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With the proliferation of P2P applications such as Voice over IP (VoIP), 

online games etc., there is an increasing demand for secure seamless peer-to-peer 

(P2P) UDP communication. Unfortunately, the current structure of the Internet, 

with hosts behind Network Address Translation (NAT) boxes, causes well- 

known problems for P2P applications. There are several proposals, e.g., STUN, 

UPnP, MIDCOM, TURN among others, to enable P2P UDP communication for 

nodes behind NAT boxes, but each technique offers a partial solution that works 

in special limited cases and fails in others.  

Alternatively, several NAT-extended architectures have been proposed, 

e.g., IPv4+4, TRIAD, IPNL, RSIP, to restore end-to-end addressing and 

connectivity, however, they all require a complete and simultaneous upgrade of all 

existing network infrastructure, which simply is not feasible.  

In this thesis, it is presented and implemented an extended Internet 

architecture that tries to offer a complete solution with IPv4+4 addresses to the 

secure seamless P2P UDP communication problem. The source files (lsrr_nat.c, 

nat.h, lsrr.h) of the implemented software are presented in the CD attached to the 

back cover. 
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SAĞLAYAN YAZILIM TABANLI BĐR P2P DÖNÜŞTÜRÜCÜ 

TASARIM VE GERÇEKLEMESĐ 
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Bilgisayar Mühendisliği Anabilim Dalı 
 

Danışman: Yard. Doç. Dr. Cüneyt AKINLAR 
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VoIP, çevrimiçi oyunlar, vb. gibi P2P (uçtan uca) uygulamaların sayısının 

çoğalmasıyla beraber, güvenli dikişsiz P2P UDP iletişimine artan bir talep 

bulunmaktadır. Ancak çoğunluğu NAT (Ağ Adres Dönüşümü) cihazlarının 

arkasında bulunan kullanıcılardan oluşan mevcut Internet yapısı P2P uygulamalar 

için ciddi problemler teşkil etmektedir. NAT cihazı arkasındaki kullanıcılar için 

P2P UDP iletişimini sağlamaya yönelik STUN, UpnP, MIDCOM, TURN vb. gibi 

önerilen sistemler olmasına rağmen; bu sistemler belirli kısıtlamalar altında 

çalışabilmekte ve kısmi çözümler sunabilmektedirler. 

Bunlarla beraber IPv4+4, TRIAD, IPNL, RSIP gibi bazı NAT tabanlı 

mimariler de uçtan-uca adresleme ve iletişimi sağlamak adına önerilmiş, ancak 

mevcut ağ yapısının tamamının eşzamanlı yükseltilmesini gerektirdiklerinden 

dolayı makul bir çözüm olamamışlardır. 

Bu tez çalışmasında IPv4+4 adreslerini kullanarak güvenli, dikişsiz uçtan-

uca UDP iletişimi problemini çözebilecek bir Internet mimarisi önerilmiş ve 

gerçeklenmiştir. Ayrıca gerçeklenen yazılımın kaynak kodları (lsrr_nat.c, nat.h, 

lsrr.h)  tezin arka kapağında bulunan kompakt diskte sunulmaktadır. 

 

 

Anahtar Kelimeler: P2P (Uçtan Uca) Đletişim, Ağ Adres Dönüşümü, IPv4+4.  
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1. INTRODUCTION 

 

IPv4 [1] architecture is well entrenched with Network Address Translation 

[4, 5] boxes. Although a NAT-based Internet is suitable for the client/server type 

of communication, e.g., HTTP, where the server is on the public Internet and the 

client is on a private address realm, i.e., the client has a non-routable private IPv4 

address [3], this architecture creates well-known problems for Peer-to-Peer (P2P) 

communication. With the widespread use of P2P UDP [2] applications such as 

VoIP [24], online games etc., there is an increasing demand for secure seamless 

P2P UDP communication, but the existing NAT-based IPv4 architecture is a real 

hindrance for ubiquitous deployment. The problem arises from the fact that nodes 

behind NAT boxes do not have globally routable IPv4 addresses, making P2P 

communication impossible. What's required for seamless P2P communication is a 

globally-routable IP address for each node in the Internet.  

IPv6 [7], when deployed, would provide each node on the Internet with a 

globally routable IPv6 address, which would enable end-to-end connectivity 

necessary for P2P communication. But the industry has been slow in transitioning 

to IPv6 as it requires a complete rehaul of the network infrastructure, i.e., routers 

and end-hosts. The difficulty in transition to IPv6 also stems from the fact that 

IPv6 addresses are not backward-compatible.  

To enable P2P UDP communication in the presence of NATs, hole 

punching techniques have been proposed exemplified by STUN [8, 9]. The 

general idea with these techniques is to let a node behind a NAT box talk to a 

server on the public Internet and learn (global IP address, port) pair assigned to its 

(private IP address, local port) pair for a certain session, and then disclose this 

information to the peer for direct communication. Although such port prediction 

and hole punching methods enable P2P communication in certain limited cases, 

they are not reliable and fail to work for all NAT types.  

There are other initiatives exemplified by UPnP [10] and MIDCOM [11] 

that propose on-demand port allocation for a session by apriori negotiations with 

the border router. Within these frameworks, a node talks to the border router or an 

agent before initiating a P2P session and allocates the required ports necessary for 
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the communication. The node then discloses the border router IP address and the 

allocated ports to the peer for P2P communication. The problem with these 

proposals is that they require a simultaneous upgrade of all existing border 

routers, which makes the transition difficult. Additionally, by opening up a port to 

all incoming traffic, UPnP reduces the level of security provided by the current 

NAT boxes [19].  

Other alternatives, exemplified by TURN [13], propose putting an 

intermediate node (a relay agent) in the path of the communication, which would 

terminate the session for a peer and act like a proxy. Although this would work for 

all NAT types, it requires the deployment of such relay agents in the global 

Internet, which is not only difficult but is also against the nature of P2P 

communication.  

Alternatively, several NAT-extended architectures have been proposed, 

exemplified by IPv4+4 [14], TRIAD [16], IPNL [17], RSIP [18], to restore end-

to-end addressing and connectivity. If deployed, these architectures would enable 

P2P communication, but they all require a complete rehaul of the existing network 

infrastructure including all border routers, end-hosts and even existing 

client/server applications, which simply is not feasible. 

