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ABSTRACT 

Master of Science Thesis 

A NEW FUZZY WAVELET NEURAL NETWORK  
DESIGN FOR TIME SERIES PREDICTION 

 
Sevcan YILMAZ 

Anadolu University 
Graduate School of Sciences 

Computer Engineering Program 

Supervisor: Assoc. Prof. Dr. Yusuf OYSAL 
       2009, 58 pages 

In this thesis, two different neuro-fuzzy models which use wavelet basis 

functions in its processing units are proposed for time series prediction and system 

identification problems. The structure of introduced models comes from the idea of 

adaptive neuro-fuzzy inference system (ANFIS) which is used for obtaining fuzzy rule 

base from the input-output data of an unknown function. The first model in this thesis is 

called as adaptive wavelet network (AWN) in which wavelet basis functions are used as 

membership functions in antecedent part of the rules whereas mostly Gaussian type 

membership functions are used in the ANFIS. In the second model which is called as 

fuzzy wavelet neural network (FWNN), wavelet basis functions are used in consequent 

part of the rules instead of zero or first order polynomial function in the ANFIS. A fast 

training gradient algorithm based on quasi-Newton methods is used to obtain the 

optimal values for unknown parameters of the FWNN models. The AWN models 

are trained by a hybrid algorithm which combines gradient algorithm with least 

square estimation. Simulation examples of some benchmark problems in the 

literature are also given to illustrate the effectiveness of models. 

Keywords: Fuzzy Wavelet Neural Networks, System Identification, Time Series          

Prediction, Wavelet, Wavelet Neural Networks 
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ÖZET 

Yüksek Lisans Tezi 

ZAMAN SERĐSĐ KESTĐRĐMĐ ĐÇĐN  
YENĐ BĐR DALGACIK BULANIK AĞ TASARIMI 

Sevcan YILMAZ 

Anadolu Üniversitesi 
Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

Danışman: Doç. Dr. Yusuf OYSAL 
            2009, 58 sayfa 

Bu tezde, işlem birimlerinde dalgacık fonksiyonu kullanan iki farklı 

bulanık sinir ağı modeli zaman serisi kestirimi ve sistem tanımlaması problemleri 

için önerilmiştir. Bu modellerin yapısı, bilinmeyen bir fonksiyonun giriş-çıkış 

verisinden bulanık kural tabanını elde etmek için kullanılan adaptif sinirsel 

bulanık çıkarım sistemi (ASBÇS) fikrinden gelmektedir. Bu tezde adaptif 

dalgacık ağ (ADA) olarak adlandırılan birinci modelde dalgacık fonksiyonları 

kuralların koşul kısmında üyelik fonksiyonu olarak kullanılmaktadır. ASBÇS’de 

ise genellikle Gaussian tipindeki üyelik fonksiyonları kullanılmaktadır. Bulanık 

dalgacık sinir ağı (BDSA) olarak adlandırılan ikinci modelde, dalgacık 

fonksiyonları kuralların sonuç kısımlarında ASBÇS’ deki sıfırıncı ya da birinci 

dereceden polinom yerine kullanılmıştır. Yaklaşık Newton yöntemine dayanan 

hızlı bir gradyan eğitim algoritması BDSA modellerinin bilinmeyen 

parametrelerinin optimal değerlerini bulmak için kullanılmıştır. ADA modelleri 

gradyan algoritmasını en küçük kareler yöntemiyle birleştiren bir hibrit algoritma 

kullanılarak eğitilmiştir. Literatürde ölçüt olarak kullanılan bazı benzetim 

örnekleri de modellerin etkisini göstermek için verilmiştir.  

Anahtar Kelimeler: Bulanık Dalgacık Sinir Ağları, Sistem Tanıması, Zaman 

Serisi Kestirimi, Dalgacık, Dalgacık Sinir Ağı 
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1. INTRODUCTION 

In recent years, wavelets have become very popular and have been applied 

in many scientific and engineering research areas such as system identification, 

signal processing, function approximation, pattern recognition and data 

preprocessing. The idea of combining wavelets with neural networks (NN) has led 

to the development of wavelet neural networks (WNN). WNNs can be easily 

trained and give high accuracy because of time-frequency localization properties 

of wavelets.  

On the other hand, neuro-fuzzy systems which integrate learning capability 

of neural networks with perfect inference mechanism of fuzzy systems are also 

used for nonlinear function approximation, system identification and pattern 

recognition. These neuro-fuzzy systems have fast and accurate learning, good 

generalization capabilities and the ability to accommodate both data and expert 

knowledge about the problem under consideration.  

In this thesis, the aim is to combine neuro-fuzzy systems with wavelet 

functions to increase the performance of neuro-fuzzy systems for system 

identification and time series prediction problems.  

The rest of this chapter is organized as follows. The detailed information 

about NNs will be given in Section 1.1. While wavelets will be introduced in 

Section 1.2, WNNs will be illustrated in Section 1.3. In Section 1.4, the properties 

of neuro-fuzzy systems will be described. Fuzzy wavelet neural networks 

(FWNN) will be explained in Section 1.5. Finally, organization of thesis will be 

presented in Section 1.6.   

1.1. Neural Networks 

NNs are nonlinear mapping structures based on the function of human 

brain. They are powerful tools for modeling, especially when the underlying data 

relationship is unknown. A NN involves a number of processing units called 

neurons which communicate by sending signals to each other over a large number 

of weighted connections [1]. Neurons can carry out their computations in parallel. 

NNs derive their computing power through two important characteristics [2]. 

These are parallel distributed structure of NNs and generalization property of 
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NNs. Generalization refers to the NN producing reasonable outputs to the inputs 

not encountered during training (learning). These two information-processing 

capabilities make it possible for NNs to solve complex problems.  

There are several types of NNs. Some of them are feed-forward NNs, 

recurrent NNs and radial basis function (RBF) networks. In feed-forward NN, the 

data flow from input to output is strictly feed-forward and there can be multiple 

layers of neurons but no feedback connections are present[1]. Recurrent NNs 

contain feedback connections and the dynamical properties of recurrent NN are 

important contrary to feed-forward NNs [1]. RBF networks use RBFs as 

activation functions. RBF networks typically have three layers: an input layer, a 

hidden layer with radial basis activation functions and output layer. RBF networks 

are universal approximators. This means that a RBF network with enough hidden 

neurons can approximate any multivariate continuous function with arbitrary 

precision [2].   

1.2. Wavelets  

Wavelets are functions that satisfy certain mathematical requirements and 

are used in representing data or other functions. They are generated by one 

function ( )xΨ , called the mother wavelet, by dilation and translation: 

,

1
( )b c

x b
x

cc
ψ ψ

− =  
 

            (1.1) 

In (1.1), c is the dilation factor and b is the translation factor and the factor 

c
-1/2 is for energy normalization across the different scales.  

The mother wavelet satisfies the following condition called compatibility 

condition: 

2

0

( )
d

ω
ω

ω

∞ Ψ
< ∞∫              (1.2)

 

where ( )ωΨ  is the Fourier transform of ( )xΨ . The compatibility condition 

implies the average value of the wavelet in the time domain must be zero: 
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( ) 0x dx

∞

−∞

Ψ =∫               (1.3) 

and therefore wavelets must be oscillatory, in other words ( )xΨ  must be a wave. 

A certain class of functions can be represented as linear combinations of 

the wavelets. That is, the functions are represented as finite linear combinations of 

the translated and dilated versions of wavelet functions. Wavelet representations 

are more efficient than Fourier series representations where the signal changes its 

behavior with time [3, 4]. Both wavelet and Fourier representations are localized 

in frequency however wavelets are localized in time while Fourier sine and cosine 

functions are not [5]. This feature makes wavelets more efficient than Fourier 

representations in function approximation. In addition, a wavelet is more flexible 

since we can choose suitable mother wavelet from various types of wavelets 

according to our signal to be analyzed whereas Fourier representation has fixed 

basis namely the sine and cosine functions [4].  

