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ABSTRACT 

Master of Science Thesis 

PROVIDING PREDICTIONS ON HIDDEN MARKOV MODELS 

WITH PRIVACY 

ġahin RENÇKEġ 

 

Anadolu University 

Graduate School of Sciences 

Computer  Engineering Program 

 

Supervisor: Assist. Prof. Dr. Hüseyin POLAT 

                                                2008, 71 pages 

Hidden Markov models (HMMs) are widely used in various applications to make 

predictions. HMM owners employ their models to compute the probability of occurrence 

of an observation sequence and how to choose a state sequence so that the joint 

probability of the observation and the state sequences given the model is maximized. In 

some appliactions, the model constructed for prediction purposes might be horizontally or 

vertically split between two parties. To be able to provide predictions, such parties might 

decide to integrate their split models. However, due to privacy and financial reasons, they 

do not want to combine their models. If privacy measures are introduced, model owners 

can integrate their models. HMMs can also be used for collaborative filtering (CF) 

purposes. The idea of Markov models can be utilized to produce recommendations to 

customers without jeopardizing their privacy. 

In this thesis, solutions are presented to compute the probability of occurrence of 

an observation sequence based on split models between two parties without jeopardizing 

model owners‟ privacy. Moroever, approaches are proposed to choose a state sequence so 

that the joint probability of the observation and the state sequences given the split models 

is maximized with privacy. And finally, schemes are proposed to provide CF services 

with privacy using the idea of Markov model. The proposed schemes are analyzed in 

terms of accuracy, privacy, and efficiency. Experiments are performed on real data sets 

and their outcomes are displayed. 

 

Keywords: Privacy, hidden Markov models, finance, model-based forecasting. 
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ÖZET 

Yüksek Lisans Tezi 

 

GĠZLĠLĠĞĠ KORUYARAK SAKLI MARKOV  

MODELLERĠNE DAYALI TAHMĠNLER ÜRETME 

 

ġahin RENÇKEġ 

 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Bilgisayar  Mühendisliği Anabilim Dalı 

 

DanıĢman: Yard. Doç. Dr.  Hüseyin POLAT 

             2008, 71 sayfa 

Saklı Markov modelleri (SMM) tahmin üretmek için bir çok alanda yaygın olarak 

kullanılır. SMM sahipleri modellerini bir gözlem serisinin görülme olasılığını hesaplama 

ve gözlem ve durum serilerinin birleşik olasılığının maksimum olacağı durum serisinin 

seçilmesi için kullanır. Bazı uygulamalarda tahmin için oluşturulan model yatay veya 

dikey olarak iki kişi arasında bölünmüş olabilir. Tahmin üretebilmek için bu kişiler 

modellerini birleştirmeye karar verebilir. Fakat gizlilik ve maddi nedenlerden dolayı bu 

kişiler modellerini birleştirmek istemezler. Eğer gizlilik ölçütleri kullanılırsa, model 

sahipleri modellerini birleştirebilirler. SMMler işbirlikçi filtreleme (İF) için de 

kullanılabilir. Markov model düşüncesi müşterilerin gizliliklerini tehlikeye atmadan 

müşterilere tahmin üretmek için kullanılabilir. 

Bu tezde, bir gözlem serisinin görülme olasılığını iki firma arasında bölünmüş 

olan modele dayalı olarak model sahiplerinin gizliliğini tehlikeye atmadan hesaplayacak 

çözümler sunulmuştur. Ayrıca parçalanmış modele dayalı olarak gözlem ve durum 

serilerinin birleşik olasılığının maksimum olacağı durum serisinin gizlilikle seçilmesi için 

çözümler önerilmiştir. En son olarak Markov model düşüncesi kullanılarak İF işlerinin 

gizlilikle yapılması için yöntemler sunulmuştur. Önerilen yöntemler doğruluk, gizlilik ve  

performans açısından incelenmiştir. Gerçek verilere dayalı deneyler yapılmış ve sonuçları 

gösterilmiştir. 

 

Anahtar Kelimeler: Gizlilik, saklı Markov modelleri, finans, modele dayalı tahmin. 
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1. INTRODUCTION 

A hidden Markov model (HMM) is a statistical model, which is used for 

modeling the systems that are assumed to be a Markov process, which has 

unknown parameters. The challenge is here to determine the hidden parameters 

from the observable parameters. In a normal Markov model, the states are directly 

visible to the observers, where the state transition probabilities are the parameters. 

In an HMM, the state is not directly visible, but variables influenced by the states 

sare visible. Each state has a probability distribution, which gives us information 

about the hidden parameters by observing sequences. HMMs are widely used in 

science, engineering, and many other areas like cryptanalysis, speech recognition, 

sign language recognition, gesture and body motion recognition, optical character 

recognition, machine translation, which investigates the use of computer software 

to translate text or speech from one natural language to another, robot navigation, 

bioinformatics, finance, economics, and data mining. 

To denote an HMM constructed for forecasting, λ = (A, B, π) is used as a 

compact notation [15].  The following notation is used to define the model: 

N: number of states in the model, 

M: number of distinct observation symbols, 

T: length of observation sequence, 

it denotes the state at time t, 

A = {aij}, where aij = P (it+1 = j | it = i), the probability of being in state j at time t + 

1 given that previously in state i at time t, 

B = {bj (k)}, bj (k) = P (vk at t | it = j), the probability of observing the symbol vk 

given that recently in state j, 

π = {πi}, πi = P (i1 = 1), the probability of being in state i at t = 1, 

Ot denotes the observation symbol observed at instant t, 

1, 2, . . ., N denotes the N states, respectively. 

HMMs are effective for discrete-valued time series. HMMs are widely 

used in many parts of communication and speech recognition. They are also 

important in bioinformatics. In data mining, they are used for database mining, 

sequence classification, and pattern discovery. In web, HMMs provide a 

theoretical framework for analyzing the behavior of users but are potentially 
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useful for predicting future Web resource consumption. Such information may 

help develop strategies to increase the sales of products offered by the Web site or 

improve the navigational convenience of users. Moreover, in the research of 

economics time series, especially the macroeconomic and financial series, the 

conventional framework with a fixed density function or a single set of parameters 

may not be suitable and it is necessary to include the possible structural change in 

the analysis. Therefore, in finance and economics, HMMs are also used and 

known as regime switching models, which have a large literature.  

Many economic time series occasionally exhibit dramatic breaks in their 

behavior, associated with events such as financial crises or abrupt changes in 

government policy. Of particular interest to economists is the apparent tendency 

of many economic variables to behave quite differently during economic 

downturns, when underutilization of factors of production rather than their long-

run tendency to grow governs economic dynamics. Abrupt changes are also a 

prevalent feature of financial data, and the approach described below is quite 

amenable to theoretical calculations for how such abrupt changes in fundamentals 

should show up in asset prices [22]. 

In economy, Hassan and Nath [23] present HMMs approach for 

forecasting stock price for interrelated markets. HMM is also used to model 

regime change in economic time series, especially the macroeconomic and 

financial series [68].  Jagannathan et al. [27] present a simple deterministic 

algorithm, Recluster, for I/O-efficient k-clustering. 

In cryptanalysis, Green et al. [21] extend the model of Karlof and Wagner 

for modelling side channel attacks via input driven hidden Markov models 

(IDHMMs) to the case, where not every state corresponds to a single observable 

symbol. Karlof and Wagner [33] present HMM attacks, a new type of 

cryptanalysis on modeling randomized side channel countermeasures as HMMs. 

 In machine translation field, an approach to modeling long-term 

consistencies in a speech signal within the framework of a hybrid hidden Markov 

model (HHMM) / multilayer perception (MLP) speaker-independent continuous-

speech recognition system is presented by  Abrash et al. [1]. Abrash et al. [2] 

develop a hybrid speech recognition system, which uses an MLP to estimate the 
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observation likelihoods associated with the states of an HMM. Franco et al. [17] 

compare two methods for modeling context in the framework of HHMM / MLP 

speaker-independent continuous speech recognition system. Jiang et al. [28] 

propose a novel method to estimate continuous-density hidden Markov model 

(CDHMM) for speech recognition according to the principle of maximizing the 

minimum multiclass separation margin. Vlasenko and Wendemuth [64] introduce 

a speech emotion recognition method based on HMMs. Yau et al. [66] present a 

novel visual speech recognition approach on motion segmentation and HMMs.  

Shatkay [56] presents a formal framework for incorporating readily 

available odometric information and geometrical constraints into both the models 

and the algorithm. Savage et al. [54] describe a localization system for a mobile 

robot equipped with sonars. Fox et al. [16] describe a machine learning approach 

for acquiring a model of a robot behaviour from raw sensor data. 

Birney [9] review machine learning techniques on the use of HMMs for 

investigating biomolecular sequences. An enhanced bioinformatics tool 

incorporating the participation of molecular structure as well as sequence in 

protein DNA recognition is proposed and tested via HMM by Thayer and 

Beveridge [58]. Husmeier and McGuire [26] present a statistical method for 

detecting recombination
 
in DNA sequence alignments. Beausang et al. [6] present 

a new technique for measuring rate constants of DNA loop formation and 

breakdown mediated by repressor protein that binds to the DNA using a modified 

HMM analysis that directly incorporates the diffusive motion of the bead. 

In data mining, Lin et al. [36] describe new temporal data mining 

techniques for extracting information from temporal health records consisting of 

time series of diabetic patients‟ treatments. Skounaki et al. [57] propose and 

evaluate an approach that is based on using hierarchical HMMs to represent the 

grammatical structure of the sentences being processed. Laxman et al. [34] 

establish a formal connection between two common, but previously unconnected 

methods for analyzing data streams: discovering frequent episodes in a computer 

science framework and learning generative models in a statistics framework. The 

potentials of HMMs in mining free-structured information are investigated in the 

study by Tso and Chang [59]. 
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Today‟s business world is too competitive. Many business companies 

employ different techniques to obtain competitive edge over their competitors. To 

make strategic plans in order to be one step ahead of the others, companies need 

to know future trends of various products, whether new products will be liked or 

not, or how much they will be liked by customers, how much benefit they gain by 

investigating certain amounts of money into new business field, and so on. 

Corporations can learn such information using different models generated from 

historical data. HMMs are among such models and have many important 

applications in practice to make predictions as presented previously. They are 

widely used models in finance for forecasting.  

In some cases, the model constructed for forecasting purposes might be 

split between various companies. This partition can be horizontal or vertical. The 

model owners want to integrate their split models; however, due to privacy and 

financial reasons, they do not want to reveal their private models to each other. To 

be able to provide predictions, they should integrate their models. If privacy 

measures are introduced, they might decide to combine their models. 

Furthermore, HMMs can be used for collaborative filtering (CF) to generate 

recommendations to customers. The idea of Markov models can be applied to CF 

for producing better referrals more efficiently. It is a challenge to provide CF 

services on Markov models idea without violating customers‟ privacy. 

In this thesis, the following issues are investigated. First, solutions are 

sought to find predictions or the probability of occurrence of an observation 

sequence based on distributed HMMs between two parties while preserving their 

privacy. Second, approaches are proposed how to choose a state sequence so that 

the joint probability of the observation sequence and the state sequence given the  

distributed models between two parties is maximized without jeopardizing the 

model owners‟ privacy. Third, how to offer CF services using the idea of Markov 

models is investigated while preserving users‟ privacy. Proposed solutions are 

analyzed in terms of privacy, accuracy, and additional costs introduced due to 

underlying privacy protecting measures. Experiments are performed using real 

data sets and their outcomes are explained. Finally, the conclusions and future 

works are presented. 



 

 

5 

 

2. PRIVACY-PRESERVING PREDICTION ON DISTRIBUTED HMMs 

2.1 Introduction 

With increasing popularity of forecasting, model-based predictions are 

receiving increasing attention. Regression analysis, Bayesian networks, neural 

networks, HMMs, and so on are widely used to provide predictions. 

 Each forecasting method or model has its own advantages and 

disadvantages. Compared to other models, HMMs are very powerful methods. 

They can be combined into larger models. Moreover, they are transparent and 

employ prior knowledge. Although they have disadvantages like assumption that 

states are independent and low speed, their advantages surpass the drawbacks.  

 HMMs are widely used in many applications. As explained previously, in 

finance, speech recognition, bioinformatics, genomics, and so on, they are 

employed for forecasting purposes. They are very popular especially in finance. 

Financial trends, increases, and decreases can be predicted and recognized via 

HMMs. In addition, with HMMs, financial time series are predicted [67]. 

Moreover, they are used to model and forecast electricity prices [20]. To predict 

stock market trends, HMMs are employed, where they forecast stock price for 

interrelated markets [23]. 

 An HMM is a statistical model, which is used to perform prediction. It is 

constructed based on historical data. It is then employed by various companies or 

users for forecasting purposes. With increasing available new data, HMMs are 

updated periodically. 

