

DESIGN AND IMPLEMENTATION
OF A TCP/IP STACK FOR GEEKOS

OPERATING SYSTEM

Alper BĐLGE
Master of Science Thesis

Computer Engineering Program

June, 2008

JÜRĐ VE ENSTĐTÜ ONAYI

Alper Bilge’nin “GeekOS işletim sistemi için TCP/IP yığını tasarımı ve

gerçekleştirilmesi ” başlıklı Bilgisayar Mühendisliği Anabilim Dalındaki, Yüksek

Lisans Tezi 27.06.2008 tarihinde, aşağıdaki jüri tarafından Anadolu Üniversitesi

Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca

değerlendirilerek kabul edilmiştir.

 Adı-Soyadı Đmza

Üye (Tez Danışmanı): Yard. Doç. Dr. CÜNEYT AKINLAR …..……….

Üye : Yard. Doç. Dr. EMĐN GERMEN …..……….

Üye : Yard. Doç. Dr. HÜSEYĐN POLAT ..………….

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun

……………… tarih ve ………… sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

i

ABSTRACT

Master of Science Thesis

DESIGN AND IMPLEMENTATION OF A TCP/IP STACK FOR GEEKOS
OPERATING SYSTEM

Alper BĐLGE

Anadolu University
Graduate School of Sciences

Computer Engineering Program

Supervisor: Assist. Prof. Dr. Cüneyt AKINLAR
 2008, 74 pages

GeekOS is a tiny and simple operating system that was designed at the

University of Maryland to show undergraduate students the fundamentals of

operating systems. GeekOS was implemented and extended as a senior project at

Anadolu University in 2006, and the new kernel was named OSman. While

preserving the basic functionality available in GeekOS, OSman incorporates

additional features such as multi-programming support, VESA graphics device

driver, and a PCI Device Driver System Base.

Despite having many nice features, the current version of OSman lacked

crucial networking support. The goal of this thesis was to add a sample Ethernet

device driver and a TCP/IP Protocol stack implementation so that networked

applications can be deployed in a machine running OSman. Realtek RTL8139 is used

as the network interface card (NIC) for this thesis, and a standards-compliant, five-

layer TCP/IP protocol stack is implemented on top of the designed device driver.

To demonstrate the capabilities of the developed Ethernet device driver and

the TCP/IP, a popular client-server network game called tic-tac-toe is implemented.

This game shows the communication between two computers one running OSman

and the other running in Windows XP.

Keywords: OSman, GeekOS, Operating Systems, Network Interface Card Driver,

PCI Device Driver, TCP/IP Protocol Stack.

ii

ÖZET

Yüksek Lisans Tezi

GEEKOS ĐŞLETĐM SĐSTEMĐ ĐÇĐN TCP/IP YIĞINI TASARIMI VE
GERÇEKLEŞTĐRĐLMESĐ

Alper BĐLGE

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yard. Doç. Dr. Cüneyt AKINLAR
 2008, 74 sayfa

GeekOS Maryland Üniversitesi’nde lisans öğrencilerine işletim sistemleri

temellerini göstermek üzere tasarlanmış küçük ve basit bir işletim sistemidir. GeekOS

2006 yılında Anadolu Üniversitesi’nde bir bitirme projesi olarak gerçekleştirildi ve

genişletildi. Bu yeni geliştirilen işletim sistemi çekirdeğine OSman adı verildi.

OSman’ın GeekOS’in temel işlemleri yanında çoklu-programlama, VESA grafik kart

sürücü desteği ve PCI Aygıt Sürücü Sistem Tabanı gibi ek fonksiyonları vardır.

OSman bir sürü güzel özelliğe sahip olmasına rağmen çok önemli ağ

desteğine sahip değildi. Bu tezin amacı OSman’a bir Ethernet ağ sürücüsü ve TCP/IP

yığını ekleyerek ağ üzerinden haberleşebilen uygulamalar geliştirilmesine olanak

sağlamaktır. Ağ Ara Yüz Kartı olarak Realtek RTL8139 Ethernet kartı seçilmiş ve

işletim sistemi üzerine bir ağ aygıt sürücüsü yazılımı gerçeklenmiştir.

Gerçekleştirilen ağ aygıt sürücüsü üzerine standartlara uygun, beş parçadan oluşan bir

TCP/IP yığını geliştirilmiştir.

Son olarak tüm sistemin çalıştığını göstermek üzere bir istemci-sunucu

uygulama programı, cüz oyunu, yazılmıştır. Bu oyun, biri üzerinde OSman diğeri

Windows XP çalışan iki bilgisayarın arasındaki iletişimi göstermektedir.

Anahtar Kelimeler: OSman, GeekOS, Đşletim Sistemleri, Ağ Ara Yüz Kartı

Sürücüsü, PCI Aygıt Sürücüsü, TCP/IP Protokol Yığını

iii

ACKNOWLEDGEMENTS

 I would like to thank my advisor Assist. Prof. Dr. Cüneyt AKINLAR for his

patience and support during this study. It was my pleasure to work with him during

my thesis. I would like to thank to my dear friend Serhan GÜRMERĐÇ for his

scientific support and inspiration. I would also like to thank my family and my dear

Deniz ERĐK. Without their incorporeal support, I would not complete this thesis.

Alper Bilge

June, 2008

iv

CONTENTS

ABSTRACT.. i

ÖZET..ii

ACKNOWLEDGEMENTS...iii

CONTENTS.. iv

LIST OF TABLES ..vii

LIST OF FIGURES ...viii

1. INTRODUCTION ... 1

1.1 What Is GeekOS?.. 1

1.2 What Is OSman? ... 2

1.2.1 Multi-programming... 2

1.2.2 VESA standard.. 3

1.2.3 Enhanced multiple device supported boot sector code 4

1.3 What Is A Network Interface Card and Realtek RTL8139? 4

1.4 What Is A Device Driver?... 6

1.5 What Is A Protocol Stack? .. 7

2. OSman PCI DRIVER SYSTEM .. 9

2.1 PCI Configuration Space... 9

2.2 OSman Interrupt Handler System ... 11

2.3 RTL8139 NIC Driver.. 12

2.3.1 PCI Configuration space functions ... 15

v

2.3.2 RTL8139 Register descriptions .. 24

2.3.3 RTL8139 Interrupt handler ... 36

2.3.4 RTL8139 Transmit operation.. 36

2.3.5 RTL8139 Receive operation ... 36

3. DESIGN AND REALIZATION OF TCP/IP STACK 38

3.1 OSI Model... 38

3.2 TCP/IP Model ... 39

3.2.1 Architectural principles... 40

3.2.2 Layers in the TCP/IP model.. 41

3.3 Physical Layer... 42

3.4 Implementation of the Packet Structures and Functions In Stack............... 43

3.5 Data Link Layer .. 46

3.6 Implementation of the Data Link Layer.. 46

3.7 Network Layer .. 47

3.8 Implementation of the Network Layer.. 48

3.9 Transport Layer... 56

3.10 Implementation of Transport Layer .. 58

3.11 Application Layer.. 61

3.12 Implementation of Application Layer... 61

3.12.1 Tic-tac-toe game.. 61

3.12.2 Structure of client/server application .. 62

vi

4. CONCLUSIONS AND FUTURE WORK... 64

REFERENCES.. 65

vii

LIST OF TABLES

2.1 PCI configuration space table …………………………………………..……...15

2.2 Configuration space command register ……………………………………..…17

2.3 Configuration space status register ………………………………………….....19

2.4 Configuration space IOAR register ………………………………………..…..20

2.5 Configuration space MEMAR register …………………..…………………….20

2.6 Configuration space CISPtr register bits 2-0 ………………………………..…21

2.7 Configuration space CISPtr register address space offset values …………..….21

2.8 Configuration space BMAR register ………………………………………..…22

2.9 Receive status register ………………………………………………………....25

2.10 Transmit status register …………………………….………………………..…26

2.11 Command register ………………………………….……………………..……27

2.12 Interrupt mask register …………………………….………………………..….28

2.13 Interrupt status register …………………………….………………………..…29

2.14 Transmit configuration register …………………….………..………………...30

2.15 Receive configuration register …………………….………………..………….32

3.1 Address resolution protocol packet structure …….…………………………....48

3.2 Internet protocol packet structure ……………………………………………...50

3.3 Option bits in IP header ……………………………………………………......54

3.4 User datagram protocol header …………………………..………………….…58

viii

LIST OF FIGURES

1.1 GUI supported welcome screen of OSman ………………………………………3

1.2 PCI device detection sequence of OSman …………………………………….….4

2.1 Standard registers of PCI configuration space ……………………………………9

2.2 Block diagram of RTL8139 NIC …………………………………………….….13

3.1 Network connections over two routers and corresponding stack layers ………...40

3.2 Packet encapsulation over layers for a UDP packet ………………………….....41

3.3 A sequence of tic-tac-toe game ………………………………………………….61

3.4 UDP packet receiving and printing in OSman ………………………………….62

3.5 A game sequence in GUI platform of OSman …………………………………..62

1

1. INTRODUCTION

A tiny operating system, called GeekOS, which is designed for undergraduate

students at the University of Maryland in USA, is implemented with a large number

of enhancements as a senior project at Anadolu University in 2006. This newly

developed operating system kernel is called OSman, and has the capability to run on

real hardware.

While OSman has many features such as multi-programming support, a PCI

Device Driver System Base and a simple GUI, it lacks communication support. The

goal of this thesis is to add a standards-compliant TCP/IP stack implementation to

OSman so that applications running on top of OSman would be able to communicate

with the world via a network interface card (NIC). For this purpose, an Ethernet card

is used since Ethernet is the most widely used NIC in the networking community. As

there are many Ethernet cards on the market, one of the most favorite Ethernet cards,

Realtek RTL8139, is chosen in this thesis, and a network device driver for OSman is

implemented.

Since a network driver is not enough for networked communication with the

Internet, OSman also needs a TCP/IP protocol stack. For this purpose, a standard-

compliant, five-layer TCP/IP stack is developed on top of the Ethernet driver.

1.1 What Is GeekOS?

GeekOS is a tiny operating system kernel for x86 PCs. Its main purpose is to

serve as a simple but realistic example of an OS kernel running on real hardware.