In this thesis it is presented a new Internet architecture that tries to offer a 

complete solution to the secure seamless P2P UDP communication problem. The 

framework is based on the use of IPv4+4 addresses [14] and the standard IPv4 

Loose Source Record Route (LSRR) option [21]. An IPv4+4 address is a 

backwards-compatible globally unique network address for a node behind a NAT 

box, and is formed by concatenating the 32-bit globally routable IPv4 address of 

the border router with the 32-bit private IPv4 address of an internal node. The 

proposal which is presented in this thesis requires no changes whatsoever to end-

hosts and Internet routers. The only requirement is a simple upgrade of border 

routers with a new LSRR-based packet forwarding algorithm for the P2P UDP 

traffic (described in section 3). The upgraded border router performs traditional 

NAPT (Network Address Port Translation) forwarding for the client/server 

communication, and the proposed LSRR-based forwarding for the P2P UDP 

traffic. It is first described how P2P UDP communication works in the presence of 
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new upgraded border routers. Then it is shown how it is possible to enable P2P 

UDP communication even in the presence of a legacy NAT box on the path of the 

communication. This is very important as it lays the ground for a simple transition 

to the proposed Internet architecture.  
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2. PROBLEM DEFINITION AND RELATED WORK 

 

IPv4 Internet is structured around NAT and firewall boxes. These devices 

are located at the edge of almost all business and home networks. Often, NAT and 

firewall functionality is bundled into a single box, called a middlebox, a home 

(residential) gateway or a border router. In the rest of this thesis, it would be used 

these terms interchangeably and it is assumed that they have bundled firewall and 

NAT functionality. 

 

 

Figure 2.1:  

 

 

 

Figure 2.1 shows a snapshot of the current Internet architecture. There are 

two private realms A and B, e.g., two home or SOHO networks, connected by the 

public Internet. X and Y are hosts on private realms A and B respectively. They 

have non-routable private IPv4 addresses [3], X and Y respectively. A and B are 

border routers that perform Network Address Port Translation (NAPT) and also 

act as Firewalls for their private realms. C and S are hosts on the public Internet, 

and have unique, routable IPv4 addresses. 

The above NAT-based IPv4 architecture is suitable for the client/server 

type of communication, e.g., HTTP, where the server is on the public Internet and 

the client is on a private address realm. Since the communication is initiated by 

the private host, e.g., X, the border gateway A dynamically allocates a port for the 

session in the NAT table and opens the port for incoming/outgoing traffic in the 

firewall. This allows only solicited traffic belonging to the session to enter the 

Private Realm A 
Public Internet 

A 

Private Realm B 

B 

C Y X S 

Two private realms, A and B, connected by the public Internet. A and B are 

middleboxes, a.k.a., home (residential) gateways, border routers. They perform 

Network Address Port Translation (NAPT), and act as Firewalls for their private realm 
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private realm. Unsolicited incoming traffic, that is, traffic initiated from outside 

the private realm, is not allowed inside thus providing security. 

 

 

 

Figure 2.2: NAPT/Firewall functionality performed by the border gateway A, when X talks with S 

 

 

Figure 2.2 illustrates how NAPT and firewall work together at the border 

gateway A for an example session between X and S. X initiates the session by 

sending a packet with source port sp=px, destination port dp=ds, source IPv4 

address SA=X and destination IPv4 address DA=S. When border router A 

receives this packet, it allocates port pa for the session, creates a NAPT binding 

and a filter in the NAT table (X:px<->A:pa, Filter: S/ps). The filter means that 

incoming traffic to A:pa is allowed to pass inside only if it is coming from S:ps. 

This is called a symmetric NAT binding [6] and is very restrictive. Border router 

then sets the source address to A, SA=A, the source port to pa, sp=pa, and 

forwards the packet to the public Internet. This packet will make it to S through 

regular IPv4 forwarding in the Internet. 

When the server replies, its packet will have the following parameters: 

<sp=ps, SA=S, dp=pa, DA=A>. The border router A will receive this packet, 

consult its NAT table and locate the NAPT entry for the session. The entry filter 

allows this packet to pass inside since it is coming from S:ps. So the border router 

changes the destination address to X, DA=X, destination port to px, dp=px, and 

forwards the packet to X. 

sp: px dp: ps 

SA: X DA: S 

sp: pa dp: ps 

SA: A DA: S 
A S X (a) 

Private Realm A Public Internet 

NAPT Binding Filter 

X:px��A:pa S/ps 

sp: ps dp: px 

SA: S DA: X 

sp: ps dp: pa 

SA: S DA: A 
A S X (b) 
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NAT box permits client/server type communication when the server is on 

the public Internet and the client is behind a NAT box. For this scenario, 

bidirectional P2P communication between X and S is still possible, albeit a little 

messy. But when both peers are behind a NAT box, enabling P2P communication 

is a daunting task. Consider the case where X and Y want to exchange 

bidirectional P2P UDP traffic using ports px and py respectively. Initially, X and 

Y exchange their communication endpoint parameters, e.g., X:px and Y:py, using 

a separate control protocol such as SIP, H.323, etc. The obvious problem is that it 

is not possible to deliver any traffic to X:px from the Internet. So if X is to tell Y 

to send packets to X:px, no traffic will arrive at X. Similarly, no traffic can be 

delivered to Y:py from the Internet. 

 

 

 

Figure 2.3:  

 

 

 

Simple Traversal of UDP Through Network Address Translators (STUN) 

[8], is a hole punching technique intended to solve the P2P UDP communication 

problem. The idea is illustrated in Figure 2.3. Before revealing its endpoint 

parameters X:px to Y, X talks to a STUN server S on the public Internet and 

learns (public IP address, port) pair assigned to its endpoint X:px. In the example, 

the border router assigns A:pa to X:px as seen in A's NAT table. X then informs Y 

sp: px dp: ps 

SA: X DA: S 
A B X (a) 

Private Realm A Public Internet 

NAPT Filter 

X:px��A:pa S/ps 

Y 

Private Realm B 

sp: py dp: ps 

SA: Y DA: S 

NAPT Filter 

Y:py��B:pb */* 

S 

sp: px dp: pb 

SA: X DA: B 
A B X (b) Y 

sp: pm dp: pb 

SA: A DA: B 

NAPT Filter 

X:px��A:pa S/ps 

X:px��A:pm B/pb 

sp: pb dp: pa 

SA: B DA: A 

sp: py dp: pa 

SA: Y DA: A 

NAPT Filter 

Y:py��B:pb */* 

sp: pm dp: py 

SA: A DA: Y 

(a) X and Y talk to the STUN server S and learn their NAT bindings A:pa and B:pb 

respectively. We assumed that A is a symmetric NAT, B is a cone NAT  

(b) X and Y exchanging packets: The packet from X is passed inside by the cone 

NAT B. The packet from Y is blocked and dropped by the symmetric NAT A 
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to send UDP traffic to A:pa. Similarly, Y talks to a STUN server on the public 

Internet and learns (public IP address, port) pair assigned to its endpoint Y:py. In 

the example, B:pb is assigned to Y:py. Y then informs X to send UDP traffic to 

B:pb. The NAT tables at A and B reject that A is a symmetric NAT (Filter: S/ps 

indicates that only traffic sent from S:ps will be allowed inside) and B is a cone 

NAT [6] (Filter: */* indicates that all traffic sent to B:pb will be passed inside 

regardless of the source IP and source port number). In Figure 2.3(b), X and Y 

exchange packets. X sends a packet to <B:pb>. As the packet passes through the 

border router, a new NAT binding (X:px<->A:pm, Filter: B/pb) is created. This is 

due to the fact that symmetric NATs create a binding based on the source IP 

address and source port number as well as the destination IP address and 

destination port number. Since the destination IP address of the new packet is 

different from that of the STUN server, the symmetric NAT A creates a new 

mapping. This packet will make it to border router B and will be passes inside 

since B is a cone NAT. Looking at the packet from Y to X, we see that the packet 

is destined to <A:pa>. After passing through the border router B, its headers will 

have <sp=pb, SA=B, dp=da, DA=A>. When this packet makes it to A, it will 

locate the NAT entry for dp=da. The filter for this NAT entry passes a packet 

inside only is SA=S and sp=ps, which do not match the packet's source IP address 

and source port number. So the packet is dropped. To sump up the discussion, 

hole punching techniques exemplified by STUN work only if all border routers on 

the path of the communication are cone NATs. It is known that most border 

routers today are symmetric NATs [19], which make hole punching techniques to 

fail in certain cases. It should also be noted that cone NATs are susceptible to port 

scan attacks, which create additional security risks [19]. So making all border 

routers cone NATs is not an acceptable solution to the P2P UDP communication 

problem due to a reduced level of security. 