 After constructing an HMM, it is used to compute the probability of 

occurrence of an observation sequence. The model owners can offer predictions in 

return of some fee or benefits. In addition, they might decide to sell their models 

to others. When the model is owned by a single company, anyone might send an 

observation sequence to the model owner who can calculate the probability of 

occurrence of such sequence using the model. Although it is trivially easy to 

compute such probability when the model is held by a party, it becomes a 

challenge if the model is distributed between various parties, even competing 

companies. The model might be horizontally or vertically split between two or 
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more parties. To generate predictions based on the distributed model, the parties 

should combine the models they own. Although they want to share their models, 

they might not want to disclose them to each other due to privacy, financial, and 

legal reasons.  

 In this chapter, how to provide predictions or calculate the probability of 

occurrence of an observation sequence on horizontally or vertically distributed 

HMMs between two parties without violating their privacy is investigated. 

Privacy-preserving schemes to achieve such goals are proposed. The schemes are 

analyzed in terms of privacy, accuracy, and performance. The methods should 

allow the model owners to integrate their split models to offer accurate predictions 

efficiently while preserving their privacy.   

2.2 Related Work 

HMMs are extensively used in prediction, speech recognition, finance, and 

so on. Begletier et al. [7] propose to use variable order Markov models for 

prediction of discrete sequences. Rabiner [51] shows how HMMs can be applied 

to selected problems in speech recognition. The theories of HMMs from various 

concepts are presented. Henderson et al. [24] describe a new HMM to study how 

to segment human DNA into three regions. Hassan and Nath [23] study how to 

employ HMMs to predict stock market trends. Using HMMs, they forecast stock 

price for interrelated markets. 

Privacy and distributed data-based computations are receiving increasing 

attention lately. With the evolution of the Internet, privacy becomes important. 

Companies and users do not want to divulge their private information to others. 

To perform richer data mining, provide better predictions, and offer more 

dependable outcomes, distributed data-based computations become popular.  

 Cranor et al. [13] conduct a survey about what users think about divulging 

private data. Great majority of people do not want to reveal their private data. 

Cranor [14] studies what kind of privacy risks that e-commerce sites pose while 

they collect data to offer predictions to their customers. Verykios et al. [63] 

present an overview of privacy-preserving issues in data mining. They propose a 

classification hierarchy that sets the basis for analyzing the works performed so 



 

 

7 

 

far in privacy-preserving data mining (PPDM). Clifton et al. [12] explore various 

privacy-preserving tools for distributed data mining. They present different 

constraints of privacy-preserving distributed data mining applications.  

Partitioned data-based data mining has been receiving increasing attention, 

as well. Privacy-preserving naïve Bayes classifier for horizontally partitioned data 

(HPD) is discussed by Kantarcioglu and Vaidya [12], where they assume that data 

is horizontally partitioned. They show that using secure summation and logarithm, 

they can learn distributed naïve Bayes classifier securely. Although their protocols 

are very efficient, they compromise a little on security. Privacy-preserving 

association rules on HPD are discussed by Kantarcioglu and Clifton [30], where 

they assume that data is horizontally distributed among three or more parties. 

They address secure mining of association rules over HPD, while incorporating 

cryptographic techniques to minimize the shared data. Kaleli and Polat [29]  study 

how to provide predictions for single items on partitioned data between two 

parties using naïve Bayesian classifier-based collaborative filtering schemes. 

 Merugu and Ghosh [38]  present a framework for clustering horizontally 

distributed data in unsupervised and semi-supervised scenarios, taking into 

account privacy requirements and communication costs. Vaidya and Clifton [61] 

explore naïve Bayes classifier based on vertically partitioned data (VPD), where 

cryptographic techniques are employed to accomplish privacy.  

Achieving predictions using numerical ratings on VPD without greatly 

exposing data owners‟ privacy is discussed in [46]. A solution to the privacy-

preserving collaborative filtering (PPCF) on VPD problem is provided. The 

solution makes it possible for two parties to conduct filtering services using their 

joint data without revealing their data to each other. The results show that the 

proposed scheme produces accurate predictions compared with the true ratings. In 

[15], providing top-N recommendations on HPD is discussed. The authors discuss 

how to provide predictions to some items when data is horizontally distributed 

between two parties without violating their privacy. 
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2.3 Distributed HMMs-based Prediction with Privacy 

HMMs can be employed to provide predictions. In other words, they are 

used to solve the following problem: Given the model λ = (A, B, π), how P(O|λ) 

can be computed, the probability of occurrence of the observation sequence O = 

O1, O2, . . ., OT. Given the model λ = (A, B, π), using matrix notation, it  can be 

defined A, B, and π, as follows: 

NxNijaA ][ , 

where i = 1, 2, . . ., N and j = 1, 2, . . ., N. 

NxMj kbB )]([ , 

where j = 1, 2, . . ., N and k = 1, 2, . . ., M. 

1][ Nxi  , 

for i = 1, 2, . . ., N. 

Dugad and Desai [15] propose a forward-backward procedure to compute 

P(O|λ) efficiently, given the model λ = (A, B, π), as follows: Consider the forward 

variable αt (i), which is defined as αt (i) = P (O1, O2, . . ., Ot, it = i | λ). αt (i) can be 

computed inductively, as follows: 

A. Compute α1 (i) values first for all 1≤i≤N. 

α1 (i) = πibi(O1).                                            (2.1) 

B. For t = 1, 2, . . ., T-1, and 1≤j≤N, compute αt+1 (j). 

)()()( 1

1

1 



 







  tj

N

i

ijtt Obaij  .                              (2.2) 

C. Then; 





N

i

T iOP
1

)()|(  .                                    (2.3) 

Encryption methods are widely used to achieve privacy. In proposed 

schemes, encryption schemes with homomorphic property are also employed. 

Suppose that ξ is an encryption function, e is a public key, and q1 and q2 are 

private data values that are wanted to be hide. Homomorphic encryption property 

allows an addition, a subtraction, or a multiplication operation to be conducted 

based on the encrypted data without decrypting them, as follows: ξe (q1) x ξe (q2) 

= ξe (q1 + q2), ξe (q1) x ξe (q2) = ξe (q1 - q2), and ξe (q1) x ξe (q2) = ξe (q1 x q2). The 
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homomorphic cryptosystems are useful to perform addition, subtraction, and 

multiplication operations based on private data. Several such systems are 

available and examples include the systems proposed by Paillier [43], Benaloh 

[8],  and Naccache and Stern [40]. 

An HMM constructed for forecasting purposes might be distributed 

between various parties, even competing companies. This partition might be 

horizontally or vertically. In this section, how to compute P(O|λ) when the model 

is distributed between two parties is investigated. Two-party schemes are 

presented. Such schemes can be easily extended to multi-party schemes. The 

model owners might want to integrate the split models in order to offer more 

truthful and dependable predictions for forecasting. It is more likely that the 

predictions generated based on the integrated model are more precise and reliable 

than the ones offered based on the split models alone. It sometimes might not be 

possible to compute P(O|λ) from the split models alone. In order to achieve richer 

forecasting services and provide more trustworthy and accurate predictions, the 

model owners might decide to combine their models. However, due to various 

reasons especially privacy concerns, they do not want to disclose their models to 

each other. If privacy measures are introduced, the model owners might decide to 

combine their models is hypothesized. 

 Although the goal here is to achieve distributed HMMs-based forecasting 

without violating the model owners‟ privacy, it is not an easy job to define 

privacy succinctly. However, it can be defined, as follows: In this context, privacy 

means preventing the model owners from learning aij, bj(k), and πi probability 

values held by each other. In other words, the parties should not be able to learn 

the split models owned by each other. Privacy-preserving schemes to compute 

P(O|λ) from horizontally or vertically distributed models between parties without 

jeopardizing their privacy or while preventing them from learning the model 

parameters held by each other are presented.  

Due to privacy measures, however, the accuracy of the predictions might 

become worse. In addition to achieving privacy, accurate predictions are wanted 

to be offered, as well. In other words, predictions computed based on the 
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distributed models with privacy concerns should be as accurate as the ones 

calculated from the integrated model without privacy concerns.  

And finally, performance is another major concern that the model owners 

have. Providing predictions efficiently is vital. However, compared to other 

systems like recommender systems, which are expected to offer many predictions 

to many users in an online interaction, time requirements for HMMs are flexible. 

Since off-line computation times are not critical, if it is possible, some 

calculations can be performed off-line. Due to privacy concerns, it is expected that 

additional costs will emerge. To make it practical, extra communication and 

computation costs introduced by privacy measures should be small and negligible. 

They still allow the model owners to offer predictions efficiently. 

Achieving privacy, accuracy, and performance at the same time is a 

challenge because they disagree with each other. Objective is to propose privacy-

preserving schemes in which the model owners might be able to find equilibrium 

among privacy, accuracy, and performance. Proposed schemes are analyzed in 

terms of privacy, accuracy, and performance. The additional costs introduced due 

to privacy concerns are scrutinized.  

As explained previously, the HMM constructed for forecasting purposes 

might be horizontally or vertically partitioned between various parties. In the 

following subsections, how to provide privacy-preserving predictions based on 

horizontally or vertically distributed HMMs between two parties are investigated.  

     2.3.1. Horizontally Distributed HMMs-based Prediction with Privacy 

In horizontal partitioning, it is assumed that N is an even number and   N = 

2h, where h is the number of states held by each party. Therefore, in horizontal 

partitioning, it is assumed that the company C holds the part of the model for the 

first h states and the company D holds the remaining part of the model (the last h 

states). The horizontal partitioning of the model can be shown, as follows: 











D

C

A

A
A , 










D

C

B

B
B , and 










D

C




 , where it can be shown the parts of the model 

held by each party, as follows: 

For i = 1, 2, . . ., h and j = 1, 2, . . ., N, 
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hxNijC aA ][ .  

And for i = h + 1, h + 2, . . ., N and j = 1, 2, . . ., N, 

hxNijD aA ][ .       

Similarly, for j = 1, 2, . . ., h and k = 1, 2, . . ., M, 

hxMjC kbB )]([ .        

And for j = h + 1, h + 2, . . ., N and k = 1, 2, . . ., M, 

hxMjD kbB )]([ .    

Finally, for i = 1, 2, . . ., h, 

1][ hxiC   .   

And for i = h + 1, h + 2, . . ., N, 

1][ hxiD   .   

To compute P(O|λ), there are three main steps, as explained previously. 

How to calculate P(O|λ) based on a horizontally distributed HMM without 

violating model owners‟ privacy in three major steps is investigated, as follows: 

A. C can compute α1(i)=πibi(O1) values for all 1≤i≤h, because C knows πi and 

bi(O1) probability values for 1≤i≤h. Similarly, D can compute 

α1(i)=πibi(O1) values for all h+1≤i≤N, because D knows πi and bi(O1) 

probability values for h+1≤i≤N. Therefore, C and D can compute α1(i) 

values for all 1≤i≤h and h+1≤i≤N, respectively; and they store the values 

they calculated.  

B. The parties can compute αt+1(j) values without violating their privacy, as 

follows: 

a. Since the model is horizontally partitioned, α2(j) values can be 

calculated, as follows for t=1: 

i. For 1≤j≤h,  

)()()()()()( 2

1 1

112

1

12 ObaiaiObaij j

h

i

N

hi

ijijj

N

i

ij 
















  

 

      

  CDCCCDC bbbj )(2 ,                                              

where ΣC and ΣD represent the sum values that can be 

calculated by C and D, respectively, without the need of the 

other party‟s data. bC represents probabilities of observing 
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symbol O2 and they are known by C. To calculate α2(j), the 

parties perform the following: 

1. D first computes the each term(α1(i)aij) of ΣD value. 

It then encrypts them with its public key using a 

homomorphic encryption scheme. It finally sends 

them to C.  

2. C divides the each term(α1(i)aij) of ΣC value into zC 

random values, where  



Cz

C

CZ
11

1ij1  (i)a ; zC is a 

uniform random integer from a range [1, βC] and ZC1 

represents random numbers for C1 = 1, . . . , zC. 

Since D does not know βC, it will not be able to 

learn zC values, either. Note that C selects different 

βC values for each term so that each term is divided 

into different numbers of random values.  

3. After that C encrypts each random value with D‟s 

public key using a homomorphic encryption 

scheme.  

4. It encrypts the corresponding bC values with D‟s 

public key using a homomorphic encryption 

scheme, as well. It then multiplies each encrypted 

values both received from D and the values it has by 

corresponding encrypted bC values using 

homomorphic encryption scheme. 

5. It finally permutes the encrypted results of such 

multiplications using a permutation function fpC and 

sends them to D. 

6. D decrypts them and calculates the sum values(α2(j) 

= CDCC bb  ). It finally stores them for 1≤j≤h. 