1.3. Wavelet Neural Networks (WNN) 

The idea of combining both wavelets and NNs has resulted in the 

formulation of WNNs [6-8]. NNs have learning and generalization abilities, 

nonlinear mapping and parallelism of computation however they require large 

number of neurons for approximation problems. In addition, their convergence is 

generally slow. However, WNNs converge quickly, can be easily trained and give 

high accuracy because of time-frequency localization properties of wavelets. The 

main characteristic of a WNN is that wavelet functions are used in hidden layer of 

NN as activation functions instead of local functions in time such as Gaussian and 

sigmoid functions. The WNN is a nonlinear regression structure which represents 

input-output mappings by dilated and translated versions of wavelet functions 

which have time-frequency localization properties.  

At present, there are two kinds of WNN structure. In the first one, wavelets 

as activation functions stem from continuous wavelet transform. Therefore, 

dilation and translation parameters of wavelet function can be any real positive 

number and these parameters and output layer weights can be adjustable. In the 
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second type, again wavelets as activation functions stem from discrete wavelet 

transform. But in this case the dilation and translation parameters of wavelet 

functions are fixed, and only the output layer weights are adjustable. 

Several WNN models are proposed in literature [9-12]. In [9], a local 

linear wavelet neural network is presented and it is an example of first type of 

WNNs mentioned above. In this network, connection weights between hidden 

layer and output layer are replaced with a local linear model whereas in 

conventional WNNs, these weights are adjustable constant values. In [10], a linear 

wavelet network which combines conventional WNN with weighted linear 

summation of inputs is proposed. In [11], the WNN which is second type of 

wavelet networks mentioned above is proposed for medium and high dimensional 

problems, it decomposes a multidimensional function into a number of low-

dimensional sub-models which are expanded using wavelet decomposition. In 

[12], Bayesian approach is applied to wavelet networks for nonparametric 

regression. 

1.4. Neuro-Fuzzy Systems 

Every intelligent technique such as NNs, fuzzy logic has particular 

computational properties and these make them suitable for particular problems. 

While NNs offer advantages such as learning, parallelism and generalization, they 

are not explaining how they reach their decisions [13]. Fuzzy logic systems are 

good at explaining their decisions but they cannot automatically acquire the rules 

they use to make those decisions [13]. Therefore, combination of NNs and fuzzy 

logic systems which is called neuro-fuzzy system overcomes the limitations of 

individual techniques. Neuro-fuzzy systems can obtain the fuzzy rule base from 

the given input-output data. 

One of the popular neuro-fuzzy systems is adaptive neuro-fuzzy inference 

system (ANFIS) [14]. ANFIS is functionally equivalent to Sugeno’s inference 

mechanism. In a Sugeno fuzzy model, input space is divided into fuzzy regions 

and these regions show fuzzy membership functions in the antecedent part of the 

fuzzy rules. The consequents of these rules are represented by either a constant or 
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a linear function of inputs. The structure of the ANFIS is explained in detail in 

Chapter 2. 

1.5. Fuzzy Wavelet Neural Networks 

FWNNs combine wavelets with neuro-fuzzy systems in order to increase 

the power of these techniques significantly. FWNNs take advantages and 

properties of NNs, fuzzy logic and wavelets. These are generalization and learning 

ability of NNs, time-frequency localization properties of wavelets and inference 

mechanism of fuzzy logic systems.  

In the literature, several FWNN models are proposed for time series 

prediction, system identification and control problems [15-22]. In [15] and [16], 

each fuzzy rule is represented by a sub-WNN which consists of single-scaling 

wavelets that is same dilation parameter for all dimensions and orthogonal least-

square algorithm is used to select important wavelets. The resulting network is 

used for function approximation in [15] and control of nonlinear systems in [16].  

In [17], the proposed model consists of a set of if–then rules and, then parts are 

series expansion in terms of wavelets functions and this model is applied to 

system modeling. In [18], both sigmoid and wavelet functions are used in hidden 

layer of WNN and the output of this new WNN is calculated by multiplication and 

summation of these results. Then, this WNN is used in consequent parts of if-then 

rules in FWNN. In [19], a dynamic recurrent fuzzy wavelet network for identified 

nonlinear dynamic systems is proposed. In [20], the inputs enter into discrete 

wavelet transform block,   the output of this block is fuzzified and it forms the 

input to a single neural network and this model is used for system identification 

and control problems. The FWNN proposed in [21] uses summation of dilated and 

translated versions of wavelet functions in consequent part of fuzzy rules for 

system identification and control purposes.  

1.6. Organization of the Thesis   

The organization of this thesis is as follows. In Chapter 2, the structure and 

learning algorithm of ANFIS will be explained in detail and then the work in this 

thesis will be introduced. In Chapter 3 and Chapter 4, two different neuro-fuzzy 
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models proposed in this thesis which use wavelet functions in their processing 

units are explained in detail with their structures and learning algorithms. These 

models are tested for both time series prediction and system identification 

problems and simulation results for these tests are given in Chapter 5. Finally, 

conclusion is drawn in Chapter 6.    
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2.  BACKGROUND 

In this chapter, firstly structure and learning algorithm of the ANFIS will 

be explained in detail in sections 2.1 and 2.2 respectively. Then, least squares 

estimation (LSE) will be described in Section 2.3 and finally, the aim and the 

proposed work in this thesis will be introduced in Section 2.4. 

2.1 Adaptive Neuro-Fuzzy Inference System  

The ANFIS is a Sugeno type fuzzy system that put in the framework of 

adaptive systems to facilitate learning and adaptation [14]. In a Sugeno fuzzy 

system, input space is divided into fuzzy regions and these regions show fuzzy 

membership functions in the antecedent part of the fuzzy rules. These membership 

functions can be triangular, bell shape or Gaussian type functions. The 

consequents of these rules are represented by either a constant or a linear function 

of inputs. The ANFIS structure is organized to give the output of this predefined 

fuzzy system. Unknown parameters of the fuzzy rules are learnt by hybrid 

learning algorithm.   

 

Figure 2.1. The structure of ANFIS  

For simplicity, the ANFIS to be explained here has two inputs and one 

output, and each input has two membership functions and output is the linear 
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combination of first order polynomial of input variables. For example, the first 

fuzzy rule of this ANFIS is defined as follows: 

 IF 1x  is 11A  AND 2x  is 21A  THEN 11 11 1 11 2 11g p x q x r= + +   

The ANFIS structure is shown in Figure 2.1. The node functions in the same 

layer are selected from the same function family as described below: 

• Layer 1: This layer is the input layer. Each neuron in this layer transmits 

external crisp input signals (x1 and x2) directly to the next layer. 

• Layer 2:  This layer is fuzzification layer. Neurons in this layer represent 

fuzzy sets used in the antecedents of fuzzy rules. The outputs of this layer 

are the values of the membership functions. The jth Gaussian type 

membership function for the ith input is given by: 

  21
( ) exp( ( ) )

2
i ij

ij i

ij

x
A x

µ

σ

−
= −   i=1,2 and j=1,2        (2.1) 

• Layer 3: This layer is fuzzy rule layer. Each neuron in this layer represents 

activation strength of a fuzzy rule. The output of this layer is equal to 

multiplication of coming signals.  

