different forms of usage data that captured in a digital library 4

2. Binary similarity measurements 12

3. Observations for two vectors and cross tabulation 13

4. Data sets with their density 16

5. A sample and a conversion of the data set 17

6. Number of train and test users 17

7. Densities of the new data sets 26

vii

ABBREVIATIONS

 CF : Collaborative filtering

 a : Active user

 PD : Personality diagnostic

 n : Number of users

 m : Number of products

 k-nn : k-nearest neighbors

 u1 : User 1

 SVD : Singular value decomposition

 TN : Top-N

 q : Target item

 GOMAWE : General ontological model for adaptive environments

 CNCF : Content-boosted collaborative filtering

 ASMC : Anderberg similarity measurement coefficient

 GSMC : Gower2 similarity measurement coefficient

 JSMC : Jaccard similarity measurement coefficient

 KSMC : Kulczynski similarity measurement coefficient

 OSMC : Ochiai similarity measurement coefficient

 PSMC : Pearson similarity measurement coefficient

 YSMC : Yule similarity measurement coefficient

 ML : MovieLens data set

 F1 : F-measure

 CA : Classification accuracy

 P : Precision

 R : Recall

 T : Online time

 NBC : Naïve Bayesian classifier

1

1. INTRODUCTION

The Internet is becoming prevalent from day to day. Shopping and surfing

over the Internet are increasingly turning out to be popular. Due to the widespread

use of the Internet and computerized works, amount of data collected from many

users becomes vast. Whether it is essential or redundant, too much data are

collected implicitly or explicitly. The availability of vast quantity of data is called

information overload [1]. However, given a bulk of data, extracting and mining

useful and interesting information is imperative. With increasing popularity of the

Internet, e-commerce has become very attractive. Many customers buy and/or sell

various products over the Internet through different e-commerce sites. Since

online vendors collect data about their customers, mining such data is vital for

business purposes. Such companies utilize collaborative filtering (CF) techniques

to help their customers select appropriate items.

CF is a filtering and recommendation technique, which is widely used by

many e-commerce sites. Goldberg et al. [2] define CF as people collaborate to

help one another classify their actions as interesting or uninteresting. The authors

in [2] state that companies’ large amount of data should be filtered according to

their users’ interests. CF helps people make correct choices according to the other

people’s selections [3]. Customers rate objects, such as books, DVDs, movies, and

so on based on how much they like them [4]. When a user, called an active user

(a), intends to surf on a web site in order to purchase a DVD, movie, book, etc.,

the site or the online vendor recommends the products that could be liked by her

while considering the similarity of other users’ rates and her previous votes.

CF compares users according to their previous votes. To be able to

compare users’ preferences, a user-item database should be available. To create a

database with the participation of the users, the preferences must be collected

either explicitly or implicitly [5]. Users can explicitly submit their ratings for

given products. Such ratings can be given as scores on a rating scale from one to

five. Unlike explicit rating collection, users’ preferences about different items can

be collected implicitly. For example, if a user buys an item, it is assumed that the

user likes that item so that her preference about that item can be represented using

one (like); and zero (dislike) otherwise. Similarly, in the context of the Web, if the

2

user accessed the document, she implicitly rated it one. Otherwise, as she did not

visit the document, she implicitly rated it zero. Another example, if the user

watches a movie, she rated it one; otherwise, the movie is rated zero by the user.

There are two more major types of recommender systems: content-based

and knowledge-based, other than CF-based systems [6, 7]. Content-based systems

make recommendations by analyzing the description of the items that have been

rated by the user and the description of items to be recommended. All the other

users’ votes are not important [8]. Content of the items are considered important,

however, there are two main problems with it. The first problem is finding a

representation of item and the second one is to create a profile that allows unseen

documents to be recommended. Knowledge-based systems make use of

knowledge about users and products to generate referrals. They use a reasoning

process to determine what products meet a user’s requirements [7].

CF has two major advantages over the content- and knowledge-based

recommender systems [2, 3]. First, CF systems do not take into account content

information, and second, they are simpler and easier to implement [7]. Ignoring

content information allows CF systems to generate recommendations based on

user tastes rather than the objective properties of domain items themselves. This

means that the system can recommend items very different from those that the

user had previously shown interest. This overcomes a major limitation of content-

based system [9].

CF algorithms fall into two main approaches: memory-based and model-

based algorithms [10]. Memory-based, also known as user-based, algorithms

operate over the entire user database and generate a prediction for a by using

statistical methods [11]. These methods are also known as neighborhood methods

[7]. The system finds the neighbor users who have similar opinion with a. Model-

based, also known as item-based, algorithms build small models from user

database and generate a recommendation by using probabilistic methods [7].

Alternatively clustering, Bayesian Networks, and rule-based approaches can

perform the building of models [5, 10, 12].

Pennock et al. [13] propose and evaluate a personality diagnostic (PD)

method, which is a CF method. PD can be seen as a hybrid between model- and

3

memory-based approaches. For that purpose, personality type is encoded simply

as a vector of the user’s ratings for titles reside in the database. They compute the

probability that a has the same personality type as every other user, and then

compute the probability that she will like some new item.

A hybrid recommender system attempts to combine different techniques to

mutually eliminate their drawbacks [14]. Li et al. [15] present a hybrid CF method

by combining CF based on item (model-based) and user (memory-based). After

their experiments, they had the results that the hybrid CF method provides better

quality of predictions than item-based and user-based CF [15]. Vozalis and

Margaritis [16] discuss a hybrid approach that combined elements from two basic

recommendation algorithms. First, they applied user-based filtering techniques to

locate a neighborhood of users. Then, they utilized item-based filtering on this

subset to derive outcomes [17].

Vozalis et al. [18] present a hybrid-filtering algorithm that attempts to deal

with low prediction coverage, a problem especially present in sparse datasets.

They focused on Item HyCov method, which they have made. After their

experiments, the results showed that Item HyCov significantly improves both

performance measures, requiring no additional data and minimal modification of

existing filtering systems.

All types of algorithms have their own advantages and disadvantages.

Memory-based algorithms achieve higher accuracy. However, their online

performance is very poor. Unlike memory-based methods, model-based

approaches achieve less accuracy but in short time. Hybrid algorithms try to

combine the advantages of both memory- and model-based schemes. They

achieve decent accuracy in acceptable time [19].

CF systems compare users according to their previous votes. To be able to

make prediction calculations and predict active users’ opinions for various

products, a database is needed. The database utilized by CF schemes is called a

user-item database, which is an n × m matrix including ratings collected from n

users for m products. Ratings made on scales allow these judgments to be

processed statistically to provide averages, ranges, distributions, etc. [20].

However, sometimes the rating would not show the correct result. For example, a

4

user reads a book, even if she dislikes the book, she would rate it as nine out of 10

or she would not rate it. Thus, it is possible that, in explicit rating system,

sometime later a lack of any ratings can be reached [21]. Konstan et al. [22]

believe that an ideal solution is to improve the user interface to acquire implicit

ratings by watching user behaviors. Nichols et al. [23] make a table, as shown in

Table 1, to explain the behaviors of a user in digital library. The table, of course,

can be increased for other kinds of products like watching, visiting, etc.

Table 1. Different forms of usage data that captured in a digital library

Type of Usage Data Example

Purchase buys book

Assess evaluates or recommends

Repeated Use multiple check out stamps

Refer cites or otherwise refers to document

Mark Add to a 'marked' or 'interesting' list

Examine looks at whole document

Consider looks at abstract

Glimpse sees title in list

Associate returns in search but never glimpses

Query association of terms from queries

Wang et al. [24] use another name for binary rating-based scheme. They

call it as log-based. According to the authors, the goal for numeric rating-based

CF is to predict the rating of users, while the goal for the log-based algorithms is

rank the items to the user in order of decreasing relevance. As a result, in the

numeric rating-based CF, the mean square error of the predicted rating is used,

while in log-based schemes, recall and precision are used for evaluation.

Miranda and Jorge [25] mention four different algorithms for binary

ratings. While in the user-based approach, recommendations for a new session are

generated by analyzing the whole database, in the item-based approach, the

authors need the similarities between each pair of items. Since typically the

number of items is orders of magnitude smaller than the number of users, this

results in an important memory and computational reduction [11]. Papagelis et al.

5

[26] present a method to deal with the scalability challenge without compromising

quality. They call it incremental CF, however, they update the user-user similarity

matrix.

The most important algorithms in memory-based category are user-user

and item-item nearest neighbors algorithms. Brožovský [27] mentions two more

trivial algorithms in his thesis. The random algorithm is more of a model-based

CF algorithm. The mean algorithm is sometimes referred to as the item average

algorithm or POP algorithm, as well [10].

The most essential algorithm in the whole concept of CF is the user-user

variant of the k-nearest neighbor algorithm, which is called k-nn. The algorithm

proceeds, as follows: When predicting ratings of a, the user database is first

searched for user with similar ratings of a. The opinions of the most similar k

neighbors are then used to form the predictions of a.