7. Due to βC values and fpC, D will not be able to learn 

the α1(i)aij and bC values held by C.  

ii. For h+1≤j≤N, 
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)()()()()()( 2

1 1

112

1

12 ObaiaiObaij j

h

i

N

hi

ijijj

N

i

ij 
















  

 

      

  DDDCDDC bbbj )(2 ,                                            

where bD values represent probabilities of observing symbol 

O2 and they are known by D. The parties can similarly 

calculate α2(j) values without jeopardizing their privacy. Note 

that in this case, C and D switch their roles. 

b. For t=2, 3, . . ., T-1, αt+1(j) values can be computed, as follows: 

i. For 1≤j≤h, 

       )()()()()()( 1

1 1

1

1

1 

 





 
















   tCj

h

i

N

hi

DijCtCijDttj

N

i

ijtt ObaiaiObaij  , 

where the values subscripted with C and D are held by C and 

D, respectively.  

1. C multiplies each aC and αC values by bC values and 

computes abC=aCijbCj(Ot+1) and αbC=αCt(i)bCj(Ot+1) 

values.  

2. It divides abC and αbC values into zC2  and zC3 

random values, respectively, where  





2

12

2C b
Cz

C

CZa and 



3

13

3C b
Cz

C

CZ  ; zC2 and zC3 are 

uniform random integers from a range [1, γC] and 

ZC2 and ZC3 represent random numbers for C2=1, . . 

. , zC2 and  C3=1, . . . , zC3, respectively. Since D 

does not know γC, it will not be able to learn zC2 and 

zC3 values, either. Note that C selects different γC 

values for each term so that each term is divided 

into different numbers of random values.  

3. C encrypts each value with D‟s public key using a 

homomorphic encryption scheme. 

4. D encrypts each αD and aD values with its public key 

using a homomorphic encryption scheme and sends 

the encrypted values to C. 
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5. C then finds the multiplications of the encrypted 

values received from D and the corresponding 

values encrypted by it using the homomorphic 

encryption property.   

6. C finally permutes the results using a permutation 

function fpC1 and sends them to D. 

7. D decrypts the received encrypted values and 

calculates the sum values(αt+1(j)). It finally stores 

them for 1≤j≤h. 

8. Due to γC values and fpC1, D will not be able to learn 

α, a, and b values held by C.  

ii. For h+1≤j≤N, 

              )()()()()()( 1

1 1

1

1

1 

 





 
















   tDj

h

i

N

hi

CijDtDijCttj

N

i

ijtt ObaiaiObaij  .  

The parties can similarly calculate αt+1(j) values with privacy while 

switching their roles. 

C. At the end of the computations for t=T-1, the parties own αT(i) values for 

1≤i≤h and h+1≤i≤N, respectively. They compute P(O|λ), as follows: 





N

Ni

DT

N

i

CT

N

i

T

h

h

iiiOP
111

)()()()|(  .  

Each party finds sum of αT(i) values they hold and they exchange them. 

They finally find P(O|λ) by summing two aggregated values. 

     2.3.2. Vertically Distributed HMMs-based Forecasting with Privacy 

In vertical partitioning, the model is distributed between two parties (C and 

D), as follows:  DC AAA   and  DC BBB  . Note that, unlike horizontal 

partitioning, in vertical partitioning, the initial state probabilities are known by 

both parties. Therefore, the matrix, π, is known by both companies. It is assumed 

that the transition probabilities from one state to the first y states are held by C and 

the remaining ones are held by D; and N = 2y. Moreover, it is assumed assume 

that M = 2v and the observation probabilities for the first v symbols are held by C 
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and the remaining ones are held by D. The distributed model can be shown, as 

follows: 

NxyijC aA ][  for 1≤i≤N and 1≤j≤y.  

NxyijD aA ][  for 1≤i≤N and y+1≤j≤N.   

NxvjC kbB )]([  for 1≤j≤N and 1≤k≤v.    

NxvjD kbB )]([  for 1≤j≤N and v+1≤k≤M.    

Since the model is vertically distributed, DC   . 

Unlike horizontal partitioning, in vertical partitioning, the computations 

depend on what party holds the observation symbol. We investigate how to 

calculate P(O|λ) on a vertically distributed HMM with privacy in three major 

steps, as follows: 

A. To compute α1(i)=πibi(O1) values for all 1≤i≤N, bi(O1) probabilities are 

needed. Such values are known by the party that owns O1. Such party 

might be C or D. Therefore, the party that holds O1 computes α1(i) values 

and stores them.  

B. The parties can compute αt+1(j) values with privacy, as follows: 

a. Since the model is vertically partitioned and observation symbols 

might be held either C or D, α2(j) values can be calculated, as 

follows for t=1: 

i. For 1≤j≤y, there are four possible cases, as seen in Table 

2.1. We can discuss how the parties can compute α2(j) 

values considering four cases with privacy. 

1. Case1: Since O2 is held by C, it knows b(O2). 

Moreover, it knows α1 and aij values. Therefore, it 

computes α2(j) values, encrypts them using its 

public key, sends them to D, which keeps them in 

encrypted form.  

2. Case2: C computes α1aij values, encrypts them with 

its public key using homomorphic encryption 

scheme, and sends them to D. D encrypts b(O2) 

values with C‟s public key using homomorphic 
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encryption scheme. It then finds α2(j) values by 

multiplying encrypted α1aij values with encrypted 

b(O2) values using homomorphic property. It finally 

keeps them in encrypted from. 

3. Case3: C computes aijb(O2) values, encrypts them 

with its public key using homomorphic encryption 

scheme, and sends them to D. D divides each α1(i) 

value into zD random values, where  



1

11

11  (i)
Dz

D

DZ ; 

zD1 is a uniform random integer from a range [1, δD] 

and ZD1 represents random numbers for D1=1, . . . , 

zD1. Since C does not know δD, it will not be able to 

learn zD1 values, either. Note that D selects different 

δD values for each term so that each term is divided 

into different numbers of random values. It then 

encrypts each value generated after random division 

with C‟s public key using homomorphic encryption 

scheme and multiplies them with encrypted aijb(O2) 

values using homomorphic property. It finally 

permutes the results using a permutation function 

fpD and sends them to C, which decrypts them and 

calculates α2(j) values. C then encrypts them with its 

public key and finally sends them to D, which keeps 

them in encrypted form. Due to δD values and fpD, C 

will not be able to learn α values held by D.  

4. Case4: D computes α1(i)b(O2) values, encrypts 

them with its public using homomorphic encryption 

scheme, and sends them to C. C divides each aij 

value into zC4 random values, where  



4

14

4ij 
Cz

C

CZa ; 

zC4 is a uniform random integer from a range [1, δC] 

and ZC4 represents random numbers for C4=1, . . . , 
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zC. Since D does not know δC, it will not be able to 

learn zC4 values, either. Note that C selects different 

δC values for each term so that each term is divided 

into different numbers of random values. It then 

encrypts each value generated after random division 

with D‟s public key using homomorphic encryption 

scheme and multiplies them with encrypted 

α1(i)b(O2) values using homomorphic property. It 

finally permutes the results using a permutation 

function fpC1 and sends them to D, which decrypts 

them and calculates α2(j) values. D then encrypts 

them with its public key and keeps them in 

encrypted form. Due to δC values and fpC1, D will 

not be able to learn the aij values held by C.  

                        Table 2. 1 Various Cases for t =1 & 1≤j≤y 

Cases α1 held by O2 held by C can compute D can compute 

Case1 C C αab - 

Case2 C D αa b 

Case3 D C ab α 

Case4 D D a αb 

 

ii. For y+1≤j≤N, there are four possible cases, as seen in Table 

2.2. The parties can compute α2(j) values as they do for 

1≤j≤y while switching their roles. 

                           Table 2. 2 Various Cases for t =1 & y + 1≤j≤N 

Cases α1 held 

by 

O2 held 

by 

C can 

compute 

D can 

compute 
Case1 D D - αab 

Case2 D C b αa 

Case3 C D α ab 

Case4 C C αb a 

 

b. For t=2, 3, . . ., T-1, αt+1(j) values can be computed, as follows: 

i. For 1≤j≤y, there are two possible cases, as seen in Table 

2.3. The parties can compute αt+1(j) values considering two 

possible cases with privacy. 
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1. Case1: C encrypts a values with its public key using 

homomorphic encryption scheme and sends them to 

D. D first encrypts bj(Ot+1) values with C‟s public 

key using  homomorphic encryption scheme and 

computes αt(j)bj(Ot+1) values using homomorphic 

property. It then again uses homomorphic property 

to calculate αt(j)aijbj(Ot+1). Note that such results are 

encrypted with C‟s public key. To prevent the C 

from deriving data, D generates bogus data and 

encrypts them with C‟s public key. It inserts them 

into encrypted αt+1(j) values and permutes them 

using a permutation function fpD1. It finally sends 

the permuted results to C, which first decrypts them. 

Due to bogus data and fpD1, C is not able to derive 

data. C finds the sum by aggregating the received 

values. After encrypting it with its public key, sends 

the sum to D. Since D knows the sum of the bogus 

data, it then can get rid of it by subtracting it from 

the received aggregate data using homomorphic 

property to obtain the encrypted αt+1(j) values. It 

finally stores such encrypted results. 

2. Case2: The computations are similar to the ones in 

Case1. C computes aijbj(Ot+1) values, encrypts them 

as done in Case1, and sends them to D. D performs 

the similar steps as in Case1 and sends the permuted 

results including the bogus data to C. C performs 

the same steps as done in Case1 and sends the result 

to D, which finds the encrypted αt+1(j) values and 

keeps them as done in Case1.  

                                 Table 2. 3 Various Cases for t = 2, 3, . . ., T-1 & 1≤j≤y 

Cases αt held by Ot+1 held by C can 

compute 

D can compute 

Case1 D D a αb 

Case2 D C ab α 
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ii. For y+1≤j≤N, there are two possible cases, as displayed in 

Table 2.4. As seen from the cases, the parties can compute 

αt+1(j) values as they do for 1≤j≤y by switching their roles. 

                          Table 2. 4  Various Cases for t = 2, 3, . . ., T-1 & y + 1≤j≤N 

Cases αt held 

by 

Ot+1 held 

by 

C can 

compute 

D can 

compute 
Case1 C C αb a 

Case2 C D α ab 

 

C. As in horizontal partitioning, at the end of the computations for t=T-1, the 

parties own αT(i) values for 1≤i≤y and y+1≤i≤N, respectively. As explained 

in previously, they can compute P(O|λ) without jeopardizing their privacy.  

2.5. Privacy, Accuracy, and Performance Analysis 

To preserve the model owners‟ privacy, it is mainly utilized homomorphic 

encryption, permutation, random division, and inserting bogus data. In 

homomorphic encryption schemes, private data items are encrypted with the 

sender‟s public key. In order to decrypt the encrypted data, the sender‟s 

corresponding private key is needed. However, that key is known by the sender 

only. Since the receiver does not know the sender‟s private key, it will not be able 

to decrypt the encrypted data. Therefore, it is not able to learn the private data 

held by the sender. Note that the sender might be C (or D) and the receiver might 

be D (or C) in proposed schemes.  

 In order to prevent each other from learning the order of the data items, the 

parties make use of permutation functions. Although C or D does not know the 

exact order of the received values due to permutation functions, they might guess 

it with a probability. For example, in horizontally distributed HMM-based 

scheme, C permutes, on average, hβC/2 values using a permutation function fpC. 

Therefore, for D, the probability of guessing the correct order of the received 

values is 1 out of (hβC/2)!. Remember that h shows the number of states held by 

C. Also note that with increasing βC values, such probability decreases. For other 

proposed schemes and/or cases, privacy analysis of using permutation functions 

can be similarly done.  
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 In addition to using homomorphic encryption and permutation, the parties 

also apply random division to accomplish privacy. To simplify the discussion, 

random division is analyzed in terms of privacy for horizontally distributed 

HMM-based scheme only. After dividing αa values into different numbers of 

random values and permuting them, C sends them to D. Since D does not know βC 

and uniformly randomly selected zC values, it does not learn which values are part 

of which αa value. Therefore, it will not be able to derive αa values held by C. 

However, as explained previously, it might be able to guess them with a 

probability. Although D does not know βC, it knows how many random values h 

number of αa values are divided into. If the number of received values from C is 

CΣ, then, on average, D can estimate the value of βC as 2/
'

 hCC . The 

probability for D then to guess the number of random values each αa value are 

divided into is 1 out of (
'

C )
h
. As expected, with increasing βC, privacy level 

improves. Similar analyses can be done for other schemes and/or cases. 