1 1 2 2( ) ( )ij i jA x A xη = ⋅   i=1,2 and j=1,2        (2.2) 

• Layer 4: This layer is normalization layer. Each neuron in this layer 

calculates the normalized activation strength of a given rule by: 

2 2

1 1

ij

ij

ij

i j

η
η

η
= =

=

∑∑
   i=1,2 and j=1,2         (2.3) 

• Layer 5: This layer is defuzzification layer. Each neuron in this layer 

receives initial inputs (x1 and x2) and the normalized activation strengths 

calculated previous layer as input and calculates the weighted consequent 

value of a given combination as follows: 

1 2( )

ijij ij

ij ij ij ij

f g

p x q x r

η

η

=

= + +
           (2.4) 

• Layer 6: This layer is output layer. It computes the overall output of 

system as follows: 
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∑∑
= =

=
2

1

2

1i j

ijfy   i=1,2 and j=1,2                 (2.5) 

2.2 Hybrid Learning Algorithm for the ANFIS 

The unknown parameters of the ANFIS networks are nonlinear parameters 

(µ and σ) in premise part of the rules and linear parameters (p, q and r) in 

consequent part of the rules. The combination of gradient method and least 

squares estimation (LSE) method is used to update the unknown parameters of the 

ANFIS networks. Each epoch of this hybrid learning procedure consist of two 

stages: a forward pass and a backward pass. In the forward pass, outputs of all 

layers up to 6th layer are calculated and consequent parameters are updated using 

LSE method. In the backward pass, error functional in (2.6) is calculated and 

premise parameters are updated using gradient descent algorithm. Error functional 

is defined as: 

2

1

1

2

N

k

E e
=

= ∑               (2.6) 

where e shows the prediction error. In gradient descent algorithm, gradients of the 

error functional with respect to all unknown parameters are required. Parameter 

update rules for nonlinear parameters are defined by following formulas: 

  1k k

k

E
µ µ τ

µ+

∂
= −

∂
             (2.7)   

 1k k

k

E
σ σ τ

σ+

∂
= −

∂
             (2.8) 

where τ is step size in the algorithm. The error rate of overall output is reduced 

each iteration of the algorithm. The stages of hybrid algorithm are summarized in 

Table 2.1. 
       

 

Table 2.1. Two stages in the hybrid learning algorithm for the ANFIS 

 Forward Pass Backward Pass 

Premise Parameters Fixed Gradient Descent 

Consequent Parameters LSE Fixed 
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2.3 Least Square Estimation 

In the general least squares problem, the output of a linear model y is given 

by linearly parameterized expression [23]: 

( ) ( ) ( )1 1 2 2 ... n ny f u f u f uθ θ θ= + + +           (2.9) 

where u is the model’s input vector, f1, ··· , fn are known functions of u, and 

θ1,···,θn are unknown parameters to be estimated. If we have a training set with m 

input-output pairs, our system is defined as follows:  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 2 1 1

1 2 1 2 2 2 2 2

1 1 2 2

...

...

...

n n

n n

m m n m n m

f u f u f u y

f u f u f u y

f u f u f u y

θ θ θ

θ θ θ

θ θ θ

+ + + =


+ + + =


 + + + =

M
        (2.10) 

where nm ≥  needs to be solved in parameters θi with minimal error. LSE method 

solves this problem with matrix arithmetic as; 

yA =θ , such that; 

( ) ( )

( ) ( )

1 1 1 1 1

1 1 1 1

,   ,   
n

n m n mn mm n

f u f u y

A y

f u f u y

θ
θ

θ
× ××

     
     = = =     
         

L

M O M M M

L

      (2.11) 

For conditions where nm > , an exact solution cannot be found since the 

matrix θ is non-square. To help the solution, an error parameter is added to (2.10) 

and a performance criteria is obtained:  

( ) ( ) ( )1 1

2 2

TTE e e y A y Aθ θ θ= = − −         (2.12) 

and we obtain a prediction value of parameters θ̂  which will minimize (2.12) as: 

( ) 1ˆ T TA A A yθ
−

=            (2.13) 

When training the ANFIS, A is a matrix consisting of normalized 

activation strength (η ), x1 and x2 values, and θ is a vector whose element values 

are p, q and r. 
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2.4 The Proposed Networks in this Thesis 

In this thesis, two different neuro-fuzzy systems which use wavelet 

functions in their processing units are designed for system identification and time 

series prediction problems. As explained in first chapter, wavelet functions have 

important properties such as time-frequency localization and these properties 

make wavelets suitable for function approximation problems. The structures of 

proposed networks are similar with ANFIS networks. The differences between 

ANFIS and proposed models are shown in Figure 2.2. The first network which is 

called as adaptive wavelet network (AWN) in this thesis uses wavelets as 

membership functions in the second layer of the ANFIS structure whereas the 

ANFIS networks use generally Gaussian type membership functions. Both 

constant function and first order polynomial of inputs are used in the consequent 

part of the rules and this is same with ANFIS networks. The AWN model will be 

explained in Chapter 3.  The second network which is called as fuzzy wavelet 

network (FWNN) uses wavelets in the consequent part of the rules instead of 

constant function or first order polynomial of inputs in the ANFIS. The premise 

part of the rules is same with ANFIS networks. The FWNN model will be 

explained in Chapter 4. 

 

Figure 2.2. The difference between ANFIS and AWN (dashed line), and between ANFIS and 

FWNN (solid line)   
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3. ADAPTIVE WAVELET NETWORK (AWN) 

In this chapter, AWN will be described. The structure of AWN is similar 

to the ANFIS. This network uses wavelet basis functions in second layer as 

membership functions while ANFIS uses generally Gaussian type membership 

functions. A hybrid learning algorithm which combines LSE and Broyden-

Fletcher-Goldfarb-Shanno (BFGS) gradient method is used for training the 

network.  

3.1. Gaussian and Wavelet Basis Functions 

      In the ANFIS, membership functions are local basis functions such as 

Gaussian function shown in Figure 3.1. The local basis functions are active for 

only certain inputs. However, Gaussian function is not local in frequency as seen 

in Figure 3.2. The locality features both in time and frequency is a very important 

concept for representation of the signals. Therefore, the mission of the wavelet 

functions is comprehensive.  
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Figure 3.1. Gaussian and Mexican Hat functions 
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Figure 3.2. The Fourier transform of Gaussian and Mexican Hat wavelet functions 

Mexican Hat wavelet function is the second derivative of Gaussian 

function. Non-orthonormal Mexican Hat basis function can be easily written in 

the analytical form and its Fourier transform can be easily calculated as given 

below: 

2
2( ) (1 )exp( ) ,

2

x
x x x Rψ = − − ∈            (3.1) 

2
2( ) 2 exp( ) ,

2
R

ω
ψ ω πω ω= − ∈            (3.2) 

where ω is a real frequency. The Mexican Hat wavelet function can be 

generalized with translation (b) and dilation (c) parameters as follows: 

2 21
( ) (1 ( ) ) exp( ( ) )

2

x b x b x b

c c c
ψ

− − −
= − −           (3.3) 

Translation parameter determines the center position of the wavelet as 

shown in Figure 3.3, whereas dilation parameter controls the spread of the wavelet 

as shown in Figure 3.4. 
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Figure 3.3. Illustration of the translation parameter effect on Mexican Hat wavelet function 
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Figure 3.4. Illustration of the dilation parameter effect on Mexican Hat wavelet function 

The time and frequency envelope of the Mexican Hat function is shown in 

Figure 3.4 and Figure 3.5, respectively. Wavelet functions have efficient time-

frequency localization properties as shown from the frequency spectrum [24]. If 

the dilation parameter is changed, the support region width of the wavelet 

function changes, but the number of cycles doesn’t change. That is, the peak 

number doesn’t change. However, when the dilation parameter decreases, the 
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peak point of the spectrum shifts to higher frequency. Therefore, all frequency 

spectrums can be obtained by changing the dilation parameter. 
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Figure 3.5. Illustration of the dilation parameter effect on Mexican Hat wavelet function’s Fourier 

transform 

A deficiency of Gaussian based ANFIS networks doesn’t have localization 

capability in frequency. As shown in Figure 3.2, Gaussian function is not local in 

frequency. Therefore, it is very difficult to use Gaussian based functions in some 

applications [25]. To overcome these problems, it is very effective way to use 

wavelet functions with time-frequency localization properties. 

