

DESIGN AND IMPLEMENTATION OF A BORDER
ROUTER FOR SEAMLESS PEER-TO-PEER (P2P)

UDP COMMUNICATION USING IPv4+4 ADDRESSES

Cihan TOPAL

Master of Science Thesis

Computer Engineering Program

June – 2008

This thesis is supported by The Scientific and Technological Research

Council of Turkey (TUBĐTAK). Grant No: 107E166

JÜRİ VE ENSTİTÜ ONAYI

Cihan Topal’ın “IPv4+4 Adresleri ile Dikişsiz UDP İletişimi Sağlayan

Yazılım Tabanlı bir P2P Dönüştürücü Tasarım ve gerçeklemesi” başlıklı

Bilgisayar Mühendisliği Anabilim Dalındaki, Yüksek Lisans Tezi 11.06.2008

tarihinde, aşağıdaki jüri tarafından Anadolu Üniversitesi Lisansüstü Eğitim-Öğretim

ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca değerlendirilerek kabul edilmiştir.

 Adı-Soyadı

İmza

Üye (Tez Danışmanı) :Yard. Doç.Dr. CÜNEYT AKINLAR …………….,

Üye : Yard. Doç.Dr. HAKAN ŞENEL ……………..

Üye : Yard. Doç.Dr. EMİN GERMEN ……………..

 Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu’nun
………………… tarih ve ………………… sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

 i

ABSTRACT

Master of Science Thesis

DESIGN AND IMPLEMENTATION OF A BORDER ROUTER
FOR SEAMLESS PEER-TO-PEER (P2P) UDP COMMUNICATION

USING IPv4+4 ADDRESSES

Cihan TOPAL

Anadolu University
Graduate School of Sciences

Computer Engineering Program

Supervisor: Assist. Prof. Dr. Cüneyt AKINLAR
 2008, 42 pages

With the proliferation of P2P applications such as Voice over IP (VoIP),

online games etc., there is an increasing demand for secure seamless peer-to-peer

(P2P) UDP communication. Unfortunately, the current structure of the Internet,

with hosts behind Network Address Translation (NAT) boxes, causes well-

known problems for P2P applications. There are several proposals, e.g., STUN,

UPnP, MIDCOM, TURN among others, to enable P2P UDP communication for

nodes behind NAT boxes, but each technique offers a partial solution that works

in special limited cases and fails in others.

Alternatively, several NAT-extended architectures have been proposed,

e.g., IPv4+4, TRIAD, IPNL, RSIP, to restore end-to-end addressing and

connectivity, however, they all require a complete and simultaneous upgrade of all

existing network infrastructure, which simply is not feasible.

In this thesis, it is presented and implemented an extended Internet

architecture that tries to offer a complete solution with IPv4+4 addresses to the

secure seamless P2P UDP communication problem. The source files (lsrr_nat.c,

nat.h, lsrr.h) of the implemented software are presented in the CD attached to the

back cover.

Keywords: P2P Communication, Network Address Translation, IPv4+4.

 ii

ÖZET

Yüksek Lisans Tezi

IPV4+4 ADRESLERĐ ĐLE DĐKĐŞSĐZ UDP ĐLETĐŞĐMĐ
SAĞLAYAN YAZILIM TABANLI BĐR P2P DÖNÜŞTÜRÜCÜ

TASARIM VE GERÇEKLEMESĐ

Cihan TOPAL

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yard. Doç. Dr. Cüneyt AKINLAR
 2008, 42 sayfa

VoIP, çevrimiçi oyunlar, vb. gibi P2P (uçtan uca) uygulamaların sayısının

çoğalmasıyla beraber, güvenli dikişsiz P2P UDP iletişimine artan bir talep

bulunmaktadır. Ancak çoğunluğu NAT (Ağ Adres Dönüşümü) cihazlarının

arkasında bulunan kullanıcılardan oluşan mevcut Internet yapısı P2P uygulamalar

için ciddi problemler teşkil etmektedir. NAT cihazı arkasındaki kullanıcılar için

P2P UDP iletişimini sağlamaya yönelik STUN, UpnP, MIDCOM, TURN vb. gibi

önerilen sistemler olmasına rağmen; bu sistemler belirli kısıtlamalar altında

çalışabilmekte ve kısmi çözümler sunabilmektedirler.

Bunlarla beraber IPv4+4, TRIAD, IPNL, RSIP gibi bazı NAT tabanlı

mimariler de uçtan-uca adresleme ve iletişimi sağlamak adına önerilmiş, ancak

mevcut ağ yapısının tamamının eşzamanlı yükseltilmesini gerektirdiklerinden

dolayı makul bir çözüm olamamışlardır.

Bu tez çalışmasında IPv4+4 adreslerini kullanarak güvenli, dikişsiz uçtan-

uca UDP iletişimi problemini çözebilecek bir Internet mimarisi önerilmiş ve

gerçeklenmiştir. Ayrıca gerçeklenen yazılımın kaynak kodları (lsrr_nat.c, nat.h,

lsrr.h) tezin arka kapağında bulunan kompakt diskte sunulmaktadır.

Anahtar Kelimeler: P2P (Uçtan Uca) Đletişim, Ağ Adres Dönüşümü, IPv4+4.

 iii

ACKNOWLEDGEMENTS

“I hear and I forget. I see and I remember. I do and I understand.”

 Confucius (551 BCE - 479 BCE)

Dear Sir,

You made me hear,

You made me see,

You made me do…

I appreciate for all the things that you made me understand…

 iv

CONTENTS

ABSTRACT .. i

ÖZET ... ii

ACKNOWLEDGEMENTS..iii

CONTENTS.. iv

LIST OF FIGURES... v

1. INTRODUCTION...

2. PROBLEM DEFINITION AND RELATED WORK...................................

3. AN EXTENDED INTERNET ARCHITECTURE: IPV4+4
ADDRESSES AND LSRR-BASED FORWARDING....................................

 3.1 IPv4 Loose Source Record Route (LSRR) Option.....................................

 3.2 P2P UDP Communication with Modified LSRR-based Border
 Routers..

 3.3 Border Router Packet Forwarding Algorithm...

 3.4 P2P Communication in the Presence of a Legacy Border Router...............

4. SEAMLESS P2P COMMUNICATION WITH THE SESSION
INITIATION PROTOCOL USING IPV4+4 ADDRESSES........................

5. FRAMEWORK TESTBED AND IMPLEMENTATION DETAILS.........

 5.1 Details of Implemented Driver...

 5.1.1 NAPT Implementation..

5.1.2 Modified LSRR Algorithm Implementation..................................

 5.2 Details of the Implemented Border Router Hardware................................

 5.2.1 Pronghorn SBC-250 Microprocessor Board......................................

 5.2.2 ALIX.2 Microprocessor Board..

6. CONCLUDING REMARKS..

REFERENCES...

APPENDIX 1: Implemented Software...

1

4

9

10

11

15

18

22

25

25

26

26

29

29

30

32

34

36

 v

LIST OF FIGURES

.......4

.......5

.......6

.....10

.....12

….14

....16

….17

.....19

.....25

.....27

.....28

.....28

.....29

.....30

.....31

2.1 Two private realms, A and B, connected by the public Internet. A and

B are middleboxes, a.k.a., home (residential) gateways, border

routers. They perform Network Address Port Translation (NAPT),

and act as Firewalls for their private realm..

2.2 NAPT/Firewall functionality performed by the border gateway A,

when X talks with S..

2.3 (a) X and Y talk to the STUN server S and learn their NAT bindings

A:pa and B:pb respectively. We assumed that A is a symmetric NAT,

B is a cone NAT, (b) X and Y exchanging packets: The packet from

X is passed inside by the cone NAT B. The packet from Y is blocked

and dropped by the symmetric NAT A...

3.1 Packet Transmission from X to Y with IPv4 LSRR option: The packet

makes stops at B and C before arriving at Y...