 Due to bogus data items, it becomes a challenge to figure out the true αab 

values. Although the receiver does not know which received values are true αab 

values, it knows the number of such values. It can guess the true ones with a 

probability. If it is assumed that  the number of bogus data values is y’, then for D, 

the probability of guessing the correct αab values is 1 out of 
'

'

yy

y
G  , where 

'

'

yy

y
G  represents the number of ways of picking y’ unordered outcomes from y + 

y’ possibilities. 

 In conclusion, it can be said that the proposed schemes are secure and they 

allow the model owners to integrate their split models to provide predictions 

without jeopardizing their privacy. In case of distributed HMMs, model holders 

feel comfortable to combine their models for forecasting purposes without 

revealing them to each other. 

Due to privacy measures, it is expected that accuracy becomes worse. 

When privacy is achieved through the use of randomization, it is more likely that 

accuracy deteriorates. However, this is not the case for proposed schemes. 

Although it is utilized various privacy-preserving techniques, accuracy does not 
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worsen. Described schemes achieve the same accuracy as the models without 

privacy concerns.  

Performance is one of the major concerns for forecasting schemes. It is 

vital to offer many predictions online. Due to privacy concerns, described 

schemes introduce additional computation and communication costs. Due to 

homomorphic encryption, assuming N > T, the numbers of encryptions and 

decryptions are of the order of NhβC for horizontally distributed schemes. The 

numbers of encryptions and decryptions can be similarly computed for vertically 

distributed methods. Benchmarks for the CRYPTO++ toolkit from 

www.eskimo.com/~weidai/benchmarks.html can be used to determine the running 

times of cryptographic algorithms [11].  

The number of multiplications to calculate the P(O|λ) without privacy 

concerns is of the order of N
2
T [59]. Due to random divisions, the number of 

multiplications increases by a factor of order of NβC for horizontally distributed 

schemes. The number of multiplications similarly increases for vertically 

distributed schemes. Compared to encryption/decryption and multiplications, 

additional computations due to permutation and inserting bogus data are 

negligible. 

The number of communications increases due to privacy concerns because 

the model is distributed between two parties. For horizontally distributed schemes, 

the number of communications is 4T or the order of T. It can be similarly 

estimated for vertically distributed methods. As expected, with privacy concerns, 

performance degrades. There is a trade-off between privacy, accuracy, and 

performance. Since there is no accuracy loss due to privacy concerns, 

performance degrades are inevitable.   

2.6. Conclusions  

It is shown that it is possible to provide predictions based on horizontally 

or vertically distributed HMMs between two parties without violating their 

privacy. With the advent of the Internet, privacy happens to be vital. To protect 

the model owners‟ privacy while still allowing them to provide predictions by 

combining their split models, approaches are proposed. It is shown that such 
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methods are secure. The schemes prevent the model owners from deriving data 

about each other‟s models. 

In addition to preserving privacy, providing predictions with decent 

accuracy efficiently is also imperative for the success of HMMs. Therefore, the 

proposed schemes are analyzed in terms of accuracy and performance. 

Fortunately, distributed HMMs-based schemes with privacy accomplish the same 

accuracy as the ones without privacy concerns. On the flip side, performance 

degrades because privacy, accuracy, and efficiency conflict with each other. By 

sacrificing on performance, described schemes make it feasible to integrate split 

HMMs between two parties, even competing companies, without revealing the 

models to each other.  

 To accomplish privacy, various techniques are employed such as 

homomorphic encryption, permutation, random division, and introducing bogus 

data. The model owners can adjust the parameters of privacy-preserving 

techniques that is used in order to reach required levels of performance and 

privacy. For example, they might determine the values of β, γ, and δ based on 

privacy and performance levels they want.  

 In this chapter, horizontally or vertically distributed HMMs are 

investigated. Such model partition might be hybrid too. It is more likely that 

described proposed schemes can be modified in such a way to provide predictions 

on hybrid distributed HMMs with privacy. There still remains work to be done to 

study hybrid distributed HMMs-based forecasting with privacy. Although two-

party schemes only are scrutinized, the model might be partitioned among more 

than two parties. The schemes can be expanded to multi-party schemes. In that 

case, communication bottlenecks will become a major issue. It will be deeply 

explored how two-party schemes can be expanded to multi-party methods.  

 Supplementary communication costs introduced due to privacy concerns 

are significant. Compared to other online prediction systems, online time for 

HMMs might not be that critical. Even if this is the case, it will be searched for 

solutions to reduce the additional costs both communication and computation. 

This might be achieved by sacrificing on accuracy and/or privacy. Randomization 

techniques might be utilized to overcome additional costs. Some aggregate data, 
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whose disclosure does not significantly violate privacy, can be revealed to 

improve performance.  

 To sum up, described proposed schemes make it feasible to suggest 

predictions based on distributed HMMs between various parties while preserving 

their privacy, even though they introduce some extra costs. Those companies that 

do not want to integrate their models with others due to privacy, legal, and 

financial reasons can use proposed schemes. Moreover, they can adjust various 

parameters to reach privacy and performance levels they want. 
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3. FINDING THE STATE SEQUENCE MAXIMIZING P(O,I|λ) ON 

DISTRIBUTED HMMS WITH PRIVACY  

3.1. Introduction 

With increasing popularity of model-based forecasting, hidden Markov 

models (HMMs) has become one of the widely used models in science, 

engineering and many other areas like cryptanalysis, speech recognition, sign 

language recognition, gesture and body motion recognition, optical character 

recognition, machine translation which investigates the use of computer software 

to translate text or speech from one natural language to another, robot navigation, 

bioinformatics, finance, economics, and data mining. In bio-informatics, HMMs 

are employed for prediction of protein-coding regions in genome sequences, 

modeling families of related DNA or protein sequences, and prediction of 

secondary structure elements from protein primary sequences. 

To provide predictions, regression analysis, Bayesian networks, neural 

networks, HMMs, and so on are widely used. For various applications, an 

appropriate model is chosen for forecasting purposes. Such models have their own 

advantages and disadvantages. HMMs are very powerful models due to the 

following reasons: They are transparent, employ prior knowledge, and they can be 

combined into larger models. Although they have disadvantages like assumption 

that states are independent and low speed, their advantages surpass such 

drawbacks. They are constructed from historical data. 

HMMs are extensively used in prediction, speech recognition, finance, and 

so on. Begletier et al. [7] propose to use variable order Markov models for 

prediction of discrete sequences. Rabiner [51] shows how HMMs can be applied 

to selected problems in speech recognition. The theories of HMMs from various 

concepts are presented. Henderson et al. [24] describe a new HMM to study how 

to segment human DNA into three regions. Hassan and Nath [23] study how to 

employ HMMs to predict stock market trends. They forecast stock prices for 

markets. 

Besides calculating P(O│λ), the probability of occurrence of an 

observation sequence O = TOOO ,......,, 21 , given the model; many applications of 

HMMs are utilized to solve the following problem, as well: Given the model, 



 

 

25 

 

),,(  BA , how to choose a state sequence I= TIII ,......,, 21  so that P(O,I│λ), 

the joint probability of the observation sequence O = TOOO ,......,, 21   and the state 

sequence given the model is maximized. 

Data owners or collectors are able to construct HMMs from historical or 

collected data. After generating the model, they can start providing forecasting 

services to other customers or vendors. When the model is held by party, it is an 

easy task to offer such services. The party that wants to obtain predictions send 

the observation sequence to the model owners. Using the model, the owners then 

can compute predictions based on the sequence and finally, send the result to the 

query owner. Although it is trivial performing such task when the model is held 

by single party only, it becomes a challenge to conduct the similar jobs when the 

model is distributed between various parties. This partition can be horizontal or 

vertical. The model owners might want to integrate their split models; however, 

due to privacy, legal, and financial reasons, they do not want to reveal their 

private models to each other. To be able to provide predictions and to achieve 

more accurate and dependable services, they should integrate their models. If 

privacy measures are introduced, they might decide to combine their models.  

In this part, how to choose a state sequence I= TIII ,......,, 21  so that 

P(O,I│λ) of the observation sequence O = TOOO ,......,, 21   and the state sequence 

is maximized when the model is horizontally or vertically partitioned between two 

companies without deeply violating the model holders‟ privacy are investigated. 

Privacy-preserving schemes to achieve  goal is proposed. The proposed schemes 

are analyzed in terms of accuracy, privacy, and supplementary costs. 

3.2. Related Work 

With the evolution of the Internet and the computerized works, privacy 

protection has become imperative. Individual users and companies have concerns 

about their privacy. Performing various data mining  functionalities while 

preserving privacy is increasingly receiving attention. Moreover, conducting 

different data mining tasks based on distributed data while preserving parties‟ 

privacy is also becoming imperative. To perform richer data mining, provide 
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better services, and offer more dependable outcomes, distributed data-based 

computations become popular without greatly jeopardizing data owners' privacy.  

Privacy-preserving data mining (PPDM) on distributed data has been 

receiving increasing attention during the past few years. Clifton et al. [12] explore 

various privacy-preserving tools for distributed data mining. Privacy-preserving 

naive Bayes classifier (NBC) for horizontally partitioned data (HPD) is discussed 

by Kantarcioglu and Vaidya [32]. They show that using secure summation and 

logarithm, they can learn distributed NBC securely. Privacy-preserving 

association rules on HPD are discussed in [30]. They address secure mining of 

association rules over HPD, while incorporating cryptographic techniques to 

minimize the shared data. Kantarcioglu and Clifton [31] present a method for 

privately computing k-nn classification from distributed sources without revealing 

any information about the sources or their data, other than that revealed by the 

final classification result. Wright and Yang [65] present a privacy-preserving 

protocol for learning the Bayesian network structure for distributed heterogenous 

data.  

Sanil et al. [52] describe an algorithm to conduct a linear regression 

analysis based on vertically partitioned data (VPD). The agencies who poses a 

few attributes of every data record do not want to disclose values of their own 

attributes while conducting regression analysis on joint data. Vaidya and Clifton 

[15-17] present privacy-preserving methods for different data mining tasks on 

VPD. 

They discuss privacy-preserving association rule mining, NBC, and k-

means clustering using VPD. Vaidya [62] develops and evaluates new algorithms 

to efficiently solve several types of distributed computations over large data sets 

in a secure manner. Oliveira and Zaiane [42] address the problem of protecting the 

underlying attribute values when sharing data for clustering. Polat and Du [46] 

study how to provide predictions on VPD. The authors discuss how to provide 

predictions when data is vertically distributed between two parties without 

violating their privacy. In [50], the authors present privacy-preserving schemes to 

offer top-N recommendations on distributed data. 
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3.3 Distributed HMMs-based Prediction with Privacy 

As explained previously, HMMs are employed to find the state sequence I 

that maximizes P(O,I│λ) the joint probability of the observation sequence 

O= TOOO ,......,, 21  and the state sequence given the model. To solve this problem, 

the Viterbi algorithm, which is briefly defined, as follows, can be employed [15]: 

The Viterbi algorithm is an inductive algorithm in which at each instant the best 

possible state sequence is kept for each of the N states as the intermediate state for 

the desired observation sequence O = TOOO ,......,, 21 . In this way, finally, the best 

path is found for each of the N states as the last state. Out of these, the one is 

selected, which has the highest probability. Suppose being currently in state i and 

considering visiting state j next. It can be said that the weight on the path from 

state i to state j is )(ln( 1Oba iij , where Ot is the observation symbol selected after 

visiting state j. This is the same symbol that appears in the given observation 

sequence O = TOOO ,......,, 21 . The corresponding weight is ))(ln( 1Obii , when 

the initial state is selected as state i; and this will be called the initial weight. The 

weight of a sequence of states is defined as the sum of the weights on the adjacent 

states. This actually corresponds to multiplying the corresponding probabilities. 

Finding the optimum sequence is finding the path of minimum weight through 

which the given observation sequence occurs. )(it  denotes the weight 

accumulated when in state i at time t as the algorithm proceeds. )(1 j represents 

the state at time t-1, which has the lowest cost corresponding to the state transition 

to state j at time t.  There are four main steps, as follows: 

1. Initialization  For 1≤i≤N 

))(ln()ln()( 11 Obi ii    

0)(1  i  

2. Recursive computation  

      For 2≤i≤T for 1≤j≤N 

Nit j  1min)( [ )ln()(1 ijt ai  ] ))(ln( tj Ob  

3. Termination  

 )(min1

* iP TNi   
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 )(minarg 1

* iq TNiT   

4. Tracing back the optimal state sequence  

       For t = T-1, T-2, ……………, 1 

)( *

11

*

 TtT qq   

Hence exp(-P
*
) gives the required state-optimized probability, and 

},........,,{ **

2

*

1

*

TqqqQ   is the optimal state sequence. The complexity of the 

Viterbi algorithm is order of N 
2
T. Without privacy concerns and when the model 

is owned by a single party, it is an easy task to solve the problem by utilizing the 

Viterbi algorithm. However, when the model is distributed between two  parties; 

and they want to integrate their split models while preserving their privacy, it 

becomes a challenge. Although it is not easy to define privacy succinctly, in this 

context, it can  be briefly defined, as follows: Remember that HMMs are 

represented by ai,j, bj(k), and πi values. In a distributed environment, such 

parameters or values are partitioned between two parties. Privacy means 

preventing the parties from learning such values held by each other. In other 

words, the parties should not be able to learn the split models owned by each 

other. 