Another approach advocated by Microsoft is the Universal Plug and Play 

(UPnP) [10]. The idea is the following: Before initiating a session, a UPnP-

enabled node inside the private realm talks to the UPnP-enabled border router and 

opens up a port for communication. For example, before starting a session at 

endpoint X:px, X talks to its UPnP-enabled border router A and opens a port, say 
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A:pa. Similarly, Y talks to its UPnP-enabled border router B and opens a port, say 

B:pb. They then reveal their endpoint parameters A:pa and B:pb to each other 

through a control protocol, e.g., SIP. Once the ports are open for communication, 

all traffic arriving at A:pa will be passed to X:px, and all traffic arriving at B:pb 

will be passed to Y:py. In a sense, UPnP-enabled border routers behave similar to 

existing cone NATs. There are two drawbacks with this approach: 

(1) All border routers and end-hosts must be UPnP-enabled. It is 

unreasonable to expect all border routers to support UPnP simultaneously.  

(2) Since an UPnP-enabled border router behaves like a cone NAT, there 

is a reduced level of security. Specifically, after a port is opened up for 

communication, all traffic will be passed inside regardless of where it is coming 

from, which could easily be exploited. 

IEFT MIDCOM architecture [11] proposes a solution similar to UPnP. 

The idea is to have intelligent agents that would talk to MIDCOM-enabled border 

routers using a MIDCOM protocol [12] to establish global communication 

parameters for the session. The goal is to separate out the application intelligence 

from the border router into agents and make the border router responsible for only 

NAPT and maybe firewall functionality. This enables new applications to be 

deployed without requiring a border router upgrade. Although MIDCOM 

approach addresses the security issue present in UPnP and cone NATs, it still 

requires all border routers on the path of the communication to be MIDCOM-

enabled, which is a big hindrance to its deployment. That is, there is no clear path 

for transitioning to MIDCOM architecture. 

There are other approaches such as TURN [13] that propose inserting a 

relay agent in the public Internet on the path of the communication. Thus all 

traffic will pass through the relay agent, which would enable communication 

similar to a proxy. This approach not only requires the deployment of such relay 

agents in the Internet, but also requires all end-nodes to be TURN-enabled. It is 

also against the nature of P2P communication. 
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3. AN EXTENDED INTERNET ARCHITECTURE: IPV4+4 ADDRESSES 

AND LSRR-BASED FORWARDING 

 

Although a 32-bit private IPv4 address is not globally unique, it is possible 

to obtain a globally unique 64-bit network address by concatenating it with the 

32-bit globally unique IPv4 address of the border router [14]. In a sense, the 

globally unique IPv4 address of the border router identifies the private realm and 

the private IPv4 address of the host is like an extension number inside the realm. 

With this convention, the globally unique IPv4+4 address of node X in Figure 2.1 

is A.X, and IPv4+4 address of node Y is B.Y. Given that each node in a private 

realm can uniquely be identified with a 64-bit IPv4+4 address, how can we make 

use of these addresses to solve the P2P UDP communication problem? Authors in 

[15] propose a solution by defining a new protocol and header structure, and 

requiring the upgrade of all border routers, end-hosts and even all client/server 

applications to the new protocol, which is not very feasible. There is need for a 

way to make use of IPv4+4 addresses while requiring minimal changes to the 

existing network infrastructure. 

In this section it is shown how this can be done with the standard IPv4 

Loose Source Record Route (LSRR) option [21]. It is first described how LSRR 

works and then show that if border routers employ a modified version of the 

LSRR forwarding/filtering algorithm for the P2P UDP traffic, secure seamless 

P2P UDP communication can be achieved. For the proposal which is presented in 

this thesis to work, P2P applications are required to make use of IPv4+4 addresses 

and send UDP packets by using the IPv4 LSRR option. Since 

transmission/reception of UDP packets with the IPv4 LSRR option is part of all 

major operating system protocol stacks, e.g., Windows, Linux, Solaris, the 

proposal demands no changes whatsoever to end-host protocol stacks or IPv4 

routers. 
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3.1 IPv4 Loose Source Record Route (LSRR) Option 

 

IPv4 Loose Source Record Route (LSRR) option has been defined in RFC 

791 [1]. LSRR allows the sender of an IPv4 packet to specify a list of nodes (IPv4 

routers) that the packet must pass through on its way to the destination, and to 

record the route information. Although this type of explicit source-based routing 

information is not necessary for the correct forwarding of a packet, the following 

benefits are listed in [21]: 

(1) To potentially specify a shorter path by the source, 

(2) To avoid certain networks for performance or security reasons, 

(3) To test and monitor certain IPv4 routers. 

LSRR is implemented as an option included in the IPv4 header and 

specifies a list of IPv4 addresses where the packet must make stops on its way to 

the destination. The destination address of the initial packet contains the IPv4 

address of the first hop node. At each stop, the address pointed to by the option 

pointer is taken from the list and placed in the destination address field, and that 

element of the list is replaced by the IPv4 address of that stop [21].  

 

 

 

Figure 3.1:  Packet Transmission from X to Y with IPv4 LSRR option: The packet makes stops at  

      B and C before arriving at Y 

 

Figure 3.1 shows an example packet flow using the LSRR option: X sends 

a packet to Y, but wishes the packet to make stops at B and C before arriving at Y. 