3.2 Using modified LSRR forwarding and IPv4+4 addresses for P2P

UDP communication: (a) Packet transmission from A.X:px to

B.Y:py, (b) Packet transmission from B.Y:py to A.X:px, (c) Packet

transmission from A.X:px to B.Y:py..

3.3 P2P UDP Communication between host X on private realm A and

host C on the public Internet. (a) outcoming traffic, (b) incoming

traffic...

3.4 Algorithm for processing packets received from a LAN interface.........

3.5 Algorithm for processing packets received from the WAN interface...

3.6 P2P UDP communication between A.X:px and B.Y:py when border

router B is a legacy NAPT device..

5.1 Laboratory where the testbed is established and implemented.............

5.2 NAT Table stored into Linux kernel log...

5.3 LSRR Session table stored into Linux kernel log..................................

5.4 How the session key is stored in an IPv4 Timestamp option................

5.5 Front and back views of the Pronghorn SBC-250.................................

5.6 ALIX.2 embedded board with several peripherals................................

5.7 ALIX.2 board covered with its cover..

 1

1. INTRODUCTION

IPv4 [1] architecture is well entrenched with Network Address Translation

[4, 5] boxes. Although a NAT-based Internet is suitable for the client/server type

of communication, e.g., HTTP, where the server is on the public Internet and the

client is on a private address realm, i.e., the client has a non-routable private IPv4

address [3], this architecture creates well-known problems for Peer-to-Peer (P2P)

communication. With the widespread use of P2P UDP [2] applications such as

VoIP [24], online games etc., there is an increasing demand for secure seamless

P2P UDP communication, but the existing NAT-based IPv4 architecture is a real

hindrance for ubiquitous deployment. The problem arises from the fact that nodes

behind NAT boxes do not have globally routable IPv4 addresses, making P2P

communication impossible. What's required for seamless P2P communication is a

globally-routable IP address for each node in the Internet.

IPv6 [7], when deployed, would provide each node on the Internet with a

globally routable IPv6 address, which would enable end-to-end connectivity

necessary for P2P communication. But the industry has been slow in transitioning

to IPv6 as it requires a complete rehaul of the network infrastructure, i.e., routers

and end-hosts. The difficulty in transition to IPv6 also stems from the fact that

IPv6 addresses are not backward-compatible.

To enable P2P UDP communication in the presence of NATs, hole

punching techniques have been proposed exemplified by STUN [8, 9]. The

general idea with these techniques is to let a node behind a NAT box talk to a

server on the public Internet and learn (global IP address, port) pair assigned to its

(private IP address, local port) pair for a certain session, and then disclose this

information to the peer for direct communication. Although such port prediction

and hole punching methods enable P2P communication in certain limited cases,

they are not reliable and fail to work for all NAT types.

There are other initiatives exemplified by UPnP [10] and MIDCOM [11]

that propose on-demand port allocation for a session by apriori negotiations with

the border router. Within these frameworks, a node talks to the border router or an

agent before initiating a P2P session and allocates the required ports necessary for

 2

the communication. The node then discloses the border router IP address and the

allocated ports to the peer for P2P communication. The problem with these

proposals is that they require a simultaneous upgrade of all existing border

routers, which makes the transition difficult. Additionally, by opening up a port to

all incoming traffic, UPnP reduces the level of security provided by the current

NAT boxes [19].

Other alternatives, exemplified by TURN [13], propose putting an

intermediate node (a relay agent) in the path of the communication, which would

terminate the session for a peer and act like a proxy. Although this would work for

all NAT types, it requires the deployment of such relay agents in the global

Internet, which is not only difficult but is also against the nature of P2P

communication.

Alternatively, several NAT-extended architectures have been proposed,

exemplified by IPv4+4 [14], TRIAD [16], IPNL [17], RSIP [18], to restore end-

to-end addressing and connectivity. If deployed, these architectures would enable

P2P communication, but they all require a complete rehaul of the existing network

infrastructure including all border routers, end-hosts and even existing

client/server applications, which simply is not feasible.

In this thesis it is presented a new Internet architecture that tries to offer a

complete solution to the secure seamless P2P UDP communication problem. The

framework is based on the use of IPv4+4 addresses [14] and the standard IPv4

Loose Source Record Route (LSRR) option [21]. An IPv4+4 address is a

backwards-compatible globally unique network address for a node behind a NAT

box, and is formed by concatenating the 32-bit globally routable IPv4 address of

the border router with the 32-bit private IPv4 address of an internal node. The

proposal which is presented in this thesis requires no changes whatsoever to end-

hosts and Internet routers. The only requirement is a simple upgrade of border

routers with a new LSRR-based packet forwarding algorithm for the P2P UDP

traffic (described in section 3). The upgraded border router performs traditional

NAPT (Network Address Port Translation) forwarding for the client/server

communication, and the proposed LSRR-based forwarding for the P2P UDP

traffic. It is first described how P2P UDP communication works in the presence of

 3

new upgraded border routers. Then it is shown how it is possible to enable P2P

UDP communication even in the presence of a legacy NAT box on the path of the

communication. This is very important as it lays the ground for a simple transition

to the proposed Internet architecture.

 4

2. PROBLEM DEFINITION AND RELATED WORK

IPv4 Internet is structured around NAT and firewall boxes. These devices

are located at the edge of almost all business and home networks. Often, NAT and

firewall functionality is bundled into a single box, called a middlebox, a home

(residential) gateway or a border router. In the rest of this thesis, it would be used

these terms interchangeably and it is assumed that they have bundled firewall and

NAT functionality.

Figure 2.1:

Figure 2.1 shows a snapshot of the current Internet architecture. There are

two private realms A and B, e.g., two home or SOHO networks, connected by the

public Internet. X and Y are hosts on private realms A and B respectively. They

have non-routable private IPv4 addresses [3], X and Y respectively. A and B are

border routers that perform Network Address Port Translation (NAPT) and also

act as Firewalls for their private realms. C and S are hosts on the public Internet,

and have unique, routable IPv4 addresses.

The above NAT-based IPv4 architecture is suitable for the client/server

type of communication, e.g., HTTP, where the server is on the public Internet and

the client is on a private address realm. Since the communication is initiated by

the private host, e.g., X, the border gateway A dynamically allocates a port for the

session in the NAT table and opens the port for incoming/outgoing traffic in the

firewall. This allows only solicited traffic belonging to the session to enter the

Private Realm A
Public Internet

A

Private Realm B

B

C Y X S

Two private realms, A and B, connected by the public Internet. A and B are

middleboxes, a.k.a., home (residential) gateways, border routers. They perform

Network Address Port Translation (NAPT), and act as Firewalls for their private realm

 5

private realm. Unsolicited incoming traffic, that is, traffic initiated from outside

the private realm, is not allowed inside thus providing security.

Figure 2.2: NAPT/Firewall functionality performed by the border gateway A, when X talks with S

Figure 2.2 illustrates how NAPT and firewall work together at the border

gateway A for an example session between X and S. X initiates the session by

sending a packet with source port sp=px, destination port dp=ds, source IPv4

address SA=X and destination IPv4 address DA=S. When border router A

receives this packet, it allocates port pa for the session, creates a NAPT binding

and a filter in the NAT table (X:px<->A:pa, Filter: S/ps). The filter means that

incoming traffic to A:pa is allowed to pass inside only if it is coming from S:ps.

This is called a symmetric NAT binding [6] and is very restrictive. Border router

then sets the source address to A, SA=A, the source port to pa, sp=pa, and

forwards the packet to the public Internet. This packet will make it to S through

regular IPv4 forwarding in the Internet.