3.2. Structure of the Adaptive Wavelet Network  

The new network called AWN uses Mexican hat wavelet function as 

membership functions. Consequent part of the rules is either constant function or 

first order polynomial like the ANFIS networks. The six layer structure of the 

AWN is shown in Figure 3.6.  
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Figure 3.6. The structure of AWN 

• Layer 1: This layer is the input layer. Neurons in this layer simply cross 

the crisp input signals 1x , 2x ,…, nx  to the second layer. 

• Layer 2: The outputs of this layer are the values of wavelet basis functions 

which are used as membership functions. There are total 1l membership 

functions for the first input, 2l for the second input and so on. Following 

equation shows ijth membership function for jth input variable. 

2 21
(1 ( ) ) exp( ( ) )

2
j jj

j j

j i j ii

j

i i

x b x b

c c

− −
Ψ = − −          (3.4) 

where 1, 2,...,j n= and 1, 2,...,j ji l=  

• Layer 3: The activation strength of the each combination of the inputs is 

represented by the product operator in the AWN network in this layer. 

Thus, the output of a neuron in the  third layer is: 

1

( )j

n
i

l j j

j

xη
=

= Ψ∏                (3.5) 

where  l = i1i2…in,  i1= 1,…,l1,  i2= 1,…,l2,…,in=1,…,ln 
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Each possible combination of membership functions of all inputs 

represents a rule in this layer. Thus, total number of rules m is given by: 

1

n

i

i

m l
=

=∏              (3.6) 

• Layer 4: This layer is the normalization layer. Each neuron in this layer 

calculates the normalized activation strength of a given rule by: 

1

l
l m

i

i

η
η

η
=

=

∑
 (l = 1,…,m)            (3.7) 

• Layer 5: This layer calculates the weighted consequent value of a given 

combination as: 

l l lf gη=  (l = 1,…,m)            (3.8) 

 Two types of AWN model are proposed in this thesis. The first 

model is zero order AWN (AWN-Z) model where gl is a constant function. 

The second model is first order AWN (AWN-F) model where gl is a first 

order polynomial function of inputs, i.e. 

 l lg k=    for AWN-Z model                (3.9) 

 
1

n

l l il i

i

g k p x
=

= +∑  for AWN-F model           (3.10) 

 The first four layers and last layer are same for both zero and first 

order AWN models. Only the fifth layer differs in these models. 

• Layer 6: This layer contains only a single node and it computes the overall 

output as the summation of all incoming signals, which is given by: 

 
1

m

l

l

y f
=

=∑            (3.11) 

3.3. A Hybrid Training Algorithm for AWNs 

The total AWN network parameters to be trained are translation 

parameters (b) and dilation parameters (c) of wavelet basis functions, and zero and 

first order model output layer parameters (k and/or p). The number of these 

unknown parameters is given in Table 3.1 for each AWN model. For example, in 
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two inputs one output model with two wavelet membership functions for each 

input, there are 8 wavelet function parameters and 4 constant output layer 

parameters for zero order AWN model. If this network is a first order AWN 

model, the number of wavelet function parameters is the same; however there will 

be 12 first order polynomial parameters in the output layer to be determined.  

Table 3.1. The number of unknown parameters for the AWN models 

Parameters 

Models 
b c k p 

Zero order AWN 
1

n

i

i

l
=
∑  

1

n

i

i

l
=
∑  m  0 

First order AWN 
1

n

i

i

l
=
∑  

1

n

i

i

l
=
∑  m  nm  

 

The AWN training is to encapsulate a given arbitrary function or input-

output pairs by adjusting network parameters. This is done by minimizing the 

error functional. For the purpose of training an AWN, mean square error (MSE) is 

selected as a performance index which is given by: 

 2

1

1
( )

N

d

k

E y y
N =

= −∑                  (3.1) 

N is the number of input-output pairs of the function to be approximated, yd is the 

desired output, and y is the AWN output.  

Training process is achieved in two stage: The first stage, which is referred 

to as “forward pass”, consists of calculating the outputs of all layers up to 6th layer 

by randomly initializing wavelet function parameters (b and c) concerning the 

input variable ranges and finding the initial values of output layer parameters (k 

and/or p)  using LSE. The second part named “backward pass” is completed only 

when performance index is calculated and, wavelet function and output layer 

parameters are updated using BFGS gradient method. This hybrid training 

algorithm for AWN is similar to training algorithm for the ANFIS networks. 

However, LSE is used only once at the beginning for initialization of output layer 
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parameters. Then, BFGS gradient method has been used for updating of all 

unknown parameters at each epoch.  

     3.3.1. Broyden-Fletcher-Goldfarb-Shanno gradient method 

  BFGS is one of the approximate second order algorithms and derived from 

Newton’s method in optimization which is a class of hill-climbing optimization 

techniques. It tries to seek the stationary point of a function, where the gradient is 

zero [26]. It is assumed that at the each iteration of the training algorithm, 

gradients of the performance index with respect to all unknown parameters (p) of 

the network, 
∂

=
∂
E

g
p

 is computed. Parameter update rules of BFGS algorithm is 

given by: 

 1k k k k
p p dτ+ = +            (3.13) 

 kmin  J(p )k k
dτ τ

τ
= +            (3.14)

 k k k
d H g p= −             (3.15) 

Here p is the parameter to be updated, d is the search direction, ττττ is the optimal 

step size along the search direction, g is the cost gradient with respect to 

parameter p and 1( )H Jp
−≅ ∇  is the inverse of the approximate Hessian matrix 

given by: 

T
( ) ( )1 kH

( ) ( )

( ) 0           +   ,   H
( )

k k T k k T
p g p gp pk

H I I
k T k k T k

p g p gp p

k k T
p p

I
k T k

p g p

∆ ∆ ∆ ∆+ = − −
∆ ∆ ∆ ∆

∆ ∆
=

∆ ∆

   
   
   
            (3.16)

     

∆p and ∆g are the backward differences of the parameter and gradient vectors, 

respectively. They provide the history of parameter and gradient changes yielding 

approximate second order information. The method is faster than the simple 

gradient method and more robust than simple conjugate gradient approach [26].  
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    3.3.2. Gradients of unknown parameters for the AWN   

The cost gradients with respect to network parameters are required for a 

gradient based algorithm. These are calculated by the following formulas for         

i =1…,n;  l =1,…,m and j = 1,...,n : 

  
l

l

E E

k y
η

∂ ∂
=

∂ ∂
            (3.17) 

l i

il

E E
x

p y
η

∂ ∂
=

∂ ∂
 for AWN-F model            (3.18) 

( ) 2 2

2

1
3 exp

2

j j j

j

j j j j

j i j i j i

i

i i i ij

x b x b x bE E y

b y c c c

   −    − −∂ ∂ ∂       = − −
      ∂ ∂ ∂Ψ       

     (3.19) 

( )2 2 2

3

1
3 exp

2

j j j

j

j j j j

j i j i j i

i

i i i ij

x b x b x bE E y

c y c c c

   −    − −∂ ∂ ∂       = − −
      ∂ ∂ ∂Ψ       

     (3.20) 

1

2
( )

N

d

k

E
y y

y N =

∂
= −

∂ ∑            (3.21) 

Here for the above calculations, partial derivative of the output y with 

respect to membership functions of each input variable is needed. For the first 

variable, this can be calculated as follows for i1=1,…,l1: 

 

2 2

1 2

2 2

1 21

1 2

, ,...,
1 1 1 12 2

1 1

1 1 1 1

( ) ( )

( )
( )

n n

k k

n

n n

n

k

n

l ll ln n
i i

i i i k k k k

i i i ik k

ll li n
i

k j

i i i k

g x y x
y

x
x

= = = == =

= = = =

Ψ − Ψ
∂

=
∂Ψ

Ψ

∑ ∑ ∑ ∑∏ ∏

∑∑ ∑∏

L L

L

      (3.22) 

The calculations can be easily generalized for the other input variable 

membership functions.  