The goal of GeekOS is to be a tool for learning about operating system

kernels. It comes with a set of projects suitable for use in an undergraduate operating

systems course, or for self-directed learning. GeekOS has been used in courses at a

number of colleges and universities [20]. The following list summarizes GeekOS's

features:

2

• Interrupt Handling

• Heap Memory Allocator

• Time-Sliced Kernel Threads With Static-Priority Scheduling

• Mutexes And Condition Variables For Synchronization Of Kernel Threads

• User Mode With Segmentation-Based Memory Protection And A Simple

System Call Interface

• Device Drivers For Keyboard And VGA Text Mode Display

1.2 What Is OSman?

OSman is a GeekOS based project which is started at Anadolu University as a

senior project. Although it is a GeekOS based operating system project, it has

extended features over GeekOS. The following list summarizes the main differences

of OSman over GeekOS:

• Real Multi-Programming System over CPU

• High Resolution VESA Graphic Card Driver

• Virtual x86 Mode Support

• Enhanced Multiple Device Supported Boot Sector Code

• New EDD Based Disk Drive Support

• PCI Driver System Base Implementation

• MFC like Event Table Based GUI System (Dream) (Figure 1.1)

• PCI Device Detection (Figure 1.2)

• True Type Font Support

• New Heap Management System

• Cross Platform gcc and g++ Port for OSman

1.2.1 Multi-programming

Multitasking is a method by which multiple tasks, also known as processes,

share common processing resources such as a CPU. In the case of a computer with a

3

single CPU, only one task is said to be running at any point in time, meaning that the

CPU is actively executing instructions for that task. Multitasking solves the problem

by scheduling which task may be the one running at any given time, and when

another waiting task gets a turn. The act of reassigning a CPU from one task to

another one is called a context switch. When context switches occur frequently

enough, the illusion of parallelism is achieved. Even on computers with more than

one CPU (called multiprocessor machines), multitasking allows many more tasks to

be run than there are CPUs [18].

Figure 1.1 GUI supported welcome screen of OSman

1.2.2 VESA standard

The VBE Standard defines a set of extensions to the VGA ROM BIOS

services. These extensions also provide a hardware-independent mechanism to obtain

4

vendor information and serve as an extensible foundation. The purpose of the VESA

VBE is to provide standard software support for the many unique implementations of

Super VGA (SVGA) graphics controllers on the PC platform that provides features

beyond the original VGA hardware standard [21].

1.2.3 Enhanced multiple device supported boot sector code

With the enhancement of boot sector code, multiple device boot is enabled

with OSman. While GeekOS can only be booted by a floppy drive, OSman is able to

boot from a floppy drive as well as a hard disk drive, CD, or a USB device with one

boot sector code.

Figure 1.2 PCI Device detection sequence of OSman

1.3 What Is A Network Interface Card and Realtek RTL8139?

A network card, network adapter, LAN Adapter or Network Interface Card

(NIC) is a piece of computer hardware designed to allow computers to communicate

5

over a computer network. It is both an OSI layer 1 (physical layer) and layer 2 (data

link layer) device, as it provides physical access to a networking medium and

provides a low-level addressing system through the use of MAC addresses. It allows

users to connect to each other either by using cables or wirelessly [18].

Although other network technologies exist, Ethernet has achieved near-

ubiquity since the mid-1990s. Every Ethernet network card has a unique 48-bit serial

number called a MAC address, which is stored in ROM carried on the card. Every

computer on an Ethernet network must have a card with a unique MAC address. No

two cards ever manufactured share the same address. This is accomplished by the

Institute of Electrical and Electronics Engineers (IEEE), which is responsible for

assigning unique MAC addresses to the vendors of network interface controllers [1].

Whereas network cards used to be expansion cards that plug into a computer

bus, the low cost and ubiquity of the Ethernet standard means that the newest

computers have a network interface built into the motherboard. These either have

Ethernet capabilities integrated into the motherboard chipset, or implemented via a

low cost dedicated Ethernet chip, connected through the PCI. A separate network

card is not required unless multiple interfaces are needed or some other type of

network is used. Newer motherboards may even have dual network (Ethernet)

interfaces built-in.

The card implements the electronic circuitry required to communicate using a

specific physical layer and data link layer standard such as Ethernet or token ring.

This provides a base for a full network protocol stack, allowing communication

among small groups of computers on the same LAN and large-scale network

communications through routable protocols, such as IP [18].

There are four techniques used to transfer data, the NIC may use one or more

of these techniques.

• Polling is where the microprocessor examines the status of the peripheral

under program control.

• Programmed I/O is where the microprocessor alerts the designated peripheral

by applying its address to the system's address bus.

6

• Interrupt-driven I/O is where the peripheral alerts the microprocessor that it's

ready to transfer data (the technique which is used in this thesis).

• DMA is where the intelligent peripheral assumes control of the system bus to

access memory directly. This removes load from the CPU but requires a

separate processor on the card.

A network card typically has a twisted pair, BNC, or AUI socket where the

network cable is connected, and a few LEDs to inform the user of whether the

network is active, and whether or not there is data being transmitted on it. Network

Cards are typically available in 10/100/1000 Mbit/s varieties. This means they can

support a transfer rate of 10, 100 or 1000 Megabits per second.

Realtek manufactures and sells a wide variety of products throughout the

world, and its product lines can be broadly categorized into two subdivisions:

Communications Network ICs, and Computer Peripheral and Multimedia ICs.

Included among the communications network IC products manufactured and

provided by Realtek are: network interface controllers, (both the traditional 10/100M

Ethernet controllers and the more advanced Gigabit Ethernet controllers), physical

layer controllers, network switch controllers, gateway controllers, wireless LAN ICs,

as well as ADSL router controllers. In particular, the RTL8139 series 10/100M Fast

Ethernet controllers met their height during the late 90’s, and continued to take up a

significant and eventually predominant share in the worldwide market in the

following years.

Realtek's single-chip fast Ethernet controller, the RTL8139, receives "Best

Component" and "Best of Show" awards at Computex-Taipei '97 [18].

1.4 What Is A Device Driver?

A device driver is a computer program allowing higher-level computer

programs to interact with a device. A driver typically communicates with the device

through the computer bus or communications subsystem to which the hardware is

connected. When a calling program invokes a routine in the driver, the driver issues

7

commands to the device. Once the device sends data back to the driver, the driver

may invoke routines in the original calling program. Drivers are hardware-dependent

and operating system specific. They usually provide the interrupt handling required

for any necessary asynchronous time-dependent hardware interface.

A device driver simplifies programming by acting as a translator between a

device and the applications or operating systems that use it. The higher-level code can

be written independently of whatever specific hardware device it may control. Every

version of a device, such as a printer, requires its own specialized commands. In

contrast, most applications access devices (such as sending a file to a printer or

sending packet to network) by using high-level, generic commands. The driver

accepts these generic statements and converts them into the low-level commands

required by the device [13, 14].

Device drivers can be abstracted into logical and physical layers. Logical

layers process data for a class of devices such as Ethernet ports or disk drives.

Physical layers communicate with specific device instances. For example, a serial

port needs to handle standard communication protocols such as XON/XOFF that are

common for all serial port hardware. This would be managed by a serial port logical

layer. However, the logical layer needs to communicate with a particular serial port

chip. The physical layer addresses these chip specific variations. Conventionally, OS

requests go to the logical layer first. In turn, the logical layer calls upon the physical

layer to implement OS requests in terms understandable by the hardware. Inversely,

when a hardware device needs to respond to the OS, it uses the physical layer to

speak through the logical layer [5].

1.5 What Is A Protocol Stack?

A protocol stack is a particular software implementation of a computer

networking protocol suite. The terms are often used interchangeably. Strictly

speaking, the suite is the definition of the protocols, and the stack is the software

implementation of them [10].

8

Individual protocols within a suite are often designed with a single purpose in

mind. This modularization makes design and evaluation easier. Because each

protocol module usually communicates with two others, they are commonly imagined

as layers in a stack of protocols. The lowest protocol always deals with "low-level",

physical interaction of the hardware. Every higher layer adds more features. User

applications usually deal only with the topmost layers.

In practical implementation, protocol stacks are often divided into three major

sections: media, transport, and applications. A particular operating system or platform

will often have two well-defined software interfaces: one between the media and

transport layers, and one between the transport layers and applications.

The media-to-transport interface defines how transport protocol software

makes use of particular media and hardware types. For example, this interface level

would define how TCP/IP transport software would talk to Ethernet hardware [10].

The application-to-transport interface defines how application programs make

use of the transport layers. For example, this interface level would define how a web

browser program would talk to TCP/IP transport software. Examples of these

interfaces include Berkeley sockets and System V streams in the UNIX world, and

Winsock in the Microsoft world [2].

9

2. OSman PCI DRIVER SYSTEM

OSman operating system provides necessary functions to build PCI drivers,

such as low level PCI configuration reading and writing functions. OSman has also a

PCI device list which enables the detection of PCI devices connected to the system.

Therefore it creates an environment to develop drivers for PCI cards such as network

interface cards, graphic cards, and sound cards etc.

2.1 PCI Configuration Space

One of the major improvements Peripheral Component Interconnect (PCI)

had over other I/O architectures was its configuration mechanism. In addition to the

normal memory-mapped and port spaces, each device on the bus has a configuration

space. This is 256 bytes that are addressable by knowing the 8-bit PCI bus, 5-bit

device, and 3-bit function numbers for the device. This allows up to 256 buses, each

with up to 32 devices, each supporting 8 functions. A single PCI expansion card can

respond as a device and must implement at least number zero function. The first 64

bytes of configuration space are standardized. Standard registers of PCI

Configuration Space is shown Figure 2.1.

In order to allow more parts of configuration space to be standardized without

conflicting with existing uses, there is a list of capabilities. Each capability has one

byte that describes which capability it is, and one byte to point to the next capability.

The number of additional bytes depends on the capability ID.

PCI-X 2.0 and PCI Express introduced an extended configuration space, up to

4096 bytes. The only standardized part of extended configuration space is the first 4

bytes at 0x100 which are the start of an extended capability list. Extended capabilities

are very much like normal capabilities except that they can refer to any byte in the

extended configuration space (by using 12 bits instead of 8), have a 4-bit version

number and a 16-bit capability ID. Extended capability IDs overlap with normal

capability IDs, but there is no chance of confusion as they are in separate lists [5].