This is achieved by specifying a source route by the LSRR option as follows: 

When the packet leaves X, the IPv4 source address (SA) is set to X's IPv4 address 

and the destination IPv4 address (DA) is set to the next hop node B's IPv4 

address. X also specifies the path that the packet must follow in the network after 

stopping at B. The LSRR option indicates that the packet needs to go to C and 

then to Y. LSSR option pointer (specified in parenthesis) indicates where the 

SA: X DA: B 

LSRR(1): C, Y 

SA: X DA: C 
B 

SA: X DA: Y 
C X Y 

LSRR(2): B, Y LSRR(3): B, C 
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packet should be sent at the next hop B. At the beginning this is set to 1
1
, meaning 

that the next hop after B is the first IPv4 address on the list, i.e., C. Since DA=B, 

the packet will be delivered to B. When B receives the packet, it looks at the 

LSRR option and realizes that the option is not exhausted yet. So it swaps DA, 

i.e., B, with the IPv4 address indicated by the LSSR pointer, i.e., C. B also 

increments the LSRR pointer to point to the next IPv4 address on the list. Notice 

that SA is not changed. The new packet with SA=X and DA=C will be delivered 

to C. C also notices that the LSRR option is not exhausted, so it performs LSRR 

processing similar to B: C swaps the DA with the IPv4 address pointed to by 

LSRR, increments the LSRR pointer, and forwards the packet to Y. The new 

packet has SA=X and DA=Y and will be delivered to Y. Y realizes that LSRR 

processing is done and that it is the last stop on the source route. Y also learns the 

route back to X from the LSRR values, which contains the path in the reverse 

direction. 

 

3.2 P2P UDP Communication with Modified LSRR-based Border Routers 

 

In this section it is shown that if border routers employ a modified version 

of the LSRR forwarding/filtering algorithm for the P2P UDP traffic, secure 

seamless P2P UDP communication can be achieved. It is assumed that P2P 

applications use IPv4+4 addresses and send/receive UDP packets with the IPv4 

LSRR option as described below. It is noted that with the proposed algorithm, the 

border router will be as secure as the existing symmetric NAPT/firewall boxes. It 

is not illustrated regular client/server communication through our border router as 

that would use traditional NAPT translation. 

Assume that a node X with IPv4+4 address A.X wishes to establish a 

bidirectional P2P UDP communication with another node Y with IPv4+4 address 

B.Y. Further assume that X wishes to use UDP port px and Y wishes to use UDP 

port py for this communication. It will be demonstrated the P2P session key as 

                                                
 
1 In a real IPv4 implementation LSRR option pointer contains the byte offset of the next IPv4 

address on the list from the beginning of the option, and would initially be equal to 4. At each stop 

it will be incremented by 4. 
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<A.X:px, B.Y:py>. How X and Y learn the IP addresses of their border routers, 

and how they agree on the P2P UDP communication parameters is out of the 

scope of this work. But it is noted that existing P2P applications, e.g., VoIP using 

SIP [24, 25], online gaming etc., use a separate control path (protocol) to establish 

these parameters before the actual P2P UDP communication begins.  

 

 

 

Figure 3.2:  

 

 

 

 

Figure 3.2 depicts the packet flow between A.X:px and B.Y:py. It is 

assumed that after X and Y agree on the P2P UDP communication parameters, X 

is the first node to send a UDP packet to Y. Figure 3.2(a) depicts the packet flow 

from X to Y: When the packet leaves X, it has sp=px, dp=py, SA=X, DA=A, 

LSRR(1): B, Y. Note that DA equals the IPv4 address of X's border router A. X 

also specifies in LSRR that A must forward the packet to B, which must forward 

the packet to Y, the packet's final destination. When A receives the packet, it first 

tries to locate the P2P session in its session table. Note that it is required the 

border router to maintain a session table for P2P UDP traffic, in addition to the 

traditional NAT table for the client/server traffic. Since this is the first outgoing 

SA: X DA: A 

LSRR(1): B, Y 

SA: A DA: B A B X Y (a) 

LSRR(2): X, Y 

Private Realm A Public Internet Private Realm B 
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A.X:px��B.Y:p

sp: px dp: py sp: px dp: py 

SA: Y DA: X 

LSRR(3): B, A 

SA: B DA: A A B X Y (b) 

LSRR(2): Y, X 

Session 

A.X:px��B.Y:p

sp: py dp: px sp: py dp: px 

Session 

B.Y:py��A.X:p

SA: Y DA: B 

LSRR(1): A, X 

sp: py dp: px 

SA: X DA: A 

LSRR(1): B, Y 

SA: A DA: B A B X Y (c) 

LSRR(2): X, Y 

sp: px dp: py sp: px dp: py 

SA: X DA: Y 

LSRR(3): A, B 

sp: px dp: py 

Using modified LSRR forwarding and IPv4+4 addresses for P2P UDP communication: 

(a) Packet transmission from A.X:px to B.Y:py,  

(b) Packet transmission from B.Y:py to A.X:px,  

(c) Packet transmission from A.X:px to B.Y:py 
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packet belonging to the session, the border router creates an entry in the session 

table. Thus a session is created only by the solicited (initiated from inside) 

outgoing traffic. 

The packet now goes through LSRR processing. According to the regular 

LSRR processing, border router A swaps the IP address pointed to by the LSRR 

pointer and the destination IP address. So the packet header becomes: sp=px, 

dp=py, SA=X, DA=B, and LSRR option becomes: LSRR (2): A, Y. Notice that 

standard LSRR processing does not change the source IP address X. So if the 

border router were to send this modified packet to the Internet, it will most likely 

be dropped by the first ISP router due to ingress filtering [20]. According to RFC 

1918 [3], realm routers must perform packet filtering and no packet having a 

private source or destination address should be sent out to the public Internet. This 

means that it is not possible to send the packet with SA=X. Therefore, we propose 

a modified LSRR processing algorithm at our border router: The border router 

moves the first address in LSRR list, B, to DA, puts the source address, X, in its 

place in LSRR list, and sets SA=A for the outgoing packet. So when the packet 

leaves A, its header contains: sp=px, dp=py, SA=A, DA=B, and LSRR option 

becomes: LSRR (2): X, Y. Notice that the source and destination port numbers are 

not changed. 

When B receives this packet, it consults its P2P session table to locate the 

session. Since B is not aware of the session yet (recall that border router B will 

learn about the session after a packet is sent by Y to X), the packet is simply 

dropped. This way, unsolicited incoming traffic will simply be dropped similar to 

existing NAT boxes. Traffic for a session will be passed inside only if the border 

router knows about that session. Just like this packet is dropped by B, all 

subsequent packets from A.X:px to B.Y:py will be dropped until Y sends a packet 

to A.X:px. 

Figure 3.2(b) illustrates Y sending a packet to A.X:px. When packet leaves 

Y, its header contains: sp=py, dp=px, SA=Y, DA=B, LSRR(1): A, X. When B 

receives this packet, it tries to locate P2P session and fails. Since this is the first 

outgoing packet belonging to the session, a new session is created in the session 

table. B then performs modified LSRR option processing similar to border router 
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A described above. So when the packet leaves B, its header contains: sp=py, 

dp=px, SA=B, DA=A, LSRR (2): Y, X.  

When A receives this packet, it consults its session table and locates the 

session. So the packet is passed inside the private realm after LSRR processing. 

When the packet leaves A towards host X, its header contains: sp=py, dp=px, 

SA=B, DA=X, LSRR (3): Y, A. This packet will make it to X. Host X will realize 

the LSRR option has been exhausted and deliver the packet to the application 

listening to port px. The P2P application will not only get the packet, but also 

learn the reverse path to Y from the LSRR option. 