When the server replies, its packet will have the following parameters:

<sp=ps, SA=S, dp=pa, DA=A>. The border router A will receive this packet,

consult its NAT table and locate the NAPT entry for the session. The entry filter

allows this packet to pass inside since it is coming from S:ps. So the border router

changes the destination address to X, DA=X, destination port to px, dp=px, and

forwards the packet to X.

sp: px dp: ps

SA: X DA: S

sp: pa dp: ps

SA: A DA: S
A S X (a)

Private Realm A Public Internet

NAPT Binding Filter

X:px��A:pa S/ps

sp: ps dp: px

SA: S DA: X

sp: ps dp: pa

SA: S DA: A
A S X (b)

 6

NAT box permits client/server type communication when the server is on

the public Internet and the client is behind a NAT box. For this scenario,

bidirectional P2P communication between X and S is still possible, albeit a little

messy. But when both peers are behind a NAT box, enabling P2P communication

is a daunting task. Consider the case where X and Y want to exchange

bidirectional P2P UDP traffic using ports px and py respectively. Initially, X and

Y exchange their communication endpoint parameters, e.g., X:px and Y:py, using

a separate control protocol such as SIP, H.323, etc. The obvious problem is that it

is not possible to deliver any traffic to X:px from the Internet. So if X is to tell Y

to send packets to X:px, no traffic will arrive at X. Similarly, no traffic can be

delivered to Y:py from the Internet.

Figure 2.3:

Simple Traversal of UDP Through Network Address Translators (STUN)

[8], is a hole punching technique intended to solve the P2P UDP communication

problem. The idea is illustrated in Figure 2.3. Before revealing its endpoint

parameters X:px to Y, X talks to a STUN server S on the public Internet and

learns (public IP address, port) pair assigned to its endpoint X:px. In the example,

the border router assigns A:pa to X:px as seen in A's NAT table. X then informs Y

sp: px dp: ps

SA: X DA: S
A B X (a)

Private Realm A Public Internet

NAPT Filter

X:px��A:pa S/ps

Y

Private Realm B

sp: py dp: ps

SA: Y DA: S

NAPT Filter

Y:py��B:pb */*

S

sp: px dp: pb

SA: X DA: B
A B X (b) Y

sp: pm dp: pb

SA: A DA: B

NAPT Filter

X:px��A:pa S/ps

X:px��A:pm B/pb

sp: pb dp: pa

SA: B DA: A

sp: py dp: pa

SA: Y DA: A

NAPT Filter

Y:py��B:pb */*

sp: pm dp: py

SA: A DA: Y

(a) X and Y talk to the STUN server S and learn their NAT bindings A:pa and B:pb

respectively. We assumed that A is a symmetric NAT, B is a cone NAT

(b) X and Y exchanging packets: The packet from X is passed inside by the cone

NAT B. The packet from Y is blocked and dropped by the symmetric NAT A

 7

to send UDP traffic to A:pa. Similarly, Y talks to a STUN server on the public

Internet and learns (public IP address, port) pair assigned to its endpoint Y:py. In

the example, B:pb is assigned to Y:py. Y then informs X to send UDP traffic to

B:pb. The NAT tables at A and B reject that A is a symmetric NAT (Filter: S/ps

indicates that only traffic sent from S:ps will be allowed inside) and B is a cone

NAT [6] (Filter: */* indicates that all traffic sent to B:pb will be passed inside

regardless of the source IP and source port number). In Figure 2.3(b), X and Y

exchange packets. X sends a packet to <B:pb>. As the packet passes through the

border router, a new NAT binding (X:px<->A:pm, Filter: B/pb) is created. This is

due to the fact that symmetric NATs create a binding based on the source IP

address and source port number as well as the destination IP address and

destination port number. Since the destination IP address of the new packet is

different from that of the STUN server, the symmetric NAT A creates a new

mapping. This packet will make it to border router B and will be passes inside

since B is a cone NAT. Looking at the packet from Y to X, we see that the packet

is destined to <A:pa>. After passing through the border router B, its headers will

have <sp=pb, SA=B, dp=da, DA=A>. When this packet makes it to A, it will

locate the NAT entry for dp=da. The filter for this NAT entry passes a packet

inside only is SA=S and sp=ps, which do not match the packet's source IP address

and source port number. So the packet is dropped. To sump up the discussion,

hole punching techniques exemplified by STUN work only if all border routers on

the path of the communication are cone NATs. It is known that most border

routers today are symmetric NATs [19], which make hole punching techniques to

fail in certain cases. It should also be noted that cone NATs are susceptible to port

scan attacks, which create additional security risks [19]. So making all border

routers cone NATs is not an acceptable solution to the P2P UDP communication

problem due to a reduced level of security.

Another approach advocated by Microsoft is the Universal Plug and Play

(UPnP) [10]. The idea is the following: Before initiating a session, a UPnP-

enabled node inside the private realm talks to the UPnP-enabled border router and

opens up a port for communication. For example, before starting a session at

endpoint X:px, X talks to its UPnP-enabled border router A and opens a port, say

 8

A:pa. Similarly, Y talks to its UPnP-enabled border router B and opens a port, say

B:pb. They then reveal their endpoint parameters A:pa and B:pb to each other

through a control protocol, e.g., SIP. Once the ports are open for communication,

all traffic arriving at A:pa will be passed to X:px, and all traffic arriving at B:pb

will be passed to Y:py. In a sense, UPnP-enabled border routers behave similar to

existing cone NATs. There are two drawbacks with this approach:

(1) All border routers and end-hosts must be UPnP-enabled. It is

unreasonable to expect all border routers to support UPnP simultaneously.

(2) Since an UPnP-enabled border router behaves like a cone NAT, there

is a reduced level of security. Specifically, after a port is opened up for

communication, all traffic will be passed inside regardless of where it is coming

from, which could easily be exploited.

IEFT MIDCOM architecture [11] proposes a solution similar to UPnP.

The idea is to have intelligent agents that would talk to MIDCOM-enabled border

routers using a MIDCOM protocol [12] to establish global communication

parameters for the session. The goal is to separate out the application intelligence

from the border router into agents and make the border router responsible for only

NAPT and maybe firewall functionality. This enables new applications to be

deployed without requiring a border router upgrade. Although MIDCOM

approach addresses the security issue present in UPnP and cone NATs, it still

requires all border routers on the path of the communication to be MIDCOM-

enabled, which is a big hindrance to its deployment. That is, there is no clear path

for transitioning to MIDCOM architecture.

There are other approaches such as TURN [13] that propose inserting a

relay agent in the public Internet on the path of the communication. Thus all

traffic will pass through the relay agent, which would enable communication

similar to a proxy. This approach not only requires the deployment of such relay

agents in the Internet, but also requires all end-nodes to be TURN-enabled. It is

also against the nature of P2P communication.

 9

3. AN EXTENDED INTERNET ARCHITECTURE: IPV4+4 ADDRESSES

AND LSRR-BASED FORWARDING

Although a 32-bit private IPv4 address is not globally unique, it is possible

to obtain a globally unique 64-bit network address by concatenating it with the

32-bit globally unique IPv4 address of the border router [14]. In a sense, the

globally unique IPv4 address of the border router identifies the private realm and

the private IPv4 address of the host is like an extension number inside the realm.

With this convention, the globally unique IPv4+4 address of node X in Figure 2.1

is A.X, and IPv4+4 address of node Y is B.Y. Given that each node in a private

realm can uniquely be identified with a 64-bit IPv4+4 address, how can we make

use of these addresses to solve the P2P UDP communication problem? Authors in

[15] propose a solution by defining a new protocol and header structure, and

requiring the upgrade of all border routers, end-hosts and even all client/server

applications to the new protocol, which is not very feasible. There is need for a

way to make use of IPv4+4 addresses while requiring minimal changes to the

existing network infrastructure.

In this section it is shown how this can be done with the standard IPv4

Loose Source Record Route (LSRR) option [21]. It is first described how LSRR

works and then show that if border routers employ a modified version of the

LSRR forwarding/filtering algorithm for the P2P UDP traffic, secure seamless

P2P UDP communication can be achieved. For the proposal which is presented in

this thesis to work, P2P applications are required to make use of IPv4+4 addresses

and send UDP packets by using the IPv4 LSRR option. Since

transmission/reception of UDP packets with the IPv4 LSRR option is part of all

major operating system protocol stacks, e.g., Windows, Linux, Solaris, the

proposal demands no changes whatsoever to end-host protocol stacks or IPv4

routers.