10

The Vendor ID and Device ID registers identify the device, and are commonly

called the PCI ID. The 16-bit vendor ID is allocated by the PCI SIG. The 16-bit

device ID is then assigned by the vendor. There is an ongoing project to collect all

known Vendor and Device IDs.

The Subsystem Vendor ID and the Subsystem Device ID further identify the

device. The Vendor ID is that of the chip manufacturer, and the Subsystem Vendor

ID is that of the card manufacturer. The Subsystem Device ID is assigned by the

subsystem vendor, but is assigned from the same number space as the Device ID.

The Command register contains a bitmask of features that can be individually

enabled and disabled.

The Status register is used to report which features are supported and whether

certain kinds of error have occurred.

The Cache Line Size register must be programmed before the device is told it

can use the memory-write-and-invalidate transaction. This should normally match the

CPU's cache line size, but the correct setting is system dependent [5, 18].

Figure 2.1 Standard registers of PCI configuration space [18]

11

In order to address a device through port space or memory space, system

firmware or the OS will program the Base Address Registers (commonly called

BARs) by writing configuration commands to the PCI controller. Since all PCI

devices are in an inactive state upon system boot, they do not have any addresses

assigned to them by which the operating system or device drivers can communicate

with them. Either the BIOS or the operating system itself geographically addresses

the PCI slots through the PCI controller. Since there is no direct method for the BIOS

or OS to determine which PCI slots have devices and which functions they

implement, the PCI bus must be enumerated. Bus enumeration is performed by

attempting to read the VID/DID for each combination of bus, device, and function. If

there is no device that implements the specified function, the bus master performs an

abort and returns all 1's in binary (F's in hexadecimal). This is an invalid VID/DID so

the BIOS or OS know the specified device does not exist. If a read to function zero of

specified bus/device master aborts, then it is assumed that no such device exists on

the bus since devices are required to implement function number zero. In this case

reads to the remaining functions are not necessary.

When a read to a specified BDF succeeds, the BIOS or OS programs the

memory and port addresses into the PCI devices' on-chip memory. These addresses

stay valid as long as the system remains turned on. On power off, all these settings

are lost and on the next system boot, the configuration procedure is repeated all over

again. Since this entire process is fully automated, the computer user is spared the

task of configuring any newly added hardware manually by modifying settings of dip

switches on the cards themselves. This is how plug and play is implemented [5].

Each non-bridge device can implement up to 6 BARs, each of which can

respond to certain areas of port or memory space. A device can have a ROM.

2.2 OSman Interrupt Handler System

An interrupt handler, also known as an interrupt service routine (ISR), is a

callback subroutine in an operating system or device driver whose execution is

12

triggered by the reception of an interrupt. Interrupt handlers have a variety of

functions, which vary based on the reason the interrupt was generated and the speed

at which the Interrupt Handler completes its task.

An interrupt handler is a low-level counterpart of event handlers. These

handlers are initiated by either hardware interrupts or interrupt instructions in

software, and are used for servicing hardware devices and transitions between

protected modes of operation such as system calls [5, 18].

OSman has a very simple interrupt number and handler connection function.

It is really easy to connect an IRQ number with a standard C function by

Install_IRQ(IRQ#, &Foo) function and control of interrupt by

Enable_IRQ(IRQ#) and Disable_IRQ(IRQ#) functions.

2.3 RTL8139 NIC Driver

The Realtek RTL8139C is a highly integrated and cost-effective single-chip

Fast Ethernet controller that provides 32-bit performance, PCI bus master capability,

and full compliance with IEEE 802.3u 100Base-T specifications and IEEE 802.3x

Full Duplex Flow Control. It also supports Advanced Configuration Power

management Interface (ACPI), PCI power management for modern operating systems

that are capable of Operating System Directed Power Management (OSPM) to

achieve the most efficient power management possible. The RTL8139C is suitable

for applications such as CardBus or mobile devices with a built-in network controller.

The CIS data can be stored in either a 93C56 EEPROM or expansion ROM. The

block diagram of RTL8139 is shown in Figure 2.2.

In addition to the ACPI feature, the RTL8139C also supports remote wake-up

(including AMD Magic Packet, LinkChg, and Microsoft wake-up frame) in both

ACPI and APM environments. The RTL8139C is capable of performing an internal

reset through the application of auxiliary power. When auxiliary power is on and the

main power remains off, the RTL8139C is ready and waiting for the Magic Packet or

Link Change to wake the system up. Also, the LWAKE pin provides 4 different

13

output signals including active high, active low, positive pulse, and negative pulse.

The versatility of the RTL8139C LWAKE pin provides motherboards with the Wake-

On-LAN (WOL) function. The RTL8139C also supports Analog Auto-Power-down,

that is, the analog part of the RTL8139C can be shut down temporarily according to

user requirements or when the RTL8139C is in a power down state with the wakeup

function disabled. In addition, when the analog part is shut down and the IsolateB pin

is low (i.e. the main power is off), then both the analog and digital parts stop

functioning and power consumption of the RTL8139C will be negligible. The

RTL8139C also supports an auxiliary power auto-detect function, and will auto-

configure related bits of their own PCI power management registers in PCI

configuration space.

The PCI Vital Product Data (VPD) is also supported to provide the

information that uniquely identifies hardware (i.e., the RTL8139C LAN card). The

information may consist of part number, serial number, and other detailed

information.

To provide cost down support, the RTL8139C is capable of using a 25MHz

crystal or OSC as its internal clock source.

The RTL8139C keeps network maintenance costs low and eliminates usage

barriers. It is the easiest way to upgrade a network from 10 to 100Mbps. It also

supports full-duplex operation, making 200Mbps bandwidth possible at no additional

cost. To improve compatibility with other brands’ products, the RTL8139C is also

capable of receiving packets with InterFrameGap no less than 40 Bit-Time. The

RTL8139C is highly integrated and requires no “glue” logic or external memory. It

includes an interface for a boot ROM and can be used in diskless workstations,

providing maximum network security and ease of management [16, 17].

14

Figure 2.2 Block Diagram of RTL8139 NIC [16]

15

2.3.1 PCI Configuration space functions

The PCI configuration space is intended for configuration, initialization, and

catastrophic error handling functions. The functions of RTL8139C's configuration

space and RTL8139 registers are described below and shown in Table 2.1-15.

VID: Vendor ID. This field will be set to a value corresponding to PCI

Vendor ID in the external EEPROM. If there is no EEPROM, this field will default to

a value of 10ECh which is Realtek Semiconductor's PCI Vendor ID.

DID: Device ID. This field will be set to a value corresponding to PCI Device

ID in the external EEPROM. If there is no EEPROM, this field will default to a value

of 8129h.

Command: The command register is a 16-bit register used to provide coarse

control over a device's ability to generate and respond to PCI cycles. Command

Register’s fields are explained in detail in Table 2.2.

Status: The status register is a 16-bit register used to record status

information for PCI bus related events. Reads to this register behave normally. Writes

are slightly different in that bits can be reset, but not set.

RID: Revision ID Register. The Revision ID register is an 8-bit register that

specifies the RTL8139C controller revision number.

PIFR: Programming Interface Register. The programming interface register is

an 8-bit register that identifies the programming interface of the RTL8139C

controller. Because the PCI version 2.1 specification does not define any specific

value for network devices, PIFR = 00h.

SCR: Sub-Class Register. The Sub-class register is an 8-bit register that

identifies the function of the RTL8139C. SCR = 00h indicates that the RTL8139C is

an Ethernet controller.

BCR: Base-Class Register. The Base-class register is an 8-bit register that

broadly classifies the function of the RTL8139C. BCR = 02h indicates that the

RTL8139C is a network controller.

CLS: Cache Line Size. Reads will return a 0, writes are ignored.

16

Table 2.1 PCI configuration space table [16]