For single-input-single-output (SISO) AWN model, the output can be 

calculated using (3.23) where x1 is input variable which has l1 membership 

functions. The partial derivative of membership functions in (3.22) becomes 

(3.24) for SISO AWN model. 
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1

1

1

1

1

1

1

1 1
1

1 1
1

( )

( )

l
i

i

i

l
i

i

g x

y

x

=

=

Ψ

=
Ψ

∑

∑
           (3.23) 

1

11

1

1

1 1
1 1

1

( )

( )
( )

i

li
k

k

g yy

x
x

=

−∂
=

∂Ψ
Ψ∑

 (i = 1,…,l1)        (3.24) 
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4. FUZZY WAVELET NEURAL NETWORK (FWNN) 

The FWNN models proposed in this thesis are obtained from the 

traditional Sugeno fuzzy system by replacing the consequent part of fuzzy rules 

with wavelet basis functions that have time and frequency localization properties. 

Three type of FWNN models are proposed in this thesis. The first and last model 

use summation and multiplication of dilated and translated versions of single 

dimensional wavelet basis functions, respectively and in the second model, 

consequent parts of the rules consist of radial function of wavelets. A fast training 

gradient algorithm, BFGS, is used to obtain the optimal values for unknown 

parameters of the FWNN models.  

4.1 The Structure of Wavelet Neural Network 

The main characteristic of a WNN is that wavelet functions are used in 

hidden layer of neural network as activation functions instead of local functions in 

time such as Gaussian and sigmoid functions. The structure of a WNN shown in 

Figure 4.1 involves three layers: an input layer, a hidden layer, an output layer. 

The output of a WNN is given by: 

 
1/ 2

1 1

( )
k k

i
i i i i

i i i

x b
y w x w c

c
ψ

−

= =

 −
= Ψ =  

 
∑ ∑           (4.1) 

where ψi is the wavelet activation function of ith unit of hidden layer and wi is the 

weight between hidden and output layer. x is input vector, bi and ci are translation 

and dilation parameters of wavelet functions. 

 

Figure 4.1. The structure of Wavelet Neural Network 
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Wavelet functions have efficient time-frequency localization properties. 

Localization of the ith unit of hidden layer is determined by translation and 

dilation parameters of a wavelet function. As explained in previous chapter, 

translation parameter determines the center position of the wavelet, whereas 

dilation parameter controls the spread of the wavelet. 

When input space is n dimensional, wavelet basis function can be 

calculated by product of n single dimensional wavelet basis function. 

1 2
1

( ) ( , ,..., ) ( )
n

n i

i

x x x x xψ ψ ψ
=

= =∏            (4.2) 

Another popular scheme to represent multidimensional wavelets is to 

choose the wavelets to be some radial functions. For example, n dimensional 

Mexican hat wavelet can be expressed as 

2
2

( ) (1 ) exp( )
2

x
x xψ = − −             (4.3) 

where 
2 2

1

n
T

i

i

x x x x
=

= =∑ .  

4.2. The Structure of Fuzzy Wavelet Neural Network Models 

The FWNN models combine Sugeno fuzzy system with wavelet functions. 

In a Sugeno fuzzy model, input space is divided into fuzzy regions and each 

region shows a fuzzy membership functions for an input variable. The 

consequents of fuzzy rules are represented by either a constant or a linear function 

of inputs. In this part of the thesis, constant or linear functions in consequent part 

of the rules are substituted with wavelet functions in order to increase 

computational power of neuro-fuzzy systems because, wavelets have 

multiresolution property. This property is very useful for function approximation 

problems. The wavelets can capture global (low frequency) and local (high 

frequency) behavior of any function easily. This characteristic leads to the 

proposed FWNN to be of the advantages of fast convergence, easy training and 

high accuracy. The rules are in following form: 

IF 1x  is 1

1
i

A  AND 2x  is 2

2
i

A AND … AND nx is ni

nA  THEN lΨ (x) 
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where 1x , 2x ,…, nx  are input variables, ji

jA is ijth Gaussian type membership 

function (MF) for jth input and lΨ (x) which is a function of inputs is lth output of 

fuzzy rule. In this study, three different FWNN models are proposed according to 

consequent part of the rules. The first one is summation FWNN (FWNN-S) which 

uses summation of translated and dilated versions of single dimensional wavelet 

functions in consequent part of the rules. Multiplication of single dimensional 

wavelet functions are used in the second model which is called as multiplication 

FWNN (FWNN-M). In the last model, radial FWNN (FWNN-R), consequent part 

of the rules consists of radial function of wavelets. 

The six layer structure of the FWNN models are shown in Figure 4.2. 

 

 

Figure 4.2. The structure of Fuzzy Wavelet Neural Network 

• Layer 1: This layer is the input layer. Neurons in this layer simply cross 

the crisp input signals 1x , 2x ,…, nx  to second layer. 

• Layer 2: This layer is the fuzzification layer and neurons in this layer 

represent the fuzzy sets used in the antecedents of the fuzzy rules. A 

fuzzification neuron receives a crisp input and determines the degree to 

which this input belongs to the neuron’s fuzzy set. The outputs of this 
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layer are the values of membership functions for input values. There are 

total 1l membership functions for the first input, 2l for the second input and 

so on. Following equation shows ijth Gaussian membership function for 

jth input variable.  

21
exp( ( ) )

2
jj

j

j ii

j

i

x
A

µ

σ

−
= −     1, 2,...,j n=  and 1, 2,...,j ji l=        (4.4) 

• Layer 3: This layer is the fuzzy rule layer. Each node in this layer 

represents a fuzzy rule. In order to calculate the firing strength of each 

rule, multiplication is used as AND (t-norm) operator. The output of the 

lth node in this layer is 

1

( )j

n
i

l j j

j

A xη
=

=∏               (4.5) 

where  l = i1i2…in,  i1= 1,…,l1,  i2= 1,…,l2,…,in=1,…,ln  

Each possible combination of membership functions of all inputs 

represents a fuzzy rule. For example, lth rule in Figure 4.2 comprises from 

second membership functions of first and second inputs and last 

membership function of the last input. Thus total number of rules m is 

given by:  

1

n

i

i

m l
=

=∏              (4.6) 

• Layer 4: This layer is the normalization layer. Each neuron in this layer 

calculates the normalized activation strength of  lth rule by: 

1

l
l m

i

i

η
η

η
=

=

∑
  (l = 1,…,m)          (4.7) 

The normalized activation strength is the ratio of the activation 

strength of a given combination to the sum of activation strengths of all 

combinations. It represents the contribution of a given combination to the 

final result. 
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• Layer 5: This layer calculates the weighted consequent value of a given 

rule as follows for l = 1,…,m: 

l l lf η= Ψ              (4.8) 

For  FWNN-S:
 

2 2

1

1
(1 ( ) ) exp( ( ) )

2

n
i il i il

l il

i il il

x b x b
w

c c=

− −
Ψ = − −∑         (4.9)   

  For FWNN-M: 

2 2

1

1
(1 ( ) )exp( ( ) )