 10

3.1 IPv4 Loose Source Record Route (LSRR) Option

IPv4 Loose Source Record Route (LSRR) option has been defined in RFC

791 [1]. LSRR allows the sender of an IPv4 packet to specify a list of nodes (IPv4

routers) that the packet must pass through on its way to the destination, and to

record the route information. Although this type of explicit source-based routing

information is not necessary for the correct forwarding of a packet, the following

benefits are listed in [21]:

(1) To potentially specify a shorter path by the source,

(2) To avoid certain networks for performance or security reasons,

(3) To test and monitor certain IPv4 routers.

LSRR is implemented as an option included in the IPv4 header and

specifies a list of IPv4 addresses where the packet must make stops on its way to

the destination. The destination address of the initial packet contains the IPv4

address of the first hop node. At each stop, the address pointed to by the option

pointer is taken from the list and placed in the destination address field, and that

element of the list is replaced by the IPv4 address of that stop [21].

Figure 3.1: Packet Transmission from X to Y with IPv4 LSRR option: The packet makes stops at

 B and C before arriving at Y

Figure 3.1 shows an example packet flow using the LSRR option: X sends

a packet to Y, but wishes the packet to make stops at B and C before arriving at Y.

This is achieved by specifying a source route by the LSRR option as follows:

When the packet leaves X, the IPv4 source address (SA) is set to X's IPv4 address

and the destination IPv4 address (DA) is set to the next hop node B's IPv4

address. X also specifies the path that the packet must follow in the network after

stopping at B. The LSRR option indicates that the packet needs to go to C and

then to Y. LSSR option pointer (specified in parenthesis) indicates where the

SA: X DA: B

LSRR(1): C, Y

SA: X DA: C
B

SA: X DA: Y
C X Y

LSRR(2): B, Y LSRR(3): B, C

 11

packet should be sent at the next hop B. At the beginning this is set to 1
1
, meaning

that the next hop after B is the first IPv4 address on the list, i.e., C. Since DA=B,

the packet will be delivered to B. When B receives the packet, it looks at the

LSRR option and realizes that the option is not exhausted yet. So it swaps DA,

i.e., B, with the IPv4 address indicated by the LSSR pointer, i.e., C. B also

increments the LSRR pointer to point to the next IPv4 address on the list. Notice

that SA is not changed. The new packet with SA=X and DA=C will be delivered

to C. C also notices that the LSRR option is not exhausted, so it performs LSRR

processing similar to B: C swaps the DA with the IPv4 address pointed to by

LSRR, increments the LSRR pointer, and forwards the packet to Y. The new

packet has SA=X and DA=Y and will be delivered to Y. Y realizes that LSRR

processing is done and that it is the last stop on the source route. Y also learns the

route back to X from the LSRR values, which contains the path in the reverse

direction.

3.2 P2P UDP Communication with Modified LSRR-based Border Routers

In this section it is shown that if border routers employ a modified version

of the LSRR forwarding/filtering algorithm for the P2P UDP traffic, secure

seamless P2P UDP communication can be achieved. It is assumed that P2P

applications use IPv4+4 addresses and send/receive UDP packets with the IPv4

LSRR option as described below. It is noted that with the proposed algorithm, the

border router will be as secure as the existing symmetric NAPT/firewall boxes. It

is not illustrated regular client/server communication through our border router as

that would use traditional NAPT translation.

Assume that a node X with IPv4+4 address A.X wishes to establish a

bidirectional P2P UDP communication with another node Y with IPv4+4 address

B.Y. Further assume that X wishes to use UDP port px and Y wishes to use UDP

port py for this communication. It will be demonstrated the P2P session key as

1 In a real IPv4 implementation LSRR option pointer contains the byte offset of the next IPv4

address on the list from the beginning of the option, and would initially be equal to 4. At each stop

it will be incremented by 4.

 12

<A.X:px, B.Y:py>. How X and Y learn the IP addresses of their border routers,

and how they agree on the P2P UDP communication parameters is out of the

scope of this work. But it is noted that existing P2P applications, e.g., VoIP using

SIP [24, 25], online gaming etc., use a separate control path (protocol) to establish

these parameters before the actual P2P UDP communication begins.

Figure 3.2:

Figure 3.2 depicts the packet flow between A.X:px and B.Y:py. It is

assumed that after X and Y agree on the P2P UDP communication parameters, X

is the first node to send a UDP packet to Y. Figure 3.2(a) depicts the packet flow

from X to Y: When the packet leaves X, it has sp=px, dp=py, SA=X, DA=A,

LSRR(1): B, Y. Note that DA equals the IPv4 address of X's border router A. X

also specifies in LSRR that A must forward the packet to B, which must forward

the packet to Y, the packet's final destination. When A receives the packet, it first

tries to locate the P2P session in its session table. Note that it is required the

border router to maintain a session table for P2P UDP traffic, in addition to the

traditional NAT table for the client/server traffic. Since this is the first outgoing

SA: X DA: A

LSRR(1): B, Y

SA: A DA: B A B X Y (a)

LSRR(2): X, Y

Private Realm A Public Internet Private Realm B

Session

A.X:px��B.Y:p

sp: px dp: py sp: px dp: py

SA: Y DA: X

LSRR(3): B, A

SA: B DA: A A B X Y (b)

LSRR(2): Y, X

Session

A.X:px��B.Y:p

sp: py dp: px sp: py dp: px

Session

B.Y:py��A.X:p

SA: Y DA: B

LSRR(1): A, X

sp: py dp: px

SA: X DA: A

LSRR(1): B, Y

SA: A DA: B A B X Y (c)

LSRR(2): X, Y

sp: px dp: py sp: px dp: py

SA: X DA: Y

LSRR(3): A, B

sp: px dp: py

Using modified LSRR forwarding and IPv4+4 addresses for P2P UDP communication:

(a) Packet transmission from A.X:px to B.Y:py,

(b) Packet transmission from B.Y:py to A.X:px,

(c) Packet transmission from A.X:px to B.Y:py

 13

packet belonging to the session, the border router creates an entry in the session

table. Thus a session is created only by the solicited (initiated from inside)

outgoing traffic.

The packet now goes through LSRR processing. According to the regular

LSRR processing, border router A swaps the IP address pointed to by the LSRR

pointer and the destination IP address. So the packet header becomes: sp=px,

dp=py, SA=X, DA=B, and LSRR option becomes: LSRR (2): A, Y. Notice that

standard LSRR processing does not change the source IP address X. So if the

border router were to send this modified packet to the Internet, it will most likely

be dropped by the first ISP router due to ingress filtering [20]. According to RFC

1918 [3], realm routers must perform packet filtering and no packet having a

private source or destination address should be sent out to the public Internet. This

means that it is not possible to send the packet with SA=X. Therefore, we propose

a modified LSRR processing algorithm at our border router: The border router

moves the first address in LSRR list, B, to DA, puts the source address, X, in its

place in LSRR list, and sets SA=A for the outgoing packet. So when the packet

leaves A, its header contains: sp=px, dp=py, SA=A, DA=B, and LSRR option

becomes: LSRR (2): X, Y. Notice that the source and destination port numbers are

not changed.

When B receives this packet, it consults its P2P session table to locate the

session. Since B is not aware of the session yet (recall that border router B will

learn about the session after a packet is sent by Y to X), the packet is simply

dropped. This way, unsolicited incoming traffic will simply be dropped similar to

existing NAT boxes. Traffic for a session will be passed inside only if the border

router knows about that session. Just like this packet is dropped by B, all

subsequent packets from A.X:px to B.Y:py will be dropped until Y sends a packet

to A.X:px.

Figure 3.2(b) illustrates Y sending a packet to A.X:px. When packet leaves

Y, its header contains: sp=py, dp=px, SA=Y, DA=B, LSRR(1): A, X. When B

receives this packet, it tries to locate P2P session and fails. Since this is the first

outgoing packet belonging to the session, a new session is created in the session

table. B then performs modified LSRR option processing similar to border router

 14

A described above. So when the packet leaves B, its header contains: sp=py,

dp=px, SA=B, DA=A, LSRR (2): Y, X.