In Figure 3.2(c) it is illustrated X sending another packet to B.Y:py. This 

time the packet is passed inside private realm B because B now knows about the 

session. 

 

 

 

Figure 3.3: P2P UDP Communication between host X on private realm A and host C on the 

     public Internet. (a) outcoming traffic, (b) incoming traffic. 

 

P2P UDP communication using LSRR-based packet forwarding can also 

be used when one of the peers is in a private realm and the other is on the public 

Internet. Figure 3.3 illustrates this scenario, where host A.X in private realm A is 

talking to host C on the public Internet. Clearly, this P2P communication is very 

similar to X talking to Y. Instead, fewer addresses are inserted into the LSRR list. 

But otherwise, the LSRR processing at the border router A is the same as before. 
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LSRR(1): C 

SA: A DA: C A C X (a) 

LSRR(2): X 
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A.X:px��C:pc 
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SA: C DA: X 

LSRR(2): A 

SA: C DA: A A C X (b) 

LSRR(1): X 

sp: pc dp: px sp: pc dp: px 
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The above illustrations should make it clear that if both border routers 

keep a P2P session table and employ the modified LSRR processing and filtering 

algorithm described above, secure seamless P2P UDP communication can always 

be achieved. Although the proposal in this thesis demands the upgrade of all 

existing border routers, it requires no changes to the end-host protocol stacks or 

routers. All major operating system protocol stacks allow transmission and 

reception of UDP packets with LSRR option using the existing sockets API. So, 

to benefit from the proposed framework, a P2P UDP application needs to learn the 

IPv4 address of its border router and it can start sending/receiving LSRR-based 

UDP packets for P2P communication. It is also noted that the proposed border 

routers are as secure as the existing symmetric NAT boxes: 

(1) A new session is created only by solicited traffic, i.e., traffic 

originating from inside the realm; 

(2) An incoming packet is passed inside only if all session parameters 

match an existing session. 

 

3.3 Border Router Packet Forwarding Algorithm 

 

In the previous sections the packet forwarding/filtering algorithm is 

described employed by our border router for each type of traffic. In this section, 

the algorithm in a more formal manner using a pseudocode will be presented. It is 

possible to divide the algorithm into two cases:  

(1) When a packet is received from an internal host, that is, when BR 

(Border Router) receives a packet from one of its LAN interfaces (Figure 3.3),  

(2) When a packet is received from the Internet, that is, when BR receives 

a packet from its WAN interface (Figure 3.4).  

Both algorithms are divided into 3 parts, labeled I, II and III.  

In part I, it is described the handling of packets that do not contain the 

LSRR option. These packets belong to client/server type communication where 

the client is in the private address realm and the server is in the Internet. When BR 

receives such a packet, it tries to locate the NAT entry for the session (step I.1). If 

the packet is received from a LAN interface and the session is not found, then this 
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is the first packet belonging to the session. So BR creates a NAT entry in the NAT 

table (step I.2.1), and changes packet's SA and source port (step I.3). If the packet 

is received from the WAN interface and the session is not found, then the packet 

is simply dropped (step I.2). If the NAT entry is found for an incoming packet, 

then the packet's DA and destination port are changed, and the packet is 

forwarded inside (step I.3).  

In part II, it is describe the handling of packets that contain an LSRR 

option with just one address in the option body, which is, there is just one BR 

between the communicating peers. These packets belong to either (1) client/server 

type communication where the client is in the global Internet and the server is on 

the private realm, e.g., connection request from C to A.X in Figure 2.1, or (2) P2P 

communication where one peer is on a private realm and the other peer is in the 

global Internet, e.g., P2P communication between A.X and C in Figure 2.1. When 

BR receives such a packet, it tries to locate the session in the session table step 

Symbols used in the algorithm: 

SA: Source IP address of the packet 

DA: Destination IP address of the packet 

sp: Source port of the packet 

dp: Destination port of the packet 

A: WAN IP address of the border router (BR) 

 

BR receives a packet P from the LAN interface: 

I. ProcessPacket(P[SA=X, DA=S, sp=px, dp=ps]) 
I.1. <A:pa> = LocateNATEntry(<X:px, S:ps>) 

I.2. if (entry not found) then 

I.2.1. <A:pa> = CreateNATEntry(<X:px, S:ps>) 
I.3. Set SA=A, sp=pa 

 

II. ProcessPacket(P[SA=X, DA=A, sp=px, dp=pc, LSRR(1): C]) 

II.1. LocateSession(<A.X:px, C:pc>) 

II.2. if (session not found) then 

II.2.1. CreateSession(<A.X:px, C:pc>) 

II.3. Set SA=A, DA=C, LSRR(2): X 

 

III. ProcessPacket(P[SA=X, DA=A, sp=px, dp=py, LSRR(1): B, Y]) 

III.1. LocateSession(<A.X:px, B.Y:py>) 
III.2. if (session not found) then 

III.2.1. CreateSession(<A.X:px, B.Y:py>) 

III.3. Set SA=A, DA=B, LSRR(2): X, Y 

 

Figure 3.4 Algorithm for processing packets received from a LAN interface 
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II.1). If the packet is received from a LAN interface and the session is not found, 

then this is the first packet belonging to the session. So BR creates an entry in the 

session table (step II.2.1), and changes packet's SA, DA and the LSRR option 

(step II.3). If the packet is received from the WAN interface and the session is not 

found, then the packet is simply dropped (step II.2). If the session is found for an 

incoming packet, then the packet's DA and the LSRR option are changed, and the 

packet is forwarded inside (step II.3).  

In part III, it is described the handling of packets that contain an LSRR 

option with two addresses in the option body, that is, there are two BRs between 

the communicating peers. These packets belong to either (1) client/server type 

communication where the client is on one private realm and the server is on a 

different private realm, e.g., connection request from B.Y to A.X in Figure 2.1, or 

(2) P2P communication where a peer is on one private realm and the other peer is 

on a different private realm, e.g. P2P communication between A.X and B.Y in 

Figure 2.1. When BR receives such a packet, it tries to locate the session in the 

Symbols used in the algorithm: 

SA: Source IP address of the packet 

DA: Destination IP address of the packet 

sp: Source port of the packet 

dp: Destination port of the packet 
A: WAN IP address of the border router (BR) 

 

BR receives a packet P from the WAN interface: 
I. ProcessPacket(P[SA=C, DA=A, sp=pc, dp=pa]) 

I.1. <X:px> = LocateNATEntry(<C:pc, A:pa>) 

I.2. if (entry not found) then Drop the packet and exit 

I.3. Set DA=X, dp=px 

 

II. ProcessPacket(P[SA=C, DA=A, sp=pc, dp=px, LSRR(1): X]) 

II.1. LocateSession(<A.X:px, C:pc>) 

II.2. if (session not found) then Drop the packet and exit 

II.3. Set DA=X, LSRR(2): A 

 
III. ProcessPacket(P[SA=B, DA=A, sp=py, dp=px, LSRR(2): Y, X]) 

III.1. LocateSession(<A.X:px, B.Y:py>) 

III.2. if (session not found) then Drop the packet and exit 

III.3. Set SA=Y, DA=X, LSRR(3): B, A 

Figure 3.5 Algorithm for processing packets received from the WAN interface 
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session table (step III.1). If the packet is received from a LAN interface and the 

session is not found, then this is the first packet belonging to the session. So BR 

creates an entry in the session table (step III.2.1), and changes packet's SA, DA 

and the LSRR option (step III.3). If the packet is received from the WAN 

interface and the session is not found, then the packet is simply dropped (step 

III.2). If the session is found for an incoming packet, then the packet's SA, DA 

and the LSRR option are changed, and the packet is forwarded inside (step III.3). 