CF is very successful in many application settings; however, it encounters

some problems, such as sparsity, scalability, synonymy, and cold-start [11, 28, 29,

30, 31]. Leung et al. [32] mention another problem, which is called non-transitive

association. Such problems can be simply explained in the following.

Sparsity: The numbers of users and items in major e-commerce

recommendation systems is very large [33]. That is why the accuracy of

recommendations may be poor [11]. An example of a missed opportunity for

quality is the loss of neighbor transitivity. If user u1 and user u2 correlates highly,

and user u2 and user u3 correlate highly, as well, it is not necessarily true that user

u1 and user u3 will correlate. They may have too few ratings in common or may

even show a negative correlation due to a small number of unusual ratings in

common [30]. Even users who are very active rate just a few of the total number

of items available in a database, even very popular items result in having been

rated by only a few of the total number of users available in the database. This

problem has a negative impact on the effectiveness of a CF approach. Due to

sparsity, it is possible that the similarity between two users cannot be defined.

Even when the evaluation of similarity is possible, it may not be very reliable due

to insufficient information processed [28].

6

Scalability: Classically, CF algorithms generate predictions according to

the similarity of the either users or items. To be able to compute the similarities

between users, a variety of similarity measures have been proposed [26]. Pearson

correlation coefficient is one of the measures, which performs well [10]. CF

systems fail seriously to scale up its similarity computations and prediction

estimations with the growth of both the number of users and items in database. To

deal with scalability problem, different techniques have been proposed. Sarwar et

al. [30] prefer singular value decomposition (SVD) to reduce the dimensionality

of the user-item matrix. Similarly, Ungar and Foster [34] choose the Bayesian

network and clustering approach, while Propescul et al. [35] utilize the content-

boosted approach to reduce the number of items examined.

Synonymy: In real life scenario, different product names can refer to the

similar objects [30]. Correlation-based recommender systems cannot find this

kind of association and behave these products differently. For example, let us

consider two customers, where one of them rates 10 different recycled letter pad

products as “high” and another customer rates 10 different recycled memo pad

products “high.” Correlation-based recommender systems would see no match

between product sets to compute correlation and would be unable to discover the

association that both of them like recycled office products [30].

Cold-start: Cold-start problem refers to the situation in which an item

cannot be recommended unless it has been rated by a substantial number of users

[31]. This problem applies to new and obscure items; and is particularly

detrimental to users with eclectic taste. Likewise, a new user has to rate a

sufficient number of items before the recommendation algorithm be able to

provide reliable and accurate recommendations [31].

Non-transitive association: If the same user has not rated two items, it is

difficult to derive the relation between two similar items. This problem is called

non-transitive association problem [32]. The solution proposed to solve such

problem is using hybrid CF approaches that were explained previously.

CF systems provide two essential services. They are estimating

recommendations for single items, called prediction, and providing a sorted list of

items that might be liked by active users, called TN. In both services, one of the

7

major steps is estimating similarities between users and/or items in order to

determine the best similar users and/or items. Utilizing the best similarity measure

is imperative for the overall success of any CF system. Determining those entities

very similar to the active users or target items as neighbors helps CF systems

improve accuracy. Thus, finding out the best similarity measures and employing

them are critical. There are several reasons why similarity measurements are used.

Similarity measurement is important because if the similarities between entities

are measured [36], then

 one entity can be distinguished from another,

 they can be grouped based on the similarity,

 the characteristics of each group can be understood,

 the behavior of the clusters can be explained,

 grouping also may give more efficient organization and retrieval of

information,

 a new entity can be classified into the group,

 the behavior of the new entity can be predicted,

 the structure within the data set can be discovered, and

 plan and decision based on the structure and prediction of the data

can be taken action.

Keßler [37] gives the definition of similarity measure as any information

that helps to specify the similarity of two entities more precisely concerning the

current situation. Similarly, McGill [38] gives the definition of similarity

measurement as an algorithm, which computes the degree of agreement between

entities. The main concept of the CF algorithms is to utilize the relative

similarities between users’ ratings or scores [27]. Similarity measurement is to

determine how similar two objects are, and to put those similarity ratings in

relation. Similarity measurement is available to find out how humans rate

resemblance [37]. Computing the similarity of current user against every other

user is one of the standard steps of CF. Massa and Avesani [39] consider

similarity metric computing the correlation between two users. Figure 1, which is

adopted by Massa and Avesani [39], shows the architecture of the producing the

output n × m user similarity matrix in which i
th

 row contains the similarity values

8

of j
th

 user against every other user. In order to compute the similarities between

users, a variety of similarity measures have been proposed, such as Pearson

correlation, cosine vector similarity, Spearman correlation, entropy-based

uncertainty measure, and mean-square difference [26]. McGill [38] surveys and

compares 67 similarity measures used in information retrieval. Similarity

measurement is used for classification and categorization, as well.

Figure 1. Collaborative filtering architecture

In this thesis, the effects of similarity measures on the quality of the

predictions are scrutinized. The emphasis is given to binary similarity measures

because numeric similarity measures have been studied in the literature. Since

there are too many binary similarity measures, the most popular ones are

investigated in terms of both accuracy and performance. Since off-line costs like

storage, computation, and communication (number of communications and

amount of data to be transferred) costs are not that critical for the overall

performance, the emphasis is given to online costs. The CF systems on binary

ratings are able to provide predictions and TN, as explained previously. Therefore,

the effects of such measures on accuracy of predictions and TN are studied. Real

data-based experiments are performed and the results are displayed.

In the followings, we first explain related works in Section 2. After

describing the similar works in the literature, we give brief description of some

background work in Section 3. In Section 4, we explain the effects of binary

similarity measures on overall performance of prediction generation process. We

then explain the effects of them on overall performance of TN generation process

in Section 5. We finally present our conclusions and give some future directions

in Section 6.

Rating

[n×m]

Similarity

Metric

User [n×m]

Similarity

Rating

Predictor

Predicted

Ratings

 [n×m]

INPUT OUTPUT

9

2. RELATED WORK

As briefly explained previously, there are two main tasks, which are

performed by CF systems. First one is prediction of a’s rate for an item (target

item q). The second one is TN for a’s liked item list, which is an ordered list [40].

In the first one, a single prediction is estimated and returned to a. However, in the

second one, an ordered list of the items that will be liked are returned to a. For

this purpose, predictions are first estimated for all unrated items, they are then

sorted, and finally the first N items are returned.

CF algorithms can be grouped into two major classes: user- and item-

based. User-based and item-based approaches are two different factorizations with

different independence assumptions. In addition to them, there are hybrid

approaches. Vozalis and Margaritis [41] apply three existing filtering approaches,

user-based, item-based, and hybrid, to evaluate the Unison-CF algorithm.

Brožovský [27] describes a recommender system, where the author implements

and performs a quantitative comparison of two CF and two global algorithms. The

author implements a domain independent and freely available recommender

system that is called ColFi system. ColFi system architecture has been designed to

be flexible yet simple enough so that developers can focus on CF algorithms.

Most recommendation systems employ variations of CF for formulating

suggestions of items relevant to users’ interests. However, CF requires expensive

computations that grow polynomial with the number of users and/or items in the

database. Methods proposed for handling this scalability problem and speeding up

recommendation formulation are based on approximation mechanisms and, even

if they improve performance, most of the time results in accuracy degradation.

Papagelis et al. [26] propose a method for addressing the scalability problem

based on incremental updates of user-to-user similarities.

Miranda and Jorge [25], propose an incremental item-based CF algorithm.

It works with binary ratings, as it typically the case in Web environment. Their

method is capable of incorporating new information in parallel with performing

recommendation. GroupLens, a distributed system for gathering, disseminating,

and using ratings from some users to predict other users’ interests in articles, helps

people find articles they will like in the huge stream of available articles [3]. The

10

Fab system, also a distributed implementation of a hybrid system, may eliminate

many of the weaknesses found in each approach, by combining both collaborative

and content-based filtering systems [42]. Balabanović [43] introduces Fab

adaptive web page recommendation service. There have been many researches on

analyzing document content to improve recommendations or search results.

Online recommendation can be as a three-stage process: collection, selection, and

delivery.

CF is one of the possibilities for adapting information presented to the

user. Balík and Jelínek [44] focus on CF algorithms’ application in adaptive

systems. They propose a General Ontological Model for Adaptive Environments

(GOMAWE). After their experimental results, they have decided that CF can be

used as such an adaptation component. Melville et al. [45] present an effective

framework for combining content and collaboration. The result of the experiment

of this approach, Content-Boosted Collaborative Filtering (CBCF), performs

better than a pure content-based predictor, pure collaborative filter, and a naїve

hybrid approach.