In addition to providing privacy, the proposed privacy-preserving schemes 

should allow the parties to generate meaningful outcomes based on the integrated 

model with privacy concerns. Therefore, besides privacy, providing HMM-based 

services with decent accuracy is another goal should be achieved. Due to privacy 

concerns, however, proposed solutions do not cause any loss in accuracy. With 

privacy concerns, it is still possible to generate the same outcomes as in when 

there is no privacy protection. 

And finally, online performance is another major concern that the model 

owners have. Finding the state sequence, which gives the maximum P(O,I│λ) 

value effciently is vital. However, compared to other systems like recommender 

systems, which are expected to offer many predictions to many users in an online 

interaction, time requirements for HMMs are flexible. Since off-line costs are not 

critical, if it is possible, as many calculations as possible should be performed off-

line. Due to privacy concerns, it is expected that additional costs will emerge. To 
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make it practical, extra costs like computation, communication, and storage costs 

introduced due to privacy concerns should be negligible. Since privacy, accuracy, 

and effciency are conflicting, there is a trade-off between them.  

Since the proposed privacy-preserving schemes achieve the same accuracy as the 

schemes without privacy concerns while preserving the model owners‟ privacy, it 

is a reasonable trade-off to sacrifice on performance. 

Privacy-preserving schemes are presented to maximize P(O,I│λ) from 

horizontally or vertically distributed models between two parties without violating 

their privacy. Since there are four major steps in the Viterbi algorithm, how the 

proposed schemes compute such four steps with privacy is shown. The details of 

the schemes explained in the following subsections.  

     3.3.1 Horizontally Distributed HMMs-based Schemes with Privacy 

In horizontal partitioning, it is assumed that N is an even number and N = 

2h, where h is number of states held by each party. Therefore, it is assumed that 

company C holds the part of the model for the first h states and company D holds 

the remaining part (the last h states). Horizontally distributed HMMs can be 

shown, as in Section 2.3.1.  

How to find the state sequence I maximizing P(O,I│λ) on a horizontally 

distributed HMM between two parties with privacy in four major steps is 

investigated, as follows: 

1. Initialization: At the beginning, )(1 j  values are all 0. For 1≤i≤h and for h + 

1≤i≤N, C and D can compute )(1 i values because they know the corresponding 

required values (corresponding bi(O1), and πi values). 

2. Recursive computation: For 2≤t≤T for 1≤j≤h, the parties perform the following: 

(a) D finds the local minimum value, which is min Dtj = hi1min [ )ln()(1 ijt ai  ]. 

Similarly, C finds minCtj = Nih 1min [ )ln()(1 ijt ai  ].  Note that the parties are 

able to calculate such values without the need of the other party‟s data. 

(b) To calculate )( jt = min(minC, minD) - lnC, the parties need to find min(minC, 

minD), where lnC = ln( )( tj Ob ). Note that C holds )( tj Ob  values. D uniformly 

randomly generates a large enough random number (RDt1 ). 
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(c) D then computes '

tjD  = minDtj+ RDt1 and sends it to C. 

(d) C uniformly randomly generates a large enough random number (RCt ). It then 

finds '

tjC  = minCtj - ln( )( tj Ob ) - RCt and "

tjD  = minDtj+ RDt1 - ln( )( tj Ob ) - RCt; and 

sends them to D. 

(e) D computes '"

tjD  = minDtj - ln( )( tj Ob ) - RCt . It then finds mintj =min( '

tjC , '"

tjD ). 

(f) For those computations in the subsequent iterations, the parties need to 

compute )( jt . Therefore, D uniformly randomly generates a large enough 

random number (RDt ), adds it to mintj -ln( )( tj Ob )-RCt , and obtains mintj -

ln( )( tj Ob )-RCt +RDt . It then sends it to C. By adding RCt to that value, C gets mintj 

- ln( )( tj Ob ) + RDt . In other words, C is able to get )(' jt = )(' jt + RDt = mintj - 

ln( )( tj Ob ) + RDt . 

(g) After determining Ni1min [ )ln()(1 ijt ai  ], the parties then can easily figure 

out )( jt = arg Ni1min [ )ln()(1 ijt ai  ] and exchange such information. 

For 2≤t≤T for h+1≤j≤N, the parties switch their roles and perform the same 

steps as they do for 1≤j≤h. Since the parties do not need the exact 1t  values in 

order to find the Ni1min [ )ln()(1 ijt ai  ] values and the same random numbers 

are used to disguise 1t  values, the parties are still be able to find the minimum 

values. Remember that the parties add random numbers in each iteration. If they 

continue to do that, they will get aggregate values due to random numbers. To 

avoid from such case, in each iteration the parties first get rid of the random 

numbers they added in the previous step and then add a new random number. In 

addition, they can add uniformly randomly selected random numbers from a range 

[-α, α], where α is a positive integer.  

3. Termination: In this step, the parties need to compute P* and determine *

Tq  . 

Note that at the end of the recursive computation phase, D has 
1

'




TDD CTT R  

for 1≤j≤h and C has for 
1

'




TCC DTT R  for h+1≤j≤N. For this purpose, they 

perform the following: 
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(a) Each party determines local minimum values based on the values they receive 

at the end of the recursive computation phase. C determines 

NihTC  1

' minmin [ )(' i
CT ] while D determines  )(minmin '

1

' i
DD ThiT  . 

(b) D computes "min
DT = 'min

DT  + 
1TDR and sends it to C. Remember that 'min

DT  is 

masked with 
1TCR . 

(c) Since C knows 
1TCR , it can find "min

DT - 
1TCR   and compares the result with 

'min
CT  to find the global minimum. 

(d) After determining P
*
, C then determines *

Tq . 

(e) It finally informs D about *

Tq  . 

In termination phase, any party can act as a master party to determine P* and *

Tq  . 

Since this is the case, the parties can alternately act as a master party. 

4. Tracing back the optimal state sequence: And finally, the parties are able to 

determine *

Tq = )( *

11  tt q  by tracking back. This is an easy task because the 

parties exchange t  values throughout the process. Again, one party can act as a 

master party and returns the result. Similarly, they can successively act as a 

master party. 

     3.3.2 Vertically Distributed HMMs-based Schemes with Privacy  

Unlike horizontal partitioning, initial state probabilities are known by both 

parties. Therefore, π is known by both companies. It is assumed that transition 

probabilities from one state to the first y states are held by C and the remaining 

ones are held by D; and N = 2y. Moreover, it is assumed that M = 2v and 

observation probabilities for the first v symbols are held by C and the remaining 

ones are held by D. The distributed model can be shown, as shown in Section 

2.3.2.   

Finally, since the model is vertically distributed, π = πC = πD. How to find 

the state sequence I maximizing P(O,I│λ) on a vertically distributed HMM with 

privacy in four major steps is investigated, as follows: 

1. Initialization: Since the model is vertically distributed, both C and D knows πi 

values for 1≤i≤N. To compute )(1 i  for 1≤i≤N, which party holds the )( 1Obi  
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values. The first item of the object sequence (O1) might be held by either C or D. 

Therefore, the party that owns O1 can compute πi values for all i; and saves them. 

Also note that at the beginning, )(1 i values are all 0. 

2. Recursive computation: In order to calculate )( jt  and determine )( jt  

values, it is important that 1t , Ot, and aij values are held by which party. When 

they are all held by one of the parties only, it is trivial to achieve the recursive 

computations. However, when they are split, the parties need to collaborate. It is 

needed to be consider all possible cases because the above mentioned values 

might be held by either parties. 

For 2≤i≤T for 1≤j≤y, possible cases that might occur are summarized in 

Table 3.1. For each possible case, the parties perform the following: 

Table 3. 1 Possible Scenarios (2≤i≤T & 1≤j≤y) 

Cases 
1t  Held by Ot Held by aij Held by 

Case 1 C C C 

Case 2 C D C 

Case 3 D C C 

Case 4 D D C 

(a) Case 1. C can easily compute )( jt  and determine )( jt  because it has 

the all required values. 

(b) Case 2. C can determine Ni1min [ )(' i
CT ] and )( jt  values by itself. 

However, it needs to collaborate with D to compute )( jt  values, which 

are needed in the subsequent steps. D uniformly randomly generates a 

random number (RDt) and disguises -ln( )( tj Ob ) values, for 1≤j≤y, by 

adding RDt to them. It then sends them to C, which finds masked 

)( jt values and saves them. 

(c) Case 3. C first uniformly randomly generates a random number (RCt ), 

Disguises )ln( ija  values, and sends them to D. Now, D can determine 

Ni1min [ )ln()(1 ijt ai  ] and )( jt . To compute )( jt , D needs                

-ln( )( tj Ob ) values, which are held by C. Therefore, C disguises such 
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values with a random number (RCt1 ) and sends them to D. D then can 

compute the masked )( jt  values.  

(d) Case 4. In this case, C has the aij values. To obtain required data, D needs 

aij values. So, C first perturbs them with a random number (RCt ) and sends 

them to D. D then determines )( jt and computes masked )( jt . 

For 2≤t≤T for h+1≤j≤N, similar cases that might occur are summarized in 

Table 3. 2. For each possible case, the parties perform the same steps as they do 

for 2≤t≤T for 1≤j≤y explained above. However, in these cases, the parties switch 

their roles. 

3.Termination: At the end of recursive computation, perturbed )( jT values are 

held by C and D for 1≤j≤y and y+1≤ j≤N, respectively. In order to compute P
*
  

and determine *

Tq , the parties perform the same steps as they do when the model 

is horizontally distributed. Moreover, as explained previously, they can alternately 

act as a master party. 

4.Tracing back the optimal state sequence: The parties can successfully achieve 

this step as they do the model is horizontally distributed. 

Table 3. 2 Possible Scenarios (2≤i≤T & 1≤j≤N) 

Cases 
1t  Held by Ot Held by aij Held by 

Case 1 D D D 

Case 2 D C D 

Case 3 C D D 

Case 4 C C D 

3.4 Privacy Analysis 

As explained before, the proposed privacy-preserving schemes should 

prevent the parties from learning the actual values of the model parameters. To 

determine the state sequence maximizing P(O,I│λ), the model owners need to 

know )( jt for all t and j. There is no way to prevent them from learning which 

state sequence achieves the maximum P(O,I│λ) if they want to solve the problem. 

As seen from the proposed solutions for horizontally partitioned HMMs, 

proposed schemes prevent the model owners from learning the actual values of 

model parameters. However, since the state sequence maximizing P(O,I│λ) is 
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determined based on the comparisons of the local minimum values 

( )ln()(1 ijt ai  ) held by both parties, the parties will learn whose value is smaller 

than the other. Therefore, they can determine that such local minimums are 

smaller or bigger than each other's local minimum values. Even if they have such 

information, they will not be able to learn the exact values of )(1 it and aij . 

In horizontally distributed HMMs, the privacy-preserving computations 

are performed on local minimum values. The parties do not need to exchange all 

values of the model parameters. Therefore, they cannot learn such values that are 

not involved in collaborative computations. In both horizontally and vertically 

distributed HMMs, the parties perturb actual values using random numbers. Since 

the parties do not know such numbers, they will not be able to learn the actual 

values held by each other. 

In the proposed schemes, the same random number is used to disguise y 

values. When either party is able to figure out the random number, it will learn all 

values. To improve privacy, it is proposed to use the following solution: Instead 

of using a single random number to hide all data items, they can divide their data 

values into two, four, eight, and so on groups; and perturb data items in each 

group independently using various random numbers. For example, they can divide 

their data items that they want to compare into two groups. They then disguise 

data items in each group using a different random number. After finding local 

minimums in these two groups, they perturb such values again. They finally 

perform one more step to find the global minimum value. When they divide their 

data items into 2
k
 groups, they use k random numbers for data disguising. They 

perform k-1 more steps to obtain the global minimum. As expected, with 

increasing k, privacy improves while performance degrades. Therefore, the parties 

are able to decide k in such a way to achieve required levels of privacy and 

performance. It can be said that proposed schemes are flexible in terms of 

achieving the required levels of privacy and efficiency. 

At one end, the parties can perturb their private data values using a single 

random value, while at the other end, they can disguise them by dividing them 

into y/2 groups and using y/2 random numbers. They might group their data into k 

groups and disguise the data in each group using a different random number, 
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where 1≤k≤ y/2. Although they will have an idea about the order of each other's 

private data values, such information is not enough to generate HMMs-based 

services. Moreover, in most cases, such data items are aggregate values such as 

values )ln()(1 ijt ai   and )(1 it , rather than πi, aij, or bi(O1) values or single 

model parameters. It becomes difficult for parties to derive true model parameters 

held by each other even if they learn aggregate values. 

