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In this thesis, two different neuro-fuzzy models which use wavelet basis
functions in its processing units are proposed for time series prediction and system
identification problems. The structure of introduced models comes from the idea of
adaptive neuro-fuzzy inference system (ANFIS) which is used for obtaining fuzzy rule
base from the input-output data of an unknown function. The first model in this thesis is
called as adaptive wavelet network (AWN) in which wavelet basis functions are used as
membership functions in antecedent part of the rules whereas mostly Gaussian type
membership functions are used in the ANFIS. In the second model which is called as
fuzzy wavelet neural network (FWNN), wavelet basis functions are used in consequent
part of the rules instead of zero or first order polynomial function in the ANFIS. A fast
training gradient algorithm based on quasi-Newton methods is used to obtain the
optimal values for unknown parameters of the FWNN models. The AWN models
are trained by a hybrid algorithm which combines gradient algorithm with least
square estimation. Simulation examples of some benchmark problems in the

literature are also given to illustrate the effectiveness of models.

Keywords: Fuzzy Wavelet Neural Networks, System Identification, Time Series

Prediction, Wavelet, Wavelet Neural Networks
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OZET

Yiiksek Lisans Tezi

ZAMAN SERISI KESTIRIMI ICIiN
YENI BiR DALGACIK BULANIK AG TASARIMI

Sevcan YILMAZ

Anadolu Universitesi
Fen Bilimleri Enstitiisii
Bilgisayar Miihendisligi Anabilim Dal

Danisman: Doc¢. Dr. Yusuf OYSAL
2009, 58 sayfa

Bu tezde, islem birimlerinde dalgacik fonksiyonu kullanan iki farkl
bulanik sinir ag1 modeli zaman serisi kestirimi ve sistem tanimlamasi problemleri
igin Onerilmistir. Bu modellerin yapisi, bilinmeyen bir fonksiyonun giris-¢ikis
verisinden bulanik kural tabanimi elde etmek icin kullanilan adaptif sinirsel
bulanik ¢ikarim sistemi (ASBCS) fikrinden gelmektedir. Bu tezde adaptif
dalgacik ag (ADA) olarak adlandirilan birinci modelde dalgacik fonksiyonlari
kurallarin kosul kisminda iiyelik fonksiyonu olarak kullanilmaktadir. ASBCS’de
ise genellikle Gaussian tipindeki iiyelik fonksiyonlar1 kullanilmaktadir. Bulanik
dalgacik sinir ag1 (BDSA) olarak adlandirilan ikinci modelde, dalgacik
fonksiyonlar1 kurallarin sonu¢ kisimlarinda ASBCS’ deki sifirinci ya da birinci
dereceden polinom yerine kullanilmistir. Yaklagsik Newton yontemine dayanan
hizlh bir gradyan egitim algoritmasi BDSA modellerinin  bilinmeyen
parametrelerinin optimal degerlerini bulmak icin kullanilmistir. ADA modelleri
gradyan algoritmasini en kii¢lik kareler yontemiyle birlestiren bir hibrit algoritma
kullanilarak egitilmistir. Literatiirde Olgilit olarak kullanilan bazi benzetim

ornekleri de modellerin etkisini gostermek i¢in verilmistir.

Anahtar Kelimeler: Bulanik Dalgacik Sinir Aglari, Sistem Tanimasi, Zaman

Serisi Kestirimi, Dalgacik, Dalgacik Sinir Ag1
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1. INTRODUCTION

In recent years, wavelets have become very popular and have been applied
in many scientific and engineering research areas such as system identification,
signal processing, function approximation, pattern recognition and data
preprocessing. The idea of combining wavelets with neural networks (NN) has led
to the development of wavelet neural networks (WNN). WNNs can be easily
trained and give high accuracy because of time-frequency localization properties
of wavelets.

On the other hand, neuro-fuzzy systems which integrate learning capability
of neural networks with perfect inference mechanism of fuzzy systems are also
used for nonlinear function approximation, system identification and pattern
recognition. These neuro-fuzzy systems have fast and accurate learning, good
generalization capabilities and the ability to accommodate both data and expert
knowledge about the problem under consideration.

In this thesis, the aim is to combine neuro-fuzzy systems with wavelet
functions to increase the performance of neuro-fuzzy systems for system
identification and time series prediction problems.

The rest of this chapter is organized as follows. The detailed information
about NNs will be given in Section 1.1. While wavelets will be introduced in
Section 1.2, WNNs will be illustrated in Section 1.3. In Section 1.4, the properties
of neuro-fuzzy systems will be described. Fuzzy wavelet neural networks
(FWNN) will be explained in Section 1.5. Finally, organization of thesis will be

presented in Section 1.6.
1.1. Neural Networks

NNs are nonlinear mapping structures based on the function of human
brain. They are powerful tools for modeling, especially when the underlying data
relationship is unknown. A NN involves a number of processing units called
neurons which communicate by sending signals to each other over a large number
of weighted connections [1]. Neurons can carry out their computations in parallel.
NNs derive their computing power through two important characteristics [2].

These are parallel distributed structure of NNs and generalization property of



NNs. Generalization refers to the NN producing reasonable outputs to the inputs
not encountered during training (learning). These two information-processing
capabilities make it possible for NNs to solve complex problems.

There are several types of NNs. Some of them are feed-forward NNs,
recurrent NNs and radial basis function (RBF) networks. In feed-forward NN, the
data flow from input to output is strictly feed-forward and there can be multiple
layers of neurons but no feedback connections are present[1]. Recurrent NNs
contain feedback connections and the dynamical properties of recurrent NN are
important contrary to feed-forward NNs [1]. RBF networks use RBFs as
activation functions. RBF networks typically have three layers: an input layer, a
hidden layer with radial basis activation functions and output layer. RBF networks
are universal approximators. This means that a RBF network with enough hidden
neurons can approximate any multivariate continuous function with arbitrary

precision [2].
1.2. Wavelets

Wavelets are functions that satisfy certain mathematical requirements and
are used in representing data or other functions. They are generated by one

function W (x), called the mother wavelet, by dilation and translation:

1 x—b
y c(x)z—v/( J (1.1)
b, \/Z c
In (1.1), c is the dilation factor and b is the translation factor and the factor
¢’ is for energy normalization across the different scales.
The mother wavelet satisfies the following condition called compatibility

condition:

¥ ()]

]

dw <o (1.2)

oS =38

where W(w) is the Fourier transform of W(x). The compatibility condition

implies the average value of the wavelet in the time domain must be zero:



T‘P(x)dsz (1.3)

and therefore wavelets must be oscillatory, in other words W¥(x) must be a wave.

A certain class of functions can be represented as linear combinations of
the wavelets. That is, the functions are represented as finite linear combinations of
the translated and dilated versions of wavelet functions. Wavelet representations
are more efficient than Fourier series representations where the signal changes its
behavior with time [3, 4]. Both wavelet and Fourier representations are localized
in frequency however wavelets are localized in time while Fourier sine and cosine
functions are not [5]. This feature makes wavelets more efficient than Fourier
representations in function approximation. In addition, a wavelet is more flexible
since we can choose suitable mother wavelet from various types of wavelets
according to our signal to be analyzed whereas Fourier representation has fixed

basis namely the sine and cosine functions [4].
1.3. Wavelet Neural Networks (WNN)

The idea of combining both wavelets and NNs has resulted in the
formulation of WNNs [6-8]. NNs have learning and generalization abilities,
nonlinear mapping and parallelism of computation however they require large
number of neurons for approximation problems. In addition, their convergence is
generally slow. However, WNNs converge quickly, can be easily trained and give
high accuracy because of time-frequency localization properties of wavelets. The
main characteristic of a WNN is that wavelet functions are used in hidden layer of
NN as activation functions instead of local functions in time such as Gaussian and
sigmoid functions. The WNN is a nonlinear regression structure which represents
input-output mappings by dilated and translated versions of wavelet functions
which have time-frequency localization properties.

At present, there are two kinds of WNN structure. In the first one, wavelets
as activation functions stem from continuous wavelet transform. Therefore,
dilation and translation parameters of wavelet function can be any real positive

number and these parameters and output layer weights can be adjustable. In the



second type, again wavelets as activation functions stem from discrete wavelet
transform. But in this case the dilation and translation parameters of wavelet
functions are fixed, and only the output layer weights are adjustable.