2

n
i il i il

l l l

i il il

x b x b
w p

c c=

− −
Ψ = − − +∏       (4.10) 

  For FWNN-R: 

2 2|| || || ||1
(1 ( ) ) exp( ( ) )

2
l l l

l l

w p
c c

− −
Ψ = − − +l lx b x b

      (4.11) 

• Layer 6: This layer contains only a single node and it computes the overall 

output as the summation of all incoming signals, which is given by: 

1

m

l

l

y f
=

=∑            (4.12) 

In [15]-[22], some fuzzy wavelet neural network models have been 

designed. The details of these models are explained in first chapter. The FWNN 

proposed in [21] also uses summation of dilated and translated versions of wavelet 

functions in consequent part of fuzzy rules for system identification and control 

purposes. However, there are some differences between the model in [21] and the 

FWNN-S described in this thesis. In [21], the number of fuzzy membership 

functions for each input is equal to the number of fuzzy rules, but in this thesis 

each input can have different number of membership functions and each possible 

combination of membership functions of inputs represents a fuzzy rule. The total 

number of rules can be calculated using (4.6). In [21], minimum is used as t-norm 

AND operator, but multiplication is used here for that purpose. In [21], 

summation of wavelet functions is multiplied by a weight. But, the effect of each 
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input variable is different in overall output. Therefore, different weights are used 

for each single dimensional wavelet functions.    

4.3 Training Algorithm for Fuzzy Wavelet Neural Network Models 

The FWNN training is to encapsulate a given function or input-output 

pairs by adjusting network parameters. Unknown parameters of the FWNN 

models are adjusted by using BFGS gradient method. This method is explained in 

the third chapter. Unknown parameters are center parameters (µ) and scaling 

parameters (σ) of Gaussian membership functions in antecedent part of the rules, 

and translation (b), dilation (c) parameters of wavelet functions and weight (w) 

and bias (p)  parameters in the consequent part of the rules. The number of these 

unknown parameters is given in Table 4.1 for each FWNN model. 

Table 4.1. The number of unknown parameters for the FWNN models 

                  Parameters 

    Models 

µ σ b c w p 

FWNN-S 
1

n

i

i

l
=
∑  

1

n

i

i

l
=
∑  nm  nm  nm  0 

FWNN-M 
1

n

i

i

l
=
∑  

1

n

i

i

l
=
∑  nm  nm  m  m  

FWNN-R 
1

n

i

i

l
=
∑  

1

n

i

i

l
=
∑  nm  m  m  m  

 

Initial values for scaling parameters of Gaussian membership functions 

and dilation parameters of wavelet functions are set to 1. Initial values for other 

parameters are generated randomly between 0 and 1. 

     4.3.1. Gradients of unknown parameters for FWNN models   

While using a gradient based training algorithm like BFGS, gradients of 

the performance index with respect to all unknown parameters are required. The 

gradients of wavelet functions in consequent part of the rules for the FWNN-S can 

be calculated by the following formulas for i =1…,n and l =1,…,m: 
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2 2
1

1 exp
2

i il i il
l

il il il

x b x bE E

w y c c
η
      − −∂ ∂    = − −      ∂ ∂       

       (4.13) 

( ) 2 2

2

1
3 exp

2
i il i il i il

l il

il il il il

x b x b x bE E
w

b y c c c
η

   −    − −∂ ∂    = − −      ∂ ∂       
     (4.14) 

( ) 2 22

3

1
3 exp

2
i il i il i il

l il

il il il il

x b x b x bE E
w

c y c c c
η

   −    − −∂ ∂    = − −      ∂ ∂       
     (4.15) 

1

2
( )

N

d

k

E
y y

y N =

∂
= −

∂ ∑            (4.16) 

The gradients of Gaussian type membership functions in the antecedent 

part of the rules for the FWNN-S can be calculated by the following formulas for j 

=1…,n and ij =1,…,lj: 

2

2

( ) 1
exp

2
j j

j

j j j

j i j i

i

i i ij

x xE E y

y A

µ µ

µ σ σ

  − −∂ ∂ ∂   = −
  ∂ ∂ ∂   

       (4.17) 
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i j

xxE E y

y A

µ

σ

µ

σ σ

−
−
  −∂ ∂ ∂  =  

  ∂ ∂ ∂   

       (4.18) 

Here for the above calculations, partial derivative of the output y with 

respect to membership functions of each input variable is needed. For the first 

variable, this can be calculated as:   
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     (4.19)  

where i1 = 1,…,l1. 

The calculations can be easily generalized for the other input variable 

membership functions. The gradients of membership functions for FWNN-R and 
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FWNN-M models are same with gradients for FWNN-S model. Therefore, these 

gradients can be calculated using (4.17), (4.18) and (4.19). However, the gradients 

of wavelet functions for FWNN-R and FWNN-M models are different from those 

of FWNN-S model. These gradients for FWNN-R can be calculated using 

following formulas for i =1…,n and l =1,…,m: 
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The gradients for FWNN-M model can be calculated as for i =1…,n and 

l=1,…,m: 
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     4.3.2. Gradients of unknown parameters for SISO FWNN models    

For SISO FWNN models, the outputs of wavelet functions in the fifth 

layer of the models, the equations (4.9), (4.10) and (4.11), can be simplified as 

follows: 

 2 21
(1 ( ) ) exp( ( ) )

2

− −
Ψ = − −i i

i i

i i

x b x b
w

c c
 for FWNN-S      (4.28) 
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              (4.29) 

where i=1,..,m and m is the number of membership function for input variable. 

Then, the overall output of SISO FWNN can be calculated as: 
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  The gradient of center and scaling parameters in membership functions for 

all SISO FWNN models can be calculated as: 
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The gradients of wavelet function parameters can be calculated as follows 

for SISO FWNN models. 
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5. SIMULATION RESULTS 

The proposed AWN and FWNN models are applied to six well-known 

benchmark problems to compare the performance of these models with existing 

models. These problems are a SISO function approximation, Box-Jenkins, 

Mackey Glass, and sunspot number time series predictions and system 

identification of two nonlinear plants. 

5.1. Approximation of a Piecewise Function  

 A piecewise function studied by Zhang [7] and Chen [27] is used to 

compare the FWNN and AWN models with some other wavelet-based networks. 

This function is defined as 

( )
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− − − ≤ < −
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        (5.1) 

For the training process, N = 200 sample points are drawn from the data 

uniformly distributed over [-10, 10]. In order to compare the proposed models 

with other works, the measure in [15] is used: 
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where yd is actual output, y is predicted output and 
1

1 N

av d

i

y y
N =

= ∑ .  

In Table 5.1, it is seen that the performance of the first order AWN with 8 

rules and FWNN-M (or FWNN-R) with 7 rules  is superior to that of the other 

WNNs. Figure 5.1 illustrates the validity of first order AWN with hybrid 

algorithm which corresponds the smallest performance measure value among the 

simulations.   
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Table 5.1. Comparison of AWN and FWNN models for the piecewise function 

Model 
Number of 
parameters  

J 

FWNN-S 35 0.0057 
FWNN-S 30 0.0114 
FWNN-M and 
FWNN-R 

42 0.0031 

FWNN-M and 
FWNN-R 

36 0.0041 

AWN-F 32 0.0033 
AWN-F 28 0.0047 
AWN-Z 24 0.0088 
AWN-Z 21 0.0371 
FWN [15] 28 0.021 
WNN[7] 22 0.05057 
WNN[27] 23 0.0480 
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Figure 5.1. Actual and predicted values with first order AWN for the piecewise function 