When A receives this packet, it consults its session table and locates the

session. So the packet is passed inside the private realm after LSRR processing.

When the packet leaves A towards host X, its header contains: sp=py, dp=px,

SA=B, DA=X, LSRR (3): Y, A. This packet will make it to X. Host X will realize

the LSRR option has been exhausted and deliver the packet to the application

listening to port px. The P2P application will not only get the packet, but also

learn the reverse path to Y from the LSRR option.

In Figure 3.2(c) it is illustrated X sending another packet to B.Y:py. This

time the packet is passed inside private realm B because B now knows about the

session.

Figure 3.3: P2P UDP Communication between host X on private realm A and host C on the

 public Internet. (a) outcoming traffic, (b) incoming traffic.

P2P UDP communication using LSRR-based packet forwarding can also

be used when one of the peers is in a private realm and the other is on the public

Internet. Figure 3.3 illustrates this scenario, where host A.X in private realm A is

talking to host C on the public Internet. Clearly, this P2P communication is very

similar to X talking to Y. Instead, fewer addresses are inserted into the LSRR list.

But otherwise, the LSRR processing at the border router A is the same as before.

SA: X DA: A

LSRR(1): C

SA: A DA: C A C X (a)

LSRR(2): X

Private Realm A Public Internet

Session

A.X:px��C:pc

sp: px dp: pc sp: px dp: pc

SA: C DA: X

LSRR(2): A

SA: C DA: A A C X (b)

LSRR(1): X

sp: pc dp: px sp: pc dp: px

 15

The above illustrations should make it clear that if both border routers

keep a P2P session table and employ the modified LSRR processing and filtering

algorithm described above, secure seamless P2P UDP communication can always

be achieved. Although the proposal in this thesis demands the upgrade of all

existing border routers, it requires no changes to the end-host protocol stacks or

routers. All major operating system protocol stacks allow transmission and

reception of UDP packets with LSRR option using the existing sockets API. So,

to benefit from the proposed framework, a P2P UDP application needs to learn the

IPv4 address of its border router and it can start sending/receiving LSRR-based

UDP packets for P2P communication. It is also noted that the proposed border

routers are as secure as the existing symmetric NAT boxes:

(1) A new session is created only by solicited traffic, i.e., traffic

originating from inside the realm;

(2) An incoming packet is passed inside only if all session parameters

match an existing session.

3.3 Border Router Packet Forwarding Algorithm

In the previous sections the packet forwarding/filtering algorithm is

described employed by our border router for each type of traffic. In this section,

the algorithm in a more formal manner using a pseudocode will be presented. It is

possible to divide the algorithm into two cases:

(1) When a packet is received from an internal host, that is, when BR

(Border Router) receives a packet from one of its LAN interfaces (Figure 3.3),

(2) When a packet is received from the Internet, that is, when BR receives

a packet from its WAN interface (Figure 3.4).

Both algorithms are divided into 3 parts, labeled I, II and III.

In part I, it is described the handling of packets that do not contain the

LSRR option. These packets belong to client/server type communication where

the client is in the private address realm and the server is in the Internet. When BR

receives such a packet, it tries to locate the NAT entry for the session (step I.1). If

the packet is received from a LAN interface and the session is not found, then this

 16

is the first packet belonging to the session. So BR creates a NAT entry in the NAT

table (step I.2.1), and changes packet's SA and source port (step I.3). If the packet

is received from the WAN interface and the session is not found, then the packet

is simply dropped (step I.2). If the NAT entry is found for an incoming packet,

then the packet's DA and destination port are changed, and the packet is

forwarded inside (step I.3).

In part II, it is describe the handling of packets that contain an LSRR

option with just one address in the option body, which is, there is just one BR

between the communicating peers. These packets belong to either (1) client/server

type communication where the client is in the global Internet and the server is on

the private realm, e.g., connection request from C to A.X in Figure 2.1, or (2) P2P

communication where one peer is on a private realm and the other peer is in the

global Internet, e.g., P2P communication between A.X and C in Figure 2.1. When

BR receives such a packet, it tries to locate the session in the session table step

Symbols used in the algorithm:

SA: Source IP address of the packet

DA: Destination IP address of the packet

sp: Source port of the packet

dp: Destination port of the packet

A: WAN IP address of the border router (BR)

BR receives a packet P from the LAN interface:

I. ProcessPacket(P[SA=X, DA=S, sp=px, dp=ps])
I.1. <A:pa> = LocateNATEntry(<X:px, S:ps>)

I.2. if (entry not found) then

I.2.1. <A:pa> = CreateNATEntry(<X:px, S:ps>)
I.3. Set SA=A, sp=pa

II. ProcessPacket(P[SA=X, DA=A, sp=px, dp=pc, LSRR(1): C])

II.1. LocateSession(<A.X:px, C:pc>)

II.2. if (session not found) then

II.2.1. CreateSession(<A.X:px, C:pc>)

II.3. Set SA=A, DA=C, LSRR(2): X

III. ProcessPacket(P[SA=X, DA=A, sp=px, dp=py, LSRR(1): B, Y])

III.1. LocateSession(<A.X:px, B.Y:py>)
III.2. if (session not found) then

III.2.1. CreateSession(<A.X:px, B.Y:py>)

III.3. Set SA=A, DA=B, LSRR(2): X, Y

Figure 3.4 Algorithm for processing packets received from a LAN interface

 17

II.1). If the packet is received from a LAN interface and the session is not found,

then this is the first packet belonging to the session. So BR creates an entry in the

session table (step II.2.1), and changes packet's SA, DA and the LSRR option

(step II.3). If the packet is received from the WAN interface and the session is not

found, then the packet is simply dropped (step II.2). If the session is found for an

incoming packet, then the packet's DA and the LSRR option are changed, and the

packet is forwarded inside (step II.3).

In part III, it is described the handling of packets that contain an LSRR

option with two addresses in the option body, that is, there are two BRs between

the communicating peers. These packets belong to either (1) client/server type

communication where the client is on one private realm and the server is on a

different private realm, e.g., connection request from B.Y to A.X in Figure 2.1, or

(2) P2P communication where a peer is on one private realm and the other peer is

on a different private realm, e.g. P2P communication between A.X and B.Y in

Figure 2.1. When BR receives such a packet, it tries to locate the session in the

Symbols used in the algorithm:

SA: Source IP address of the packet

DA: Destination IP address of the packet

sp: Source port of the packet

dp: Destination port of the packet
A: WAN IP address of the border router (BR)

BR receives a packet P from the WAN interface:
I. ProcessPacket(P[SA=C, DA=A, sp=pc, dp=pa])

I.1. <X:px> = LocateNATEntry(<C:pc, A:pa>)

I.2. if (entry not found) then Drop the packet and exit

I.3. Set DA=X, dp=px

II. ProcessPacket(P[SA=C, DA=A, sp=pc, dp=px, LSRR(1): X])

II.1. LocateSession(<A.X:px, C:pc>)

II.2. if (session not found) then Drop the packet and exit

II.3. Set DA=X, LSRR(2): A

III. ProcessPacket(P[SA=B, DA=A, sp=py, dp=px, LSRR(2): Y, X])

III.1. LocateSession(<A.X:px, B.Y:py>)

III.2. if (session not found) then Drop the packet and exit

III.3. Set SA=Y, DA=X, LSRR(3): B, A

Figure 3.5 Algorithm for processing packets received from the WAN interface

 18

session table (step III.1). If the packet is received from a LAN interface and the

session is not found, then this is the first packet belonging to the session. So BR

creates an entry in the session table (step III.2.1), and changes packet's SA, DA

and the LSRR option (step III.3). If the packet is received from the WAN

interface and the session is not found, then the packet is simply dropped (step

III.2). If the session is found for an incoming packet, then the packet's SA, DA

and the LSRR option are changed, and the packet is forwarded inside (step III.3).