Several WNN models are proposed in literature [9-12]. In [9], a local
linear wavelet neural network is presented and it is an example of first type of
WNNs mentioned above. In this network, connection weights between hidden
layer and output layer are replaced with a local linear model whereas in
conventional WNNSs, these weights are adjustable constant values. In [10], a linear
wavelet network which combines conventional WNN with weighted linear
summation of inputs is proposed. In [11], the WNN which is second type of
wavelet networks mentioned above is proposed for medium and high dimensional
problems, it decomposes a multidimensional function into a number of low-
dimensional sub-models which are expanded using wavelet decomposition. In
[12], Bayesian approach is applied to wavelet networks for nonparametric

regression.
1.4. Neuro-Fuzzy Systems

Every intelligent technique such as NNs, fuzzy logic has particular
computational properties and these make them suitable for particular problems.
While NNs offer advantages such as learning, parallelism and generalization, they
are not explaining how they reach their decisions [13]. Fuzzy logic systems are
good at explaining their decisions but they cannot automatically acquire the rules
they use to make those decisions [13]. Therefore, combination of NNs and fuzzy
logic systems which is called neuro-fuzzy system overcomes the limitations of
individual techniques. Neuro-fuzzy systems can obtain the fuzzy rule base from
the given input-output data.

One of the popular neuro-fuzzy systems is adaptive neuro-fuzzy inference
system (ANFIS) [14]. ANFIS is functionally equivalent to Sugeno’s inference
mechanism. In a Sugeno fuzzy model, input space is divided into fuzzy regions
and these regions show fuzzy membership functions in the antecedent part of the

fuzzy rules. The consequents of these rules are represented by either a constant or



a linear function of inputs. The structure of the ANFIS is explained in detail in

Chapter 2.
1.5. Fuzzy Wavelet Neural Networks

FWNNs combine wavelets with neuro-fuzzy systems in order to increase
the power of these techniques significantly. FWNNs take advantages and
properties of NNs, fuzzy logic and wavelets. These are generalization and learning
ability of NNs, time-frequency localization properties of wavelets and inference
mechanism of fuzzy logic systems.

In the literature, several FWNN models are proposed for time series
prediction, system identification and control problems [15-22]. In [15] and [16],
each fuzzy rule is represented by a sub-WNN which consists of single-scaling
wavelets that is same dilation parameter for all dimensions and orthogonal least-
square algorithm is used to select important wavelets. The resulting network is
used for function approximation in [15] and control of nonlinear systems in [16].
In [17], the proposed model consists of a set of if—then rules and, then parts are
series expansion in terms of wavelets functions and this model is applied to
system modeling. In [18], both sigmoid and wavelet functions are used in hidden
layer of WNN and the output of this new WNN is calculated by multiplication and
summation of these results. Then, this WNN is used in consequent parts of if-then
rules in FWNN. In [19], a dynamic recurrent fuzzy wavelet network for identified
nonlinear dynamic systems is proposed. In [20], the inputs enter into discrete
wavelet transform block, the output of this block is fuzzified and it forms the
input to a single neural network and this model is used for system identification
and control problems. The FWNN proposed in [21] uses summation of dilated and
translated versions of wavelet functions in consequent part of fuzzy rules for

system identification and control purposes.
1.6. Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2, the structure and
learning algorithm of ANFIS will be explained in detail and then the work in this
thesis will be introduced. In Chapter 3 and Chapter 4, two different neuro-fuzzy



models proposed in this thesis which use wavelet functions in their processing
units are explained in detail with their structures and learning algorithms. These
models are tested for both time series prediction and system identification
problems and simulation results for these tests are given in Chapter 5. Finally,

conclusion is drawn in Chapter 6.



2. BACKGROUND

In this chapter, firstly structure and learning algorithm of the ANFIS will
be explained in detail in sections 2.1 and 2.2 respectively. Then, least squares
estimation (LSE) will be described in Section 2.3 and finally, the aim and the

proposed work in this thesis will be introduced in Section 2.4.
2.1 Adaptive Neuro-Fuzzy Inference System

The ANFIS is a Sugeno type fuzzy system that put in the framework of
adaptive systems to facilitate learning and adaptation [14]. In a Sugeno fuzzy
system, input space is divided into fuzzy regions and these regions show fuzzy
membership functions in the antecedent part of the fuzzy rules. These membership
functions can be triangular, bell shape or Gaussian type functions. The
consequents of these rules are represented by either a constant or a linear function
of inputs. The ANFIS structure is organized to give the output of this predefined
fuzzy system. Unknown parameters of the fuzzy rules are learnt by hybrid

learning algorithm.

Layer I Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
X, X
Ay /1:[\ N1 @\Ull ! g1,
X 11
Aps /1:[\ N2 /N\Uu — g1 i
y Y
7l Ta1
Ay I N21 '\fl_vjn“ — ga1
x faz
2
Asy @ N22 kNjﬂzz =3 9.

Figure 2.1. The structure of ANFIS

For simplicity, the ANFIS to be explained here has two inputs and one

output, and each input has two membership functions and output is the linear



combination of first order polynomial of input variables. For example, the first

fuzzy rule of this ANFIS is defined as follows:
IF x, is 4, AND x, is 4,, THEN g,, = p,,x, +q,x, + 1,

The ANFIS structure is shown in Figure 2.1. The node functions in the same

layer are selected from the same function family as described below:

e Layer I: This layer is the input layer. Each neuron in this layer transmits
external crisp input signals (x; and x;) directly to the next layer.

e Layer 2: This layer is fuzzification layer. Neurons in this layer represent
fuzzy sets used in the antecedents of fuzzy rules. The outputs of this layer
are the values of the membership functions. The jth Gaussian type

membership function for the ith input is given by:

1 X =My o . .
A,(5) =exp(- (F—=0)) =12 and j=1,2 2.1)
o

ij

e Layer 3: This layer is fuzzy rule layer. Each neuron in this layer represents
activation strength of a fuzzy rule. The output of this layer is equal to
multiplication of coming signals.

My = A, (%) 4y, (x,) i=1,2 and j=1,2 (2.2)

e Layer 4: This layer is normalization layer. Each neuron in this layer

calculates the normalized activation strength of a given rule by:

i=1,2 and j=1,2 (2.3)

e Layer 5: This layer is defuzzification layer. Each neuron in this layer
receives initial inputs (x; and x,) and the normalized activation strengths
calculated previous layer as input and calculates the weighted consequent

value of a given combination as follows:
fi‘ = ;i'gi‘

g ey (2.4)

=1 (pijxl +q;% + rij)

e Layer 6: This layer is output layer. It computes the overall output of

system as follows:



2
y=22.71 i=1,2 and j=1,2 2.5)
i=l j=1

2.2 Hybrid Learning Algorithm for the ANFIS

The unknown parameters of the ANFIS networks are nonlinear parameters
(u and o) in premise part of the rules and linear parameters (p, ¢ and r) in
consequent part of the rules. The combination of gradient method and least
squares estimation (LSE) method is used to update the unknown parameters of the
ANFIS networks. Each epoch of this hybrid learning procedure consist of two
stages: a forward pass and a backward pass. In the forward pass, outputs of all
layers up to 6" layer are calculated and consequent parameters are updated using
LSE method. In the backward pass, error functional in (2.6) is calculated and
premise parameters are updated using gradient descent algorithm. Error functional

is defined as:

2.¢ (2.6)

where e shows the prediction error. In gradient descent algorithm, gradients of the
error functional with respect to all unknown parameters are required. Parameter

update rules for nonlinear parameters are defined by following formulas:

OE

Heg = He =T (2.7)
Oty

0,,=0,— ra—E (2.8)
oo,

where 7 is step size in the algorithm. The error rate of overall output is reduced
each iteration of the algorithm. The stages of hybrid algorithm are summarized in

Table 2.1.