Data collected for CF are stored in a database, called user-item matrix. The

database can be very huge. To get the result from the huge database becomes very

difficult. Therefore, some solutions have been proposed to reduce the dimensions

of such databases. Billus and Pazzani [46] get their best performing algorithm,

which is based on the singular value decomposition of an initial matrix of user

ratings.

Papagelis et al. [28] compare their method with the typical CF that does

not consider any transitive associations. In their work, they have an alternative

approach to deal with the sparsity. They do not reduce the dimension of the user-

item matrix. They propose a method that permits to define transitive properties

between users in the context of a social network. Robu and La Poutré [47]

propose a method for constructing the utility graphs of buyers automatically,

based on previous negotiation data. That method is based on item-based CF and

the experimental results have a high degree of accuracy.

Miyahara and Pazzani [48] discuss another approach to CF based on the

simple Bayesian classifier, which is one of the most successful supervised

11

machine-learning algorithms. Their proposed combined method, user- and item-

based CF, performs better than single collaborative recommendation method [49].

Kaleli and Polat [19] investigate how to improve Bayesian classifier-based CF

systems’ online performance. They divide users into clusters so that prediction

can be generated on similar, dissimilar, or both similar and dissimilar users.

Cha et al. [50] review, categorize, and evaluate various binary vector

similarity and dissimilarity measures for character recognition. According to

them, one of the most contentious disputes in the similarity measure selection

problem is whether the measure includes or excludes negative matches. At last,

the proposed similarity measure can be further boosted by applying weights and

they demonstrate that it outperforms the weighted Hamming distance that is one

of the similarity measure. Several dissimilarity measures for binary vectors are

formulated and examined for their recognition capability in handwriting

identification for which the binary micro-features are used to characterize

handwritten character shapes. Zhang and Srihari [51] study seven similarity

measures, such as Jaccard-Needham, Correlation, Yule, Russell-Rao, Sokal-

Michener, Rogers-Tanimoto and Kulzinsky, for binary feature vectors, which are

summarized by Tubbs [52].

In the literature, in order to provide accurate predictions for single items

and TN as ranked lists efficiently, various approaches have been proposed. Such

schemes can be grouped as memory- or model-based algorithms. Moreover,

different schemes have been proposed to overcome several problems of CF

methods like scalability, sparsity, coverage, and so on. In addition, different

binary similarity measures have been investigated for better character recognition

and handwriting. However, comparison of binary similarity measures for

performing CF services like estimating predictions or generating TN has not been

studied before. In this thesis, various binary similarity measures are determined

and investigated in terms of accuracy and online performance while generating

predictions for single items and TN. Such measures are evaluated by performing

some real data-based experiments.

12

3. BACKGROUND

In this section, we first briefly explain the binary similarity measures that

we investigate in our study. As explained previously, Tubbs [52] summarizes

various binary similarity measures, while Zhang and Srihari [51] study several

similarity measurements in the context of handwriting. Although there are

normally various similarity measurements, we investigate the most well-known

seven measures.

According to StataCorp [53], similarity measures can be classified as

continuous measures, binary measures, and mixed measures. Similarity measures

for continuous data are called continuous measures, for binary data, they are

called binary measures; and for a mix of continuous and binary data, they are

called mixed measures. There are different examples for each group of measures.

In this thesis, the binary similarity measurements, shown in Table 2, will be

discussed.

Table 2. Binary similarity measurements

No Similarity Measurements

1 Anderberg

2 Gower2

3 Jaccard

4 Kulczynski

5 Ochiai

6 Pearson’s Correlation

7 Yule

Similarity measures for binary data are based on four values. First one is

the number of ones from two vectors (S11), second one is the number of ones from

the first vector and zeros from the second vector (S10), third one is the number of

zeros from the first vector and ones from the second vector (S01), and the last one

is the number of zeros from two vectors (S11). In the following table, we

summarize these four values.

13

Table 3. Observations for two vectors and cross tabulation

Second vector (j)

1 0

First vector (i)
1 S11 S10

0 S01 S00

In Table 3, S11 is the number of the variables where observations i and j

both have ones, S10 is the number of variables, where observations i is one and j is

zero, S01 is the number of variables, where observations i is zero and j is one, S00

is the number of variables, where observations i and j both have zeros. In the

following, formula of each similarity measure is given.

1. Anderberg similarity measurement coefficient (ASMC)

 (1)

The ASMC is undefined when one or both vectors are either all zeros or all

ones. This difficulty can be overcome by first applying the rule that if both vectors

are all ones or zeros, the similarity measure is declared one. Otherwise, if any of

the marginal totals are zero, then the similarity measure is declared zero.

2. Gower2 similarity measurement coefficient (GSMC)

 (2)

The GSMC is declared one if both vectors are all ones or zeros; thus, the

case, where the formula is undefined.

3. Jaccard-Needham similarity measurement coefficient (JSMC)

 (3)

The JSMC is declared one if both vectors are all zeros.

4. Kulczynski similarity measurement coefficient (KSMC)

 (4)

The KSMC is declared one if both vectors are all zeros, while it is declared

zero if only one vector is all zero.

14

5. Ochiai similarity measurement coefficient (OSMC)

 (5)

The OSMC is declared one if both vectors are all zeros, while it is declared

zero if only one vector is all zero.

6. Pearson similarity measurement coefficient (PSMC)

 (6)

The PSMC is declared to be one if S10+S01=0, while it is declared -1 if S11

+ S00 = 0. It is declared zero if S11S00-S10S01 = 0. It ranges from -1 to 1.

7. Yule similarity measurement coefficient (YSMC)

 (7)

The YSMC is declared one if S10 + S01 = 0, while it is declared -1 if S11 +

S00 = 0. It is declared zero if S11S00-S10S01 = 0. It ranges from -1 to 1.

15

4. EFFECTS OF SIMILARITY MEASURES ON THE QUALITY OF

PREDICTIONS

In order to select neighbors for a given active user, similarity values

between a and each user in the database are estimated using a binary ratings-based

measures. Then, the most similar k users can be chosen as neighbors. Therefore,

in order to form good neighborhoods, utilizing the best similarity measure

becomes imperative. The more accurate the neighborhood is, the better the results

are. Moreover, similarity measures might affect overall performance. Since online

performance is much more critical, utilizing the measures that does not introduce

too much overhead is important for the success of CF systems. Thus, similarity

measures play a vital role in recommender systems. Since there are several

measures that can be utilized to compute similarities between any two users based

on binary ratings, we investigate them in order to determine the best one in terms

of both correctness and online performance.

 As explained before, estimating predictions for single items is one of the

two services that CF systems provide. To determine the best similarity measures

or to compare different similarity measures in terms of both accuracy and online

performance, we conducted several experiments using two well-known real data

sets.

4.1. Data Sets

There are different kinds of data sets constructed for CF purposes [54]. In

this thesis, we utilized the well-known two data sets; MovieLens (ML) and Jester.

ML data set includes ratings for several movies. It was collected by the

GroupLens research team (www.cs.umn.edu/research/GroupLens) at the

University of Minnesota. It contains ratings for 3,900 movies by 6,041 users. The

ratings were numeric and discrete, ranging from one to five. In ML, each user has

rated at least 20 movies. Jester is web-based joke recommendation system

(eigentaste.berkeley.edu/user/index.php). The data set contains ratings for 100

jokes by 17,998 users. The ratings were numeric and continuous ranging from -10

to 10. We chose ML to represent a sparse data set while we selected Jester to

represent a dense data set. Table 4 describes both data sets.

16

Table 4. Data sets with their density

 ML Jester

Total user 6,041 17,998

Total title 3,900 100

Total ratings 788,063 906,474

Density (%) 3.34 50.37

4.2. Evaluation Criteria

 Recommender systems have used several types of measures for evaluating

the success of the recommender system. There are different evaluation criteria. In

this study, F-measure (F1) and classification accuracy (CA) are used to evaluate

the similarity measures in terms of accuracy.

CA is the ratio of number of correct classifications to number of

classifications [40]. F1 is a weighted combination of precision and recall, which

are two metrics widely used in the informational retrieval [30]. Miyahara and

Pazzani [49] define precision and recall as follows:

 (8)

 (9)

Sarwar et al. [30] mention that these two metrics are critical for the quality

judgment and they use the combination of the two, as well. F1 is defined, as

follows:

 (10)

In addition to assessing the similarity measures in terms of preciseness, we

also evaluate them in terms of online performance. For this purpose, we define T

in seconds as the total amount of time required to estimate predictions online.

4.3. Our Methodology

The chosen data sets, ML and Jester, have numeric rates. First, the numeric

rates must be converted to binary ones. For ML data set, the ratings are

transformed into one (like) if they are bigger than three; or zero (dislike)

otherwise. Similarly, for Jester data set, the ratings are converted into one (like) if

they are bigger than two; or zero (dislike) otherwise. Thus, in our data sets, zero

17

(0) represents the disliked items and one (1) represents the liked items. To show

unrated items, we use 99. In Table 5, we show an example of data set and its

binary version, where numeric and discrete ratings range from one to five.