No. Name Type Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

00h R VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0

01h

VID

R VID15 VID14 VID13 VID12 VID11 VID10 VID9 VID8

02h R DID7 DID6 DID5 DID4 DID3 DID2 DID1 DID0

03h

DID

R DID15 DID14 DID13 DID12 DID11 DID10 DID9 DID8

R 0 PERRSP 0 0 - BMEN MEMEN IOEN 04h

W - PERRSP - - - BMEN MEMEN IOEN

R 0 0 0 0 0 0 FBTBEN SERREN 05h

Command

W - - - - - - - SERREN

06h R FBBC 0 0 NewCap 0 0 0 0

R DPERR SSERR RMABT RTABT STABT DST1 DST0 DPD 07h

Status

W DPERR SSERR RMABT RTABT STABT - - DPD

08h Revision

ID

R 0 0 0 0 0 0 0 0

09h PIFR R 0 0 0 0 0 0 0 0

0Ah SCR R 0 0 0 0 0 0 0 0

0Bh BCR R 0 0 0 0 0 0 1 0

0Ch CLS R 0 0 0 0 0 0 0 0

R LTR7 LTR6 LTR5 LTR4 LTR3 LTR2 LTR1 LTR0 0Dh LTR

W LTR7 LTR6 LTR5 LTR4 LTR3 LTR2 LTR1 LTR0

0Eh HTR R 0 0 0 0 0 0 0 0

0Fh BIST R 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 IOIN 10h

W - - - - - - - -

11h R/W IOAR15 IOAR14 IOAR13 IOAR12 IOAR11 IOAR10 IOAR9 IOAR8

12h R/W IOAR23 IOAR22 IOAR21 IOAR20 IOAR19 IOAR18 IOAR17 IOAR16

13h

IOAR

R/W IOAR31 IOAR30 IOAR29 IOAR28 IOAR27 IOAR26 IOAR25 IOAR24

R 0 0 0 0 0 0 0 MEMIN 14h

W - - - - - - - -

15h R/W MEM15 MEM14 MEM13 MEM12 MEM11 MEM10 MEM9 MEM8

16h R/W MEM23 MEM22 MEM21 MEM20 MEM19 MEM18 MEM17 MEM16

17h

MEMAR

R/W MEM31 MEM30 MEM29 MEM28 MEM27 MEM26 MEM25 MEM24

17

Table 2.1 (Continued) PCI configuration space table

18h-

27h

RESERVED

28h-

2Bh

CISPtr Cardbus CIS Pointer

2Ch R SVID7 SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0

2Dh

SVID

R SVID15 SVID14 SVID13 SVID12 SVID11 SVID10 SVID9 SVID8

2Eh R SMID7 SMID6 SMID5 SMID4 SMID3 SMID2 SMID1 SMID0

2Fh

SMID

R SMID15 SMID14 SMID13 SMID12 SMID11 SMID10 SMID9 SMID8

R 0 0 0 0 0 0 0 BROMEN 30h

W - - - - - - - BROMEN

R BMAR15 BMAR14 BMAR13 BMAR12 BMAR11 0 0 0 31h

W BMAR15 BMAR14 BMAR13 BMAR12 BMAR11

32h R/W BMAR23 BMAR22 BMAR21 BMAR20 BMAR19 BMAR18 BMAR17 BMAR16

33h

BMAR

R/W BMAR31 BMAR30 BMAR29 BMAR28 BMAR27 BMAR26 BMAR25 BMAR24

34h Cap_Ptr R 0 1 0 1 0 0 0 0

35h-

3Bh

RESERVED

3Ch ILR R/W ILR7 ILR6 ILR5 ILR4 ILR3 ILR2 ILR1 ILR0

3Dh IPR R 0 0 0 0 0 0 0 1

3Eh MNGNT R 0 0 1 0 0 0 0 0

3Fh MXLAT R 0 0 1 0 0 0 0 0

40h-

4Fh

RESERVED

50h PMID R 0 0 0 0 0 0 0 1

51h NextPtr R 0 0 0 0 0 0 0 0

52h R Aux_I_b1 Aux_I_b0 DSI Rsr PMECLK Version

53h

PMC

R PME_D3 PME_D3 PME_D2 PME_D1 PME_D0 D2 D1 Aux_I_b2

R 0 0 0 0 0 0 Power State 54h

W - - - - - - Power State

R PME_Status - - - - - - PME_En 55h

PMCSR

W PME_Status - - - - - - PME_En

56h-
5Fh

RESERVED

60h VPDID R 0 0 0 0 0 0 1 1

18

Table 2.1 (Continued) PCI configuration space table

61h NextPtr R 0 0 0 0 0 0 0 0

62h R/W VPD7 VPD6 VPD5 VPD4 VPD3 VPD2 VPD1 VPD0

63h

FlagVPD

Address R/W Flag VPD14 VPD13 VPD12 VPD11 VPD10 VPD9 VPD8

64h R/W Data7 Data6 Data5 Data4 Data3 Data2 Data1 Data0

65h R/W Data15 Data14 Data13 Data12 Data11 Data10 Data9 Data8

66h R/W Data23 Data22 Data21 Data20 Data19 Data18 Data17 Data16

67h

VDP

Data

R/W Data31 Data30 Data29 Data28 Data27 Data26 Data25 Data24

68h-

FFh

RESERVED

Table 2.2 Configuration space command register [16]

Bit Symbol Description

15-10 - Reserved

9 FBTBEN Fast Back-To-Back Enable: Config3<FBtBEn>=0:Read as 0. Write

operation has no effect. The RTL8139C will not generate Fast Back-

to-back cycles. When Config3<FbtBEn>=1, This read/write bit

controls whether or not a master can do fast back-to-back transactions

to different devices. Initialization software will set the bit if all targets

are fast back-to-back capable. A value of 1 means the master is

allowed to generate fast back-to-back transaction to different agents. A

value of 0 means fast back-to-back transactions are only allowed to the

same agent. This bit’s state after RST# is 0.

8 SERREN System Error Enable: When set to 1, the RTL8139C asserts the

SERRB pin when it detects a parity error on the address phase

(AD<31:0> and CBEB<3:0>).

7 ADSTEP Address/Data Stepping: Read as 0, write operation has no effect. The

RTL8139C never performs address/data stepping.

19

Table 2.2 (Continued) Configuration space command register

6 PERRSP Parity Error Response: When set to 1, RTL8139C will assert the

PERRB pin on the detection of a data parity error when acting as the

target, and will sample the PERRB pin as the master. When set to 0,

any detected parity error is ignored and the RTL8139C continues

normal operation. Parity checking is disabled after hardware reset

(RSTB).

5 VGASNOOP VGA palette SNOOP: Read as 0, write operation has no effect.

4 MWIEN Memory Write and Invalidate Cycle Enable: Read as 0, write

operation has no effect.

3 SCYCEN Special Cycle Enable: Read as 0, write operation has no effect. The

RTL8139C ignores all special cycle operation.

2 BMEN Bus Master Enable: When set to 1, the RTL8139C is capable of

acting as a bus master. When set to 0, it is prohibited from acting as a

PCI bus master. For the normal operation, this bit must be set by the

system BIOS.

1 MEMEN Memory Space Access: When set to 1, the RTL8139C responds to

memory space accesses. When set to 0, the RTL8139C ignores

memory space accesses.

0 BOEN I/O Space Access: When set to 1, the RTL8139C responds to IO

space access. When set to 0, the RTL8139C ignores I/O space

accesses.

LTR: Latency Timer Register. Specifies, in units of PCI bus clocks, the value

of the latency timer of the RTL8139C. When the RTL8139C asserts FRAMEB, it

enables its latency timer to count. If the RTL8139C deasserts FRAMEB prior to

count expiration, the content of the latency timer is ignored. Otherwise, after the

count expires, the RTL8139C initiates transaction termination as soon as its GNTB is

deasserted. Software is able to read or write, and the default value is 00H.

HTR: Header Type Register. Reads will return a 0, writes are ignored.

BIST: Built-in Self Test. Reads will return a 0, writes are ignored.

20

Table 2.3 Configuration space status register [16]

Bit Symbol Description

15 DPERR Detected Parity Error: When set indicates that the RTL8139C detected a parity

error, even if parity error handling is disabled in command register PERRSP bit.

14 SSERR Signaled System Error: When set indicates that the RTL8139C asserted the

system error pin, SERRB. Writing a 1 clears this bit to 0.

13 RMABT Received Master Abort: When set indicates that the RTL8139C terminated a

master transaction with master abort. Writing a 1 clears this bit to 0.

12 RTABT Received Target Abort: When set indicates that the RTL8139C master transaction

was terminated due to a target abort. Writing a 1 clears this bit to 0.

11 STABT Signaled Target Abort: Set to 1 whenever the RTL8139C terminates a transaction

with target abort. Writing a 1 clears this bit to 0.

10-

9

DST1-0 Device Select Timing: These bits encode the timing of DEVSELB. They are set to

01b (medium), indicating the RTL8139C will assert DEVSELB two clocks after

FRAMEB is asserted.

8 DPD Data Parity error Detected:

This bit sets when the following conditions are met:

• The RTL8139C asserts parity error(PERRB pin) or it senses the assertion

of PERRB pin by another device.

• The RTL8139C operates as a bus master for the operation that caused the

error.

• The Command register PERRSP bit is set.

Writing a 1 clears this bit to 0.

7 FBBC Fast Back-To-Back Capable: Config3<FbtBEn>=0, Read as 0, write operation

has no effect. Config3<FbtBEn>=1, Read as 1.

6 UDF User Definable Features Supported: Read as 0, write operation has no effect. The

RTL8139C does not support UDF.

5 66MHz 66 MHz Capable: Read as 0, write operation has no effect. The RTL8139C has no

66MHz capability.

4 NewCap New Capability: Config3<PMEn>=0, Read as 0, write operation has no effect.

Config3<PMEn>=1, Read as 1.

0-3 - Reserved

21

IOAR: This register specifies the BASE IO address which is required to build

an address map during configuration. It also specifies the number of bytes required as

well as an indication that it can be mapped into IO space.

Table 2.4 Configuration space IOAR register [16]

Bit Symbol Description

31-8 IOAR31-8 BASE IO Address: This is set by software to the Base IO address for the

operational register map.

7-2 IOSIZE Size Indication: Read back as 0. This allows the PCI bridge to determine

that the RTL8139C requires 256 bytes of IO space.

1 - Reserved

0 IOIN IO Space Indicator: Read only. Set to 1 by the RTL8139C to indicate that

it is capable of being mapped into IO space.

MEMAR: This register specifies the base memory address for memory

accesses to the RTL8139C operational registers. This register must be initialized prior

to accessing any of the RTL8139C's register with memory access.

Table 2.5 Configuration space MEMAR register [16]

Bit Symbol Description

31-8 MEM31-8 Base Memory Address: This is set by software to the base address for the

operational register map.

7-4 MEMSIZE Memory Size: These bits return 0, which indicates that The RTL8139C

requires 256 bytes of Memory Space.

3 MEMPF Memory Prefetchable: Read only. Set to 0 by The RTL8139C.

2-1 MEMLOC Memory Location Select: Read only. Set to 0 by The RTL8139C. This

indicates that the base register is 32-bit wide and can be placed anywhere in

the 32-bit memory space.

0 MEMIN Memory Space Indicator: Read only. Set to 0 by The RTL8139C to

indicate that it is capable of being mapped into memory space.

22

CISPtr: CardBus CIS Pointer. This field is valid only when CardB_En (bit3,

Config3) = 1. The value of this register is auto-loaded from 93C46 or 93C56 (from

offset 30h-31h).

• Bit 2-0: Address Space Indicator

Table 2.6 Configuration space CISPtr register bits 2-0 [16]

Bit 2-0 Meaning

0 Not supported. (CIS begins in device-dependent configuration space.)

1-6 The CIS begins in the memory address governed by one of the six Base Address

Registers. Ex., if the value is 2, then the CIS begins in the memory address space

governed by Base Address Register 2.

7 The CIS begins in the Expansion ROM space.

• Bit 27-3: Address Space Offset

• Bit31-28: ROM Image Number

Table 2.7 Configuration space CISPtr register address space offset values [16]

Bit 2-0 Space Type Address Space Offset Values

0 Configuration

Space

Not Supported.