Table 2.1. Two stages in the hybrid learning algorithm for the ANFIS

Forward Pass | Backward Pass

Premise Parameters Fixed Gradient Descent

Consequent Parameters LSE Fixed
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2.3 Least Square Estimation

In the general least squares problem, the output of a linear model y is given

by linearly parameterized expression [23]:

y:fl(u)ﬁ1 +f2(u)92+...+fn(u)6’n (2.9
where u is the model’s input vector, f;, -, f, are known functions of u, and

0;,+,6, are unknown parameters to be estimated. If we have a training set with m

input-output pairs, our system is defined as follows:

fl(ul)é?l +f2(u1)02 +...+fn(ul)l9n =y,

:fl(uz)é?l+f2(u2)6’2+...+fn(u2)l9n:yz (2.10)

where m > n needs to be solved in parameters 6; with minimal error. LSE method
solves this problem with matrix arithmetic as;

A0 =y, such that;

Hlw) - S () 6 Y
A=| 1 L o=, y=| @.11)

~f1 (ul) o f;1 (um) mxn 0’1 nxl Ym mx1

For conditions wherem > n, an exact solution cannot be found since the
matrix 0 is non-square. To help the solution, an error parameter is added to (2.10)

and a performance criteria is obtained:

E(é?):%eTe:%(y—Aé?)T(y—Aé?) (2.12)

and we obtain a prediction value of parameters 6 which will minimize (2.12) as:
O=(4"4) A"y (2.13)
When training the ANFIS, 4 is a matrix consisting of normalized

activation strength (7), x; and x; values, and 6 is a vector whose element values

are p, g and r.
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2.4 The Proposed Networks in this Thesis

In this thesis, two different neuro-fuzzy systems which use wavelet
functions in their processing units are designed for system identification and time
series prediction problems. As explained in first chapter, wavelet functions have
important properties such as time-frequency localization and these properties
make wavelets suitable for function approximation problems. The structures of
proposed networks are similar with ANFIS networks. The differences between
ANFIS and proposed models are shown in Figure 2.2. The first network which is
called as adaptive wavelet network (AWN) in this thesis uses wavelets as
membership functions in the second layer of the ANFIS structure whereas the
ANFIS networks use generally Gaussian type membership functions. Both
constant function and first order polynomial of inputs are used in the consequent
part of the rules and this is same with ANFIS networks. The AWN model will be
explained in Chapter 3. The second network which is called as fuzzy wavelet
network (FWNN) uses wavelets in the consequent part of the rules instead of
constant function or first order polynomial of inputs in the ANFIS. The premise
part of the rules is same with ANFIS networks. The FWNN model will be
explained in Chapter 4.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
—

d11

=

xq

912 N fiz

1z

X2

A,

922

FWNN

Figure 2.2. The difference between ANFIS and AWN (dashed line), and between ANFIS and
FWNN (solid line)
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3. ADAPTIVE WAVELET NETWORK (AWN)

In this chapter, AWN will be described. The structure of AWN is similar
to the ANFIS. This network uses wavelet basis functions in second layer as
membership functions while ANFIS uses generally Gaussian type membership
functions. A hybrid learning algorithm which combines LSE and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) gradient method is used for training the

network.
3.1. Gaussian and Wavelet Basis Functions

In the ANFIS, membership functions are local basis functions such as
Gaussian function shown in Figure 3.1. The local basis functions are active for
only certain inputs. However, Gaussian function is not local in frequency as seen
in Figure 3.2. The locality features both in time and frequency is a very important
concept for representation of the signals. Therefore, the mission of the wavelet

functions is comprehensive.

/ R Mexican Hat
, . - - - - Gaussian

output

Figure 3.1. Gaussian and Mexican Hat functions
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Mexican Hat
- - - - Gaussian

25¢

2 L
[0
el
2

Z 15¢
€
@©

1 L

0.5

0

frequency w

Figure 3.2. The Fourier transform of Gaussian and Mexican Hat wavelet functions

Mexican Hat wavelet function is the second derivative of Gaussian
function. Non-orthonormal Mexican Hat basis function can be easily written in

the analytical form and its Fourier transform can be easily calculated as given

below:
y/(x):(l—xz)exp(—x?z), XER 3.1)
w(w) =270 exp(—%z), weR (3.2)

where ® is a real frequency. The Mexican Hat wavelet function can be
generalized with translation (b) and dilation (c¢) parameters as follows:

x—>b x—b
)=(1—(

C C

x—b

C

w( )) (3.3)

1
)*)exp(——(

2
Translation parameter determines the center position of the wavelet as

shown in Figure 3.3, whereas dilation parameter controls the spread of the wavelet

as shown in Figure 3.4.
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output

output

Figure 3.4. Illustration of the dilation parameter effect on Mexican Hat wavelet function

The time and frequency envelope of the Mexican Hat function is shown in
Figure 3.4 and Figure 3.5, respectively. Wavelet functions have efficient time-
frequency localization properties as shown from the frequency spectrum [24]. If
the dilation parameter is changed, the support region width of the wavelet
function changes, but the number of cycles doesn’t change. That is, the peak

number doesn’t change. However, when the dilation parameter decreases, the
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peak point of the spectrum shifts to higher frequency. Therefore, all frequency

spectrums can be obtained by changing the dilation parameter.

35¢ \ N c>1 1

amplitude

frequency w

Figure 3.5. Illustration of the dilation parameter effect on Mexican Hat wavelet function’s Fourier

transform

A deficiency of Gaussian based ANFIS networks doesn’t have localization
capability in frequency. As shown in Figure 3.2, Gaussian function is not local in
frequency. Therefore, it is very difficult to use Gaussian based functions in some
applications [25]. To overcome these problems, it is very effective way to use

wavelet functions with time-frequency localization properties.
3.2. Structure of the Adaptive Wavelet Network

The new network called AWN uses Mexican hat wavelet function as
membership functions. Consequent part of the rules is either constant function or
first order polynomial like the ANFIS networks. The six layer structure of the
AWN is shown in Figure 3.6.
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Laverl  Layer2 Layer 3 Layer 4 Laver 3 Layer 6
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Figure 3.6. The structure of AWN

Layer 1: This layer is the input layer. Neurons in this layer simply cross

the crisp input signals x, , x, ,..., x, to the second layer.

Layer 2: The outputs of this layer are the values of wavelet basis functions
which are used as membership functions. There are total / membership
functions for the first input, /,for the second input and so on. Following

equation shows ijth membership function for jth input variable.

i X =b, ., 1 5=h s
W = (1= () exp(- S (——)) (3-4)

lj g

where j=1,2,...,nand i, =12,.,1

Layer 3: The activation strength of the each combination of the inputs is
represented by the product operator in the AWN network in this layer.

Thus, the output of a neuron in the third layer is:

=117 (3.5)

where [ = i]ig...in, i1= ],...,11, i2= ],...,12,‘..,1',1:],‘..,[”
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Each possible combination of membership functions of all inputs

represents a rule in this layer. Thus, total number of rules m is given by:
m= Hli (3.6)
i=1

e Layer 4: This layer is the normalization layer. Each neuron in this layer

calculates the normalized activation strength of a given rule by:

m=—l  a=1..m (3.7)

e Layer 5: This layer calculates the weighted consequent value of a given

combination as:

fi=mg  (=1..m (3.8)

Two types of AWN model are proposed in this thesis. The first
model is zero order AWN (AWN-Z) model where g; is a constant function.
The second model is first order AWN (AWN-F) model where g; is a first

order polynomial function of inputs, i.e.
g =k for AWN-Z model (3.9
g =k+ Z DX, for AWN-F model (3.10)
i=1

The first four layers and last layer are same for both zero and first
order AWN models. Only the fifth layer differs in these models.
e Layer 6: This layer contains only a single node and it computes the overall

output as the summation of all incoming signals, which is given by:

y=if1 (3.11)

3.3. A Hybrid Training Algorithm for AWNs

The total AWN network parameters to be trained are translation
parameters (b) and dilation parameters (¢) of wavelet basis functions, and zero and
first order model output layer parameters (k and/or p). The number of these

unknown parameters is given in Table 3.1 for each AWN model. For example, in
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two inputs one output model with two wavelet membership functions for each
input, there are 8 wavelet function parameters and 4 constant output layer
parameters for zero order AWN model. If this network is a first order AWN
model, the number of wavelet function parameters is the same; however there will

be 12 first order polynomial parameters in the output layer to be determined.

Table 3.1. The number of unknown parameters for the AWN models

Parameters b c k p
Models
Zero order AWN Z l; Z l; m 0
i-1 i-1
First order AWN Z li Z li m nm
-1 -1

The AWN training is to encapsulate a given arbitrary function or input-
output pairs by adjusting network parameters. This is done by minimizing the
error functional. For the purpose of training an AWN, mean square error (MSE) is

selected as a performance index which is given by:
1 & )
E=—> (-7, (3.1
N k=1

N is the number of input-output pairs of the function to be approximated, y, is the
desired output, and y is the AWN output.