3.5 Accuracy and Overhead Costs Analysis 

The proposed schemes should provide accurate results efficiently besides 

achieving privacy. Due to the underlying privacy-preserving schemes that it is 

proposed that, there is no accuracy losses. In other words, the model owners are 

able to achieve the same accuracy level with privacy concerns as they do without 

privacy concerns. Due to privacy concerns, the parties do not need to sacrifice on 

accuracy. 

Although the parties are able to offer the same predictions with privacy 

concerns, it is expected that performance degrades due to privacy-preserving 

schemes because privacy, accuracy, and performance conflict with each other. 

The proposed schemes should be efficient; otherwise, it makes no sense to use 

them. Since off-line costs are not critical, online costs should be focused on. 

Moreover, in additional costs due to privacy concerns are interested. Such costs 

might be additional storage, communication, and computation costs. They should 

be small and allow the model owners to offer predictions efficiently. 

The proposed vertically partitioned HMMs-based schemes do not 

introduce extra storage costs due to privacy concerns. However, supplementary 

storage costs due to the methods proposed for horizontally distributed HMMs is of 

the order of T. When the model is held by a single party, after receiving the object 

sequence, the model owner finds the prediction and sends it back to the query 

owner. Therefore, the number of communications is only two (or of the order of 

1). However, when the model is split between two parties, communication costs 

increase. When the model is horizontally distributed, the number of 

communications is of the order of NTk. Similarly, in vertically partitioned HMMs-

based schemes, the number of communications is of the order of NTk, except Case 
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1 in recursive computation phase. In that case, since one of the parties hold all 

required values to find predictions, the parties do not need to exchange anything. 

Therefore, the number of communications in this case is of the order of k. 

Additional computation costs due to privacy concerns are negligible 

compared to extra communication costs. Remember that the original Viterbi 

algorithm's complexity is of the order of N
2
T. In both horizontally and vertically 

distributed HMMs-based schemes, additional computations due to privacy 

concerns are random number generations, additions, and subtractions. The number 

of random number generations, additions, and subtractions is of the order of NTk. 

Remember that k might be chosen by the parties as an integer between 1 and 

log2N inclusively in order to achieve required levels of privacy and performance, 

as explained previously. On average, compared to N, k is small and can be 

considered as a constant. Therefore, it can be said that the supplementary 

computation costs are small; and the parties are still able to generate outcomes 

efficiently based on distributed models without violating their privacy. 

3.6 Conclusions and Future Work 

HMMs are popular models used for forecasting purposes in many 

applications. When the model is held by a single party, it is a trivial task to 

generate outcomes based on the model. However, the model might be distributed 

between various parties even competing companies. In this part, how to choose a 

state sequence so that the joint probability of an observation sequence and a state 

sequence given an HMM is maximized is studied when the model is distributed 

between two parties, without violating their privacy. Privacy-preserving schemes 

for both horizontally and vertically partitioned HMMs is presented. The proposed 

methods is investigated in terms of privacy, accuracy, and performance.  

First of all, due to privacy concerns, there is no accuracy loss. The same 

outcomes, generated by integrated model without privacy concerns, are also 

provided by the proposed schemes. Secondly, the secure proposed schemes is 

showed. Moreover, proposed solutions allow the parties to chose the parameters 

of privacy-preserving schemes in such a way to achieve required levels of privacy 

and performance. And finally, the solutions are scrutinized in terms of 
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supplementary costs due to privacy concerns. Acceptance of extra storage and 

computation costs are demonstrated. Proposed schemes, however, introduce 

additional communication costs. Since accuracy, privacy, and performance are 

conflicting goals, it is needed to be sacrificed on one of them. The proposed 

schemes are secure and output accurate results. It is believed that these features 

surpass extra communication costs. This is an acceptable trade-off because there 

is no such solution to accomplish accuracy, privacy, and good performance. 

Only horizontal or vertical partition are considered. The partition might be 

hybrid. How to provide similar HMM-based services will be studied when the 

model is hybrid distributed between two parties without jeopardizing the model 

owners' privacy. Although it is assumed that the model is partitioned between two 

parties, it might be distributed between more than two parties. Proposed solutions 

can be extended to multi-party schemes. However, detail analysis should be done 

and solutions should be proposed to overcome the bottlenecks that might occur in 

multi-party schemes. 
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4. A NEW HYBRID RECOMMENDATION ALGORITHM WITH 

PRIVACY 

4.1. Introduction 

Collaborative filtering (CF) is a recent technique for filtering and 

recommendation purposes. CF is widely used in e-commerce, direct 

recommendations, and search engines to suggest items to users. Users can obtain 

referrals about many of their daily activities with the help of CF.  Goldberg et al. 

[19] first coined the term “collaborative filtering” in the early nineties. CF 

systems predict how well a user, called an active user (a), will like or dislike an 

item that she has not purchased previously using other users‟ preferences [25]. 

Ahn et al. [5] propose simultaneously optimized case-based reasoning to increase 

the classification accuracy, where customers are classified into either purchasing 

or non-purchasing groups. They suggest simultaneous optimization using genetic 

algorithm.  

To offer referrals, data collected from many users is used. Such data 

contains users‟ ratings, which show preferences of users about products. Users‟ 

preferences can be represented with numerical or binary ratings. After data 

collection, a user-item matrix is created. The database contains rating values (vuj), 

where vuj represents user u‟s ratings on item j. When a asks recommendations, the 

CF system or the server first finds similar users to a using various similarity 

metrics. It then computes referrals using their data. The main idea is that a will 

prefer those items that like-minded users prefer, or that dissimilar users do not 

[45].  

 With increasing popularity of the Internet and e-commerce, CF has been 

increasingly receiving attention. Many people are buying or selling various 

products over the Internet using e-commerce sites. E-companies can increase their 

sales and profits through CF. Schafer et al. [55] present an explanation of how 

recommender systems help e-commerce sites increase sales. However, since the 

number of users accessing the Internet and the number of products available over 

the Internet are increasing rapidly, it becomes vital to generate referrals 

efficiently. Customers do not want to spend too much time to get predictions. CF 

systems should provide referrals to many users within a limited time. In addition 
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to providing referrals efficiently, accuracy is another concern for both online 

vendors and customers. Inaccurate predictions lead angry customers. Shoppers 

usually prefer those companies with accurate referrals.  

 To generate accurate referrals efficiently, various approaches have been 

proposed. CF algorithms proposed so far can be classified as memory- or model-

based algorithms. Memory-based algorithms operate over the entire user database 

to make predictions, while model-based CF algorithms use the user database to 

learn a model, which is then used for referrals [10]. Although memory-based 

schemes achieve higher accuracy, performance degrades rapidly with increasing 

number of users and/or items. Conversely, model-based approaches improve 

performance while accuracy diminishes. Both groups of algorithms have their 

advantages and disadvantages. 

 Privacy is becoming a major concern for users recently. Collecting users‟ 

preferences about many products to provide referrals poses various privacy risks. 

According to study conducted by Cranor [14], privacy risks are severe and many 

like unsolicited marketing, price discrimination, profiling users, being subject to 

government surveillance, and so on. Moreover, users are concerned about data 

transfer and misused. Therefore, due to privacy risks, users do not want to reveal 

their true ratings to others. They sometimes supply false data or refuse to provide 

data at all. It then becomes difficult to generate accurate recommendations on 

false data or inadequate data. It is vital to offer privacy measures for generating 

truthful and dependable predictions.  

 A new hybrid method for CF is proposed in which advantage of both 

memory- and model-based algorithms are able to be taken. The new scheme is 

based on trees or graphs in which each node or leaf represents a user and each link 

represents similarity between two users. To improve performance, some works are 

done off-line because off-line costs are not critical to overall performance. To 

create trees or graphs, to represent users and similar users, and the similarities 

between them,  the idea of Markov models is used.  

 To protect users‟ privacy while still doing various data mining tasks, 

different methods have been used. Randomization techniques are employed to 

hide individual users‟ data. Users want to disguise their true ratings or preferences 
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about products. Moreover, they would like to prevent the server or e-commerce 

sites from learning their rated and/or unrated items. It sometimes might be more 

damaging to reveal rated and/or unrated products. Randomization techniques 

allow users to mask both their true ratings and empty cells. They also allow e-

commerce sites or CF systems to provide referrals with decent accuracy from 

masked data. It is still possible to estimate aggregate values from the data 

perturbed using randomization methods. Since CF is based on aggregate values, 

accurate predictions are able to be provided still even if data collected for CF 

purposes is masked. 

 To evaluate the overall performance of proposed schemes, various 

experiments are performed on real data sets. Then the outcomes are analyzed of 

such experiments. Factors that might affect the overall performance of schemes 

are presented. Finally, schemes are analyzed in terms of privacy, accuracy, and 

performance.  

4.2. Related Work 

To increase CF systems‟ performance and to provide many predictions 

with decent accuracy to lots of users in a limited time, various approaches have 

been suggested. Sarwar et al.[53]  propose to apply singular value decomposition 

(SVD) to produce accurate referrals while performing many predictions per 

second for too many customers and items. Although their scheme achieves higher 

performance, the model needs to be updated frequently. Goldberg et al. [18] 

suggest Eigentaste algorithm, which requires constant time to compute referrals, 

given a database of n users. However, including new users‟ data is time 

consuming. Miyahara and Pazzani [39] propose to employ naïve Bayesian 

classifier (NBC) to produce referrals, which are calculated, based on binary 

ratings. Ungar and Foster [60] and O‟Connor and Herlocker [41] propose to use 

data partitioning and clustering algorithms to improve performance of CF 

systems. To overcome information overload problem, Lee [35] proposes a multi-

agent system that is capable of obtaining expert knowledge and offering the best 

items to customers.  
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Privacy-preserving collaborative filtering (PPCF) has been receiving 

attention lately. CF schemes with privacy concerns have been proposed in the 

literature. Canny [11] proposes schemes for PPCF, where users control all of their 

own private data; a community of users can compute personalized 

recommendations without disclosing individual users‟ data. Polat [48] and Polat 

and Du [46] employ randomized perturbation techniques (RPT) for PPCF. In their 

schemes, before users send their private data to the server, they perturb their 

private data. Their solutions make it possible for servers to collect private data 

from users for CF purposes, without greatly compromising users‟ privacy 

requirements. Parameswaran [44] presents a data obfuscation technique that 

provides robust privacy protection with minimal loss in usability of the data. Data 

obfuscation is used to modify the value of the data items without distorting the 

usefulness of the data. He designs and implements a privacy-preserving shared CF 

framework using data obfuscation algorithm. 

4.3. A New Hybrid Algorithm-based Collaborative Filtering 

To offer CF services, data from many users is needed. Users give their 

ratings about many items. The CF system or the server creates a database, which 

is an n x m matrix, where n and m show the number of users and items, 

respectively. To determine similarities between users to find similar users, various 

similarity metrics can be used. Pearson correlation coefficient is commonly used 

for numerical ratings. it is also used, which is defined, as follows [10]: 
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where wau is the similarity weight between users a and u, σa and σu represent the 

standard deviations of users a‟s and u‟s ratings, respectively, μa and μu represent 

the mean ratings of users a‟s and u‟s ratings, respectively, and vaj and vuj represent 

ratings of users a and u for item j, respectively. The sum is over all items both 

users have rated. When a asks prediction for a target item q, she sends her known 

ratings and a query to the CF system. The system first finds similar users to a and 

uses their data to generate a prediction for q by employing a CF algorithm.  
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 After data collection, trees for each user can be constructed off-line. To 

construct them, the idea of Markov models is used. In the proposed scheme, each 

user represents a state so that there are n states. Each state has m objects because 

there are m items. The user selected as the best similar user to a represents the 

initial state or the initial user. Various ways are proposed to determine the initial 

user. Each user‟s ratings for items represent observation probabilities in each 

state. Similarity values or weights between users represent transition probabilities.  

     4.3.1. Constructing Trees 

The steps to construct the trees for each user u are, as follows: 

a. Similarity weights between user u and each other users are calculated 

using Eq. (4.1). Note that ratings are known and nothing is done to find 

them. 

b. The most s similar users to user u are found and they are removed from the 

database. 

c. For each of the s users, find the best s similar users to them among the 

remaining ones.  

d. The most s similar users are found iteratively to each user among the 

remaining ones until there is no remaining one in the database. The graph, 

constructed for each user, looks like a tree, in which each node‟s children 

represent the most similar users. n = 1 + s + s
2
 + s

3
 + … + s

y
, and y shows 

the number of levels and its value depends on n and s.  

e. The optimum value of the number of nodes in a tree and the optimum 

value of s can be determined by running real data-based experiments. 