X;

1≤X≤6

Memory

Space

0h≤value≤FFFF FFF8h. This is the offset into the memory

address space governed by Base Address Register X. Adding this

value to the value in the Base Address Register gives the location

of the start of the CIS. For RTL8139C(L), the value is 100h.

7 Expansion

ROM

0 ≤ image number ≤ Fh, 0h ≤ value ≤ 0FFF FFF8h. This is the

offset into the expansion ROM address space governed by the

Expansion ROM Base Register. The image number is in the

uppermost nibble of the CISPtr register. The value consists of the

remaining bytes. For RTL8139C(L), the image number is 0h.

23

This read-only register points to where the CIS begins, in one of the following

spaces:

• Memory space: The CIS may be in any of the memory spaces from offset

100h and up after being auto-loaded from 93C56. The CIS is stored in 93C56

EEPROM physically from offset 80h-FFh.

• Expansion ROM space: The CIS is stored in expansion ROM physically

within the 128KB max.

SVID: Subsystem Vendor ID. This field will be set to a value corresponding

to the PCI Subsystem Vendor ID in the external EEPROM. If there is no EEPROM,

this field will default to a value of 11ECh which is Realtek Semiconductor's PCI

Subsystem Vendor ID.

BMAR: This register specifies the base memory address for memory accesses

to the RTL8139C operational registers. This register must be initialized prior to

accessing any of the RTL8139C's registers with memory access.

Table 2.8 Configuration space BMAR register [16]

Bit Symbol Description

31-18 BMAR31-18 Boot ROM Base Address

17-11 ROMSIZE These bits indicate how many Boot ROM spaces to be supported.

The Relationship between Config 0 <BS2:0> and BMAR17-11 is the

following:

BS2 BS1 BS0 Description
0 0 0 No Boot ROM
0 0 1 8K Boot ROM
0 1 0 16K Boot ROM
0 1 1 32K Boot ROM
1 0 0 64K Boot ROM
1 0 1 128K Boot ROM
1 1 0 unused
1 1 1 unused

10-1 - Reserved (read back 0)

0 BROMEN Boot ROM Enable: This is used by the PCI BIOS to enable accesses

to Boot ROM.

24

SMID: Subsystem ID. This field will be set to a value corresponding to the

PCI Subsystem ID in the external EEPROM. If there is no EEPROM, this field will

default to a value of 8129h.

ILR: Interrupt Line Register. The Interrupt Line Register is an 8-bit register

used to communicate with the routing of the interrupt. It is written by the POST

software to set interrupt line for the RTL8139C.

IPR: Interrupt Pin Register. The Interrupt Pin register is an 8-bit register

indicating the interrupt pin used by the RTL8139C. The RTL8139C uses INTA

interrupt pin. Read only. IPR = 01H.

MNGNT: Minimum Grant Timer: Read only Specifies how long a burst

period the RTL8139C needs at 33 MHz clock rate in units of 1/4 microsecond. This

field will be set to a value from the external EEPROM. If there is no EEPROM, this

field will default to a value of 20h.

MXLAT: Maximum Latency Timer: Read only Specifies how often the

RTL8139C needs to gain access to the PCI bus in units of 1/4 microseconds. This

field will be set to a value from the external EEPROM. If there is no EEPROM, this

field will default to a value of 20h [16].

2.3.2 RTL8139 Register descriptions

There are plenty of registers in RTL8139 to handle different operations. The

most important ones of them are configuration, command, and status registers to

implement the driver.

Receive Status Register holds bits to handle situations when a packet is

received from the network. Those situations can be multicast packet receiving,

Destination MAC match, broadcast packet receiving, small and long packet receiving,

CRC error, frame alignment error, and successful receive. Detailed explanation of the

meanings of bits in this register is given in Table 2.8.

Transmit Status Register holds bits to handle situations when a packet is

transmitted through the network. Those situations can be carrier sense lost,

25

transmission abort, out of window collision, cd heart beat, number of collision count,

early transmit threshold, successful transmission, and transmit FIFO underrun.

Detailed explanation of the meanings of bits in this register is given in Table 2.9.

Command register is used for issuing commands to the RTL8139C. These

commands are issued by setting the corresponding bits for the function. Reset bit sets

all default values to transmit and receive configuration registers when set to 1. Also it

enables or disables transmit and receive functions of RTL8139 by setting or clearing

the related bit in this register. Detailed explanation of the meanings of bits in this

register is given in Table 2.10.

26

Table 2.9 Receive status register [16]

Bit R/W Symbol Description

15 R MAR Multicast Address Received: This bit set to 1 indicates that

a multicast packet is received.

14 R PAM Physical Address Matched: This bit set to 1 indicates that

the destination address of this packet matches the value

written in ID registers.

13 R BAR Broadcast Address Received: This bit set to 1 indicates that

a broadcast packet is received. BAR, MAR bit will not be set

simultaneously.

12-6 - - Reserved

5 R ISE Invalid Symbol Error: (100BASE-TX only) This bit set to

1 indicates that an invalid symbol was encountered during

the reception of this packet.

4 R RUNT Runt Packet Received: This bit set to 1 indicates that the

received packet length is smaller than 64 bytes (i.e. media

header + data + CRC < 64 bytes)

3 R LONG Long Packet: This bit set to 1 indicates that the size of the

received packet exceeds 4k bytes.

2 R CRC CRC Error: When set, indicates that a CRC error occurred

on the received packet.

1 R FAE Frame Alignment Error: When set, indicates that a frame

alignment error occurred on this received packet.

0 R ROK Receive OK: When set, indicates that a good packet is

received.

27

Table 2.10 Transmit status register [16]

Bit R/W Symbol Description

31 R CRS Carrier Sense Lost: This bit is set to 1 when the carrier is lost during

transmission of a packet.

30 R TABT Transmit Abort: This bit is set to 1 if the transmission of a packet was

aborted. This bit is read only, writing to this bit is not affected.

29 R OWC Out of Window Collision: This bit is set to 1 if The RTL8139C

encountered an "out of window" collision during the transmission of a

packet.

28 R CDH CD Heart Beat: The same as RTL8139(A/B). This bit is cleared in the 100

Mbps mode.

27-24 R NCC3-0 Number of Collision Count: Indicates the number of collisions

encountered during the transmission of a packet.

23-22 - - Reserved

21-16 R/W ERTXTH

5-0

Early Tx Threshold: Specifies the threshold level in the Tx FIFO to begin

the transmission. When the byte count of the data in the Tx FIFO reaches

this level, (or the FIFO contains at least one complete packet) The

RTL8139C will transmit this packet.

000000 = 8 bytes

These fields count from 000001 to 111111 in unit of 32 bytes. This

threshold must be avoided from exceeding 2K byte.

15 R TOK Transmit OK: Set to 1 indicates that the transmission of a packet was

completed successfully and no transmit underrun occurs.

14 R TUN Transmit FIFO Underrun: Set to 1 if the Tx FIFO was exhausted during

the transmission of a packet. The RTL8139C can re-transfer data if the Tx

FIFO underruns and can also transmit the packet to the wire successfully

even though the Tx FIFO underruns. That is, when TSD<TUN>=1,

TSD<TOK>=0 and ISR<TOK>=1 (or ISR<TER>=1).

13 R/W OWN OWN: The RTL8139C sets this bit to 1 when the Tx DMA operation of this

descriptor was completed. The driver must set this bit to 0 when the

Transmit Byte Count (bit0-12) is written. The default value is 1.

12-0 R/W SIZE Descriptor Size: The total size in bytes of the data in this descriptor. If the

packet length is more than 1792 byte (0700h), the Tx queue will be invalid.

28

Table 2.11 Command register [16]

Bit R/W Symbol Description

7-5 - - Reserved

4 R/W RST Reset: Setting to 1 forces The RTL8139C to a software reset

state which disables the transmitter and receiver, reinitializes

the FIFOs, resets the system buffer pointer to the initial value

(Tx buffer is at TSAD0, Rx buffer is empty). The values of

IDR0-5 and MAR0-7 and PCI configuration space will have

no changes. This bit is 1 during the reset operation, and is

cleared to 0 by The RTL8139C when the reset operation is

complete.

3 R/W RE Receiver Enable: When set to 1, and the receive state

machine is idle, the receive machine becomes active. This bit

will read back as a 1 whenever the receive state machine is

active. After initial power-up, software must insure that the

receiver has completely reset before setting this bit.

2 R/W TE Transmitter Enable: When set to 1, and the transmit state

machine is idle, then the transmit state machine becomes

active. This bit will read back as a 1 whenever the transmit

state machine is active. After initial power-up, software must

insure that the transmitter has completely reset before setting

this bit.

1 - - Reserved

0 R BUFE Buffer Empty: The Rx buffer is empty; There is no packet

stored in the Rx buffer ring.

Interrupt mask register masks the interrupts that can be generated from the

ISR. Writing a “1” to the bit enables the corresponding interrupt. During a hardware

reset, all mask bits are cleared. Setting a mask bit allows the corresponding bit in the

ISR to cause an interrupt. ISR bits are always set to 1, however, if the condition is

29

present, regardless of the state of the corresponding mask bit. Detailed explanation of

the meanings of bits in this register is given in Table 2.11.

Table 2.12 Interrupt mask register [16]

Bit R/W Symbol Description

15 R/W SERR System Error Interrupt: 1 => Enable, 0 => Disable.

14 R/W TimeOut Time Out Interrupt: 1 => Enable, 0 => Disable.

13 R/W LenChg Cable Length Change Interrupt: 1 => Enable, 0 => Disable.

12-7 - - Reserved

6 R/W FOVW Rx FIFO Overflow Interrupt: 1 => Enable, 0 => Disable.

5 R/W PUN

LinkChg

Packet Underrun/Link Change Interrupt:

1 => Enable, 0 => Disable.