Training process is achieved in two stage: The first stage, which is referred
to as “forward pass”, consists of calculating the outputs of all layers up to 6™ layer
by randomly initializing wavelet function parameters (b and c¢) concerning the
input variable ranges and finding the initial values of output layer parameters (k
and/or p) using LSE. The second part named “backward pass” is completed only
when performance index is calculated and, wavelet function and output layer
parameters are updated using BFGS gradient method. This hybrid training
algorithm for AWN is similar to training algorithm for the ANFIS networks.

However, LSE is used only once at the beginning for initialization of output layer
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parameters. Then, BFGS gradient method has been used for updating of all

unknown parameters at each epoch.
3.3.1. Broyden-Fletcher-Goldfarb-Shanno gradient method

BFGS is one of the approximate second order algorithms and derived from
Newton’s method in optimization which is a class of hill-climbing optimization
techniques. It tries to seek the stationary point of a function, where the gradient is
zero [26]. It is assumed that at the each iteration of the training algorithm,

gradients of the performance index with respect to all unknown parameters (p) of

the network, g = Z— is computed. Parameter update rules of BFGS algorithm is

given by:
SR _ Kk gk (3.13)
& = min X +zd%) (3.14)
dF =k gh (3.15)

Here p is the parameter to be updated, d is the search direction, 7 is the optimal

step size along the search direction, g is the cost gradient with respect to

parameter p and H = (V p/ )_1 is the inverse of the approximate Hessian matrix

given by:
k,« k\T ko kT
k4l Ap~(Agp) Kk Ap~(Agp)
gl | 22 08p) k) 2P BEp)
(Apk)TAgk (Apk)TAgk
p p (3.16)
N ap* )T a0 _;
kT « k7 N
(Ap™)" Agp

Ap and Ag are the backward differences of the parameter and gradient vectors,
respectively. They provide the history of parameter and gradient changes yielding
approximate second order information. The method is faster than the simple

gradient method and more robust than simple conjugate gradient approach [26].
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3.3.2. Gradients of unknown parameters for the AWN

The cost gradients with respect to network parameters are required for a
gradient based algorithm. These are calculated by the following formulas for

i=I..,n; 1=1,...mandj=1,...,n

OE OE —

o> _2= 3.17
ok oy A7
OF :G_Em x, for AWN-F model (3.18)
oy Oy
2 2
X-—bl-‘ x.—b,._ X<_bi.

aE 6E 8y (J . ,) 3_ J . exp _l J J (319)
ob,  dyovi ¢ 2L

(x 5 )2 b 2 b 2

i —0; X.— 3 X, — i

sfj (Zf ;; j . / 3{ J /J exp _l[ d JJ (3.20)
J iy

i

N

OE 2
=_Z - 3.21
& N;Wyﬂ (3.21)

Here for the above calculations, partial derivative of the output y with
respect to membership functions of each input variable is needed. For the first

variable, this can be calculated as follows for i;=1,...,/;:

ay z zgl112 ZH\Plk(xk) yz z ‘Plk(xk

o =22 T (3.22)
ne DHIDN § N

i=1i,=1 i,=1 k=1

The calculations can be easily generalized for the other input variable
membership functions.

For single-input-single-output (SISO) AWN model, the output can be
calculated using (3.23) where x; is input variable which has /; membership
functions. The partial derivative of membership functions in (3.22) becomes

(3.24) for SISO AWN model.
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Z &, P (x)
=1

o (& -V

Gi=1..1)

a‘Pil(xl)_ ll k
i(x,)
Z:l 1\

21

(3.23)

(3.24)
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4. FUZZY WAVELET NEURAL NETWORK (FWNN)

The FWNN models proposed in this thesis are obtained from the
traditional Sugeno fuzzy system by replacing the consequent part of fuzzy rules
with wavelet basis functions that have time and frequency localization properties.
Three type of FWNN models are proposed in this thesis. The first and last model
use summation and multiplication of dilated and translated versions of single
dimensional wavelet basis functions, respectively and in the second model,
consequent parts of the rules consist of radial function of wavelets. A fast training
gradient algorithm, BFGS, is used to obtain the optimal values for unknown

parameters of the FWNN models.
4.1 The Structure of Wavelet Neural Network

The main characteristic of a WNN is that wavelet functions are used in
hidden layer of neural network as activation functions instead of local functions in
time such as Gaussian and sigmoid functions. The structure of a WNN shown in
Figure 4.1 involves three layers: an input layer, a hidden layer, an output layer.

The output of a WNN is given by:

C.

k k 2 [ x—b,
y=2w¥ =2 wle| v|— (4.1)
i=1 i=1 i

where y; is the wavelet activation function of ith unit of hidden layer and w; is the
weight between hidden and output layer. x is input vector, b; and ¢; are translation

and dilation parameters of wavelet functions.

Figure 4.1. The structure of Wavelet Neural Network
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Wavelet functions have efficient time-frequency localization properties.
Localization of the ith unit of hidden layer is determined by translation and
dilation parameters of a wavelet function. As explained in previous chapter,
translation parameter determines the center position of the wavelet, whereas
dilation parameter controls the spread of the wavelet.

When input space is n dimensional, wavelet basis function can be

calculated by product of # single dimensional wavelet basis function.

V) = () =] [0 () (4.2)

Another popular scheme to represent multidimensional wavelets is to
choose the wavelets to be some radial functions. For example, » dimensional

Mexican hat wavelet can be expressed as
)
v (x) = (A= exp(-E1) (4.3)

n
2
where ||x|| =x'x= lez :
i=1

4.2. The Structure of Fuzzy Wavelet Neural Network Models

The FWNN models combine Sugeno fuzzy system with wavelet functions.
In a Sugeno fuzzy model, input space is divided into fuzzy regions and each
region shows a fuzzy membership functions for an input variable. The
consequents of fuzzy rules are represented by either a constant or a linear function
of inputs. In this part of the thesis, constant or linear functions in consequent part
of the rules are substituted with wavelet functions in order to increase
computational power of neuro-fuzzy systems because, wavelets have
multiresolution property. This property is very useful for function approximation
problems. The wavelets can capture global (low frequency) and local (high
frequency) behavior of any function easily. This characteristic leads to the
proposed FWNN to be of the advantages of fast convergence, easy training and

high accuracy. The rules are in following form:

IF x, is 4" AND x, is 4> AND ... AND x is 4" THEN ¥, (x)
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wherex,, x,,...,x, are input variables, A/is ith Gaussian type membership

function (MF) for jth input and ¥, (x) which is a function of inputs is /th output of

fuzzy rule. In this study, three different FWNN models are proposed according to
consequent part of the rules. The first one is summation FWNN (FWNN-S) which
uses summation of translated and dilated versions of single dimensional wavelet
functions in consequent part of the rules. Multiplication of single dimensional
wavelet functions are used in the second model which is called as multiplication
FWNN (FWNN-M). In the last model, radial FWNN (FWNN-R), consequent part
of the rules consists of radial function of wavelets.

The six layer structure of the FWNN models are shown in Figure 4.2.

Layer!  Layer?2 Layer 3 Layer 4 Layer5 Layer6
Xy Xy .. Xp
(DL
Xy
— w
. 7 f
M2 m M2
~ N > L[J
| f2
Y
X _ h
M
=
fn
M
Xn > L[}
|

Figure 4.2. The structure of Fuzzy Wavelet Neural Network

e Layer I: This layer is the input layer. Neurons in this layer simply cross

the crisp input signals x, , x, ,..., x, to second layer.

e Layer 2: This layer is the fuzzification layer and neurons in this layer
represent the fuzzy sets used in the antecedents of the fuzzy rules. A
fuzzification neuron receives a crisp input and determines the degree to

which this input belongs to the neuron’s fuzzy set. The outputs of this
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layer are the values of membership functions for input values. There are

total /, membership functions for the first input, /, for the second input and

so on. Following equation shows ith Gaussian membership function for

jth input variable.