It is possible to see from steps I.2, II.2 and III.2 in Figure 3.5 that when 

BR receives a packet from the WAN interface and the session that the packet 

belongs to is not found in the BR's NAT or session tables, then the packet is 

simply dropped. These steps provide the necessary security in the sense that only 

solicited incoming traffic is let inside the private realm. All unsolicited traffic is 

simply dropped by BR. 

 

3.4 P2P Communication in the Presence of a Legacy Border Router 

 

It has been shown in the previous section that secure seamless P2P UDP 

communication is possible if both border routers on the path of the 

communication implement the proposed LSRR-based packet processing/filtering 

algorithm. The problem is, it is unreasonable to expect a simultaneous upgrade of 

all border routers. If the Internet is to transition to the proposed LSRR-based 

IPv4+4 framework, it must be a continuous process. This is why so many of the 

proposals including IPv4+4 [14], TRIAD [16], IPNL [17], MIDCOM [11], UPnP 

[10], among others, have not been adapted as they require a simultaneous upgrade 

of all border routers. 

Fortunately, it is possible for the proposal of this thesis to work even in the 

presence of a legacy NAT box on the path of the communication. 

Figure 3.6 shows an example P2P UDP session between A.X:px and 

B.Y:py when A is a new upgraded border router that implements the proposed 

LSRR-based packet processing/filtering algorithm, but B is a legacy border router 

that performs only the traditional symmetric NAPT and firewall services. We 

assume that before the communication starts, X and Y learn the IP address of their 
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border routers A and B and then talk to their border routers to see if they 

implement LSRR-based forwarding or not. This second step can be achieved by 

designing a simple query/reply discovery protocol and having the upgraded border 

router implement it. Since a legacy border router will not implement this new 

discovery protocol, a host can easily determine the type of border router it is 

behind. In our example, X discovers that A is a new upgraded border router and Y 

discovers that B is a legacy NAT box. 

 

 

 

Figure 3.6:  P2P UDP communication between A.X:px and B.Y:py when border router B is a 

      legacy NAPT device 

 

After discovery of the border router capabilities, packet transmission 

commences. This is illustrated in Figure 3.6. Since border router A supports 

LSRR-based forwarding, X follows the regular LSRR-based forwarding 

algorithm, sending the packet to A and specifying intermediate hops B, Y in the 

LSRR option. A will manipulate this packet using the proposed LSRR processing 

algorithm and forward it to B, where it will be dropped. Recall that B is a legacy 

NAT, and a legacy NAT will drop all unsolicited incoming traffic. This is 

illustrated in Figure 3.6(a).  

When Y sends a packet to X, it cannot use LSRR-based forwarding. If it 

did, the packet will be dropped by B. It is known that IPv4 LSRR packets are 
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considered to be a security threat [22] and dropped by existing NAT boxes. Even 

operating systems such as Windows and Linux disable transmission/reception of 

packets with LSRR option by default, which must be enabled before sending such 

packets. Since it is not possible to use IPv4 LSRR option to specify the session 

key, we need an alternative way to insert the session key inside the IPv4 header 

options area. Recall that the session key for the communication is (A.X:px <-> 

B.Y:py). Since the IPv4 header of the packet passing through the legacy NAT box 

B will have SA=B, DA=A, it is clear that the source and destination private IP 

addresses, X and Y, of the session key must somehow be inserted into the packet. 

Furthermore, since the NAT box changes the source port py to a new value, say 

pb, the source port py needs to be part of the created session key. With these in 

mind, it can be proposed that the sent session key consists of the source and 

destination port numbers (px, py) and the source and destination private IP 

addresses (X, Y). This is illustrated in Figure 3.6(b), where Y creates a session 

key, (SK: Y:py, X:px), and inserts it into the IPv4 options area. Y then sends the 

packet directly to border router A instead of B. Recall that had B implemented 

LSRR-based forwarding, the packet would have been sent to B. When the packet 

goes through B, it creates a NAPT binding for the session (Y:py<->B:pb), 

changes the source IP address to SA=B and the source port to sp=pb. When this 

packet reaches A, A sees the session key, locates the session in its session table, 

and also realizes that B is a legacy NAT. A then updates its session table to reject 

B's NAPT binding, changes the session key in the packet to an LSRR option and 

sends the packet to X. Having learnt that B is a legacy NAT, A also manipulates 

the packets traveling to Y by inserting the session key (SK: X:px, Y:py) and also 

changes the destination port to dp=pb so that the packet is passed inside by B. 

This is depicted in Figure 3.6(c). Thus, even if B is a symmetric NAT, the packet 

will be passed inside to Y since it is coming from A:px.  

The only question left to answer in the above discussion is how to carry 

the session key in an IP packet. It is possible to define a new IP option, but this 

has two problems: 

(1) It is known that Internet routers drop IP packets that contain unknown 

IP options [15], 
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(2) Existing operating system sockets API does allow setting IP options 

field to arbitrary values. 

At Windows, Linux and Solaris, and the only IPv4 options available for 

uses are the LSRR and the Timestamp option. Since it cannot be used the LSRR 

option as the existing NAT boxes drop packets containing the LSRR option 2, 

using the Timestamp option [26] to carry the session key reveals as the most 

convenient solution. Details of how the timestamp option is used in our prototype 

implementation are given in section 5. 
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4. SEAMLESS P2P COMMUNICATION WITH THE SESSION 

INITIATION PROTOCOL USING IPv4+4 ADDRESSES 

 

The Session Initiation Protocol (SIP) [24] is the emerging Voice over IP 

(VoIP) signaling protocol. It is used to establish, change and terminate multimedia 

sessions between two or more peers on an IP network. In this section our goal is 

to demonstrate how P2P communication would work for voice transmission 

between two IPv4+4 addressed nodes. It is assumed that the existing realm 

gateways, i.e., the NAT boxes on the private realm borders, support the IPv4 

LSRR option. 