4 R/W RXOVW Rx Buffer Overflow Interrupt: 1 => Enable, 0 => Disable.

3 R/W TER Transmit Error Interrupt: 1 => Enable, 0 => Disable.

2 R/W TOK Transmit OK Interrupt: 1 => Enable, 0 => Disable.

1 R/W RER Receive Error Interrupt: 1 => Enable, 0 => Disable.

0 R/W ROK Receive OK Interrupt: 1 => Enable, 0 => Disable.

Interrupt Status Register indicates the source of an interrupt when the INTA

pin goes active. Enabling the corresponding bits in the Interrupt Mask Register (IMR)

allows bits in this register to produce an interrupt. When an interrupt is active, one of

more bits in this register are set to a “1”. The interrupt Status Register reflects all

current pending interrupts, regardless of the state of the corresponding mask bit in the

IMR. Reading the ISR clears all interrupts. Writing to the ISR has no effect. Detailed

explanation of the meanings of bits in this register is given in Table 2.12.

30

Table 2.13 Interrupt status register [16]

Bit R/W Symbol Description

15 R/W SERR System Error: Set to 1 when The RTL8139C signals a system

error on the PCI bus.

14 R/W TimeOut Time Out: Set to 1 when the TCTR register reaches to the

value of the TimerInt register.

13 R/W LenChg Cable Length Change: Cable length is changed after

Receiver is enabled.

12-7 - - Reserved

6 R/W FOVW Rx FIFO Overflow: Set when an overflow occurs on the Rx

status FIFO.

5 R/W PUN

LinkChg

Packet Underrun/Link Change: Set to 1 when CAPR is

written but

Rx buffer is empty, or when link status is changed.

4 R/W RXOVW Rx Buffer Overflow: Set when receive (Rx) buffer ring

storage resources have been exhausted.

3 R/W TER Transmit (Tx) Error: Indicates that a packet transmission

was aborted, due to excessive collisions, according to the

TXRR's setting

2 R/W TOK Transmit (Tx) OK: Indicates that a packet transmission is

completed successfully.

1 R/W RER Receive (Rx) Error: Indicates that a packet has either CRC

error or frame alignment error (FAE). The collided frame will

not be recognized as CRC error if the length of this frame is

shorter than 16 byte.

0 R/W ROK Receive (Rx) OK: In normal mode, indicates the successful

completion of a packet reception. In early mode, indicates that

the Rx byte count of the arriving packet exceeds the early Rx

threshold.

31

Transmit Configuration Register defines the transmit configuration for the

RTL8139C. It controls such functions as Loopback, Heartbeat, Auto Transmit

Padding, programmable Interframe Gap, Fill and Drain Thresholds, and maximum

DMA burst size. Detailed explanation of the meanings of bits in this register is given

in Table 2.13.

Table 2.14 Transmit configuration register [16]

Bit R/W Symbol Description

31 - - Reserved

30-26 R HWVERID Hardware Version ID

25-24 R/W IFG1,0 Interframe Gap Time: This field allows adjustment of the

interframe gap time below the standards of 9.6 us for

10Mbps, 960 ns for 100Mbps. The time can be programmed

from 9.6 us to 8.4 us (10Mbps) and 960ns to 840ns

(100Mbps). Note that any value other than (1, 1) will violate

the IEEE 802.3 standard.

The formula for the inter frame gap is:

 10 Mbps 8.4us + 0.4(IFG(1:0)) us

 100 Mbps 840ns + 40(IFG(1:0)) ns

23 R 8139A-G RTL8139A rev.G ID = 1. For others, this bit is 0.

22-19 - - Reserved

18-17 R/W LBK1

LBK0

Loopback test: There will be no packet on the TX+/- lines

under the Loopback test condition. The loopback function

must be independent of the link state.

00: normal operation 01: Reserved

10: Reserved 11: Loopback mode

16 R/W CRC Append CRC:

0: A CRC is appended at the end of a packet

1: No CRC appended at the end of a packet

15-11 - - Reserved

32

Table 2.14 (Continued) Transmit configuration register

10-8 R/W MXDMA

2, 1, 0

Max DMA Burst Size per Tx DMA Burst: This field sets

the

maximum size of transmit DMA data bursts according to the

following

table:

000 = 16 bytes 001 = 32 bytes

010 = 64 bytes 011 = 128 bytes

100 = 256 bytes 101 = 512 bytes

110 = 1024 bytes 111 = 2048 bytes

7-4 R/W TXERR Tx Retry Count: These are used to specify additional

transmission retries in multiples of 16 (IEEE 802.3

CSMA/CD retry count). If the TXRR is set to 0, the

transmitter will re-transmit 16 times before aborting due to

excessive collisions. If the TXRR is set to a value greater

than 0, the transmitter will re-transmit a number of times

equal to the following formula before aborting:

Total retries = 16 + (TXRR * 16)

The TER bit in the ISR register or transmit descriptor will be

set when the transmission fails and reaches to this specified

retry count.

3-1 - - Reserved

0 W CLRABT Clear Abort: Setting this bit to 1 cause The RTL8139C to

retransmit the packet at the last transmitted descriptor when

this transmission was aborted. Setting this bit is only

permitted in the transmit abort state.

Receive Configuration Register is used to set the receive configuration for the

RTL8139C. Receive properties such as accepting error packets, runt packets, setting

the receive drain threshold etc. are controlled within this register. Detailed

explanation of the meanings of bits in this register is given in Table 2.14.

33

Table 2.15 Receive configuration register [16]

Bit R/W Symbol Description

31-28 - - Reserved

27-24 R/W ERTH

3, 2, 1, 0

Early Rx threshold bits: These bits are used to select the Rx

threshold multiplier of the whole packet that has been transferred

to the system buffer in early mode when the frame protocol is

under The RTL8139C's definition.

0000 = no early rx threshold 0001 = 1/16

0010 = 2/16 0011 = 3/16

0100 = 4/16 0101 = 5/16

0110 = 6/16 0111 = 7/16

1000 = 8/16 1001 = 9/16

1010 = 10/16 1011 = 11/16

1100 = 12/16 1101 = 13/16

1110 = 14/16 1111 = 15/16

23-18 - - Reserved

17 R/W MulERINT Multiple early interrupt select: When this bit is set, any received

packet invokes early interrupt according to

MULINT<MISR[11:0]> setting in early mode. When this bit is

reset, the packets of familiar protocol (IPX, IP, NDIS, etc) invoke

early interrupt according to RCR<ERTH[3:0]> setting in early

mode. The packets of unfamiliar protocol will invoke early

interrupt according to the setting of MULINT<MISR[11:0]>.

16 R/W RER8 The RTL8139C receives the error packet whose length is larger

than 8 bytes after setting the RER8 bit to 1. The RTL8139C

receives the error packet larger than 64-byte long when the RER8

bit is cleared. The power-on default is zero. If AER or AR is set,

the RER will be set when The RTL8139C receives an error packet

whose length is larger than 8 bytes. The RER8 is “ Don’t care “ in

this situation.

34

Table 2.15 (Continued) Receive configuration register [16]

15-13 R/W RXFTH

2, 1, 0

Rx FIFO Threshold: Specifies Rx FIFO Threshold level. When the

number of the received data bytes from a packet, which is being

received into The RTL8139C's Rx FIFO, has reached to this level

(or the FIFO has contained a complete packet), the receive PCI bus

master function will begin to transfer the data from the FIFO to the

host memory. This field sets the threshold level according to the

following table:

000 = 16 bytes 001 = 32 bytes

010 = 64 bytes 011 = 128 bytes

100 = 256 bytes 101 = 512 bytes

110 = 1024 bytes 111 = no rx threshold.

The RTL8139C begins the transfer of data after having received a

whole packet in the FIFO.

12-11 R/W RBLEN

1, 0

Rx Buffer Length: This field indicates the size of the Rx ring

buffer.

00 = 8k + 16 byte 01 = 16k + 16 byte

10 = 32K + 16 byte 11 = 64K + 16 byte

10-8 R/W MXDMA

2, 1, 0

Max DMA Burst Size per Rx DMA Burst: This field sets the

maximum size of the receive DMA data bursts according to the

following table:

000 = 16 bytes 001 = 32 bytes

010 = 64 bytes 011 = 128 bytes

100 = 256 bytes 101 = 512 bytes

110 = 1024 bytes 111 = unlimited

7 R/W WRAP 0: The RTL8139C will transfer the rest of the packet data into the

beginning of the Rx buffer if this packet has not been completely

moved into the Rx buffer and the transfer has arrived at the end of

the Rx buffer.

35

Table 2.15 (Continued) Receive configuration register [16]

7 R/W WRAP 1: The RTL8139C will keep moving the rest of the packet data into

the memory immediately after the end of the Rx buffer, if this packet

has not been completely moved into the Rx buffer and the transfer

has arrived at the end of the Rx buffer. The software driver must

reserve at least 1.5K bytes buffer to accept the remainder of the

packet. We assume that the remainder of the packet is X bytes. The

next packet will be moved into the memory from the X byte offset at

the top of the Rx buffer.

6 R 9356SEL EEPROM Select: This bit reflects what type of EEPROM is used.

1: The EEPROM used is 9356.0: The EEPROM used is 9346.

5 R/W AER Accept Error Packets: This bit determines if packets with CRC

error, alignment error and/or collided fragments will be accepted or

rejected.

0: Reject error packets 1: Accept error packets

4 R/W AR Accept Runt Packets: This bit allows the receiver to accept packets

that are smaller than 64 bytes. The packet must be at least 8 bytes

long to be accepted as a runt.

0: Reject runt packets 1: Accept runt packets

3 R/W AB Accept Broadcast Packets: This bit allows the receiver to accept or

reject broadcast packets.

0: Reject broadcast packets 1: Accept broadcast packets

2 R/W AM Accept Multicast Packets: This bit allows the receiver to accept or

reject multicast packets.

0: Reject multicast packets 1: Accept multicast packets

1 R/W APM Accept Physical Match Packets: This bit allows the receiver to

accept or reject physical match packets.

0: Reject physical match packets 1: Accept physical match packets

0 R/W AAP Accept Physical Address Packets: This bit allows the receiver to

accept or reject packets with a physical destination address.

0: Reject packets 1: Accept packets

36

2.3.3 RTL8139 Interrupt handler

During packet receptions and transmissions, RTL8139 sends an interrupt

which is handled by the function static void rtl8139_Interrupt_Handler

(struct Interrupt_State* state). There would be 4 possible situations causing

an interrupt: (1) transmit complete, (2) transmit error, (3) receive complete, (4)

receive error.