A = LA R NP di =121 4.4
j _exp(_E(T)) J=L<Z,...,n an l_/_ s Lok ( . )

1

Layer 3: This layer is the fuzzy rule layer. Each node in this layer
represents a fuzzy rule. In order to calculate the firing strength of each
rule, multiplication is used as AND (t-norm) operator. The output of the

/th node in this layer is

n=114x) 45)

where [=iis...i,, i;1=1,...,0;, i>=1,....0,....i,=1,....1,

Each possible combination of membership functions of all inputs
represents a fuzzy rule. For example, /th rule in Figure 4.2 comprises from
second membership functions of first and second inputs and last
membership function of the last input. Thus total number of rules m is

given by:

m=]11 (4.6)

Layer 4: This layer is the normalization layer. Each neuron in this layer

calculates the normalized activation strength of /th rule by:

7, =—l_ (a=1..m) 4.7)

The normalized activation strength is the ratio of the activation
strength of a given combination to the sum of activation strengths of all
combinations. It represents the contribution of a given combination to the

final result.
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e Layer 5: This layer calculates the weighted consequent value of a given

rule as follows for/ = 1,...,m

fi=nY, (4.8)
For FWNN-S:

¥, }:M@(l i ”)) pC— (2 ”)) 4.9)
For FWNN-M:

—WzH(l (= ”)) p(——( ”) )tp, (4.10)

zl
For FWNN-R:

el L L2l

¢ ¢

=w(-C——7" ——))+p (41D
e Layer 6: This layer contains only a single node and it computes the overall

output as the summation of all incoming signals, which is given by:

m

y:Zﬁ (4.12)

In [15]-[22], some fuzzy wavelet neural network models have been
designed. The details of these models are explained in first chapter. The FWNN
proposed in [21] also uses summation of dilated and translated versions of wavelet
functions in consequent part of fuzzy rules for system identification and control
purposes. However, there are some differences between the model in [21] and the
FWNN-S described in this thesis. In [21], the number of fuzzy membership
functions for each input is equal to the number of fuzzy rules, but in this thesis
each input can have different number of membership functions and each possible
combination of membership functions of inputs represents a fuzzy rule. The total
number of rules can be calculated using (4.6). In [21], minimum is used as t-norm
AND operator, but multiplication is used here for that purpose. In [21],

summation of wavelet functions is multiplied by a weight. But, the effect of each
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input variable is different in overall output. Therefore, different weights are used

for each single dimensional wavelet functions.
4.3 Training Algorithm for Fuzzy Wavelet Neural Network Models

The FWNN training is to encapsulate a given function or input-output
pairs by adjusting network parameters. Unknown parameters of the FWNN
models are adjusted by using BFGS gradient method. This method is explained in
the third chapter. Unknown parameters are center parameters (u#) and scaling
parameters (o) of Gaussian membership functions in antecedent part of the rules,
and translation (b), dilation (c¢) parameters of wavelet functions and weight (w)
and bias (p) parameters in the consequent part of the rules. The number of these

unknown parameters is given in Table 4.1 for each FWNN model.

Table 4.1. The number of unknown parameters for the FWNN models

Parameters
/i o b c w )
Models

FWNN-S DL D | nm | onm | nm 0

i=1 i=1
FWNN-M le. le. nm nm m m

i=1 i=1
FWNN-R DL D | nm m m m

i=1 i=1

Initial values for scaling parameters of Gaussian membership functions
and dilation parameters of wavelet functions are set to 1. Initial values for other

parameters are generated randomly between 0 and 1.
4.3.1. Gradients of unknown parameters for FWNN models

While using a gradient based training algorithm like BFGS, gradients of
the performance index with respect to all unknown parameters are required. The
gradients of wavelet functions in consequent part of the rules for the FWNN-S can

be calculated by the following formulas fori =/...,n and [ =1,...,m:
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2
exp[—l(m] (4.13)
20 ¢

2 2

— —b. —b —b
a—E=a—Em%—(x’ ; ) 5[ 52b ] fexp) -1 220 (4.14)
ob, oy Cu Ci 20 ¢
0E 0E— (x-b,) (. (x-bY 1(x-b Y
—=—nw,————| 3| —=| |exp| ——| —* (4.15)
oc, Oy Cu Ci 20 ¢
oE 2 &
5:ﬁ2(y_yd) (4.16)

)

The gradients of Gaussian type membership functions in the antecedent
part of the rules for the FWNN-S can be calculated by the following formulas for j
=l...nand i =1,..,[;:

2
(X-—/Jl-‘) X, —H
a—E=8£ 83/ j—zfexp _UATA (4.17)
ou, oy od] o 2\ o,
(x,— ) 2
x M X T K
OF OB & 571 oxp| -~ 2254 (4.18)
do;, 6y 8A’ o, 2{ o,

Here for the above calculations, partial derivative of the output y with
respect to membership functions of each input variable is needed. For the first

variable, this can be calculated as:

L I,
Z"'Z‘I’il,iz,...,HA"‘(xk) yz ZHAI*(xk
hel il

Oy - RV (4.19)

o' () DI | L2H

i=1i=1 i,=1 k=l

wherei; = 1,...,1;.

The calculations can be easily generalized for the other input variable

membership functions. The gradients of membership functions for FWNN-R and
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FWNN-M models are same with gradients for FWNN-S model. Therefore, these

gradients can be calculated using (4.17), (4.18) and (4.19). However, the gradients
of wavelet functions for FWNN-R and FWNN-M models are different from those
of FWNN-S model. These gradients for FWNN-R can be calculated using

following formulas fori =/...,nand [/ =1,...,m:

[

1...,

_ _ 2 _ 2
ow, Oy ¢ 2 ¢
0E O0E— (x,—b x—b | 1||x=b,|
_:_ﬂlwl( - 1) 3_” 21 || eXp __|| 21 || (421)
ob, Oy c C 2 q

_ _ 2 _ 2 _ 2
% _OE_ llx=b)] (3_||x b ]exp[_lllx f,n] 422)
oc, Oy C ¢ 2 q
OE OF —
—=—7, (4.23)
ap, Oy

where || x—b, =) (x,-b,)

i=1

The gradients for FWNN-M model can be calculated as for i =/...,n and

m:

OF OF —*

— = 4.24
ow, Oy ’7]1/:!¢k1 (4.24)

| I¢k1 2 2

— —b, —b —b

OE =6E77,w, LR (x, ; 1) e exp| - 1( x,=b, 425)
ob, Oy ¢, Ci Cu 20 ¢

. ﬁ¢k1 ) g 2
oF ok, i (n=h) [3[’”’”} }ex}{l[x’b"j} (4.26)
C

gﬂ - oy a ?, Ci Cy 2 il
OF _E. (4.27)
op, Oy
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4.3.2. Gradients of unknown parameters for SISO FWNN models

For SISO FWNN models, the outputs of wavelet functions in the fifth
layer of the models, the equations (4.9), (4.10) and (4.11), can be simplified as

follows:

¥ o= (- ( biyye p(—l(x biyy for FWNN-S (4.28)

l

P o= (1- ( biyye p(——( ))+p for FWNN-M and FWNN-R

(4.29)
where i=1,..,m and m is the number of membership function for input variable.

Then, the overall output of SISO FWNN can be calculated as:

f ¥, exp(- )
y=—
Zexp(—f( Hiyey

(4.30)

The gradient of center and scaling parameters in membership functions for

all SISO FWNN models can be calculated as:

a_E—a—E St (=) g (2o (431)
ou, m -, N 2 2| o, .
’; ( Oy }
E_%E Rt o)’ o 1 (xmm )
= expL 2( = J] (4.32)

0o, Oy m .V op
$exp _l(wj
pam 2\ o

The gradients of wavelet function parameters can be calculated as follows

for SISO FWNN models.

2 2
OE B[ Eh ) exp| -4 X2 (4.33)
ow, Oy c 20 ¢

0E 0E— (x-b) b Y 1(x-bY
— =—nw—F| 3— Al exp| —— 0 (4.34)
ob, oy c; c 20 ¢




0E OE— (x-b) x=b ) 1 x=bY
—=—nWw 3 3- exp| ——
oc, 0Oy c; c 20 ¢

OF _%E3" for FWNN-M and FWNN-R

o,
1 x—py
exp| ——| —*
_ p[ 2( lof ]

2}
where i=1,..,.m and 7, = for SISO FWNN models

S| -4[2]
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(4.35)

(4.36)
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5. SIMULATION RESULTS

The proposed AWN and FWNN models are applied to six well-known
benchmark problems to compare the performance of these models with existing
models. These problems are a SISO function approximation, Box-Jenkins,
Mackey Glass, and sunspot number time series predictions and system

identification of two nonlinear plants.
5.1. Approximation of a Piecewise Function

A piecewise function studied by Zhang [7] and Chen [27] is used to
compare the FWNN and AWN models with some other wavelet-based networks.