     4.3.2. Representing Trees 

After constructing trees or graphs for each user, each tree is  represented as 

a link list in a database. In such lists, users and the best similar users to them are 

stored. Each user is linked to the best similar users to her. Besides storing users, 

ratings of each user for items are also saved. And finally, similarity weights 

between users are saved. Note that similarities are stored for each link.  
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     4.3.3. Finding Initial States 

When a asks a prediction or a recommendation list, the first step is to find 

an initial state or the most similar user to her. Since recommendations will be 

computed based on the initial user and her link list, selecting the initial user or 

state is important. The way to select the initial user is vital for performance 

reasons. Moreover, it will affect the quality of the referrals, as well. The following 

methods are proposed  to select it: 

A. Compute similarities between a and each user in the database. For 

performance reasons, this is not desirable, because n similarity values must 

be calculated online. 

B. After collecting n users‟ data, they can be clustered into various clusters. 

For this purpose, various clustering algorithms can be used. However, k-

means algorithm is widely used to cluster users for CF purposes [37]. K-

means clustering algorithm is used to cluster users into k clusters. When a 

asks referrals, first her cluster is found. To do this, the distances or 

similarities between a and each cluster center are computed.  “a”  is 

placed into the closest cluster. Since number of clusters is much less than 

the number of users, this method is more efficient then the first one. After 

placing a in a cluster, the initial user is selected using different methods, as 

follows: 

a. Select the initial user uniformly randomly among users in that 

cluster, where this method is called as MI. 

b. Find similarities between a and each user in that cluster, and select 

the best similar user to a as initial user, where this method is called 

as MII. 

c. Select the closest user to the cluster center as initial user, where 

this method is called as MIII. Note that the closest users can be 

found off-line. 

     4.3.4. Computing Recommendations 

The steps to generate referrals for a can be explained, as follows: 



 

 

44 

 

a. a sends her known ratings and a query to a CF system. The query contains 

the target item or items for which referral is sought. The system first 

places a into a cluster. 

b. It then selects the initial user for a among the users in that cluster. 

c. The data in the link list of the initial user is used to find referrals. 

d. Since the link list contains n users‟ data, as explained previously, the 

optimum value of the number of users whose data to be used for CF 

should be determined. To improve the overall performance, the best-N 

neighbors can be chosen for providing recommendations and the optimum 

value of N can be determined experimentally. 

e. Finally, the system considers those N users‟ data to find referrals. It can 

compute prediction for a on item q (paq), as follows [25], which one of the 

best memory-based CF algorithm, where vuq is the rating of user u for q 

and N is the number of users involved in recommendation computation: 
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f. The system can find predictions for single items, as explained above. 

Moreover, it can find recommendation lists, as well. To find top-R 

recommendations, a asks referrals for her R unrated items. The server 

finds predictions for all R items, sorts them decreasingly, and provides the 

sorted list to a as top-R recommendations list. 

4.4. Producing Recommendations With Privacy on New Hybrid Algorithm 

E-commerce sites can trivially offer CF services if privacy is not a 

concern. However, it happens to be difficult to achieve the same tasks without 

greatly jeopardizing users‟ privacy. It is a challenge to give a clear-cut definition 

for privacy. However, it is abled to be defined, as follows: Users including active 

users do not want others to learn their ratings or preferences about products they 

bought or showed interest. Moreover, it might be more damaging to disclose 

which products users bought or not purchased. Therefore, privacy means, in this 
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context, preventing data collectors or CF systems from learning true ratings and 

rated and/or unrated items.  

 Randomization techniques are proposed to protect users‟ privacy. Such 

techniques are used to achieve privacy [4]. To disguise a value x, a simple method 

is to add a random value r to it. x + r, rather than x alone, will appear in the 

database, where r is a random value drawn from some distribution with mean (μ) 

being 0. If aggregate data is interested in, certain computations are able to be 

performed using masked data. Since CF is based on aggregate data, CF services 

are able to be achieved still on disguised data. Users‟ ratings are disguised in such 

a way that the server can only know the range of the data, and such range is broad 

enough to protect privacy.  

     4.4.1. Data Perturbation 

Users might disguise their data in the same way for consistently masked 

data. However, since privacy concerns might vary between users, they might 

decide to perturb their data differently to achieve various levels of privacy. It is 

still possible to estimate aggregate data from variably masked data [49]. 

Moreover, inconsistent data perturbation improves privacy. Users including active 

users mask their data, as follows: 

a. They first decide the random number distribution. They can use either 

uniform or Gaussian distribution to generate random numbers.   

b. They decide the level of perturbation or the standard deviation (σ) of 

random numbers. 

c. They then decide the amount of data to be masked. Users might decide to 

disguise all of the ratings or some of them, all of the empty cells or some 

of them; or all of the cells of their ratings vectors or some of them.  

d. Finally, they generate random numbers using some distribution with μ = 0 

and σ. Number of random numbers depends on the number of cells to be 

perturbed. They add those random numbers to corresponding cells to be 

masked.  

After data disguising, users send masked data to the server, which creates 

a disguised user-item matrix, A'. As shown by Polat and Du [49], uniform and 
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Gaussian distributions give similar results with respect to accuracy and privacy. 

With increasing σ, randomness increases; that makes accuracy worse while 

privacy improves. Users select the cells to disguise based on how much data they 

want to mask and how many empty cells they want to hide to prevent the server 

from learning rated and/or unrated items. 

     4.4.2. Recommendations Computation with Privacy Concerns 

As seen from Eq. (4.1) and Eq. (4.2), the server is able to provide CF 

services using z-score values rather than ratings. The recommendations can be 

calculated, as follows: 
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where z-scores and wau values based on z-scores can be computed, as follows: 
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where j shows the commonly rated items between a and user u, μu and σu are mean 

vote and standard deviation of user u‟s ratings, respectively, vuj is user u‟s vote for 

item j, and zuj is user u‟s z-score for item j.  

Users normalize their ratings, mask them, and send the perturbed z-scores 

to the server. The server first finds a‟s cluster and initial user. It estimates P'aq 

from masked data and sends it to a. Since μa (mean rating of a‟s ratings) and σa 

(standard deviation of a‟s ratings) are known by a, she can estimates p'aq after she 

receives P'aq from the server. To generate top-R recommendations, either the 

server or a does not need to de-normalize P'aq values. Since μa and σa are used for 

de-normalization and the sorted list is needed other than numerical rating values, 

the sorted list can be found based on P'aq values. 

     4.4.3. Estimation from Perturbed Data 

The scalar product and sum computations need to be conducted to estimate 

wau and Paq values. They are based on aggregate data rather than individual data 

items. As shown by Polat [48], it is still possible to estimate such values with 
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decent accuracy from masked data even if data is perturbed differently. Let A and 

B be the original vectors and given, where A = (a1, … , an) and B = (b1, … , bn). A 

is disguised by F = (f1, … , fn), and B is disguised by G = (g1, … , gn), where fis 

and gis are random values drawn from some distribution with μ being 0. Let A’ = 

A + F and B’ = B + G be the masked data that are known; the scalar product of A 

and B can be estimated from A’ and B’, as follows: 
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Since random vectors are independent and random values drawn from 

some distribution with μ = 0, and     00  AGEAGAE ; similarly 

  0FBE ; and       000  GEFEGFE , where E represents expected 

value. Thus, it can  roughly that 
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from A’, as follows:  
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4.5. Evaluation of the Proposed Schemes’ Overall Performance 

To evaluate schemes,  various experiments are performed using real data 

sets. As explained before, there are different factors that might affect the overall 

performance of the proposed schemes. Schemes are analyzed in terms of accuracy 

and performance based on experiment results. Moreover, they are also analyzed in 

terms of privacy and additional costs. Although there are different data sets 

collected for CF purposes, Jester and MovieLens Public (MLP) datasets  are used 

because the results based on them can be generalized. Jester is a web-based joke 

referral system (http://goldberg.berkely.edu/jester-data/). It has 100 jokes and 

records of 17,988 users. The ratings are continuous and range from -10 to +10. 

Almost 50% of the ratings are available. MLP consists of ratings for 

approximately 1,682 movies made by 943 users. Each user has rated at least 20 

movies. Ratings are made on a 5-star scale. It is collected by the GroupLens 

Research Project (www.cs.umn.edu/research/Grouplens) at the University of 

Minnesota.  
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Mean absolute errors (MAE) and normalized mean absolute errors 

(NMAE) are used as evaluation criteria because they are commonly used ones in 

the literature [41]. The MAE and the NMAE should be minimized. The lower 

them, the more accurate results are. If p1, p2,  . . . , pd are predicted values from 

undisguised data, and p'1, p'2, . . . , p'd are predicted values from disguised data, 

then E = {ξ1, ξ2, … , ξd }  =  {p'1 - p1, p'2 - p2,  . . . , p'd - pd } represents errors. 

Therefore, the MAE and the NMAE can be computed, as follows:  
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where ξmax and ξmin represent the maximum and minimum errors, respectively. 

 Users  are selected randomly who rated at least 50 items from Jester and 

used randomly selected 900 users from MLP to use in experiments. Then they are 

divided into training and test set. For Jester, 2,000 and 500 users are randomly 

selected for train and test sets, respectively. For MLP,  700 and 150 users are 

choosen randomly for training and testing, respectively. For each test user, five 

rated items are randomly selected as test items. Their ratings are withheld and are 

tried to predict their values using schemes. After comparing predictions with true 

withheld ratings, the MAE and the NMAE are computed for all test data and 

displayed final values.  

     4.5.1. Experiments for Evaluating New Algorithm 

First, trials are performed to asses the overall performance of proposed 

scheme. As explained before, the number of best neighbors (N), the number of 

similar users to each user (s), the number of clusters (k), and the methods to select 

the initial users can affect results. Besides evaluating the schemes in terms of 

accuracy, they are also evaluated in terms of performance. For this purpose, total 

time (T) is calculated in seconds, necessary to generate referrals. To compare 

results with conventional memory-based CF algorithms, predictions are computed 

for the same test and train data using the algorithm proposed by Herlocker et al. 

[25]. MATLAB R006b program is used and experiments are executed on a 

computer, which is 1.80 GHz with 1.23 GB RAM. Each experiment set is 
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executed  10 times and displayed the overall averages. The following experiments 

are performed to assess how various factors affect the overall performance of 

schemes: 

Experiment 4.5.1.1.: Given 2,000 and 700 train users for Jester and MLP, 

respectively, experiments are conducted with changing N values to show how 

varying N affects the results. s at 2 and k at 20 are fixed, where MII method is 

used to select the initial users. 500 and 150 users are used as testing for Jester and 

MLP, respectively, while predicting ratings for five withheld items for each test 

user. Overall averages of MAE, NMAE, and T are computed; and are displayed in 

Table 4.1. 

 Table 4. 1 Overall Performance with Varying N Values 

 Jester MLP 

N 100 200 400 800 1,600 100 200 400 700 

MAE 3.7176 3.7331 3.6740 3.6721 3.6705 0.8612 0.8504 0.8603 0.8684 

NMAE 0.2040 0.2033 0.1967 0.1942 0.1939 0.2459 0.2383 0.2362 0.2305 

T 5.9282 5.9670 6.1605 6.4893 7.0504 6.7497 6.8020 6.8200 6.9430 

 

As seen from Table 4.1, with increasing N, T also increases. T shows the 

total time in seconds spent to generate 2,500 and 750 recommendations from 

Jester and MLP, respectively. Although various N values achieve similar MAE 

and NMAE values, 800 and 200 are chosen as optimum values for Jester and 

MLP, respectively.  

Experiment 4.5.1.2.: Experiments are performed to determine the 

optimum value of s. Other factors are fixed; and varied s from 1 to 5 for both data 

sets. N is set at its optimum values determined in the previous experiments and k 

at 20. To select initial users, MII is employed. The same test set is used. After 

computing overall averages, final outcomes are demonstrated in Table 4.2 for 

both data sets.  

 Although the results are very similar for all s values, after comparing 

overall performances in terms of MAEs and NMAEs, 3 and 2 as optimum values 

of s are decided to be selected for Jester and MLP, respectively. In the following 

experiments, they are used as optimum s values. Note that s values determine 

which similar users‟ data to be used for prediction generation. However, as seen 
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from Table 4. 2, schemes are robust against various s values and are able to 

provide high quality referrals based on different s values. 