An interrupt handler should be as short as possible since it stops the CPU for a

while to serve the interrupt. Therefore this serving operation should be completed in

the fastest way. In this context, 3 out of 4 possible situations are handled so fast since

there is nothing to do in those situations. They are transmit complete, transmit error

and receive error states.

On the other hand when receive complete interrupt occurs, packet should be

copied to receive buffer if size and status values are reasonable and since there is only

one receive buffer in RTL8139, the next packet’s address should be calculated. After

the calculation, a kernel thread is invoked to copy the data into the buffer by a

function void TakeAPack(ulong_t arg).

2.3.4 RTL8139 Transmit operation

The host CPU initiates a transmit operation by storing an entire packet of data

in one of the descriptors in the main memory. When the entire packet has been

transferred to the Tx buffer, the RTL8139C is instructed to move the data from the Tx

buffer to the internal transmit FIFO in PCI bus master mode. When the transmit FIFO

contains a complete packet or is filled to the programmed threshold level, the

RTL8139C begins packet transmission [17].

2.3.5 RTL8139 Receive operation

The incoming packet is placed in the RTL8139C's Rx FIFO. Concurrently, the

RTL8139C performs address filtering of multicast packets according to its hash

37

algorithms. When the amount of data in the Rx FIFO reaches the level defined in the

Receive Configuration Register, the RTL8139C requests the PCI bus to begin

transferring the data to the Rx buffer in PCI bus master mode [17].

38

3. DESIGN AND REALIZATION OF TCP/IP STACK

To provide data communication between computers running GeekOS, it is

needed to provide a protocol stack which describes all rules to communicate. For this

purpose, a common TCP/IP model split the design into five layers which are

consisting of seven layers of Open Systems Interconnection Basic Reference Model

in today’s Internet world. To implement a generic and modern TCP/IP stack all the

layers of the stack must be designed according to this model even though that does

not satisfy all the needs to realization but considered an excellent place to begin the

study of network architecture.

On the basis of explanation of a TCP/IP stack model, there are two

approaches which explains the needs and working principles of a layer in the layered-

network model. First one is called the top-down approach which starts to describe the

layers from top to down and the second one is called bottom-up approach which starts

to describe the layers from bottom to up in the OSI model. According to the

development of this thesis, it is more suitable to explain things with the second

approach.

3.1 OSI Model

The Open Systems Interconnection Basic Reference Model (OSI Reference

Model or OSI Model for short) is a layered, abstract description for communications

and computer network protocol design. It was developed as part of the Open Systems

Interconnection (OSI) initiative and is sometimes known as the OSI seven layer

model. From top to bottom, the OSI Model consists of the Application, Presentation,

Session, Transport, Network, Data Link, and Physical layers. A layer is a collection

of related functions that provides services to the layer above it and receives service

from the layer below it. For example, a layer that provides error-free communications

across a network provides the path needed by applications above it, while it calls the

next lower layer to send and receive packets that make up the contents of the path.

39

In 1977, work on a layered model of network architecture, which was to

become the OSI model, started in the American National Standards Institute (ANSI)

working group on Distributed Systems (DISY). With the DISY work and worldwide

input, the International Organization for Standardization (ISO) began to develop its

OSI networking suite. The International Organization for Standardization (ISO) is a

worldwide federation of national standards bodies from some 130 countries, one from

each country. According to Bachman, the term "OSI" came into use on 12 October

1979. OSI has two major components: an abstract model of networking (the Basic

Reference Model, or seven-layer model) and a set of concrete protocols [12, 15].

Parts of OSI have influenced Internet protocol development, but none more

than the concrete operational system model itself, documented in ISO 7498 and its

various agenda. In this model, a networking system is divided into layers. Within

each layer, one or more entities implement its functionality. Each entity interacts

directly only with the layer immediately beneath it, and provides facilities for use by

the layer above it.

In particular, Internet protocols are deliberately not as rigorously designed as

the OSI model, but a common version of the TCP/IP model splits it into four layers.

The Internet Application Layer includes the OSI Application Layer, Presentation

Layer, and most of the Session Layer. Its End-to-End Layer includes the graceful

close function of the OSI Session Layer as well as the Transport Layer. Its

Internetwork Layer is equivalent to the OSI Network Layer, while its Interface layer

includes the OSI Data Link and Physical Layers. These comparisons are based on the

original seven-layer protocol model as defined in ISO 7498, rather than refinements

in such things as the Internal Organization of the Network Layer document [3, 4].

3.2 TCP/IP Model

The TCP/IP Model is a specification for computer network protocols created

in the 1970s by DARPA, an agency of the United States Department of Defense. It

laid the foundations for ARPANET, which were the world's first wide area network

40

and a predecessor of the Internet. The TCP/IP Model is sometimes called the Internet

Reference Model, the DoD Model or the ARPANET Reference Model [7].

TCP/IP defines a set of rules to enable computers to communicate over a

network. TCP/IP provides end to end connectivity specifying how data should be

formatted, addressed, shipped, routed and delivered to the right destination. The

specification defines protocols for different types of communication between

computers and provides a framework for more detailed standards [4].

TCP/IP is generally described as having five 'layers' if you include the bottom

physical layer. The layer view of TCP/IP is based on the seven-layer OSI Reference

Model written long after the original TCP/IP specifications, and is not officially

recognized. Regardless, it makes a good analogy for how TCP/IP works and

comparison of the models is common.

The TCP/IP Model and related protocols are currently maintained by the

Internet Engineering Task Force (IETF) [3, 4].

3.2.1 Architectural principles

In this model, layers are not separated so rigid such in OSI model, therefore it

maintains an easier structure to fit in the real world protocols. Rather than

emphasizing on layers on this model, it simply defines two layer classes called

Internetworking layer and upper layers. Actually this is the main difference between

OSI model and the TCP/IP model.

There are versions of this model with four layers and with five layers. It

simply defines a four-layer version, with the layers having names, not numbers.

Process Layer or Application Layer is where the higher level protocols such

as SMTP, FTP, SSH, HTTP, etc. operate [7, 9].

Host-To-Host (Transport) Layer is where flow-control and connection

protocols exist, such as UDP. This layer deals with opening and maintaining

connections, ensuring that packets are in fact received.

41

Internet or Internetworking Layer defines IP addresses, with many routing

schemes for navigating packets from one IP address to another.

Network Access Layer describes both the protocols (i.e., the OSI Data Link

Layer) used to mediate access to shared media, and the physical protocols and

technologies necessary for communications from individual hosts to a medium [14].

The Internet protocol suite (and corresponding protocol stack) and its layering

model were in use before the OSI model was established. Since then, the TCP/IP

model has been compared with the OSI model numerous times in books and

classrooms, which often results in confusion because the two models use different

assumptions, including about the relative importance of strict layering [2, 4].

3.2.2 Layers in the TCP/IP model

The layers near the top are logically closer to the user application (as opposed

to the human user), while those near the bottom are logically closer to the physical

transmission of the data. Viewing layers as providing or consuming a service is a

method of abstraction to isolate upper layer protocols from the detail of transmitting

bits over Ethernet, while the lower layers avoid having to know the details of each

and every application and its protocol [2]. A sample network connection between two

hosts over stack layers is shown in Figure 3.1 and a sample packet encapsulation over

the network is shown in Figure 3.2.

Figure 3.1 Network connections over two routers and corresponding stack layers [18]

42

This abstraction also allows upper layers to provide services that the lower

layers cannot, or choose not to, provide. Again, the original OSI Reference Model

was extended to include connectionless services (OSIRM CL). For example, IP is not

designed to be reliable and is a best effort delivery protocol. This means that all

transport layers must choose whether or not to provide reliability and to what degree.

UDP provides data integrity but does not guarantee delivery; TCP provides both data

integrity and delivery guarantee [19].

Figure 3.2 Packet encapsulation over layers for a UDP packet [18]

3.3 Physical Layer

The physical layer is the first level in the seven-layer OSI model of computer

networking as well as in the five-layer TCP/IP reference model. It performs services

requested by the data link layer [13].

The physical layer is the most basic network layer, providing only the means

of transmitting raw bits rather than packets over a physical data link connecting

network nodes. Neither packet headers nor trailers are consequently added to the data

by the physical layer. The bit stream may be grouped into code words or symbols,

and converted to a physical signal, which is transmitted over a physical transmission

43

medium. The physical layer provides an electrical, mechanical, and procedural

interface to the transmission medium. An analogy of this layer in a physical mail

network would be the roads along which the vans carrying the mail drive. [1, 3]

In this thesis a RTL8139 type Ethernet card is used as the physical and link

layer of the protocol stack. The Ethernet physical layer evolved over a considerable

time span and encompasses quite a few physical media interfaces and several

magnitudes of speed. The speed ranges from 3 Mbit/s to 10 Gbit/s in speed while the

physical medium can range from bulky coaxial cable to twisted pair to optical fiber.

In general, network protocol stack software will work identically on most of the cable

types [2, 12].

3.4 Implementation of the Packet Structures and Functions In Stack

To be able to hold packet as streams of bits, some packet structures are

defined. Those structures show how to handle the data and where to put specific

information in the header.

For this purpose a general packet structure is defined with the following

struct:

 This structure holds a pointer, “mPacket”, to where actual data starts. “ll”,

“nl”, “tl” and “al” are offset values for the link layer, network layer, transport layer,

application layer headers respectively. “tail” points to the end of the packet. Finally,

“mNext” points to the next packet.

struct oPacket
{

char * mPacket;
unsigned ll;
unsigned nl;
unsigned tl;
unsigned al;
unsigned tail;
struct oPacket * mNext;

};

44

 There are also some basic functions to handle for the incoming and outgoing

network packets such as creation of a new packet, destroying a packet, pushing and

popping a packet, and copying the packet into a buffer. The details of these functions

are given below.

struct oPacket * CreateNewPacket(int size)

{

 struct oPacket * newPack = (struct oPacket *)
Malloc(sizeof(struct oPacket));

 newPack->ll = 0;

 newPack->nl = 0;

 newPack->tl = 0;

 newPack->al = 0;

 newPack->tail = 0;

 newPack->mNext = NULL;

 newPack->mPacket = (char *) Malloc(size);

 return newPack;

}

void DestroyPacket(struct oPacket * pack)

{

 if (pack->mPacket)

 Free(pack->mPacket);

 pack->mNext=NULL;

 Free(pack);

}

45

void PushPacket(struct oPacket * newPack)

{

 if (gPacketListTail == NULL) {

 gPacketListHead = gPacketListTail = newPack;

 }

 else {

 gPacketListTail->mNext = newPack;

 gPacketListTail = newPack;

 }

}

struct oPacket * PopPacket()

{

 struct oPacket * firstPack = gPacketListHead;

 if (gPacketListHead) {

 gPacketListHead = gPacketListHead->mNext;

 if (gPacketListHead == NULL)

 gPacketListTail = NULL;

 firstPack->mNext = NULL;

 }

 return firstPack;

}

void LoadPacketData(struct oPacket* pack, char * data, size_t len)

{

 memcpy(pack->mPacket, data, len);

}

46

3.5 Data Link Layer

The data link layer is the second layer of the seven-layer OSI model as well as

of the five-layer TCP/IP reference model. It responds to service requests from the

network layer and issues service requests to the physical layer.