This function is defined as

vy = f)
_ _ 10 < _
2.186x —12.864 10<x<-2 G.0)
- 4.246x 2<x<0
10¢70-95%70-5 601 0.03x +0.7)x]  0<x<10

For the training process, N = 200 sample points are drawn from the data
uniformly distributed over [-10, 10]. In order to compare the proposed models

with other works, the measure in [15] is used:

Z(y_yd)z

TR (52)
Z (Vs — yav)2

. . : 1 &
where y; is actual output, y is predicted output and y,, = WZ Va -
i=1

In Table 5.1, it is seen that the performance of the first order AWN with 8
rules and FWNN-M (or FWNN-R) with 7 rules is superior to that of the other
WNNs. Figure 5.1 illustrates the validity of first order AWN with hybrid
algorithm which corresponds the smallest performance measure value among the

simulations.
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Table 5.1. Comparison of AWN and FWNN models for the piecewise function

Model Number of J
parameters

FWNN-S 35 0.0057
FWNN-S 30 0.0114
FWNN-M and

FWNN-R 42 0.0031
FWNN-M and

FWNN-R 36 0.0041
AWN-F 32 0.0033
AWN-F 28 0.0047
AWN-Z 24 0.0088
AWN-Z 21 0.0371
FWN [15] 28 0.021
WNN[7] 22 0.05057
WNN[27] 23 0.0480

output

Figure 5.1. Actual and predicted values with first order AWN for the piecewise function

5.2. Prediction of Box-Jenkins Time Series

In this section, the proposed models are applied to Box-Jenkins time series
data (gas furnace data) which was recorded from a combustion process of a
methane-air mixture. The input of this process is the gas flow rate u(t) and the
output y(t) is the CO, concentration in outlet gas. In order to predict y(t), u(t-4)
and y(t-1) are used as inputs to models. The original dataset includes 296 input-
output pairs. However, it is reduced to 292 pairs because of delay of inputs. The
first 200 input-output pairs are used as a training set, and the remaining 92 points

are used as a test set to see the prediction performance AWN and FWNN models.
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These models are trained and tested for both two and three membership functions
for each input, which form 4 and 9 fuzzy rules respectively. Each FWNN model is
trained for 500 epochs and each AWN model is trained for 400 epochs. Figure 5.2
and Figure 5.3 show the actual time series with the output of FWNN-M with three
membership functions for each input and the prediction error, respectively. Root

mean square error (RMSE)

ws&,/%z(y—ydf (53)

is used as performance measure in this example. For the best result, a comparison
of the proposed models is summarized in Table 5.2 with respect to RMSE values
for training and testing. In Table 5.3, the FWNN models are compared with
different models in the literature. It is seen from the training and testing
performances that FWNN-M model gives the second best result and
LLWNN][9]+hybrid model is the best of the others. This model has 56 learning
parameters. Our FWNN models have its best results with 66 learning parameters
in testing. In addition, the number of training data of Box-Jenkins time series
consists of only 200 input-output pairs that result in overtraining in testing the
predictions of the models. This means that it is necessary to increase model
parameters or Box-Jenkins time series data does not represent the general
characteristic of this process. To see the prediction performance and to show the
efficiency of the proposed models, new simulation experiments are done such as
Mackey Glass time series prediction and system identification of two nonlinear
plants. As you will see, the results of these new simulation examples prove both
conclusions about the Box-Jenkins time series data prediction. To obtain the best
accurate models, the number of neurons in the hidden layer, i.e. the number of
fuzzy rules should be increased such that an optimal increase in the number of

training parameters can be obtained.
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Figure 5.2. Actual and predicted values with FWNN-M for Box-Jenkins time series
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Figure 5.3. Prediction error of the FWNN-M model for Box-Jenkins time series

Table 5.2. Comparison of AWN and FWNN models for Box Jenkins time series

Model Number of Epoch RMSE RM.SE
parameters training testing

AWN-Z (2 MFs) 12 400 0.02153 0.03308
AWN-Z (3 MFs) 21 400 0.02003 0.03192
AWN-F (2 MFs) 20 400 0.01934 0.03176
AWN-F (3 MFs) 39 400 0.01909 0.03084
FWNN-S (2 MFs) 32 500 0.01884 0.03085
FWNN-S (3 MFs) 66 500 0.01880 0.02778
FWNN-R (2 MFs) 28 500 0.01992 0.03171
FWNN-R (3 MFs) 57 500 0.01881 0.02794
FWNN-M(2 MFs) 32 500 0.01900 0.02963
FWNN-M(3 MFs) 66 500 0.01963 0.02324

35
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Table 5.3. Comparison of test results of different models for Box Jenkins time series

Model RMSE
Tong’s model [28] 0.685
Pedrycz’s model [29] 0.566
Xu’s model [30] 0.573
Sugeno’s model [31] 0.596
Surmann’s model [32] 0.400
FuNN model [33] 0.071
HyFIS model [34] 0.042
Neural tree model [35] 0.026
WNN[9]+gradient 0.084
WNNJ[9]+hybrid 0.081
LLWNN][9]+gradient 0.017
LLWNN][9]+hybrid 0.013
AWN-Z (3 MFs) 0.032
AWN-F (3 MFs) 0.031
FWNN-S (3 MFs) 0.028
FWNN-R (3 MFs) 0.028
FWNN-M (3 MFs) 0.023

5.3. Prediction of Sunspot Number Time Series

In this section, annually recorded sunspot time series for the years 1700-
1979 is considered to show performance of the AWN and FWNN models. These
numbers show the yearly average relative number of sunspots observed. To make
the comparisons meaningful with other works, the dataset is divided into three
parts. The data points between years 1700-1920 are used for training the models.
The data points for years 1921-1955 and 1956-1979 form first and second test sets
respectively. The y(t-4), y(t-3), y(t-2) and y(t-1) are used as inputs to models in
order to predict the output y(t). Two membership functions are selected for each
input, so there are total 16 rules in each model and these models are trained for

200 epochs. Normalized mean square error (NMSE)

NMSE = J? (5.4)

is used to compare the proposed AWN and FWNN with other models, where J
equals (5.2). Training and testing error values are given in Table 5.4 with
comparison of other models in the literature. In Figure 5.4 and Figure 5.5, actual
output of time series, prediction results of summation FWNN and prediction error

are shown.
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Table 5.4. Comparison of AWN and FWNN models with different models for sunspot number

time series

Number of NMSE NMSE NMSE
Model . . .
parameters training testing 1 testing 2

Tong and Lim [36] 16 0.097 0.097 0.28

Weigend [37] 43 0.082 0.086 0.35

Svarer [38] 12-16 0.090 0.082 0.35
Transversal Net[39] 14 0.0987 0.0971 0.3724
Recurrent net[39] 22 0.1006 0.0972 0.4361
AWN-Z 32 0.1093 0.2101 0.1734
AWN-F 96 0.1225 0.1447 0.1468
FWNN-S 208 0.0895 0.1093 0.1510
FWNN-R 128 0.0796 0.1099 0.2549
FWNN-M 176 0.0828 0.0973 0.1988

1 Data for training Test 1 Test 2
‘ target

-~~~ FWNN

0.8+ R

0.6 R

2 04 | | i

3 | IR \
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o ! i ' |
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0 50 100 150 200 250 300
time
Figure 5.4. Actual and predicted values with FWNN-S model for sunspot number time series
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Figure 5.5. Prediction error of the FWNN-S model for sunspot number time series
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5.4. Prediction of Mackey Glass Time Series

In this section, the proposed models are applied to Mackey Glass time
series. This is a benchmark chaotic time series and a widely investigated problem
in the neuro-fuzzy literature. The time series is generated by the following

differential equation:

dx _ 02x(t—-7)
” _—1+x10(t—r) 0.1x(¢) (5.5)

For t = 17 the systems response is chaotic and simulation data is obtained
using initial conditions x(0)=1.2 and t = 17. 1000 input-output data points are
extracted from the Mackey Glass time series x(t) where t=118 to 1117. x(t+6) is
predicted using the input variables x(t), x(t-6), x(t-12) and x(t-18). The first 500
data points are used to train the models and remaining 500 points are used for
validating the identified model. Total 16 fuzzy rules are generated using two
membership functions for each input variable. The comparison of the models
proposed in this thesis is illustrated in Table 5.5. Also, test results for different

models are summarized in Table 5.6. Figure 5.6 and Figure 5.7 show the actual

time series with the output of the FWNN-S and the prediction error, respectively.