Table 5. A sample and a conversion of the data set

Original Data Set Transformed Data Set

 i1 i2 i3 i4 i5 i6 i1 i2 i3 i4 i5 i6

u1 1 2 2 4 u1 0 99 0 0 1 99

u2 4 2 2 3 u2 1 0 99 0 0 99

u3 5 4 2 2 u3 1 99 1 99 0 0

u4 5 3 1 2 u4 1 0 99 99 0 0

u5 4 1 5 u5 99 1 99 0 99 1

u6 4 3 2 u6 1 99 0 99 0 99

After data transformation, we uniformly randomly selected 3,000 users

who rated at least 50 and 60 items from ML and Jester, respectively. We then

uniformly randomly divided these users into two sub sets. One of the sets, referred

to as train set, contains 2,000 users. The other set, called test set, includes the

remaining 1,000 users. In each set of trials conducted in the followings, two thirds

of total numbers of users are used for training and one third of total numbers of

users are used for testing. For example, if we use 1,000 uniformly randomly

chosen users from train set for training, then we utilize 500 uniformly randomly

chosen users from test set for testing. In Table 6, we show the number of users

used for training and testing.

Table 6. Number of train and test users

Number of train users 2,000 1,000 500 250 124

Number of test users 1,000 500 250 125 62

Total number of users 3,000 1,500 750 375 186

In order to provide predictions for single items, naïve Bayesian classifier

(NBC)-based algorithm is utilized. A Bayesian classifier [55] is a probabilistic

framework for solving classification problems. It is the most successful machine

learning algorithms in many classification domains. NBCs can handle an arbitrary

number of independent variables whether continuous or discrete [56]. Given a set

18

of variables, , the posterior probability can be constructed

for the event among a set of possible outcomes . is the

predictors and is the set of discrete levels present in the dependent variable.

Using Bayes’ rule:

 , (11)

where is the posterior probability of class membership, i.e.,

the probability that belongs to . Since it is assumed that the conditional

probabilities of the independent variables are statistically independent the

likelihood to a product of terms can be decomposed:

 , (12)

and rewrite the posterior as:

 . (13)

Using Bayes’ rule above, a new case with a class level that achieves the

highest posterior probability is labeled.

In order to produce predictions from data sets consisting of binary ratings,

NBC-based algorithm can be used. Instead of applying NBC to all available users’

data, the most similar users to a can be selected as neighbors according to

similarity values. Therefore, we first determine the most similar k users to a using

seven similarity measures. Then, we apply NBC algorithm to their data in order to

estimate a prediction.

Although the assumption that the predictor (independent) variables are

independent is not always accurate, it does simplify the classification task

dramatically, since it allows the class conditional densities to be

calculated separately for each variable, i.e., it reduces a multidimensional task to a

number of one-dimensional ones. Thus, the assumption reduces a high-

dimensional density estimation task to one-dimensional kernel density estimation.

Furthermore, the assumption does not seem greatly affect the posterior

probabilities, especially in regions near decision boundaries, thus, leaving the

classification task unaffected [56].

Ghani and Fano [57] use an NBC to implement a content-based

recommender system. The use of this model allows for recommending products

19

from unrelated categories in the context of a department store. While Ghani and

Fano [57] utilize an NBC to implement content-based CF, Miyahara and Pazzani

[49] use NBC for CF, where they define two classes, like and dislike. They

propose user- and also item-based CF schemes. Gutta et al. [58] also use NBC for

content-based CF and they define two classes, watched and not watched.

The predictions for single items can be estimated, as follows:

i. Determine similarities between a and each user in the train set

using a similarity measure.

ii. Sort train users in descending order according to similarity weights.

iii. Choose the first k users as a’s neighbors.

iv. Apply NBC-based CF algorithm to a’s and her neighbors’ data.

v. Estimate predictions for five rated items selected randomly.

vi. Do this for each test user in the test set.

Notice that for each test user, after selecting five rated items randomly, we

replaced their entries with null and withheld their true votes; and tried to predict

their ratings using the aforementioned approach. Once we estimated predictions

for all test items and for all test users, we then compared the predicted ones with

the observed ratings. After computing the overall averages of CA and F1 and T

values, we displayed them.

There are various controlling parameters that might affect the overall

performance. Number of users (n), number of items (m), number of neighbors (k),

density, and similarity measurements are among such parameters. In order to

show how density affects the overall performance, we used one sparse data set-

ML and one dense set-Jester. Our major goal is to show how overall performance

changes with different similarity measures. In addition to this, we tried to

demonstrate how varying n, m, and k values affect the quality of the predictions.

Thus, we conducted the following experiments while using seven different

similarity measurements.

20

4.4. Experiments

We conducted trials using both data sets and seven similarity measures

while varying n and k values. We changed n values from 2,000 to 124, where we

varied the corresponding k values from total number of users (we assumed that all

train users are chosen as neighbors) to 25. Note that we used n/2 number of

uniformly randomly selected users as test users. We first performed trials for n =

2,000. Then we conducted experiments for n = 1,000, 500, 250, and 124. After

estimating predictions for all test items, we compared them with true votes and

computed CA, F1 values and T values for both data sets. Since the results show

very similar trends with varying n values, we showed the outcomes for n = 2,000,

500, and 124 only for both data sets. Likewise, since F1 and CA values show

similar trends, we displayed F1 values for Jester and CA values for ML.

Figure 2. F1 values with varying k values (Jester & n = 2,000)

In Figure 2, we showed F1 values for Jester, where n = 2,000. Note that we

varied k values from 2,000 to 25. As seen from the figure, we can see all curves

have similar shape for each similarity measurements; however, Kulczynski

similarity measurement achieves the highest F1 value when k = 1,000. Ochiai and

Jaccard Similarity measurements follow Kulczynski similarity measurement. As

seen from Figure 2, we can say that Jaccard similarity measurement performs best

21

for all k values except 1,000. On the other hand, Pearson Correlation similarity

measurement gives the worst results for all k values.

Figure 3. CA values with varying k values (ML & n = 2,000)

In Figure 3, we showed CA values for ML data set, where n = 2,000. Note

that we varied k values from 2,000 to 25. According to figure, we obtain the

highest CA value using Yule similarity measurement with k being 25. For the

same k value, Anderberg, Kulczynski, Ochiai, and Jaccard similarity

measurements give the best results after Yule. Even we got the highest CA value

with Yule similarity measurement for all k values, accuracy decreases with

varying k values. Note that when the number of nearest neighbors is equal to the

number of train users, the CA value would be the same for each similarity

measurement. When k is bigger than 250, outcomes enhance for Kulczynski,

Ochiai, and Jaccard. Gower2 similarity measurement gives us the worst results

when k = 500.

 In Figure 4, we showed T (on-line duration) values for ML data set only

because we got similar results for Jester. Moreover, there are limited number of

items (only 100 jokes) in Jester, total amount of time is smaller compared to the

time for ML. We used 2,000 users for training and varied k values from 2,000 to

25. As seen from Figure 4, Gower2 similarity measurement gives us the worst

results at k values 25, 50, 100, and 250. Then, when k = 500, Ochiai gives us the

worst duration result. When k is larger than 500, Anderberg similarity

22

measurement achieves the worst performance. The best results are achieved by

Pearson Correlation and Yule similarity measurements.

Figure 4. T values with varying k values (ML & n = 2,000)

 We also performed the same experiments for n = 500 using both data sets.

In the following, we displayed the outcomes.

Figure 5. CA values with varying k values (Jester & n = 500)

In Figure 5, we showed CA values for Jester, where n = 500. Note that we

varied k values from 500 to 25. According to the figure, we can see all curves

have almost similar trend for each similarity measurement, however, the best

results are seen for Jaccard similarity measurement for all k values. Jaccard is

23

followed by Ochiai and Kulczynski measurements for all k values, except 25. As

seen from Figure 5, it can be concluded that Anderberg similarity measurement

achieves the worst results when k is 100.

Figure 6. F1 values with varying k values (ML & n = 500)

In Figure 6, we showed our outcomes in terms of F1 values for ML, where

n = 500. We again varied k values from 500 to 25. As seen from Figure 6, Yule

Similarity measurement performs best when k is 25. For the same k value,

Anderberg, Kulczynski, Ochiai, and Jaccard measurements provide better results

than the remaining measurements. With increasing k values from 25 to 250,

accuracy decreases in general, while it enhances after that point. For Kulczynski,

Ochiai, and Jaccard, F1 values become better when k is bigger than 100. Gower2

similarity measurement gives us the worst results for all k values, except for k is

250. When k = 250, Anderberg similarity measurement outputs the worst results.

In Figure 7, we demonstrated online duration times with varying k values

for ML. We used 500 train users. We compared similarity measures in terms of T

values. Notice again that we changed k values from 500 to 25. As seen from

Figure 7, Anderberg similarity measurement performs the worst in terms of online

performance. It achieves the worst for all k values. We obtain the best results in

terms of online computation time using Yule similarity measurement. As

expected, T values are better than the ones for n = 2,000.