Consider the network shown in Figure 2.1. Assume that Alice logged in X 

and Bob logged in Y are two SIP users located behind NAT boxes. They only 

know about their private IPv4 address, X and Y respectively, and the public 

IPv4 address of the SIP server, S. Assume that they are not even aware of the 

public IPv4 addresses of their realm gateways. The first thing that a SIP client 

performs during startup is to register its current location with the SIP server. In 

Alice's case, she would send a registration request similar to the following (it is 

only shown the relevant fields of the SIP message. SIP message examples are 

taken from [28]): 

 

REGISTER sip:X SIP/2.0 

From: sip:alice@X 

To: sip:alice@X 

Contact: sip:alice@X 

 

The registration packet is usually sent over UDP and would have <SA=X, 

DA=S>. Notice that this packet would be subject to NAT processing at the border 

gateway A, and have its source address changed. So the packet would have 

<SA=A, SA=S> on the public Internet. When S receives the registration request, 

it realizes that Alice is logged into a machine with private IPv4 address X 

(induced from Contact: sip:alice@X) located behind the NAT box A (induced 
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from SA of the packet). With our proposal, the SIP server S would send the 

following reply back: 

 

SIP/2.0 200 OK 

From: sip: alice@X 

To: sip: alice@X 

Contact: sip: alice@A.X 

 

Notice that “Contact:” header in the reply contains the full 64-bit IPv4+4 

address A.X of node X. Thus Alice would learn that she is behind a NAT box 

with global IPv4 address A. Bob would go through a similar registration 

procedure and learn that he is behind a NAT box with global IPv4 address B. That 

is, Bob's IPv4+4 address is B.Y. The SIP server S also learns both Alice and Bob's 

IPv4+4 contact addresses as A.X and B.Y. 

When Alice wishes to establish a VoIP session with Bob, she would send 

an Invite request via S. With our proposal, Alice would specify her IPv4+4 

address for media exchange instead of her private IPv4 address. A sample Invite 

message with IPv4+4 address is shown below: 

 

INVITE sip:bob SIP/2.0. 

From: sip:alice 

To: sip:bob 

Content-Type: application/sdp 

 

v=0 

o=alice 2890844526 2890844526 IN IP4+4 A.X 

s=- 

c=IN IP4+4 A.X 

t=0 0 

m=audio 49172 RTP/AVP 0 

a=rtpmap:0 PCMU/8000 
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Notice that Alice puts her IPv4+4 address A.X within the media session 

description by SDP [25]. Specifically, Alice indicates that she expects the media 

in PCM format sent to IPv4+4 address A.X:49172. 

When Bob receives the invitation request, he would reply with a message 

similar to the following, where Bob specifies his IPv4+4 address B.Y:3456 for 

media exchange: 

 

SIP/2.0 200 OK 

From: sip:alice 

To: sip:bob 

Contact: sip:bob@A.Y 

Content-Type: application/sdp 

 

v=0 

o=bob 2890844527 2890844527 IN IP4+4 B.Y 

s=- 

c=IN IP4+4 B.Y 

t=0 0 

m=audio 3456 RTP/AVP 0 

a=rtpmap:0 PCMU/8000 

 

Alice would finally send an ACK message, and the session would be 

established. The media exchange is now P2P between A.X:49172 and B.Y:3456, 

and can be achieved by IPv4 LSRR as described in section 3.2. 

It is important to note that IPv4+4 addresses would be used only if the user 

is logged into a host behind a NAT box. If Alice were to login at a host with a 

globally routable IPv4 address, e.g., node C in Figure 2.1, she would register the 

contact address sip:alice@C. The SIP server S would realize that Alice's host is 

not behind a NAT box, and so further communication with Alice would use IPv4 

address C, and not an IPv4+4 address. Thus IPv4+4 addresses would only be 

needed for hosts behind NAT boxes. 
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5. FRAMEWORK TESTBED AND IMPLEMENTATION DETAILS  

 

To test the proposed framework, testbed is set up depicted in Figure 2.1 in 

one of the laboratories of the Anadolu University, Department of the Computer 

Engineering as seen in the Figure 5.1. There are two private realms A and B 

connected over the Internet. There are one host X in realm A and one host Y in 

realm B and one host C on the Internet. All end-hosts are PCs running Windows. 

Border routers A and B are emulated by two PCs, each having 2 interfaces, one 

attached to the private realm and one attached to the Internet. Both border routers 

run Linux. 

 

 

 

Figure 5.1. Laboratory where the testbed is established and implementations take place. 

 

5.1 Details of Implemented Driver 

 

After the establishment of the development environment, it has been 

designed a Linux driver that implements the border router functionality. That 

driver, developed as a Linux kernel loadable module for 2.6 kernels, implements 

NAPT functionality for the traditional client/server traffic and the proposed 
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LSRR-based packet filtering/forwarding algorithm described in section 3 for the 

P2P UDP traffic. The driver consists of about 1000 lines of C code in three 

individual source and header files - lsrr_nat.c, nat.h, lsrr.h, (see App. 1) -, and uses 

the Linux Netfilter architecture [23]. Netfilter is a set of hooks in the Linux kernel 

protocol stack that allows callback functions to be registered. They are attached 

two hooks at the border router WAN interface, one for incoming packets and one 

for outgoing packets. When a packet arrives from the WAN; Netfilter gives the 

packet to the implemented driver, which processes the packet before letting it 

move up the protocol stack. Similarly, before a packet is sent down the WAN 

interface, Netfilter calls our driver, which processes the packet.  

 

5.1.1 NAPT Implementation 

 

 At the first step of the development of the driver, legacy NAPT software 

(see App. 1), is implemented for a Linux 2.6 computer with two Ethernet 

interfaces. Thus, it is provided the use of a computer like a standard SOHO 

gateway which implements standard address and port translation operations with a 

compatibility of UDP and TCP protocols. The implemented driver can be inserted 

as a module into the Linux OS kernel and it can capture the all packets of 

incoming/outgoing network traffic, also it can either perform the necessary 

manipulations on the packets or drop them. Also, it records the translation 

information of all network sessions on a table and it stores this table to the 

Linux’s kernel log. Thus, any user can view the content of this NAPT table (see 

Figure 5.2). 

 

5.1.2 Modified LSRR Algorithm Implementation 

 

After the NAPT implementation is done, the driver is extended to be able 

to perform the LSRR based packet forwarding algorithm (see App. 1) for UDP 

protocol. Processing of UDP packets containing IPv4 LSRR option follows the 

rules described in section 3.2: For an outgoing packet, the session table is 
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searched. If this is the first outgoing packet belonging to the session, an entry is 

created in the session table. 

 

 

 

Figure 5.2. NAT Table stored into Linux kernel log 

 

The necessary information about LSRR sessions is stored another table 

(see Figure 5.3) which is also stored to the Linux kernel log and visible for the 

users. After the entry of the session is created in the table, the packet is processed 

using the modified LSRR processing algorithm and the packet is sent to the 

Internet. When a packet is received, the session is searched in the session table. If 

the session is not found, then the packet is simply dropped. Thus the designed 

border router does not pass any packets that do not belong to a known session, 

which provides security. Clearly the border router allows only solicited incoming 

traffic similar to current NAPT boxes. So the communication is as secure as the 

existing NAPT boxes.  
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Figure 5.3. LSRR Session table stored into Linux kernel log 

 

It is described in section 3.4 that P2P UDP communication is possible 

even if one of the border routers on the path of the communication is a legacy 

NAT. In this case, the host behind the legacy NAT box does not use the LSRR 

option to send the packet, but rather puts a session key into the IPv4 options area. 