It is possible to see from steps I.2, II.2 and III.2 in Figure 3.5 that when

BR receives a packet from the WAN interface and the session that the packet

belongs to is not found in the BR's NAT or session tables, then the packet is

simply dropped. These steps provide the necessary security in the sense that only

solicited incoming traffic is let inside the private realm. All unsolicited traffic is

simply dropped by BR.

3.4 P2P Communication in the Presence of a Legacy Border Router

It has been shown in the previous section that secure seamless P2P UDP

communication is possible if both border routers on the path of the

communication implement the proposed LSRR-based packet processing/filtering

algorithm. The problem is, it is unreasonable to expect a simultaneous upgrade of

all border routers. If the Internet is to transition to the proposed LSRR-based

IPv4+4 framework, it must be a continuous process. This is why so many of the

proposals including IPv4+4 [14], TRIAD [16], IPNL [17], MIDCOM [11], UPnP

[10], among others, have not been adapted as they require a simultaneous upgrade

of all border routers.

Fortunately, it is possible for the proposal of this thesis to work even in the

presence of a legacy NAT box on the path of the communication.

Figure 3.6 shows an example P2P UDP session between A.X:px and

B.Y:py when A is a new upgraded border router that implements the proposed

LSRR-based packet processing/filtering algorithm, but B is a legacy border router

that performs only the traditional symmetric NAPT and firewall services. We

assume that before the communication starts, X and Y learn the IP address of their

 19

border routers A and B and then talk to their border routers to see if they

implement LSRR-based forwarding or not. This second step can be achieved by

designing a simple query/reply discovery protocol and having the upgraded border

router implement it. Since a legacy border router will not implement this new

discovery protocol, a host can easily determine the type of border router it is

behind. In our example, X discovers that A is a new upgraded border router and Y

discovers that B is a legacy NAT box.

Figure 3.6: P2P UDP communication between A.X:px and B.Y:py when border router B is a

 legacy NAPT device

After discovery of the border router capabilities, packet transmission

commences. This is illustrated in Figure 3.6. Since border router A supports

LSRR-based forwarding, X follows the regular LSRR-based forwarding

algorithm, sending the packet to A and specifying intermediate hops B, Y in the

LSRR option. A will manipulate this packet using the proposed LSRR processing

algorithm and forward it to B, where it will be dropped. Recall that B is a legacy

NAT, and a legacy NAT will drop all unsolicited incoming traffic. This is

illustrated in Figure 3.6(a).

When Y sends a packet to X, it cannot use LSRR-based forwarding. If it

did, the packet will be dropped by B. It is known that IPv4 LSRR packets are

SA: X DA: A

LSRR(1): B, Y

SA: A DA: B A B X Y (a)

LSRR(2): X, Y

Private Realm A Public Internet Private Realm B

Session

A.X:px��B.Y:p

sp: px dp: py sp: px dp: py

SA: Y DA: X

LSRR(3): B, A

SA: B DA: A A B X Y (b)

SK: Y:py, X:px

Session

A.X:px��B.Y:p

sp: py dp: px sp: pb dp: px

SA: Y DA: A

SK: Y:py, X:px

sp: py dp: px

SA: X DA: A

LSRR(1): B, Y

SA: A DA: B A B X Y (c)

SK: Y:py, X:px

sp: px dp: py sp: px dp: pb

SA: A DA: Y

SK: Y:py, X:px

sp: px dp: py

NAPT Binding Filter

Y:py��B:pb A/px

NAPT

B:pb

 20

considered to be a security threat [22] and dropped by existing NAT boxes. Even

operating systems such as Windows and Linux disable transmission/reception of

packets with LSRR option by default, which must be enabled before sending such

packets. Since it is not possible to use IPv4 LSRR option to specify the session

key, we need an alternative way to insert the session key inside the IPv4 header

options area. Recall that the session key for the communication is (A.X:px <->

B.Y:py). Since the IPv4 header of the packet passing through the legacy NAT box

B will have SA=B, DA=A, it is clear that the source and destination private IP

addresses, X and Y, of the session key must somehow be inserted into the packet.

Furthermore, since the NAT box changes the source port py to a new value, say

pb, the source port py needs to be part of the created session key. With these in

mind, it can be proposed that the sent session key consists of the source and

destination port numbers (px, py) and the source and destination private IP

addresses (X, Y). This is illustrated in Figure 3.6(b), where Y creates a session

key, (SK: Y:py, X:px), and inserts it into the IPv4 options area. Y then sends the

packet directly to border router A instead of B. Recall that had B implemented

LSRR-based forwarding, the packet would have been sent to B. When the packet

goes through B, it creates a NAPT binding for the session (Y:py<->B:pb),

changes the source IP address to SA=B and the source port to sp=pb. When this

packet reaches A, A sees the session key, locates the session in its session table,

and also realizes that B is a legacy NAT. A then updates its session table to reject

B's NAPT binding, changes the session key in the packet to an LSRR option and

sends the packet to X. Having learnt that B is a legacy NAT, A also manipulates

the packets traveling to Y by inserting the session key (SK: X:px, Y:py) and also

changes the destination port to dp=pb so that the packet is passed inside by B.

This is depicted in Figure 3.6(c). Thus, even if B is a symmetric NAT, the packet

will be passed inside to Y since it is coming from A:px.

The only question left to answer in the above discussion is how to carry

the session key in an IP packet. It is possible to define a new IP option, but this

has two problems:

(1) It is known that Internet routers drop IP packets that contain unknown

IP options [15],

 21

(2) Existing operating system sockets API does allow setting IP options

field to arbitrary values.

At Windows, Linux and Solaris, and the only IPv4 options available for

uses are the LSRR and the Timestamp option. Since it cannot be used the LSRR

option as the existing NAT boxes drop packets containing the LSRR option 2,

using the Timestamp option [26] to carry the session key reveals as the most

convenient solution. Details of how the timestamp option is used in our prototype

implementation are given in section 5.

 22

4. SEAMLESS P2P COMMUNICATION WITH THE SESSION

INITIATION PROTOCOL USING IPv4+4 ADDRESSES

The Session Initiation Protocol (SIP) [24] is the emerging Voice over IP

(VoIP) signaling protocol. It is used to establish, change and terminate multimedia

sessions between two or more peers on an IP network. In this section our goal is

to demonstrate how P2P communication would work for voice transmission

between two IPv4+4 addressed nodes. It is assumed that the existing realm

gateways, i.e., the NAT boxes on the private realm borders, support the IPv4

LSRR option.

Consider the network shown in Figure 2.1. Assume that Alice logged in X

and Bob logged in Y are two SIP users located behind NAT boxes. They only

know about their private IPv4 address, X and Y respectively, and the public

IPv4 address of the SIP server, S. Assume that they are not even aware of the

public IPv4 addresses of their realm gateways. The first thing that a SIP client

performs during startup is to register its current location with the SIP server. In

Alice's case, she would send a registration request similar to the following (it is

only shown the relevant fields of the SIP message. SIP message examples are

taken from [28]):

REGISTER sip:X SIP/2.0

From: sip:alice@X

To: sip:alice@X

Contact: sip:alice@X

The registration packet is usually sent over UDP and would have <SA=X,

DA=S>. Notice that this packet would be subject to NAT processing at the border

gateway A, and have its source address changed. So the packet would have

<SA=A, SA=S> on the public Internet. When S receives the registration request,

it realizes that Alice is logged into a machine with private IPv4 address X

(induced from Contact: sip:alice@X) located behind the NAT box A (induced

 23

from SA of the packet). With our proposal, the SIP server S would send the

following reply back:

SIP/2.0 200 OK

From: sip: alice@X

To: sip: alice@X

Contact: sip: alice@A.X

Notice that “Contact:” header in the reply contains the full 64-bit IPv4+4

address A.X of node X. Thus Alice would learn that she is behind a NAT box

with global IPv4 address A. Bob would go through a similar registration

procedure and learn that he is behind a NAT box with global IPv4 address B. That

is, Bob's IPv4+4 address is B.Y. The SIP server S also learns both Alice and Bob's

IPv4+4 contact addresses as A.X and B.Y.