24

Figure 7. T values with varying k values (ML & n = 500)

In Figure 8, we demonstrated CA values with varying k values from 124 to

25 for Jester data set, where we used 124 train users. With increasing k values,

accuracy usually becomes better for all similarity measures. We obtain the best

results when we use Kulczynski and Anderberg similarity measurements when k

is 100. However, as seen from Figure 8, Anderberg measure accomplishes the

worst performance when k is 25.

Figure 8. CA values with varying k values (Jester & n = 124)

25

Figure 9. F1 values with varying k values (ML & n = 124)

In Figure 9, we displayed our outcomes in terms of F1 values for ML data

set. We used 124 train users while we changed k from 124 to 25. After generating

predictions using different similarity measures, we compared them. According to

Figure 9, Jaccard similarity measure produces the best outcomes because F1 value

is the highest when k is 100. Moreover, as seen from Figure 9, Gower2 similarity

measurement provides the worst predictions when k is 50. With increasing k

values from 25 to 50, the quality of the recommendations worsens, while it

becomes better with increasing k values from 50 to 100.

Figure 10. T values with varying k values (ML & n = 124)

26

In order to compare similarity measures in terms of online performance,

we estimated online duration times and displayed the outcomes for ML data set in

Figure 10. We again utilized 124 train users and changed k values from 124 to 25.

Since the number of train users is very small (124 users only), T values for each

measure are very close to each other. It is not easy to compare similarity measures

in terms of online duration for smaller n values. However, Pearson Correlation

similarity measurement performs the best. As expected, online performance

becomes worse with increasing k values because more data are involved in

prediction process.

After scrutinizing similarity metrics with varying n and k values for both

data sets, we also studied them while varying m values. In addition to n and k, m is

also among the controlling parameters that should be investigated. In order to

demonstrate how overall performances of seven similarity metrics change with

varying m values while generating predictions, we conducted a set of trials using

ML data set only because there is limited number of items in Jester. Note that

there are 100 jokes only in Jester data set. Thus, it does not make any sense to

perform trials while varying m values using Jester.

We used 900 and 450 train and test users, respectively in which we set k at

100. Due to the low density of new matrices for 500 items, we could use 350 and

175 train and test users, respectively. In these sets of experiments, we varied m

from 3,900 to 500. We estimated predictions for five rated items for each active

user while varying m (m = 3,900, 2,000, 1,000, or 500) and using different

similarity metrics. After computing overall averages of CA, F1, and T values, we

demonstrated them. Table 7 shows the densities of the data sets with varying m

values.

Table 7. Densities of the new data sets

Number of items Density (%)

3,900 3.34

2,000 3.28

1,000 3.34

500 3.35

27

We first estimated CA values while varying m values and displayed them

in Figure 11. Remember that we used 900 train users. However, we only used 350

train users when m is 500 because there are no enough users who provided enough

ratings for 500 items. We also set k at 100. We produced predictions for all test

items using different similarity metrics. As seen from Figure 11, Yule similarity

measure provides the best predictions in terms of CA values for m values of

3,900, 2,000, and 1,000. Gower2 similarity measure, on the other hand, produces

the worst results for the same values. When m is 500, Jaccard metric achieves the

best outcomes, while Anderberg similarity measurement accomplishes the worst

results, as seen from Figure 11.

Figure 11. CA values with varying m values

We then computed F1 values while varying m values and demonstrated

them in Figure 12. We followed the same methodology. We estimated

recommendations for all test items using different similarity metrics and

calculated F1 values. The results are almost the same with the ones in Figure 11.

Thus, as seen from Figure 12, Yule similarity measure provides the best rferrals in

terms of F1 values for m values of 3,900, 2,000, and 1,000. Gower2 similarity

measure, however, produces the worst results for the same values. When m is 500,

28

Jaccard metric achieves the best outcomes, while Anderberg similarity

measurement accomplishes the worst results, as seen from Figure 12.

Figure 12. F1 values with varying m values

Figure 13. T values with varying m values

We finally computed online duration times for each similarity measures

while varying m values. We displayed them in Figure 13. As seen from Figure 13,

with decreasing number of items, as expected, online time decreases, as well. For

smaller m values, almost all similarity measures perform similarly. There are no

29

significant differences between measures in terms of online times. With

increasing m values, on the other hand, Yule and Pearson correlation measures

perform better than others do. Anderberg measure on the other hand performs

worst.

4.5. Discussion

When we have 2,000 train users’ ratings collected for CF purposes, in

order to get the best outcomes, Yule and Kulczynski similarity measures can be

chosen for sparse and dense sets, respectively. They are the most appropriate

measures to offer the high quality recommendations on binary ratings. Unlike

such measures, Gower2 and Pearson Correlation similarity measurements provide

the worst outcomes for sparse and dense sets, respectively. In terms of online

computation times when n = 2,000, the results are similar for all metrics.

However, Anderberg measure is the worst metric in terms of online duration time

for both sparse and dense sets. Yule gives very promising results in terms of

performance for both data sets for almost all k values.

When we have limited number of train users like 500 users, for dense sets,

any measurement can be used. For sparse data sets like ML, Yule similarity

measure achieves the best results in terms of accuracy. On the other hand,

Anderberg and Gower2 similarity measurements give the worst results for both

data sets. In terms of online performance, all similarity measures perform

similarly when n is 500. Although there are insignificant differences in online

duration times, Yule performs the best while Anderberg gives the worst results.

For smaller n values like 124, Kulczynski and Jaccard achieve the best

outcomes for dense and sparse data sets, respectively. Anderberg and Gower2, on

the other hand, produce the worst results for dense and sparse data sets,

respectively. In terms of online times, Pearson correlation performs the best for

both data sets, while Anderberg gives the worst results for both data sets.

When we varied number of items, accuracy also changes with varying

similarity measures. Yule metric achieves the best results. As expected, online

performance degrades with increasing m values.

30

5. EFFECTS OF SIMILARITY MEASURES ON THE QUALITY OF

TN

To determine the TN, the first step is determining a’s neighbors. In order

to form a’s neighborhood, similarity weights between a and each train user should

be computed using a binary ratings-based similarity measure. Then, the most

similar k users are selected as neighbors. Therefore, similarity measure that is

used to estimate similarity weights plays a vital role in determining TN lists. If CF

systems are able to form good neighborhoods, they can produce more accurate

TN. In addition to providing predictions for single items, offering TN is also

widely provided CF services by recommender systems. Since there are several

similarity metrics that can used to determine neighbors, we planned to investigate

the effects of such metrics on the quality of TN lists and tried to determine the

best metric, which provides the most accurate outcomes efficiently.

 To determine neighbors, users and items can be treated as vectors using

the vector-space model [10, 29]. In this model, each user is treated as a vector in

the m-dimensional item space (remember that there are m products). The

similarity then between any two users can be computed based on their

corresponding vectors. After the most similar k users have been discovered, a set,

which has the items purchased by group as well as their frequency, is prepared.

Using this set, user-based CF techniques then recommend the most N frequent

items in this set that have not been bought by the active user as TN [59].

5.1. Top-N Recommendation Method

After determining the neighbors of an active user a, the CF system

analyzes the products her neighbors have purchased to recommend N products

that a is most likely to purchase [30]. After computing the neighborhood for a, the

products that are purchased by the neighbors are listed and sorted; and the most

frequently purchased N items are returned as recommendations for a. Most of the

TN algorithms are based on binary data. Therefore, the ratings must be either

binary such as liked or disliked or converted to binary.

We propose to utilize the following algorithm to offer top-N

recommendations: Traditional algorithms are based on frequencies and the most

frequently bought items by similar users are returned as TN lists. Our approach,

31

on the other hand, does not use frequencies. Our method includes the following

steps:

i. Compute similarity weights between a and each user u in the

database (wau)

ii. Choose the most similar k users as neighbors based on similarity

weights

iii. For each unrated item j of a, do the followings:

a. Determine those neighbors who rated item j as 1; and sum their

similarity values (∑sj)

b. Determine those neighbors who rated item j as 0; and sum their

similarity values (∑dj)

c. Compute ∑j = ∑sj - ∑dj value.

iv. After calculating ∑j values for all unrated items, sort them in

descending order

v. Return the first N items as TN list to a.

 The quality of TN, thus, depends on similarity metric that is used to form

neighborhoods. In order to show the effects of similarity metrics on the overall

performance of TN, we conducted several experiments. The details of them are

given in the following.