Table 5.5. Comparison of AWN and FWNN models for Mackey-Glass time series

Model Number of Epoch RMSE RM.SE
parameters training testing

AWN-Z 32 2000 0.00992 0.00982
AWN-F 96 4000 0.00183 0.00178
FWNN-S 208 5000 0.00124 0.00109
FWNN-R 128 5000 0.00231 0.00232
FWNN-M 176 5000 0.00129 0.00114




Table 5.6. Comparison of test results of different models for Mackey-Glass time series

Model RMSE

Auto-regressive model 0.19
Cascade correlation NN 0.06
Backpropagation NN 0.02
Sixth-order polynomial 0.04
Linear prediction method 0.55
Product T-norm [40] 0.09
Classical RBF (with 23 neurons) [41] 0.0114
PG-RBF network [42] 0.0028
Genetic algorithm and fuzzy system [43] 0.049
Neural tree model [35] 0.0069
Radial basis function network [44] 0.0015
WNN [9] + gradient 0.0071
WNN [9]+ hybrid 0.0059
LLWNN [9] + gradient 0.0041
LLWNN [9] + hybrid 0.0036
AWN-Z 0.00982
AWN-F 0.00178
FWNN-S 0.00109
FWNN-R 0.00232
FWNN-M 0.00114

14 Dat? for traiqing : Data for‘testing :

target
-~~~ FWNN
2
3
04 | [ | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
time

Figure 5.6. Actual and predicted values with FWNN-S model for Mackey-Glass time series
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Figure 5.7. Prediction error of the FWNN-S model for Mackey-Glass time series

As can be seen, the RMSE values of the proposed FWNN models are
much less than the other models, but models have considerably larger number of

parameters to be learned.
5.5. System Identification Example 1

System identification involves finding the relation between the input and
output of the system [21, 45]. The structure of series-parallel system identification
model with AWN or FWNN is shown in Figure 5.8. The inputs of the model are
delayed values of control signal u(k) and output of the plant y(k). Here, y(k) is
target output of plant and yp(k) is predicted output. AWN or FWNN model

parameters are updated according to prediction error e(k).

u(k) y(k)

» Plant

2,1, ...,Z’di 2—1, ...,Zdo e(k)

"1 AWN or FWNN
Lt yo(k)

Figure 5.8. Series-Parallel identification model with AWN or FWNN
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In this example, the plant to be identified is given by following equation:

(k) = 0.729(k = 1) +0.025 y(k — 2)u(k —2) +0.01u> (k — 3) +0.02u(k — 4)
(5.6)

The output of the system depends on two previous output values and three
previous input values. However, only u(k-1) and y(k) are used as inputs to the
models to predict y(k+1). Two membership functions are selected for each input
of the models. In order to train models, 900 inputs are used similar to the inputs
used in [47] and [48]. The half of the inputs is independent and identically
distributed (i.i.d.) uniform sequence over [-2, 2] and the remaining is a sinusoid
given by 1.05sin(nk/45). AWN models are trained for 100 epochs and FWNN
models are trained for 200 epochs. After training, the following input signal which
is same test signal with other compared models is used for testing the performance

of the models.

sin(zk /25) k <250
1.0 250<k <500
u(k) =1-1.0 500 < k <750 (5.7)
0.3sin(zk /25)+0.1sin(zk /32)
+0.6sin(zk /10) 750 < k <1000

Figure 5.9 shows the actual and predicted output of the plant for test signal
with zero order AWN model. From Table 5.7, it can be seen that the proposed
AWN and FWNN models illustrate much better performance than the other

models in this system identification problem.
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Table 5.7. Comparison of AWN and FWNN models with other models for system identification

example 1
Models Network RMSE RMSE

Parameters | Training Testing
ERNNJ46] 54 0.036 0.078
RSONFIN[47] 49 0.03 0.06
TRFN-S[48] 33 0.0067 0.0313
FWNN[21] 27 0.019736 0.022609
FWNN[21] 43 0.018713 0.020169
AWN-Z 12 0.009368 0.022933
AWN-F 20 0.009391 0.023259
FWNN-S 32 0.009771 0.022226
FWNN-R 28 0.009688 0.022204
FWNN-M 32 0.009635 0.021342

output

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
time

Figure 5.9. Actual and predicted test signal values with AWN-Z model for system identification

example 1
5.6. System Identification Example 2

This example considers modeling the nonlinear plant given by following

equation.
yk+1) = f(y(k), y(k=1), y(k = 2),u(k),u(k —1)) (5.8)
where

X%, (x; 1) + x,
1+ x5 +x;

f(xlaxzax3ax4ax5)= (59)
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The current output of the plant depends on three previous output values
and two previous input values. However, we use only y(k) and u(k) to predict
y(k+1). In order to train the models, 900 training inputs are generated as in
previous example. The number of membership functions is also same with
previous example. To test the models for this plant, the test signal in (5.7) is used.
The actual and predicted values for testing with radial FWNN are shown in Figure
5.10. As it is seen in Table 5.8, the FWNN models with smaller parameters are

successful in identification than the compared models in the literature.

Table 5.8. Comparison of AWN and FWNN models with other models for system identification

example 2
Models Network RMSE RMSE
Parameters Training Testing
RFNNJ[49] 112 0.0114 0.0575
RSONFIN[47] 36 0.0248 0.0780
Feedforw. Neur.
Fuz. Sys.[48] 48 0.0203 0.0521
TRFN-S[48] 33 0.0084 0.0346
FWNNJ[21] 27 0.029179 0.031212
FWNNJ[21] 43 0.028232 0.030125
AWN-Z 12 0.023496 0.037763
AWN-F 20 0.025174 0.040632
FWNN-S 32 0.020888 0.033724
FWNN-R 28 0.015274 0.032116
FWNN-M 32 0.019269 0.033327
target
-~~~ FWNN
3
5
°© I'B}
|
A+ - - 4
™5 160 260 360 460 560 660 760 860 960 1000

time

Figure 5.10. Actual and predicted test signal values with FWNN-R model for system

identification example 2
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6. CONCLUSION

In this thesis, two new type of neuro-fuzzy models which use wavelet
basis functions in their processing units are introduced and are used for time series
prediction and system identification problems. Wavelet functions are firstly used
in antecedent part of the fuzzy rules and zero and first order polynomial functions
are used in consequent parts. Secondly, wavelets are used in consequent part of
the rules and Gaussian functions are used as membership functions in antecedent
parts.

With same number of rules, FWNN models have more parameters to be
determined than AWN models. In piecewise function approximation, first order
AWN model gives better results with same number of rules although it has less
model parameters. In Box-Jenkins, Mackey-Glass and sunspot time series
prediction, FWNN models give better results with higher number of parameters.
While FWNN models give smaller error values in second system identification
problem, both FWNN and AWN models give close results in first system
identification example.

In addition, all of these models are compared with other models in the
literature. In piecewise function approximation, first order AWN model gives best
result among other models in the literature with same and less number of
parameters. In sunspot time series prediction, we have better results with proposed
FWNN models. However these models have higher number of parameters than
other models. In Mackey-Glass time series prediction, the FWNN-S and FWNN-
M models give the best results. Some other models in the literature give better
results than proposed models in this thesis for Box-Jenkins time series prediction.
In first system identification example, AWN and FWNN models give smaller
training error values and close testing error values among other models with less
parameters. In second system identification example, the FWNN models give
close test results among other models with same and less parameters in other
models.

It is believed that these models can also be applied to a wider range of
real-world problems such as speech and image processing, financial data analysis

and prediction and other system identification and control applications. In
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addition, the significance of this work is to show that an AWN or FWNN model
can track any nonlinear dynamical function. Secondly, efficient computational
models and algorithms can be designed for parameter identification in fully
nonlinear systems in general and for training AWN or FWNN models as a
specific application. An approximate second order gradient procedure has been
used here. Other optimization techniques such as particle swarm optimization
(PSO) or some hybrid algorithms which combines gradient based algorithms with

PSO can also be used for training unknown parameters of the models.