When Alice wishes to establish a VoIP session with Bob, she would send

an Invite request via S. With our proposal, Alice would specify her IPv4+4

address for media exchange instead of her private IPv4 address. A sample Invite

message with IPv4+4 address is shown below:

INVITE sip:bob SIP/2.0.

From: sip:alice

To: sip:bob

Content-Type: application/sdp

v=0

o=alice 2890844526 2890844526 IN IP4+4 A.X

s=-

c=IN IP4+4 A.X

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

 24

Notice that Alice puts her IPv4+4 address A.X within the media session

description by SDP [25]. Specifically, Alice indicates that she expects the media

in PCM format sent to IPv4+4 address A.X:49172.

When Bob receives the invitation request, he would reply with a message

similar to the following, where Bob specifies his IPv4+4 address B.Y:3456 for

media exchange:

SIP/2.0 200 OK

From: sip:alice

To: sip:bob

Contact: sip:bob@A.Y

Content-Type: application/sdp

v=0

o=bob 2890844527 2890844527 IN IP4+4 B.Y

s=-

c=IN IP4+4 B.Y

t=0 0

m=audio 3456 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Alice would finally send an ACK message, and the session would be

established. The media exchange is now P2P between A.X:49172 and B.Y:3456,

and can be achieved by IPv4 LSRR as described in section 3.2.

It is important to note that IPv4+4 addresses would be used only if the user

is logged into a host behind a NAT box. If Alice were to login at a host with a

globally routable IPv4 address, e.g., node C in Figure 2.1, she would register the

contact address sip:alice@C. The SIP server S would realize that Alice's host is

not behind a NAT box, and so further communication with Alice would use IPv4

address C, and not an IPv4+4 address. Thus IPv4+4 addresses would only be

needed for hosts behind NAT boxes.

 25

5. FRAMEWORK TESTBED AND IMPLEMENTATION DETAILS

To test the proposed framework, testbed is set up depicted in Figure 2.1 in

one of the laboratories of the Anadolu University, Department of the Computer

Engineering as seen in the Figure 5.1. There are two private realms A and B

connected over the Internet. There are one host X in realm A and one host Y in

realm B and one host C on the Internet. All end-hosts are PCs running Windows.

Border routers A and B are emulated by two PCs, each having 2 interfaces, one

attached to the private realm and one attached to the Internet. Both border routers

run Linux.

Figure 5.1. Laboratory where the testbed is established and implementations take place.

5.1 Details of Implemented Driver

After the establishment of the development environment, it has been

designed a Linux driver that implements the border router functionality. That

driver, developed as a Linux kernel loadable module for 2.6 kernels, implements

NAPT functionality for the traditional client/server traffic and the proposed

 26

LSRR-based packet filtering/forwarding algorithm described in section 3 for the

P2P UDP traffic. The driver consists of about 1000 lines of C code in three

individual source and header files - lsrr_nat.c, nat.h, lsrr.h, (see App. 1) -, and uses

the Linux Netfilter architecture [23]. Netfilter is a set of hooks in the Linux kernel

protocol stack that allows callback functions to be registered. They are attached

two hooks at the border router WAN interface, one for incoming packets and one

for outgoing packets. When a packet arrives from the WAN; Netfilter gives the

packet to the implemented driver, which processes the packet before letting it

move up the protocol stack. Similarly, before a packet is sent down the WAN

interface, Netfilter calls our driver, which processes the packet.

5.1.1 NAPT Implementation

 At the first step of the development of the driver, legacy NAPT software

(see App. 1), is implemented for a Linux 2.6 computer with two Ethernet

interfaces. Thus, it is provided the use of a computer like a standard SOHO

gateway which implements standard address and port translation operations with a

compatibility of UDP and TCP protocols. The implemented driver can be inserted

as a module into the Linux OS kernel and it can capture the all packets of

incoming/outgoing network traffic, also it can either perform the necessary

manipulations on the packets or drop them. Also, it records the translation

information of all network sessions on a table and it stores this table to the

Linux’s kernel log. Thus, any user can view the content of this NAPT table (see

Figure 5.2).

5.1.2 Modified LSRR Algorithm Implementation

After the NAPT implementation is done, the driver is extended to be able

to perform the LSRR based packet forwarding algorithm (see App. 1) for UDP

protocol. Processing of UDP packets containing IPv4 LSRR option follows the

rules described in section 3.2: For an outgoing packet, the session table is

 27

searched. If this is the first outgoing packet belonging to the session, an entry is

created in the session table.

Figure 5.2. NAT Table stored into Linux kernel log

The necessary information about LSRR sessions is stored another table

(see Figure 5.3) which is also stored to the Linux kernel log and visible for the

users. After the entry of the session is created in the table, the packet is processed

using the modified LSRR processing algorithm and the packet is sent to the

Internet. When a packet is received, the session is searched in the session table. If

the session is not found, then the packet is simply dropped. Thus the designed

border router does not pass any packets that do not belong to a known session,

which provides security. Clearly the border router allows only solicited incoming

traffic similar to current NAPT boxes. So the communication is as secure as the

existing NAPT boxes.

 28

Figure 5.3. LSRR Session table stored into Linux kernel log

It is described in section 3.4 that P2P UDP communication is possible

even if one of the border routers on the path of the communication is a legacy

NAT. In this case, the host behind the legacy NAT box does not use the LSRR

option to send the packet, but rather puts a session key into the IPv4 options area.

Since it is not possible to use the LSRR option (it has been observed that legacy

NAT boxes drop packets containing LSRR option), and the only other IPV4

option implemented by major operating systems is the IPv4 timestamp option, the

use of the IPv4 timestamp option [26] to store the session key remains as the most

appropriate solution.

Figure 5.4: How the session key is stored in an IPv4 Timestamp option

 Figure 5.4 depicts how the session key, e.g., A.X:px<->B.Y:py, is stored

in IPv4 timestamp option. The first 4 bytes are the option type = 68, length = 20

(total option length), ptr = 5 (offset of the first IP address in the list) and flag = 3

(meaning that a router must set the timestamp only if the IP address pointed to by

the option pointer matches its IP address). The bytes 4-8 are set to a special magic

value "v4+4" to designate that this timestamp is not a regular IPv4 timestamp

option, but rather contains our P2P session key. Since it is very unlikely that the

IP address of a router will be equal to "v4+4", the timestamp option would reach

type length pointer flag

magic

source port destination port

source private IP address

destination private IP address

 29

the destination border router without being modified. The source and destination

ports, e.g., px and py, follow the magic number. Finally, the private source and

private destination IP addresses of the session key complete the option. Note that

it is not stored the border router IP addresses in the timestamp option since they

are already found in the IPv4 header of the packet (refer to Figure 3.4(b)).

5.2 Details of the Implemented Border Router Hardware

 After the designed Linux network driver is implemented for a computer

with two Ethernet interface, it is investigated for an embedded microprocessor

board to deploy the driver on it. Then two convenient embedded microprocessor

boards are selected. Both of them are able to run Linux and have two or more

Ethernet interfaces.

5.2.1 Pronghorn SBC-250 Microprocessor Board

Figure 5.5. Front and back views of the Pronghorn SBC-250 with several peripherals

Wireless

Network

Cards
Wireless

Network

Antenna

mPCI

Slots
CF Card

Slot

Ethernet

Ports

 30

Pronghorn SBC-250 is a microprocessor board that has 533 MHz Intel

IXP425 processor, 64 MB SDRAM, 16 MB Flash ROM and two 10/100 Ethernet

interface on it. Also it has 1 CF card slot and 2 mPCI extension slots. It is possible

to increase the number of Ethernet interfaces of this card by plugging wired or

wireless cards to the mPCI slots. In the Figure 5.5 front and back views of

Pronghorn SBC-250 can be seen with the several peripherals.

5.2.2 ALIX.2 Microprocessor Board

 The other microprocessor board which is selected to implement the border

router with the proposed LSRR-based seamless P2P communication algorithm is

ALIX.2 (see Figure 5.6) with the AMD Geode LX800 500 MHz processor.