5.2. Prediction of Box-Jenkins Time Series 

In this section, the proposed models are applied to Box-Jenkins time series 

data (gas furnace data) which was recorded from a combustion process of a 

methane-air mixture. The input of this process is the gas flow rate u(t) and  the 

output y(t) is the CO2 concentration  in outlet gas. In order to predict y(t), u(t-4) 

and y(t-1) are used as inputs to models. The original dataset includes 296 input-

output pairs. However, it is reduced to 292 pairs because of delay of inputs. The 

first 200 input-output pairs are used as a training set, and the remaining 92 points 

are used as a test set to see the prediction performance AWN and FWNN models.        
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These models are trained and tested for both two and three membership functions 

for each input, which form 4 and 9 fuzzy rules respectively. Each FWNN model is 

trained for 500 epochs and each AWN model is trained for 400 epochs. Figure 5.2 

and Figure 5.3 show the actual time series with the output of FWNN-M with three 

membership functions for each input and the prediction error, respectively. Root 

mean square error (RMSE)  

2

1

1
( )

N

d

k

RMSE y y
N =

= −∑             (5.3) 

is used as performance measure in this example. For the best result, a comparison 

of the proposed models is summarized in Table 5.2 with respect to RMSE values 

for training and testing. In Table 5.3, the FWNN models are compared with 

different models in the literature. It is seen from the training and testing 

performances that FWNN-M model gives the second best result and 

LLWNN[9]+hybrid model is the best of the others. This model has 56 learning 

parameters. Our FWNN models have its best results with 66 learning parameters 

in testing. In addition, the number of training data of Box-Jenkins time series 

consists of only 200 input-output pairs that result in overtraining in testing the 

predictions of the models. This means that it is necessary to increase model 

parameters or Box-Jenkins time series data does not represent the general 

characteristic of this process. To see the prediction performance and to show the 

efficiency of the proposed models, new simulation experiments are done such as 

Mackey Glass time series prediction and system identification of two nonlinear 

plants. As you will see, the results of these new simulation examples prove both 

conclusions about the Box-Jenkins time series data prediction. To obtain the best 

accurate models, the number of neurons in the hidden layer, i.e. the number of 

fuzzy rules should be increased such that an optimal increase in the number of 

training parameters can be obtained. 
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Figure 5.2. Actual and predicted values with FWNN-M for Box-Jenkins time series  
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Figure 5.3. Prediction error of the FWNN-M model for Box-Jenkins time series 

Table 5.2.  Comparison of AWN and FWNN models for Box Jenkins time series 

Model 
Number of 
parameters 

Epoch 
RMSE 

training 
RMSE 
testing 

AWN-Z (2 MFs) 12 400 0.02153 0.03308 

AWN-Z (3 MFs) 21 400 0.02003 0.03192 

AWN-F (2 MFs) 20 400 0.01934 0.03176 

AWN-F (3 MFs) 39 400 0.01909 0.03084 

FWNN-S (2 MFs) 32 500 0.01884 0.03085 
FWNN-S (3 MFs) 66 500 0.01880 0.02778 
FWNN-R (2 MFs) 28 500 0.01992 0.03171 
FWNN-R (3 MFs) 57 500 0.01881 0.02794 
FWNN-M(2 MFs) 32 500 0.01900 0.02963 
FWNN-M(3 MFs) 66 500 0.01963 0.02324 
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Table 5.3. Comparison of test results of different models for Box Jenkins time series 

Model  RMSE 
Tong’s model [28] 0.685 
Pedrycz’s model [29] 0.566 
Xu’s model [30] 0.573 
Sugeno’s model [31] 0.596 
Surmann’s model [32] 0.400 
FuNN model [33] 0.071 
HyFIS model [34] 0.042 
Neural tree model [35] 0.026 
WNN[9]+gradient 0.084 
WNN[9]+hybrid 0.081 
LLWNN[9]+gradient 0.017 
LLWNN[9]+hybrid 0.013 
AWN-Z (3 MFs) 0.032 
AWN-F (3 MFs) 0.031 
FWNN-S (3 MFs) 0.028 
FWNN-R (3 MFs) 0.028 
FWNN-M (3 MFs) 0.023 

 

5.3. Prediction of Sunspot Number Time Series 

     In this section, annually recorded sunspot time series for the years 1700-

1979 is considered to show performance of the AWN and FWNN models. These 

numbers show the yearly average relative number of sunspots observed. To make 

the comparisons meaningful with other works, the dataset is divided into three 

parts. The data points between years 1700-1920 are used for training the models. 

The data points for years 1921-1955 and 1956-1979 form first and second test sets 

respectively. The y(t-4), y(t-3), y(t-2) and y(t-1) are used as inputs to models in 

order to predict the output y(t). Two membership functions are selected for each 

input, so there are total 16 rules in each model and these models are trained for 

200 epochs. Normalized mean square error (NMSE)  

2NMSE J=               (5.4) 

is used to compare the proposed AWN and FWNN with other models, where J 

equals (5.2). Training and testing error values are given in Table 5.4 with 

comparison of other models in the literature. In Figure 5.4 and Figure 5.5, actual 

output of time series, prediction results of summation FWNN and prediction error 

are shown.  
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Table 5.4. Comparison of AWN and FWNN models with different models for sunspot number 

time series 

Model 
Number of 
parameters 

NMSE 
training 

NMSE 
testing 1 

NMSE 
testing 2 

Tong and Lim [36] 16 0.097 0.097 0.28 
Weigend [37] 43 0.082 0.086 0.35 
Svarer [38] 12-16 0.090 0.082 0.35 
Transversal Net[39] 14 0.0987 0.0971 0.3724 
Recurrent net[39] 22 0.1006 0.0972 0.4361 

AWN-Z 32 0.1093 0.2101 0.1734 

AWN-F 96 0.1225 0.1447 0.1468 
FWNN-S 208 0.0895 0.1093 0.1510 
FWNN-R 128 0.0796 0.1099 0.2549 
FWNN-M 176 0.0828 0.0973 0.1988 
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Figure 5.4. Actual and predicted values with FWNN-S model for sunspot number time series 
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Figure 5.5. Prediction error of the FWNN-S model for sunspot number time series 
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5.4. Prediction of Mackey Glass Time Series 

In this section, the proposed models are applied to Mackey Glass time 

series. This is a benchmark chaotic time series and a widely investigated problem 

in the neuro-fuzzy literature. The time series is generated by the following 

differential equation: 

10

0.2 ( )
0.1 ( )

1 ( )

dx x t
x t

dt x t

τ
τ

−
= −

+ −
            (5.5) 

For τ = 17 the systems response is chaotic and simulation data is obtained 

using initial conditions x(0)=1.2 and τ = 17. 1000 input-output data points are 

extracted from the Mackey Glass time series x(t) where t=118 to 1117. x(t+6)  is 

predicted using the input variables x(t), x(t-6), x(t-12) and x(t-18). The first 500 

data points are used to train the models and remaining 500 points are used for 

validating the identified model. Total 16 fuzzy rules are generated using two 

membership functions for each input variable. The comparison of the models 

proposed in this thesis is illustrated in Table 5.5. Also, test results for different 

models are summarized in Table 5.6.  Figure 5.6 and Figure 5.7 show the actual 

time series with the output of the FWNN-S and the prediction error, respectively. 