1]

2]

3]

[4]

[5]

[6]

[7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

46

REFERENCES

Krose B., and Smagt P., An Introduction to Neural Networks, University of
Amsterdam, 8th Edition, 1996.

Haykin S., Neural Networks — A Comprehensive Foundation, Pearson
Education, 2nd Edition, Upper Saddle River, N.J., 1999.

Valens C., 4 Really Friendly Guide to Wavelets, 1999.
http://pagesperso-orange.fr/polyvalens/clemens/download/arfgtw.pdf
Sitharama Iyengar S., Cho E.C., and Phoha V. V. Foundations of Wavelet
Networks and Applications, CRC Press, Inc. Boca Raton, FL, USA, 2002.
Graps A., “An Introduction to Wavelets”, IEEE Computational Science and
Engineering, 2(2), 50-61, 1995.

Zhang Q., “Using wavelet networks in nonparametric estimation”, /[EEE
Transactions on Neural Networks, 8, 227-336, 1997.

Zhang Q., and Benveniste A., “Wavelet networks”, IEEE Trans. Neural
Netw., 3, 889-898, 1992.

Zhang J., Walter G.G., and Lee W.N.W., “Wavelet neural networks for
function learning”, IEEE Trans. Signal Process., 43, 1485-1497, 1995.
Chen Y., Yang B., and J. Dong, “Time-series prediction using a local linear
wavelet neural network”, Neurocomputing, 69, 449-465, 2006.

Galvao R.K.H., Becerra V. M., Calad J. M.F., and Silva P. M., “Linear—
Wavelet Networks”, Int. J. Appl. Math. Comput. Sci., 14(2), 221-232, 2004.
Billings S. A., and Wei H. L., “A New Class of Wavelet Networks for
Nonlinear System Identification”, IEEE Trans. Neural Netw., 16(4), 2005.
Holmes C. C., and Mallick B. K., “Bayesian Wavelet Networks for
Nonparametric Regression”, IEEE Trans. Neural Netw., 11(1), 2000.

Fuller R., Introduction to Neuro-Fuzzy Systems, Advances in Soft
Computing, Physica-Verlag Heidelberg, 2000.

Jang J. S. R., “ANFIS: adaptive-network-based fuzzy inference systems”,
IEEFE Trans. Syst., Man, Cybern., 23(3), 665-685, 1993.

Ho, D.W.C., Zhang P.A, and Xu J., “Fuzzy wavelet networks for function
learning”, IEEE Trans. Fuzzy Syst., 9(1), 200-211, 2001.



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

47

Zekri M., Sadri S., and Sheikholeslam F., “Adaptive fuzzy wavelet network
control design for nonlinear systems”, Fuzzy Sets and Systems, 159, 2668 —
2695, 2008.

Karatepe E., and Al¢g1 M., “A new approach to fuzzy wavelet system
modeling”, International Journal of Approximate Reasoning, 40(3), 302-
322,2005.

Banakar A., and Azeem M. F., “Artificial wavelet neural network and its
application in neuro-fuzzy models”, Applied Soft Computing, 8, 1463—1485,
2008.

Wang Z., Peng H., and Wang J., “Research for a Dynamic Recurrent Fuzzy
Wavelet Network™, Proce. of the 6. Int. Conf. on Intelligent Systems Design
and Applications, vol:1, 914-918, 2006.

Srivastavaa S., Singha M., Hanmandlub M., and Jha A.N., “New fuzzy
wavelet neural networks for system identification and control”, Applied Soft
Computing, 6, 1-17, 2005.

Abiyev R. H., and Kaynak O., “Fuzzy Wavelet Neural Networks for
Identification and Control of Dynamic Plants-A Novel Structure and
Comparative Study”, IEEE Trans. Ind. Electron., 55(8), 3133 — 3140, 2008.

Lin C. J., Chin C. C., and Lee C. L., “A wavelet-based neuro-fuzzy system
and its applications”, Proc. of the Int. Joint Conf. on Neural Networks,
vol:3, 1921- 1926, 2003.

Jang J. S. R., Sun C. T., and Mizutani E., Neuro-Fuzzy and Soft Computing:
A Computational Approach to Learning and Machine Intelligence, Prentice
Hall, 1997.

Mallat S., “A Theory for Multiresulation Signal Decomposition: the
Wavelet Representation”, IEEE Trans. Pattern Anal. Mach. Intell., 11(7),
674-693, 1989.

Sanner R., and Slotine J-J. E., “Gaussian Networks for direct Adaptive
Control”, IEEE Trans. Neural Netw., 13(6), 837-863, 1992.

Gill P.E., Murray W., and Wright M.H., Practical Optimization, Academic
Press Ltd., 1993.



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

48

Chen J., and Bruns D.D., “WaveARX neural network development for
system identification using a systematic design synthesis,” Ind. Eng. Chem.
Res., 34, 4420-4435, 1995.

Tong R.M., “The evaluation of fuzzy models derived from experimental
data”, Fuzzy Sets and Systems, 4, 1-12, 1980.

Pedrycz W., “An identification algorithm in fuzzy relational systems”,
Fuzzy Sets and Systems, 13, 153-167, 1984.

Xu C.W., “Fuzzy model identification and self-learning for dynamic
systems”, IEEE Trans. Syst., Man, Cybern., 17, 683-689, 1987.

Sugeno M., et al., “Linguistic modeling based on numerical data”, in Proc.
IFSA°91, 234-247, 1991.

Surmann H., et al., “Self-organizing and genetic algorithm for an automatic
design of fuzzy control and decision systems”, in Proc. FUFIT’s 93, 1079-
1104, 1993.

Kasabov N.K., et al., “FuNN/2-A fuzzy neural network architecture for
adaptive learning and knowledge acquisition”, Information Science, 101,
155-175, 1997.

Kim J., and Kasabov N., “HyFIS: adaptive neuro-fuzzy inference systems
and their application to nonlinear dynamical systems”, Neural Networks, 12,
1301-1319, 1999.

Chen Y.H., et al., “Nonlinear system modeling via optimal design of neural
trees®, Int. Journal of Neural Systems, 14(2), 125-137, 2004.

Tong H., and Lim K. S., “Threshold autoregression, limit cycles and
cyclical data”, Journal Royal Statistical Society B, 42, 245-292, 1980.
Weigned A. S., Rumelhart D. E., and Huberman B. A., Predicting the
future: A connectionist approach, Techn. Rep. Stanford-PDP-90- 01 or
PARC-SSL-90-20, 1990.

Svarer C., Hansen L. K., and Larsen J., “On design and evaluation of
tapped-delay neural network architectures”, in Proc. IEEE Int. Conf. Neural
Netw., San Francisco ,1992.

McDonnell J. R., and Waagen D., “Evolving Recurrent Perceptrons for

Time-Series Modeling”, IEEE Trans. Neural Netw., 5(1), 24-38, 1994.



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

49

Wang L.X., et al., “Generating fuzzy rules by learning from examples”,
IEEE Trans. Syst., Man, Cybern., 22, 1414-1427, 1992.

Cho K.B., et al., “Radial basis function based adaptive fuzzy systems their
application to system identification and prediction”, Fuzzy Sets and Systems,
83, 325-339, 1995.

Rojas 1., et al., “Time series analysis using normalized PG-RBF network
with regression weights”, Neurocomputing, 42, 167-285, 2002.

Kim D., et al.,, “Forecasting time series with genetic fuzzy predictor
ensembles”, IEEE Trans. Fuzzy Syst., 5, 523-535, 1997

Harpham C., Dawson C.W., “The effect of different basis functions on a
radial basis function network for time series prediction: a comparative
study”, Neurocomputing, 69(16), 2161-2170, 2006.

Narendra K. S., and Parthasarathy K., “Identification and control dynamical
systems using neural networks”, IEEE Trans. Neural Netw., 1(1), 4-27,
1990.

Elman J. L., “Finding structure in time”, Cognit. Sci., 14(2), 179-211, 1990.
Juang C. F., and Lin C. T., “A recurrent self-organizing neural fuzzy
inference network”™, IEEE Trans. Neural Netw., 10(4), 828—845, 1999.
Juang C.-F., “A TSK-type recurrent fuzzy network for dynamic systems
processing by neural network and genetic algorithms”, IEEE Trans. Fuzzy
Syst., 10(2), 155-170, 2002.

Lee C. H., and Teng C. C., “Identification and control of dynamic systems
using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Syst., 8, 349—

366, 2000.