5.2. Our Methodology

We followed the same methodology as we defined for providing

predictions. We first uniformly randomly selected 3,000 users who provided at

least 30 and 40 products from ML and Jester, respectively. We then transformed

numeric ratings into binary ones. Next, we uniformly randomly selected train and

test sets. For test sets, we selected those users who rated at least 60 items from

ML and Jester, respectively. Again, two third of total number of users were used

for training while the remaining one third of the users were used for testing. For

each test user in the test set, we determined their rated items. After utilizing our

method using different similarity metrics, we estimated ∑j values for all rated

items. We sorted such items according to ∑j values in descending order. We

finally returned the first five, 10 or 20 items as top-5, top-10 or top-20

recommendation lists, respectively. We assumed that if an item is in TN list, then

32

its rating is one (like) because it does not make sense to include disliked products

in TN list. We compared their predicted values (1s) with their true votes. After

computing hit ratios as percent (number of liked items listed in TN lists/N), we

displayed them. We also calculated T values for different metrics and showed

them, too. We used both data sets with varying controlling parameters.

5.3. Experiments

We first performed experiments using Jester data set, where we set n at

2,000. We again varied k from 2,000 to 25. We also changed N from five to 20.

The results for N being five, 10, and 20 are very similar to each other. Therefore,

we displayed the results for N = 10 only. Figure 14 shows hit ratios for Jester

when n = 2,000 and N = 10 with varying k values for all similarity metrics.

Figure 14. Hit ratio values with varying k values (Jester & n = 2,000)

 As seen from Figure 14, Pearson Correlation measure provides the best

outcomes. Yule metric also performs better than the remaining measures. Jaccard,

Ochiai, and Kulczynski measurements produce the worst results.

 We then performed the same experiments using ML data set, where we

again set n at 2,000 and changed k from 2,000 to 25. Since the results for N being

five, 10, and 20 are very similar to each other, we showed the outcomes for N =

10 only. Figure 15 shows hit ratios for ML when n = 2,000 and N = 10 with

varying k values for all similarity metrics.

33

Figure 15. Hit ratio values with varying k values (ML & n = 2,000)

As seen from Figure 15, the best hit ratio values are provided by Pearson

Correlation similarity measurement for smaller k values such as 25, 50, 100 and

250. With increasing k values from 250 to 1,000, the results become worse for

Pearson Correlation metric. When k = 2,000, Pearson Correlation achieves the

best outcomes. Yule metric is the second best metric for smaller k values. Gower2

measure performs the worst for smaller k values.

Figure 16. T values with varying k values (Jester & n = 2,000)

34

After displaying hit ratio values, we also estimated online duration times.

In Figure 16, we showed T values for all similarity metrics for N being 10 for

Jester data set. As seen from Figure 16, the best durations are observed for Yule

similarity measurement. In terms of online performance, Pearson Correlation

metric follows Yule measure. However, Anderberg measurement performs the

worst.

We also computed online duration times for ML similarly. Figure 17

shows T values for all similarity metric when N is 10. As seen from Figure 17,

like we observed for Jester, Yule again achieves the best performance. Similarly,

Pearson Correlation metric follows Yule measure. The worst duration values are

observed for Anderberg measure.

Figure 17. T values with varying k values (ML & n = 2,000)

 We conducted similar experiments using both data sets, where we changed

n from 2,000 to 500. In other words, we ran the same methodology using 500 train

users only. We first performed trials using Jester data set while varying k from

500 to 25. We also changed N from five to 20. Again, due to similar trends, we

displayed the results for N = 10 only. Figure 18 shows hit ratios for Jester when n

= 500 and N = 10 with varying k values for all similarity metrics.

35

Figure 18. Hit ratio values with varying k values (Jester & n = 500)

As seen from Figure 18, Pearson Correlation metric produces the most

promising outcomes in terms of hit ratios. Yule also performs similarly. It

achieves the second best TN lists. Jaccard, Ochiai, and Kulczynski measures,

however, provides the worst TN services for almost all k values, except k = 500.

When k is 500, Anderberg metric performs the worst.

Figure 19. Hit ratio values with varying k values (ML & n = 500)

36

Similarly, as seen from Figure 19, where we showed the hit ratio values

for ML data set, the best TN lists are provided by Pearson Correlation measure for

all k values, except k = 250. Interestingly, Anderberg measurement produces the

best outcomes for k being 250. There is no hit when we used Gower2 metric for k

values of 25 and 50. For other k values, Yule measurement outputs the most

inaccurate recommendations.

After evaluating how hit ration changes with various similarity metrics

when n is 500, we also computed online computation times for both data sets. We

demonstrated T values with varying k and similarity metrics in Figure 20 and

Figure 21 for Jester and ML data sets, respectively.

Figure 20. T values with varying k values (Jester & n = 500)

As seen from Figure 20, Yule metric’s online performance is the best one.

Pearson correlation measure also behaves very similar in terms of online duration

times. Other measures perform much more worse than Yule and Pearson

correlation measures. They show similar trends. Although total amount of time

spent during online computations, Yule and Pearson correlation measurements

almost perform two times better than the remaining ones. Anderberg similarity

metric achieves the worst results in terms of online performance for Jester data

set.

37

Figure 21. T values with varying k values (ML & n = 500)

We observed similar outcomes for ML data set, as seen from Figure 21.

Like in Jester, Yule and Pearson correlation measures perform the best. Ochiai

metric is the worst one in terms of online performance. Compared to Jester, T

values are larger for ML because ML has more items than Jester does.

Figure 22. Hit ratio values with varying k values (Jester & n = 124)

 We performed the same experiments for n being 124. We followed the

same methodology. Due to the same reasons, we displayed the outcomes for N =

38

10 only for both data sets. In Figure 22, we displayed the outcomes for N = 10 for

Jester, where we changed k from 124 to 25. We observed the similar trends. As

seen from Figure 22, we obtained the best hit ratios when we used Pearson

Correlation similarity measurement. Yule metric provides the second best TN

lists. Kulczynski, Ochiai, and Jaccard similarity measurements perform worst for

all k values, except 124. When k = 124, Anderberg measurement offers the most

inaccurate outcomes.

Figure 23 shows the outcomes for ML data set. As seen from Figure 23,

Pearson correlation similarity measurement provides the most accurate TN lists

for k = 25 and k = 124. However, Anderberg metric produces the best

recommendations when k is 50. Similarly, when k = 100, we observed that

Jaccard measure provides the most correct TN lists. Yule metric generates the

worst outcomes for all k values, except 25 for which Gower2 measure achieves

the worst recommendations.

Figure 23. Hit ratio values with varying k values (ML & n = 124)

We also computed online duration times for both data sets in the

aforementioned trials. Since we used limited number of users (124 only), T values

are very small compared to the ones we obtained for larger n values. We observed

the similar trends. Therefore, we did not show T values.

39

Like in providing predictions, varying m values affect overall performance

of TN scheme. Therefore, after performing experiments to demonstrate the effects

of varying n and k values, we also conducted trials to show the effects of varying

m values on TN using ML data set only. Due to the same reasons, we did not use

Jester data set in these experiments. We varied m from 3,900 to 500. We

estimated TN for each active user while varying m (m = 3,900, 2,000, 1,000, or

500) and using different similarity metrics, where we also set N at 20, 10, or five.

We used 900 and 450 train and test users, respectively in which we set k at 100.

Due to the same reasons, for 500 items, we could use 350 and 175 train and test

users, respectively. In the following, we demonstrated hit ratios and T values for N

= 10 only.

Figure 24. Hit ratio values with varying m values

Figure 24 displays hit ratio values with varying m values for ML, where N

is 10. As seen from Figure 24, Pearson correlation measure provides the most

accurate TN lists when for all m values. The quality of the TN lists is the worst if

we utilized Ochiai metric. The only exception is m being 3,900 for which Gower2

is not able to provide any true TN list. Figure 25 represent T values with varying

m values for ML. Remember that we fixed k at 100. As expected, while the

number of item decreases, online duration time decreases, as well. The less item

involves in recommendation process, the less time spent on online computations.

40

The best results are observed when Yule measure is used. Pearson correlation

metric achieves the second best results. For other similarity measures, the

outcomes very close to each other. Ochiai metric slightly performs worse than the

remaining measures do.

Figure 25. T values with varying m values

5.4. Discussion

Consequently, we can say that in order to get the best results in terms of

accuracy for dense and sparse data sets, like Jester and ML, respectively, Pearson

correlation or Yule metric is the best choice if the number of train users is 2,000.

For dense data sets, Jaccard, Ochiai, or Kulczynski measures are not good

choices, because they provide the worst TN lists. For sparse data sets, Gower2

measure is not the right choice.

When it comes to online performance, Yule or Pearson correlation can be

selected as appropriate metric. On the other hand, Anderberg similarity

measurement’s online performance is the worst for both kinds of data sets, sparse

and dense sets, when n = 2,000.

For 500 train users, we obtained the best results when we utilized Pearson

correlation measure for both sparse and dense data sets. On the other hand, we

observed the worst outcomes when we used Jaccard, Ochiai, or Kulczynski

41

metrics for dense data set. Gower2 or Yule measure gives the worst TN lists for

sparse data set.