Figure 5.6. ALIX.2 embedded board with several peripherals

Wireless

Network

Card

mPCI

Slot

CF

Card

Slot

Ethernet

Ports
Serial

Port

USB

Port

s

 31

The other specifications of the ALIX.2 can be listed as the following:

• 256 KB cache (64K data + 64K instruction + 128K L2)

• 1 to 3 Ethernet channels (Via VT6105M, 10 / 100 Mbit/s)

• 1 or 2 miniPCI sockets for 802.11 wireless cards and other expansion

• 128 or 256 MB DDR SDRAM, 64 bit wide for high memory bandwidth

• 512 KB flash for PC Engines tinyBIOS

• CompactFlash + optional 44 pin IDE header for user’s operating system

and application

• 7 to 18V (absolute maximum) DC supply through DC jack or passive

power over Ethernet

• 1 serial port (DB9 male)

• 2 USB 2.0 ports (optional)

• Header for LPC bus (use for flash recovery or I/O expansion)

Also there is a special aluminum cover for the board which is served by

the producer. Thus, with the mounting of the board to its special cover; it becomes

a standalone border router (see Figure 5.7).

Figure 5.7 ALIX.2 board covered with its cover

 32

6. CONCLUDING REMARKS

With the Internet structured around NAT boxes to save IPv4 addresses, the

internet is in dire need of a clean solution to the P2P UDP communication

problem for hosts behind NAT boxes. The lack of a total solution to this important

problem has been delaying the ubiquitous deployment of such important services

as the Voice over IP using SIP, H.323 among others. There are a lot of partial

solutions to the problem including STUN, UPnP, MIDCOM, TURN, ALGs. None

of these solutions cover all possible scenarios as each solution works in certain

cases but fails in others. IETF is in the process of standardizing a protocol called

Interactive Connectivity Establishment (ICE) [27] that aims in testing the

environment for available resources and choosing the best possible alternative

before the communication begins. With so many partial solutions around, we are

yet to come up with a proposal that solves the P2P UDP communication problem

and lays the ground for a new Internet architecture with a plan for stepwise

transition.

In this thesis it has been presented a new Internet architecture that tries to

offer a complete solution to the secure seamless P2P UDP communication

problem. The main component of the proposed framework is a new border router

that not only performs the traditional NAPT forwarding for the client/server

traffic, but also performs LSRR-based forwarding/filtering for the P2P UDP

traffic. P2P applications that wish to make use of the new border router

functionality are required to learn the IPv4 address of the border router (which can

be achieved by a separate control protocol such as SIP), and send UDP packets

with IPv4 LSRR option.

Transition to the proposed LSRR-based Internet using IPv4+4 addresses

requires a stepwise evolution and is very much feasible. Firstly, no changes to

end-host protocol stacks are required. Existing IPv4 protocol stacks of all major

operating systems that have been tested, e.g., Windows, Linux, Solaris, has the

necessary functionality and the API to send/receive UDP packets having the IPv4

LSRR option. Secondly, no changes to Internet routers are required as our

proposal does not change the IPv4 header in any way. All routers see an IPv4

 33

packet that carries a standard IPv4 LSRR option in the IP header. Thus all packets

would be delivered to the appropriate border router or host depending on where

the packet is destined to. The only requirement is a simple upgrade of border

routers with the proposed LSRR-based packet forwarding. Fortunately, border

routers need not be upgraded simultaneously. The communication is possible even

if just one border router on the path of the communication implements the

proposed algorithm. So one can upgrade his/her border router and immediately

start enjoying the benefits of seamless P2P UDP communication. The other side

of the communication can still be using the legacy NAPT box. Over time,

everybody can be expected to upgrade their border routers and people would all

have transitioned to an LSRR- based Internet using IPv4+4 addresses. We believe

that our proposal is neat and an LSRR-based Internet using IPv4+4 addresses is

the way to go in the evolution to the next generation Internet for secure seamless

support of P2P UDP communication.

 34

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Postel, J.: Internet Protocol Darpa Internet Program Protocol

Specification. RFC 791 (1981)

User Datagram Protocol. RFC 768 (1980)

Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., Lear, E.:

Address Allocation for Private Internets. RFC 1918 (1996)

Tsirtsis, G., Srisuresh, P.: Network address translation - protocol

translation (NAT-PT). RFC 2766 (2000)

Srisuresh, P., Holdrege, M.: IP Network Address Translator (NAT)

Terminology and Considerations. RFC 2663 (1999)

Huston, G.: Anatomy: A Look Inside Network Address Translator. The

Internet Protocol Journal, http://www.cisco.com, 4(3), (Sep 2004)

Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6)

Specification. RFC 2460 (1996)

Rosenber, J., Weinberger, J., Huitema, C., Mahy, R.: STUN - simple

traversal of user datagram protocol (UDP) through network address

translators (NATs). RFC 3489 (2003)

Guha, S., Takeda, Y., Francis, P.: NUTSS: A SIP-based Approach to

UDP and TCP Network Connectivity. SIGCOMM Workshops, Portland,

OR (2004)

UPnP Forum: http://www.upnp.org

Srisuresh, P., Kuthan, J., Rosenber, J., Molitor, A., Rayhan, A.:

Middlebox Communication Architecture and Framework. RFC 3303

(2002)

Stiemerling, M., Quittek. J., Taylor, T.: Middlebox Communication

(MIDCOM) Protocol Semantics. RFC 3989-bis (2007)

Rosenberg, J., Mahy, R., Huitema, C.: Traversal Using Relay NAT

(TURN). draft-rosenberg-midcom-turn-08.txt (2005)

Turanyi, Z., Valko, A.: IPv4+4. 10th International Conference on

Networking Protocols (ICNP 2002) (2002)

Turanyi, Z., Valko, A., Campbell, A.: Design, Implementation and

Evaluation of IPv4+4. ACM SIG-COMM, Stanford, CA (1988) 314-329

 35

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Cheriton, D., Gritter, M.: TRIAD: A Scalable Deployable NAT-based

Internet Architecture. Technical Report (2000)

Francis, P., Gummadi, R.: IPNL: A NAT-Extended Internet

Architecture. ACM SIGCOMM (2001)

Borella, M., Lo, J., Grabelsky, D., Montenegro, G.: Realm Specific

IP: Framework. RFC 3102 (2001)

Newport Networks Ltd: Solving the Firewall and NAT Traversal

Issues for Multimedia over IP Services. http://www.newport-

networks.com (2006)

Ferguson, P., Senie, D.: Network Ingress Filtering: Defeating Denial

of Service Attacks which employ IP Source Address Spoofing. RFC

2827 (2000)

Postel, J., Reynolds, J.: Comments on the IP Source Route Option.

http://www.mirrorservice.org/sites/ftp.isi.edu/in-notes/museum/ip-

source-route-comments.txt (1987)

McNab, C.: Network Security Assesment. O'Reilly Publishing (2008)

Linux Netfilter Homepage. http://www.netfilter.org

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson,

J., Sparks, R., Handley, M., Schooler, E.: SIP: Session Initiation

Protocol. RFC 3261 (2002)

Handley, M., Jacobson, V.: SDP: Session Description Protocol. RFC

2327 (2004)

Su, Z.: A Specification of the Internet Protocol (IP) Timestamp

Option. RFC 781 (1981)

Rosenberg, J.: Interactive Connectivity Establishment (ICE): A

Methodology for Network Address Translator (NAT) Traversal for

Offer/Answer Protocols. Work in progress (2007)

Johnston, A., Donovan, S., Sparks, R., Cunningham, C., Summers,

K.: Session Initiation Protocol (SIP) Basic Call Flow Examples. RFC

3665 (2003)

 36

Appendix 1: Implemented Software

A network driver is implemented as a Linux kernel module for Linux

2.6.22 version during the thesis work. Its source and header files (lsrr_nat.c, nat.h,

lsrr.h) are available in the compact disc attached to the back cover.