Table 4. 2 Overall Performance with Varying s Values 

 Jester 

s 1 2 3 4 5 

MAE 3.6694 3.6721 3.6576 3.6356 3.6637 

NMAE 0.1960 0.1942 0.1929 0.1940 0.1943 

 MLP 

s 1 2 3 4 5 

MAE 0.8746 0.8504 0.8676 0.8755 0.8645 

NMAE 0.2376 0.2383 0.2370 0.2431 0.2308 

 

Experiment 4.5.1.3.: Then trials are executed to determine the best value 

of k. Although there have been experiments run to determine k in the literature, it 

might take different values for different applications. k is varied from 10 to 40, 

where MII is used to decide the initial users.  The optimum values of s and N are 

used for both data sets. Since the results are similar for both data sets, results are 

showed  in Table 4. 3 for Jester only. 

 As seen from Table 4.3, T improves with increasing k values because it 

takes less time to find the initial user. Number of users in each cluster decreases 

with increasing k. Accuracy becomes better with increasing k from 10 to 25, 

however, it worsens after that. The similar results are obtained for MLP, as well. 

Therefore, 25 is selected as optimum value of k for both data sets.  

 Table 4. 3 Overall Performance with Varying k Values 

k 10 15 20 25 30 35 40 

MAE 3.6697 3.6602 3.6576 3.6207 3.6584 3.6705 3.6819 

NMAE 0.1941 0.1931 0.1929 0.1894 0.1956 0.1959 0.1981 

T 7.0660 6.8775 6.6216 6.4972 6.4394 6.3595 6.2823 

 

Experiment 4.5.1.4.: After showing affects of N, s, and k values; and 

determining their optimum values, experiments are performed to show how 

different initial user selection methods affect results. Trials are executed for all 

three methods and displayed the final outcomes in Table 4.4, where the optimum 

values of N, s, and k are employed. 

 As seen from Table 4.4, T takes different values for different initial user 

selection methods. There are various reasons for this case. The most important 
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factor determining T is the initial user selection method. As seen from Table 4, T 

is the best for MIII for both data sets because it takes the least time to select the 

initial user. In MIII, the initial user can be determined off-line. T is better for MI 

than for MII because the initial user in MI is randomly selected. However, to 

determine the initial user using MII, the similarities between a and each user in 

a‟s cluster are found. Although T is the worst for MII, it achieves the best 

accuracy compared to other methods. Therefore, MII is selected as the best 

method to decide the initial users.  

Table 4. 4 Overall Performances with Various Initial User Selection Methods 

 Jester MLP 

 MI MII MIII MI MII MIII 

MAE 3.7662 3.6207 3.7277 0.8816 0.8472 0.8695 

NMAE 0.1950 0.1894 0.2064 0.2506 0.2376 0.2427 

T 5.9046 6.4972 5.8671 6.7623 6.7841 6.7612 

 

 After determining the optimum values for N, s, and k; and deciding the 

best initial user selection method, experiments are performed to compare  

proposed algorithm with the conventional algorithm (called Base Algorithm) 

proposed by Herlocker et al. [25]. The same train and the test sets for both data 

sets are used for both algorithms. Experiments are performed and displayed the 

overall average outcomes  in Table 4. 5.  

Table 4. 5. Proposed Algorithm (A1) vs. Base Algorithm (A2) 

 Jester MLP 

 A1 A2 A1 A2 

MAE 3.6207 3.4975 0.8472 0.8458 

NMAE 0.1894 0.2075 0.2376 0.2450 

T 6.4972 15.234 6.7841 34.901 

  

As seen from Table 4.5, proposed scheme is much better than the 

conventional algorithm in terms of T. Since  scheme is a hybrid- memory and 

model-based, algorithm, some computations are conducted off-line.  Algorithm is 

2.34 and 5.14 times faster than the A2 for Jester and MLP, respectively. For MLP,  

scheme is almost as good as the A2 in terms of MAE and NMAE. Although  

scheme has worse performance than the A2 in terms of accuracy,  scheme is still 

able to generate high quality recommendations. Online time required to offer 
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many recommendations to many customers is vital for the success of both the CF 

systems and e-commerce sites. Therefore, using  proposed scheme provides 

competitive edge to those sites using it over the ones using the conventional 

algorithms.  

      4.5.2. Experiments for Evaluating New Algorithm with Privacy 

Privacy protection measures affect the quality of predictions. Due to 

random numbers added to true data, accuracy is expected to become worse. To 

show how privacy-preserving measures affect accuracy, experiments are 

performed. In these trials, the optimum values of N, s, and k are used; and 

employed the best method to select initial users. There are various privacy factors 

that might affect accuracy. Several experiments have been conducted by Polat 

[48] to show their effects on accuracy. With increasing available data or number 

of best users (N), the quality of referrals computed with privacy concerns slightly 

improves. Since randomness increases with increasing level of perturbation, 

accuracy lessens with increasing σ. Using uniform or Gaussian distributions to 

generate random numbers gives similar results. The effects of number of cells to 

be masked have been also investigated. It is wanted to be shown how much 

accuracy goes down due to privacy concerns while generating predictions using  

scheme, rather than showing how various privacy factors affects accuracy. Thus, 

the following trials are executed: 

Experiment 4.5.2.: Trials are performed using both data sets. For data 

disguising, random numbers are generated using Gaussian distribution with μ 

being 0 and σ being 1 and 2. Random numbers are added to randomly selected 

50% and 25% of the cells in each user‟s ratings vector for Jester and MLP, 

respectively. Since different random numbers are generated each time, data 

disguising is executed 100 times. After calculating overall averages,are displayed 

in Table 4.6. 

Table 4. 6. Overall Performance of Privacy-Preserving Schemes 

 Jester MLP 

 Original 

Data 

Perturbed Data Original 

Data 

Perturbed Data 

 σ = 1 σ = 2 σ = 1 σ = 2 

MAE 3.6207 3.7164 4.2133 0.8472 0.9033 0.9924 

NMAE 0.1894 0.1976 0.2144 0.2376 0.2379 0.2509 
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As seen from Table 4.6, accuracy becomes worse for both data sets when 

data is disguised. However,  results on perturbed data are still promising 

compared to the results on original data. It is still possible to generate 

recommendations with decent accuracy using  scheme without jeopardizing users‟ 

privacy. As expected, the results worsen with increasing σ values due to escalating 

randomness. When σ is 1, the accuracy losses due to privacy measures are 2.6% 

and 6.6% for Jester and MLP, respectively. 

How privacy affects the quality of recommendations are showed by 

running trials. Privacy protection measures introduce additional costs. Such costs 

might be extra storage, communication, or computation costs. Due to privacy 

concerns,  schemes do not cause any supplementary storage costs. Since off-line 

costs are not critical, online extra communication and computation costs are 

investigated. The users are able to normalize their ratings and mask them off-line 

based on their privacy concerns. Since users might insert bogus data into their 

empty cells, more data is involved in the scalar product and the sum 

computations. However, the server is able to provide predictions from masked 

data without conducting extra work to get rid of the effects of random data. 

Therefore, it can be said that the online additional computation costs are 

negligible. Although privacy concerns do not increase the number of 

communications required to generate referrals online, the amount of data to be 

sent off-line increases because random numbers are added to both ratings and 

empty cells. In conclusion, supplementary costs due to privacy concerns are 

negligible. 

 Proposed schemes should protect users‟ including active users‟ privacy. 

The server wants to learn the true ratings and rated items. However, since users 

disguise their z-scores instead of true ratings, it becomes difficult for the server 

deriving ratings from masked z-scores, because it does not know the mean ratings 

and the standard deviations of ratings. The server can guess the distribution of 

random numbers with probability ½ for one user. It also needs to guess the 

standard deviations of random numbers because users select them uniformly 

randomly over a range let say [0, σr]. The server can guess them in an interval. If 
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the interval length L is called, then the probability of guessing the correct interval 

for the server is 1 out of L/σr for one user. After guessing the distributions and the 

standard deviations of random numbers, it should guess the disguised number of 

cells and the masked cells. Note that there are m items. Suppose that a user u has 

rated mur items and the remaining mue = m – mur items are not rated. Assume that 

she decides to hide xu% of her empty cells besides masking all of her ratings and 

the number of empty cells in the masked data vector is m
’
u. For one user, the 

probability of guessing the correct xu is 1 out of (98 – (m
’
u/m) * 100), assuming 

that each user has rated at least two items. After guessing xu, the server can find 

out mue. Then the probability of guessing the masked empty cells for one user is 1 

out of 
'

'
u

uue

mm

mm
C




, where f

gC represents the number of ways picking g unordered 

outcomes from f possibilities. The users can decide the parameters of data 

perturbation on how much accuracy and privacy they want. The privacy level 

introduced by random numbers can be calculated using the formula given by 

Agrawal and Aggarwal [3]. They propose a privacy measure, which takes into 

account the distribution of original data, based on the differential entropy of a 

random variable. Uniform and Gaussian random number distributions produce 

similar privacy levels. For Gaussian distribution with σ being 1, the privacy level 

is 2.9222, while it is 3.6962 when σ being 2. For a general random variable X, the 

privacy level denotes the length of the interval, over which a uniformly distributed 

random variable has the same uncertainty as X.  

4.6. Conclusions 

A new algorithm is presented to generate accurate recommendations 

efficiently. New algorithm is a hybrid- memory and model-based, algorithm. It 

takes advantage of both memory and model-based CF algorithms. As seen from 

real data-based trials results, the time required to offer many referrals using  the 

proposed scheme is much less than the one using the conventional algorithm. It is 

imperative to provide many predictions to many customers in a limited time. New 

algorithm helps e-commerce sites achieve such goal. In terms of accuracy,  

method is almost as good as the conventional ones. By sacrificing little on 

accuracy, e-commerce sites are able to improve T if they use  scheme. The 
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proposed scheme introduces extra storage cost because trees are created for each 

user and store them to improve the online time. Since time rather than storage cost 

is the major concern, time is improved by introducing extra storage cost. How to 

achieve predictions on  algorithm while preserving users‟ privacy is also 

investigated. It is shown that it is still possible to generate accurate referrals on  

scheme without jeopardizing users‟ privacy. Scheme does not introduce additional 

costs due to privacy concerns. In conclusion, e-commerce sites can use  proposed 

scheme to offer accurate referrals efficiently while preserving users‟ privacy in 

order to increase their sales and profits. It is believed that customers will prefer 

those sites providing accurate predictions efficiently without violating their 

privacy. 
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5. CONCLUSIONS AND FUTURE WORK 

In this thesis, firstly, it is shown that it is possible to provide predictions 

based on horizontally or vertically distributed HMMs between two parties without 

violating their privacy. In addition to preserving privacy, providing predictions 

with decent accuracy efficiently is also imperative for the success of HMMs. 

Therefore, the proposed schemes are analyzed in terms of accuracy and 

performance. Fortunately, distributed HMMs-based schemes with privacy 

accomplish the same accuracy as the ones without privacy concerns. On the other 

hand, performance decreases with privacy concerns because privacy, accuracy, 

and efficiency are inversely proportional. Although horizontally or vertically 

distributed HMMs are investigated, such model partition might be hybrid. It is 

more likely that the proposed schemes can be modified in such a way to provide 

predictions on hybrid distributed HMMs with privacy. There still remains work to 

be done to study hybrid distributed HMMs-based forecasting with privacy. 

Although two-party schemes are scrutinized only, the model might be partitioned 

among more than two parties. The proposed schemes can be expanded to multi-

party schemes. In that case, communication bottlenecks will become a major 

issue. How the proposed schemes can be expanded to multi-party methods should 

be deeply explored.  

Secondly, distributed HMMs-based prediction with privacy is presented. Only 

horizontal or vertical partition are considered. The partition might be hybrid. How 

to provide similar HMM-based services will be studied when the model is hybrid 

distributed between two parties without jeopardizing the model owners' privacy. 

Although it is assumed that the model is partitioned between two parties, it might 

be distributed between more than two parties. Proposed solutions can be extended 

to multi-party schemes. However, detail analysis should be done and solutions 

should be proposed to overcome the bottlenecks that might occur in multi-party 

schemes. 

Finally, a new algorithm is presented to generate accurate 

recommendations efficiently. The algorithm is a hybrid (memory- and model-

based) algorithm. It takes advantage of both memory- and model-based CF 

algorithms. As seen from real data-based trials results, the time required to offer 
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many referrals using the proposed scheme is much less than the one using the 

conventional algorithm. It is imperative to provide many predictions to many 

customers in a limited time. In terms of accuracy, the new method is almost as 

good as the conventional one. The proposed scheme introduces extra storage costs 

because it needs to create trees for each user and stores them to improve online 

time. Since time rather than storage cost is the major concern, time is improved by 

introducing extra storage cost. How to achieve predictions based on the new 

algorithm while preserving users‟ privacy is also investigated. It is shown that it is 

still possible to generate accurate referrals using the new scheme without 

jeopardizing users‟ privacy. Whether further improvements can be done to the 

proposed scheme or not should be deeply investigated. Moreover, how to improve 

accuracy while conducting different memory-based algorithms to calculate 

predictions after finding the model should also be investigated.   
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