In terms of online performance, Yule measure is the best selection for

most of the time for dense and sparse data sets. The second choice can be Pearson

correlation metric. Ochiai metric is not the right choice for improved online

performance.

We observed the similar results for n = 124. Pearson correlation or Yule

measure is the right choice for dense set. However, Kulczynski, Ochiai, or Jaccard

measure is not a good selection for dense data set. On the other hand, for sparse

data set, Pearson correlation measure usually performs the best. Yule similarity

measurement is not a good choice for sparse sets.

Yule or Pearson correlation metric’s online performance is the best for

both data sets. Jaccard or Kulczynski metric does not perform very well in terms

of online computation times.

When we changed number of items involving in recommendation process,

Yule or Pearson correlation measure achieves the most accurate results for almost

all m values.

42

6. CONCLUSIONS AND FUTURE WORK

In this thesis, we studied the effects of different binary similarity measures

on the quality of various collaborative filtering services and their online

performance. Due to the vast quantity of data, that is called information overload,

many companies are using the recommendation techniques. Especially,

collaborative filtering is widely used one. There must be a similarity measurement

for filtering. There are many similarity measurements; however, we scrutinized

seven binary similarity metrics while generating predictions for single items. We

also investigated them for providing top-N lists.

In order to show their effects, we conducted several experiments using two

well-known real data sets collected for collaborative filtering purposes. The data

sets are Jester and Movie Lens data sets. Jester represents the dense data set while

MovieLens represents the sparse data set.

Before we started the experiments, we have done literature survey and we

found that Vozalis and Margaritis [41], Brožovský [27], Papagelis et al. [26],

Miranda and Jorge [25], Balabanović [43], Balík and Jelínek [44], Melville et al.

[45], Billus and Pazzani [46], Robu and La Poutré [47], Miyahara and Pazzani

[48], Kaleli and Polat [19], Cha et al. [50], and Zhang and Srihari [51] also

studied similar experiments.

As we mentioned above, we used seven similarity measurements in the

experiments to find their effects. These similarity measurements are Anderberg,

Gower2, Jaccard, Kulczynski, Ochiai, Pearson’s Correlation, and Yule. Firstly, we

needed to count ones from two vectors as (S11), count zeros as (S00), from the first

vector 1 and from the second vector 0 as (S10), and from the first vector 0 and

from the second vector 1 as (S01). Then, to calculate similarity measurement

coefficient, we used (S11), (S00), (S10), and (S01).

In this study, two main experiments were done, prediction and top-N. For

prediction, two evaluation criteria were used. Namely, they are called

classification accuracy and F-measure. For top-N, hit-ratio was used. Online

performance was also tested for both main experiments with each of seven

similarity measures.

43

For prediction, firstly, we selected neighbors for a given user by similarity

values. Then, by using similarity measurement coefficient, we tested the accuracy

and online performance. For prediction, naïve Bayesian classifier algorithm was

utilized. Many parameters like n, for number of user, m, for number of items, and

k, for number of neighbors of active user values varied while doing experiments.

The experiments show that, generally speaking, Yule and Jaccard metric

achieve the best outcomes. On the other hand, Anderberg and Gower2 metric do

not perform well.

For top-N, firstly, we selected neighbors for a given user. Then, by using

similarity measurement coefficients, we tested the hit-ratio and we had top-N

results. Additionally, the online performance was also tested.

Our results show that, generally speaking, Yule and Pearson correlation

metric achieve the best outcomes. On the other hand, Ochiai and Gower2 metric

do not perform well. Similarly, Jaccard and Kulczynski do not provide good

results in terms of both accuracy and online performance.

As a result, we can say that the best similarity measurement is Yule for

both prediction and top-N experiments. On the other hand, Gower2 is the worse

metric.

In the future, the next thing will be to investigate how the similarity

metrics affect the quality of the prediction of the privacy preserving collaborative

filtering.

44

REFERENCES

[1] Yang, C. C., Chen, H. and Hong, K., “Visualization of Large Category Map

for Internet Browsing”, Decision Support Systems, 35 (1), 89-102, 2003.

[2] Goldberg, D., Nichols, D. A., Oki, B. M. and Terry, D. B, “Using

Collaborative Filtering to Weave an Information Tapestry”, Communications

of the ACM, 35 (12), 61-70, 1992.

[3] Resnick, P. J., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. T.,

“Grouplens: An Open Architecture for Collaborative Filtering of Netnews”,

In Proceedings of the 1994 ACM Conference on Computer Supported

Cooperative Work, Chapel Hill, NC, USA, 175-186, 1994.

[4] Perkowitz, M. and Etzioni, O., “Towards Adaptive Web Sites: Conceptual

Framework and Case Study”, Artificial Intelligence, 118 (1-2), 245-275,

2000.

[5] Grčar, M., “User Profiling: Collaborative Filtering”, In Proceedings of the 7
th

International Multiconference Information Society, Ljubljana, Slovenia, 75-

78, 2004.

[6] Burke, R., “Knowledge-based Recommender Systems”, Encyclopedia of

Library and Information Systems, 69 (32), 180-200, 2000.

[7] Leung, C. W., Chan, S. C. and Chung, F., “A Collaborative Filtering

Framework based on Fuzzy Association Rules and Multiple-level Similarity”,

Knowledge and Information Systems, 10 (3), 357-381, 2006.

[8] Pazzani, M. J., “A Framework for Collaborative, Content-based and

Demographic Filtering”, Artificial Intelligence Review, 13 (5-6), 393-408,

1999.

[9] Shardanand, U. and Maes, P., “Social Information Filtering: Algorithms for

Automating ‘Word of Mouth’”, In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, Denver, CO, USA, 210-217, 1995.

[10] Breese, J. S., Heckerman, D. E. and Kadie, C. M., “Empirical Analysis of

Predictive Algorithms for Collaborative Filtering”, In Proceedings of the 14
th

Conference on Uncertainty in Artificial Intelligence, Madison, WI, USA, 43-

52, 1998.

45

[11] Sarwar, B. M., Karypis, G., Konstan, J. A. and Riedl, J. T., “Item-based

Collaborative Filtering Recommendation Algorithms”, In Proceedings of the

10
th

 International Conference on World Wide Web, Hong Kong, 285-295,

2001.

[12] Zeng, C., Xing, C.-X. and Zhou, L.-Z., “Similarity Measure and Instance

Selection for Collaborative Filtering”, In Proceedings of the 12
th

International Conference on World Wide Web, Budapest, Hungary, 652-658,

2003.

[13] Pennock, D. M., Horvitz, E. J., Lawrence, S. and Giles, C. L., “Collaborative

Filtering by Personality Diagnosis: A Hybrid Memory- and Model-based

Approach”, In Proceedings of the 16
th

 Conference on Uncertainty in Artificial

Intelligence, Cambridge, MA, USA, 473-480, 2000.

[14] Shih, Y.-Y. and Liu, D.-R., “Hybrid Recommendation Approaches:

Collaborative Filtering via Valuable Content Information”, In Proceedings of

the 38
th

 Annual Hawaii International Conference on System Sciences, Big

Island, Hawaii, USA, 217-223, 2005.

[15] Li, Y., Lu, L. and Xuefeng, L., “A Hybrid Collaborative Filtering Method for

Multiple-interests and Multiple-content Recommendation in E-Commerce”,

Expert Systems with Applications, 28 (1), 67-77, 2005.

[16] Vozalis, M. and Margaritis, K. G., “On the Combination of Collaborative and

Item-based Filtering”, In Proceedings of the 3
rd

 Hellenic Conference on

Artificial Intelligence, Samos, Greece, 2004.

[17] Vozalis, M. and Margaritis, K. G., “On the Combination of User-based and

Item-based Collaborative Filtering”, International Journal of Computer

Mathematics, 81 (9), 1077-1096, 2004.

[18] Vozalis, M., Markos A. I. and Margaritis, K. G., “A Hybrid Approach for

Improving Prediction Coverage of Collaborative Filtering”, In Proceedings of

the 5
th

 IFIP Conference on Artificial Intelligence Applications and

Innovations, Thessaloniki, Greece, 491-498, 2009.

[19] Kaleli, C. and Polat, H., “Similar or Dissimilar Users? Or Both?”, In

Proceedings of the 2009 2
nd

 International Symposium on Electronic

Commerce and Security, Nanchang, China, 184-189, 2009.

46

[20] Nichols, D. M., “Implicit Rating and Filtering”, In Proceedings of the 5
th

DELOS Workshop on Filtering and Collaborative Filtering, Budapest,

Hungary, 31-36, 1998.

[21] Avery, C. and Zeckhauser, R., “Recommender Systems for Evaluating

Computer Messages”, Communications of the ACM, 40 (3), 88-89, 1997.