Since it is not possible to use the LSRR option (it has been observed that legacy 

NAT boxes drop packets containing LSRR option), and the only other IPV4 

option implemented by major operating systems is the IPv4 timestamp option, the 

use of the IPv4 timestamp option [26] to store the session key remains as the most 

appropriate solution. 

 

 

 

 

 

 

 

Figure 5.4: How the session key is stored in an IPv4 Timestamp option 

 

 Figure 5.4 depicts how the session key, e.g., A.X:px<->B.Y:py, is stored 

in IPv4 timestamp option. The first 4 bytes are the option type = 68, length = 20 

(total option length), ptr = 5 (offset of the first IP address in the list) and flag = 3 

(meaning that a router must set the timestamp only if the IP address pointed to by 

the option pointer matches its IP address). The bytes 4-8 are set to a special magic 

value "v4+4" to designate that this timestamp is not a regular IPv4 timestamp 

option, but rather contains our P2P session key. Since it is very unlikely that the 

IP address of a router will be equal to "v4+4", the timestamp option would reach 

type length pointer flag 

magic 

source port destination port 

source private IP address 

destination private IP address 
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the destination border router without being modified. The source and destination 

ports, e.g., px and py, follow the magic number. Finally, the private source and 

private destination IP addresses of the session key complete the option. Note that 

it is not stored the border router IP addresses in the timestamp option since they 

are already found in the IPv4 header of the packet (refer to Figure 3.4(b)). 

 

5.2 Details of the Implemented Border Router Hardware 

 

 After the designed Linux network driver is implemented for a computer 

with two Ethernet interface, it is investigated for an embedded microprocessor 

board to deploy the driver on it. Then two convenient embedded microprocessor 

boards are selected. Both of them are able to run Linux and have two or more 

Ethernet interfaces. 

 

5.2.1 Pronghorn SBC-250 Microprocessor Board 

  

 

Figure 5.5. Front and back views of the Pronghorn SBC-250 with several peripherals 
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Pronghorn SBC-250 is a microprocessor board that has 533 MHz Intel 

IXP425 processor, 64 MB SDRAM, 16 MB Flash ROM and two 10/100 Ethernet 

interface on it. Also it has 1 CF card slot and 2 mPCI extension slots. It is possible 

to increase the number of Ethernet interfaces of this card by plugging wired or 

wireless cards to the mPCI slots. In the Figure 5.5 front and back views of 

Pronghorn SBC-250 can be seen with the several peripherals. 

  

5.2.2 ALIX.2 Microprocessor Board 

 

 The other microprocessor board which is selected to implement the border 

router with the proposed LSRR-based seamless P2P communication algorithm is 

ALIX.2 (see Figure 5.6) with the AMD Geode LX800 500 MHz processor.  

 

 

 

Figure 5.6.  ALIX.2 embedded board with several peripherals 
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The other specifications of the ALIX.2 can be listed as the following: 

• 256 KB cache (64K data + 64K instruction + 128K L2) 

• 1 to 3 Ethernet channels (Via VT6105M, 10 / 100 Mbit/s) 

• 1 or 2 miniPCI sockets for 802.11 wireless cards and other expansion 

• 128 or 256 MB DDR SDRAM, 64 bit wide for high memory bandwidth 

• 512 KB flash for PC Engines tinyBIOS 

• CompactFlash + optional 44 pin IDE header for user’s operating system 

and application 

• 7 to 18V (absolute maximum) DC supply through DC jack or passive 

power over Ethernet 

• 1 serial port (DB9 male) 

• 2 USB 2.0 ports (optional) 

• Header for LPC bus (use for flash recovery or I/O expansion) 

 

Also there is a special aluminum cover for the board which is served by 

the producer. Thus, with the mounting of the board to its special cover; it becomes 

a standalone border router (see Figure 5.7).    

 

 

 

Figure 5.7 ALIX.2 board covered with its cover 
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6. CONCLUDING REMARKS 

 

With the Internet structured around NAT boxes to save IPv4 addresses, the 

internet is in dire need of a clean solution to the P2P UDP communication 

problem for hosts behind NAT boxes. The lack of a total solution to this important 

problem has been delaying the ubiquitous deployment of such important services 

as the Voice over IP using SIP, H.323 among others. There are a lot of partial 

solutions to the problem including STUN, UPnP, MIDCOM, TURN, ALGs. None 

of these solutions cover all possible scenarios as each solution works in certain 

cases but fails in others. IETF is in the process of standardizing a protocol called 

Interactive Connectivity Establishment (ICE) [27] that aims in testing the 

environment for available resources and choosing the best possible alternative 

before the communication begins. With so many partial solutions around, we are 

yet to come up with a proposal that solves the P2P UDP communication problem 

and lays the ground for a new Internet architecture with a plan for stepwise 

transition.  

In this thesis it has been presented a new Internet architecture that tries to 

offer a complete solution to the secure seamless P2P UDP communication 

problem. The main component of the proposed framework is a new border router 

that not only performs the traditional NAPT forwarding for the client/server 

traffic, but also performs LSRR-based forwarding/filtering for the P2P UDP 

traffic. P2P applications that wish to make use of the new border router 

functionality are required to learn the IPv4 address of the border router (which can 

be achieved by a separate control protocol such as SIP), and send UDP packets 

with IPv4 LSRR option.  

Transition to the proposed LSRR-based Internet using IPv4+4 addresses 

requires a stepwise evolution and is very much feasible. Firstly, no changes to 

end-host protocol stacks are required. Existing IPv4 protocol stacks of all major 

operating systems that have been tested, e.g., Windows, Linux, Solaris, has the 

necessary functionality and the API to send/receive UDP packets having the IPv4 

LSRR option. Secondly, no changes to Internet routers are required as our 

proposal does not change the IPv4 header in any way. All routers see an IPv4 
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packet that carries a standard IPv4 LSRR option in the IP header. Thus all packets 

would be delivered to the appropriate border router or host depending on where 

the packet is destined to. The only requirement is a simple upgrade of border 

routers with the proposed LSRR-based packet forwarding. Fortunately, border 

routers need not be upgraded simultaneously. The communication is possible even 

if just one border router on the path of the communication implements the 

proposed algorithm. So one can upgrade his/her border router and immediately 

start enjoying the benefits of seamless P2P UDP communication. The other side 

of the communication can still be using the legacy NAPT box. Over time, 

everybody can be expected to upgrade their border routers and people would all 

have transitioned to an LSRR- based Internet using IPv4+4 addresses. We believe 

that our proposal is neat and an LSRR-based Internet using IPv4+4 addresses is 

the way to go in the evolution to the next generation Internet for secure seamless 

support of P2P UDP communication. 
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Appendix 1: Implemented Software 

 

A network driver is implemented as a Linux kernel module for Linux 

2.6.22 version during the thesis work. Its source and header files (lsrr_nat.c, nat.h, 

lsrr.h) are available in the compact disc attached to the back cover. 