Table 5.5. Comparison of AWN and FWNN models for Mackey-Glass time series 

Model 
Number of 
parameters 

Epoch 
RMSE 

training 
RMSE 
testing 

AWN-Z 32 2000 0.00992 0.00982 

AWN-F 96 4000 0.00183 0.00178 

FWNN-S 208 5000 0.00124 0.00109 
FWNN-R 128 5000 0.00231 0.00232 
FWNN-M 176 5000 0.00129 0.00114 
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Table 5.6. Comparison of test results of different models for Mackey-Glass time series 

Model RMSE 
Auto-regressive model 0.19 
Cascade correlation NN 0.06 
Backpropagation NN 0.02 
Sixth-order polynomial 0.04 
Linear prediction method 0.55 
Product T-norm [40] 0.09 
Classical RBF (with 23 neurons) [41] 0.0114 
PG-RBF network [42] 0.0028 
Genetic algorithm and fuzzy system [43] 0.049 
Neural tree model [35] 0.0069 
Radial basis function network [44] 0.0015 
WNN [9] + gradient 0.0071 
WNN [9]+ hybrid 0.0059 
LLWNN [9] + gradient 0.0041 
LLWNN [9] + hybrid  0.0036 
AWN-Z 0.00982 
AWN-F 0.00178 
FWNN-S  0.00109 
FWNN-R 0.00232 
FWNN-M 0.00114 
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Figure 5.6. Actual and predicted values with FWNN-S model for Mackey-Glass time series 
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Figure 5.7. Prediction error of the FWNN-S model for Mackey-Glass time series 

      As can be seen, the RMSE values of the proposed FWNN models are 

much less than the other models, but models have considerably larger number of 

parameters to be learned.  

5.5. System Identification Example 1 

    System identification involves finding the relation between the input and 

output of the system [21, 45]. The structure of series-parallel system identification 

model with AWN or FWNN is shown in Figure 5.8. The inputs of the model are 

delayed values of control signal u(k) and  output of the plant y(k). Here, y(k) is 

target output of plant and yp(k) is predicted output. AWN or FWNN model 

parameters are updated according to prediction error e(k). 

 

Figure 5.8. Series-Parallel identification model with AWN or FWNN  
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    In this example, the plant to be identified is given by following equation: 

2( ) 0.72 ( 1) 0.025 ( 2) ( 2) 0.01 ( 3) 0.02 ( 4)y k y k y k u k u k u k= − + − − + − + −  

                (5.6) 

    The output of the system depends on two previous output values and three 

previous input values. However, only u(k-1) and y(k) are used as inputs to the 

models to predict y(k+1). Two membership functions are selected for each input 

of the models. In order to train models, 900 inputs are used similar to the inputs 

used in [47] and [48]. The half of the inputs is independent and identically 

distributed (i.i.d.) uniform sequence over [-2, 2] and the remaining is a sinusoid 

given by 1.05sin(πk/45). AWN models are trained for 100 epochs and FWNN 

models are trained for 200 epochs. After training, the following input signal which 

is same test signal with other compared models is used for testing the performance 

of the models.  

sin( / 25) 250

1.0 250 500
( ) 1.0 500 750

0.3sin( / 25) 0.1sin( / 32)

0.6sin( /10) 750 1000

k k

k

u k k

k k

k k

π

π π
π

 <


≤ <
= − ≤ <
 +


+ ≤ <

        (5.7) 

     Figure 5.9 shows the actual and predicted output of the plant for test signal 

with zero order AWN model. From Table 5.7, it can be seen that the proposed 

AWN and FWNN models illustrate much better performance than the other 

models in this system identification problem. 
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Table 5.7. Comparison of AWN and FWNN models with other models for system identification 

example 1 

Models 
Network 
Parameters 

RMSE 
Training 

RMSE 
Testing 

ERNN[46] 54 0.036 0.078 

RSONFIN[47] 49 0.03 0.06 

TRFN-S[48] 33 0.0067 0.0313 

FWNN[21] 27 0.019736 0.022609 

FWNN[21] 43 0.018713 0.020169 

AWN-Z 12 0.009368 0.022933 

AWN-F 20 0.009391 0.023259 

FWNN-S  32 0.009771 0.022226 

FWNN-R 28 0.009688 0.022204 

FWNN-M 32 0.009635 0.021342 
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Figure 5.9.  Actual and predicted test signal values with AWN-Z model for system identification 

example 1 

5.6. System Identification Example 2 

    This example considers modeling the nonlinear plant given by following 

equation.  

               ( 1) ( ( ), ( 1), ( 2), ( ), ( 1))y k f y k y k y k u k u k+ = − − −          (5.8)                         

where 

               1 2 3 5 3 4
1 2 3 4 5 2 2

3 2

( 1)
( , , , , )

1

x x x x x x
f x x x x x

x x

− +
=

+ +
          (5.9)                                          
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     The current output of the plant depends on three previous output values 

and two previous input values. However, we use only y(k) and u(k) to predict 

y(k+1). In order to train the models, 900 training inputs are generated as in 

previous example. The number of membership functions is also same with 

previous example. To test the models for this plant, the test signal in (5.7) is used. 

The actual and predicted values for testing with radial FWNN are shown in Figure 

5.10. As it is seen in Table 5.8, the FWNN models with smaller parameters are 

successful in identification than the compared models in the literature.    

Table 5.8. Comparison of AWN and FWNN models with other models for system identification 

example 2 

Models 
Network 

Parameters 
RMSE 

Training 
RMSE 
Testing 

RFNN[49] 112 0.0114 0.0575 

RSONFIN[47] 36 0.0248 0.0780 
Feedforw. Neur. 
Fuz. Sys.[48] 

48 0.0203 0.0521 

TRFN-S[48] 33 0.0084 0.0346 

FWNN[21] 27 0.029179 0.031212 

FWNN[21] 43 0.028232 0.030125 

AWN-Z 12 0.023496 0.037763 

AWN-F 20 0.025174 0.040632 

FWNN-S 32 0.020888 0.033724 

FWNN-R 28 0.015274 0.032116 

FWNN-M 32 0.019269 0.033327 

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

time

o
u
tp
u
t

 

 
target

FWNN

 

Figure 5.10.  Actual and predicted test signal values with FWNN-R model for system 

identification example 2 
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6. CONCLUSION 

 In this thesis, two new type of neuro-fuzzy models which use wavelet 

basis functions in their processing units are introduced and are used for time series 

prediction and system identification problems. Wavelet functions are firstly used 

in antecedent part of the fuzzy rules and zero and first order polynomial functions 

are used in consequent parts. Secondly, wavelets are used in consequent part of 

the rules and Gaussian functions are used as membership functions in antecedent 

parts.  

With same number of rules, FWNN models have more parameters to be 

determined than AWN models. In piecewise function approximation, first order 

AWN model gives better results with same number of rules although it has less 

model parameters. In Box-Jenkins, Mackey-Glass and sunspot time series 

prediction, FWNN models give better results with higher number of parameters. 

While FWNN models give smaller error values in second system identification 

problem, both FWNN and AWN models give close results in first system 

identification example.  

In addition, all of these models are compared with other models in the 

literature. In piecewise function approximation, first order AWN model gives best 

result among other models in the literature with same and less number of 

parameters. In sunspot time series prediction, we have better results with proposed 

FWNN models. However these models have higher number of parameters than 

other models. In Mackey-Glass time series prediction, the FWNN-S and FWNN-

M models give the best results. Some other models in the literature give better 

results than proposed models in this thesis for Box-Jenkins time series prediction. 

In first system identification example, AWN and FWNN models give smaller 

training error values and close testing error values among other models with less 

parameters. In second system identification example, the FWNN models give 

close test results among other models with same and less parameters in other 

models. 

 It is believed that these models can also be applied to a wider range of 

real-world problems such as speech and image processing, financial data analysis 

and prediction and other system identification and control applications. In 
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addition, the significance of this work is to show that an AWN or FWNN model 

can track any nonlinear dynamical function. Secondly, efficient computational 

models and algorithms can be designed for parameter identification in fully 

nonlinear systems in general and for training AWN or FWNN models as a 

specific application. An approximate second order gradient procedure has been 

used here. Other optimization techniques such as particle swarm optimization 

(PSO) or some hybrid algorithms which combines gradient based algorithms with 

PSO can also be used for training unknown parameters of the models.   
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