[22] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R. and

Riedl, J. T., “GroupLens: Applying Collaborative Filtering to Usenet News”,

Communications of the ACM, 40 (3), 77-87, 1997.

[23] Nichols, D. M., Twidale, M. B., and Paice, C. D., “Recommendation and

Usage in the Digital Library”, Technical Report: CSEG/2/1997, Computing

Department, Lancester University, United Kingdom.

[24] Wang, J., de Vries, A. P. and Reinders, M. J. T., “A User-item Relevance

Model for Log-based Collaborative Filtering”, In Proceedings of the 28
th

European Conference on Advances in Information Retrieval, London, United

Kingdom, 37-48, 2006.

[25] Miranda, C. and Jorge, A. M., “Item-based and User-based Incremental

Collaborative Filtering for Web Recommendations”, In Proceedings of the

14
th

 Portuguese Conference on Artificial Intelligence: Progress in Artificial

Intelligence, Aveiro, Portugal, 673-684, 2009.

[26] Papagelis, M., Rousidis, I., Plexousakis, D. and Theoharopoulos, E.,

“Incremental Collaborative Filtering for Highly-scalable Recommendation

Algorithms”, In Proceedings of the 15
th

 International Conference on

Foundations of Intelligent Systems, Saratoga Springs, NY, USA, 553-561,

2005.

[27] Brožovský, L., “Recommender System for a Dating Service”, Master Thesis,

Department of Software Engineering, Charles University in Prague, Czech

Republic, 2006.

[28] Papagelis, M., Plexousakis, D. and Kutsuras, T., “Alleviating the Sparsity

Problem of Collaborative Filtering Using Trust Inferences”, In Proceedings

of the 3
rd

 International Conference on Trust Management, Paris, France, 224-

239, 2005.

47

[29] Sarwar, B. M., Karypis, G., Konstan, J. A. and Riedl J. T., “Analysis of

Recommendation Algorithms for E-Commerce”, In Proceedings of the 2
nd

ACM Conference on Electronic Commerce, Minneapolis, MN, USA, 158-

167, 2000.

[30] Sarwar, B. M., Karypis, G., Konstan, J. A. and Riedl J. T., “Application of

Dimensionality Reduction in Recommender System - A Case Study”, In

Proceedings of the 6
th

 ACM International Conference on Knowledge

Discovery and Data Mining, Workshop on Web Mining for E-Commerce

Challenges and Opportunities, Boston, MA, USA, 2000.

[31] Schein, A. I., Popescul, A., Ungar, L. H. and Pennock, D. M., “Methods and

Metrics for Cold-start Recommendations”, In Proceedings of the 25
th

 Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval, Tampere, Finland, 253-260, 2002.

[32] Leung, C. W., Chan, S. C. and Chung, F., “Applying Cross-level Association

Rule Mining to Cold-start Recommendations”, In Proceedings of the 2007

IEEE/WIC/ACM International Conferences on Web Intelligence and

Intelligent Agent Technology - Workshops, Silicon Valley, CA, USA, 133-

136, 2007.

[33] Linden, G., Smith, B. and York, J., “Amazon.com Recommendations: Item-

to-Item Collaborative Filtering”, IEEE Internet Computing, 7 (1), 76-80,

2003.

[34] Ungar, L. H. and Foster, D. P., “Clustering Methods for Collaborative

Filtering”, In Proceedings of Workshop on Recommendation Systems, 1998.

[35] Popescul, A., Ungar, L. H., Pennock D. M. and Lawrence, S., “Probabilistic

Models for Unified Collaborative and Content-based Recommendation in

Sparse-data Environments”, In Proceedings of the 17
th

 Conference on

Uncertainty in Artificial Intelligence, Seattle, WA, USA, 437-444, 2001.

[36] Teknomo, K., Why Do We Need to Measure Similarity?,

http://people.revoledu.com/kardi/tutorial/Similarity/Applications.html,

Accessed on November 1, 2012.

48

[37] Keßler, C., “Similarity Measurement in Context”, In Proceedings of the 6
th

International and Interdisciplinary Conference on Modeling and Using

Context, Copenhagen, Denmark, 277-290, 2007.

[38] McGill, M., “An Evaluation of Factors Affecting Document Ranking by

Information Retrieval Systems”, Project Report, School of Information

Studies, Syracuse University, Syracuse, NY, USA, 1979.

[39] Massa, P. and Avesani, P., “Trust-aware Collaborative Filtering for

Recommender Systems”, In Proceedings of the 2007 ACM Conference on

Recommender Systems, Minneapolis, MN, USA, 17-24, 2004.

[40] Polat, H. and Du, W., “Privacy-preserving top-N Recommendation on

Distributed Data”, Journal of the American Society for Information Science

and Technology, 59 (7), 1093-1108, 2008.

[41] Vozalis, M. and Margaritis, K. G., “Unison-CF: A Multiple-component,

Adaptive Collaborative Filtering System”, In Proceedings of the 3
rd

International Conference on Adaptive Hypermedia and Adaptive Web-based

Systems, Eindhoven, The Netherlands, 255-264, 2004.

[42] Balabanović, M. and Shoham, Y., “Fab: Content-based, Collaborative

Recommendation”, Communication of the ACM, 40 (3), 66-72, 1997.

[43] Balabanović, M., “An Adaptive Web Page Recommendation Service”, In

Proceedings of the 1
st
 International Conference on Autonomous Agents,

Marina del Rey, CA, USA, 378-385, 1997.

[44] Balík, M. and Jelínek, I., “Collaborative Filtering Support for Adaptive

Hypermedia”, In Proceedings of the 9
th

 International Conference on Web

Engineering, San Sebastián, Spain, 55-60, 2009.

[45] Melville, P., Mooney, R. J. and Nagarajan, R., “Content-boosted

Collaborative Filtering for Improved Recommendations”, In Proceedings of

the 18
th

 National Conference on Artificial Intelligence, Edmonton, Alberta,

Canada, 187-192, 2002.

[46] Billus, D. and Pazzani, M. J., “Learning Collaborative Information Filters”,

In Proceedings of the 15
th

 International Conference on Machine Learning,

Madison, WI, USA, 46-54, 1998.

49

[47] Robu, V. and La Poutré, H., “Learning the Structure of Utility Graphs Used

in Multi-issue Negotiation through Collaborative Filtering”, Lecture Notes in

Computer Science, 4078, 192-206, 2009.

[48] Miyahara, K. and Pazzani, M. J., “Collaborative Filtering with the Simple

Bayesian Classifier”, In Proceedings of the 6
th

 Pacific Rim International

Conference on Artificial Intelligence, Melbourne, Australia, 679-689, 2000.

[49] Miyahara, K. and Pazzani, M. J., “Improvement of Collaborative Filtering

with the Simple Bayesian Classifier”, Information Processing Society of

Japan, 43 (11), 2002.

[50] Cha, S.-H., Yoon, S. and Tappert, C. C., “On Binary Similarity Measures for

Handwritten Character Recognition”, In Proceedings of 8
th

 International

Conference on Document Analysis and Recognition, Seoul, Korea, 4-8, 2005.

[51] Zhang, B. and Srihari, S. N., “Binary Vector Dissimilarity Measures for

Handwriting Identification”, Document Recognition and Retrieval X, 5010

(1), 28-38, 2003.

[52] Tubbs, J. D., “A Note on Binary Template Matching”, Pattern Recognition,

22 (4), 359-365, 1989.

[53] Stata Corp. LP, Stata 12 Help for Measure Option,

http://www.stata.com/help.cgi?measure+option, Accessed on November 1,

2012.

[54] GroupLens Research, Data Sets, http://www.grouplens.org/node/12,

Accessed on November 1, 2012.

[55] Friedman, N., Geiger, D. and Goldszmidt, M., “Bayesian Network

Classifiers”, Machine Learning, 29, 131-163, 1997.

[56] StatSoft Inc., Electronic Statistics Textbook,

http://www.statsoft.com/textbook/naive-bayes-classifier/, Accessed on

November 1, 2012.

[57] Ghani, R. and Fano, A., “Building Recommender Systems using a

Knowledge Base of Product Semantics”, In Proceedings of the 2
nd

International Conference on Adaptive Hypermedia and Adaptive Web-based

Systems, Workshop on Recommendation and Personalization in E-

Commerce, Malaga, Spain, 2002.

http://www.grouplens.org/node/12

50

[58] Gutta, S., Kurapati, K., Lee, K. P., Martino, J., Milanski, J., Schaffer, J. D.

and Zimmerman, J., “TV Content Recommender System”, In Proceedings of

the 17
th

 National Conference on Artificial Intelligence, Austin, TX, USA,

1121-1122, 2000.

[59] Karypis, G., “Evaluation of Item-based top-N Recommendation Algorithms”,

In Proceedings of the 10
th

 International Conference on Information and

Knowledge Management, Atlanta, GA, USA, 247-254, 2001.