This is the layer which transfers data between adjacent network nodes in a

wide area network or between nodes on the same local area network segment. The

data link layer provides the functional and procedural means to transfer data between

network entities and might provide the means to detect and possibly correct errors

that may occur in the Physical layer. Examples of data link protocols are Ethernet for

local area networks and PPP, HDLC and ADCCP [7] for point-to-point connections.

The data link provides data transfer across the physical link. That transfer

might or might not be reliable; many data link protocols do not have

acknowledgments of successful frame reception and acceptance, and some data link

protocols might not even have any form of checksum to check for transmission

errors. In those cases, higher-level protocols must provide flow control, error

checking, and acknowledgments and retransmission [2, 3].

3.6 Implementation of the Data Link Layer

 Implementation of the link layer is done by implementing a structure to hold

link layer header and two functions called LLSend and LLRecv to have a service

interface to network layer and physical layer, respectively.

 The link layer header structure is implemented with a struct as follows:

struct LL_Hdr{

 unsigned char DestMAC[6];

 unsigned char SrcMAC[6];

 short Protocol;

};

47

First 6 bytes of this structure hold the destination MAC address; next 6 bytes

hold source MAC and last 2 bytes hold the protocol number to identify the upper

layer protocol, which can be either IP or ARP in our case.

In function void LLSend(struct oPacket * pack), a packet structure is

taken, source and destination MAC address fields are filled and protocol number field

is set according to the protocol numbers of IP and ARP protocols. Then 32-bit CRC

is calculated and appended to the tail of the packet for error detection and copied to

the next available transmit buffer. Then next available transmit buffer is set by

incrementing once and taking modulo 4 since there are four distinct transmit buffers

on RTL8139.

In function void LLRecv(struct oPacket * pack), a network packet is

received. The last 4 bytes are taken from the end of the packet as being calculated

CRC value at the sender side and a new CRC is calculated in the receiver side again.

If both values are equal and the received packet’s destination MAC is either receiver

node’s MAC address or broadcast address, i.e., 0xFFFFFFFFFFFF, then one of two

network layer protocols’ receive function is called according to the protocol number

field in the link layer header after setting the network layer header offset.

3.7 Network Layer

The network layer is the third layer in the seven layer OSI model, and the

third layer in the five layer TCP/IP model. In the TCP/IP reference model it is called

the Internet layer. In all of the models, the network layer responds to service requests

from the transport layer and issues service requests to the data link layer.

In essence, the network layer is responsible for end-to-end (source to

destination) packet delivery, whereas the data link layer is responsible for node to

node (hop to hop) frame delivery [2, 3].

The network layer provides the functional and procedural means of

transferring variable length data sequences from a source to a destination via one or

more networks while maintaining the quality of service, and error control functions.

48

The network layer deals with transmission of information all the way from its

source to its destination - transmission from anywhere to anywhere. Some of the

things that the network layer needs to address are: (1) Is the network connection-

oriented or connectionless, (2) how to manage global addresses, and (3) how to

forward a message.

3.8 Implementation of the Network Layer

There are two network layer protocols implemented in this thesis: (1) Internet

Protocol (IPv4), and (2) Address Resolution Protocol (ARP). The implementation

details of these protocols are given in sections 3.8.1 and 3.8.2.

3.8.1 Address Resolution Protocol (ARP) and Its Implementation

In computer networking, the Address Resolution Protocol (ARP) is the

standard method for finding a host's hardware address when only its network layer

address is known [7]. The packet structure of the ARP is shown in Table 3.1

ARP is not an IP-only or Ethernet-only protocol; it can be used to resolve

many different network-layer protocol addresses to hardware addresses, although, due

to the overwhelming prevalence of IPv4 and Ethernet, ARP is primarily used to

translate IP addresses to Ethernet MAC addresses [1].

The packet structure given in Table 3.1 is used for ARP requests and replies.

On Ethernet networks, these packets use an EtherType of 0x0806, and are sent to the

broadcast MAC address of FF:FF:FF:FF:FF:FF.

• Hardware type (HTYPE)

Each data link layer protocol is assigned a number used in this field. For

example, Ethernet is 1.

• Protocol type (PTYPE)

Each protocol is assigned a number used in this field. For example, IPv4 is

0x0800.

49

Table 3.1 Address resolution protocol packet structure [19]

 Bits 0-7 Bits 8-15 Bits 16-31

0 Hardware Type(HTYPE) Protocol Type (PTYPE)

32 Hardware Length(HLEN) Protocol Length (PLEN) Operation (OPER)

64 Sender hardware address (SHA)

? Sender protocol address (SPA)

? Target hardware address (THA)

? Target protocol address (TPA)

• Hardware length (HLEN)

Length in bytes of a hardware address. Ethernet addresses are 6 bytes long.

• Protocol length (PLEN)

Length in bytes of a logical address. IPv4 addresses are 4 bytes long.

• Operation

Specifies the operation the sender is performing: 1 for request, and 2 for reply.

• Sender hardware address (SHA)

Hardware address of the sender.

• Sender protocol address (SPA)

Protocol address of the sender.

• Target hardware address (THA)

Hardware address of the intended receiver. This field is ignored in requests.

• Target protocol address (TPA)

Protocol address of the intended receiver.

In the implementation of ARP, a specific structure is defined to handle the

header of this protocol. This header is given in the following structure:

50

Also the implementation has a function to receive an ARP packet called

ARPRecv(). This function takes an ARP packet and according to the operation field

either takes the needed IP address from the body of the packet or prepares a reply

packet and sends it back to the sender.

3.8.2 Internet Protocol (IPv4) and Its Implementation

The Internet Protocol (IPv4) is a data-oriented protocol used for

communicating data across a packet-switched Internetwork.

IPv4 is a network layer protocol in the Internet protocol suite and is

encapsulated in a data link layer protocol, such as Ethernet). As a lower layer

protocol, IP provides the service of communicable unique global addressing amongst

computers [4, 15].]. The packet structure of the IP is shown in Table 3.2

An IP packet consists of a header section and a data section.

struct ARP_Hdr

{

 unsigned char HardwareType[2];

 unsigned char ProtocolType[2];

 unsigned char HardwareAddrLen;

 unsigned char ProtocolAddrLen;

 unsigned char Opcode[2];

 unsigned char SourceHardwareAddr[6];

 unsigned char SourceProtocolAddr[4];

 unsigned char DestinationHardwareAddr[6];

 unsigned char DestinationProtocolAddr[4];

};

51

Table 3.2 Internet protocol packet structure [19]

 Bits 0-3 Bits 4-7 Bits 8-15 Bits 16-18 Bits 19-31

0 Version Header

Length

Type of

Service

Total

Length

32 Identification Flags Fragment

Offset

64 Time To Live Protocol Header Checksum

96 Source Address

128 Destination Address

160 Options

160 or

192+

Data

Header

The header consists of 13 fields, of which only 12 are required. The 13th field

is optional (red background in table) and aptly named: options. The fields in the

header are packed with the most significant byte first (big endian), and for the

diagram and discussion, the most significant bits are considered to come first. The

most significant bit is numbered 0, so the version field is actually found in the four

most significant bits of the first byte [1, 4].

• Version

The first header field in an IP packet is the four-bit version field. For IPv4,

this has a value of 4 (hence the name IPv4).

• Internet Header Length (IHL)

The second field is a four-bit Internet Header Length (IHL) telling the number

of 32-bit words in the header. Since an IPv4 header may contain a variable number of

options, this field specifies the size of the header (this also coincides with the offset to

52

the data). The minimum value for this field is 5, which is a length of 5×32 = 160 bits.

Being a four-bit field, the maximum length is 15 words or 480 bits.

• Type of Service (TOS)

bits 0–2: precedence (111 - Network Control, 110 - Internetwork Control, 101

- CRITIC/ECP, 100 - Flash Override, 011 - Flash, 010 - Immediate, 001 -

Priority, 000 - Routine)

bit 3: 0 = Normal Delay, 1 = Low Delay

bit 4: 0 = Normal Throughput, 1 = High Throughput

bit 5: 0 = Normal Reliability, 1 = High Reliability

bits 6–7: Reserved for future use

This field is now used for DiffServ and ECN. The original intention was for a

sending host to specify a preference for how the datagram would be handled as it

made its way through an Internet. For instance, one host could set its IPv4 datagrams'

TOS field value to prefer low delay, while another might prefer high reliability. In

practice, the TOS field has not been widely implemented. However, a great deal of

experimental, research and deployment work has focused on how to make use of

these eight bits. These bits have been redefined, most recently through DiffServ

working group in the IETF and the Explicit Congestion Notification code point. New

technologies are emerging that requires real-time data streaming and therefore will

make use of the TOS field. An example is Voice over IP (VoIP) that is used for

interactive data voice exchange [11, 15].

• Total Length

This 16-bit field defines the entire datagram size, including header and data,

in bytes. The minimum-length datagram is 20 bytes (20-byte header + 0 bytes data)

and the maximum is 65,535, i.e., the maximum value of a 16-bit word. The minimum

size datagram that any host is required to be able to handle is 576 bytes, but most

modern hosts handle much larger packets.

• Identification

This field is an identification field and is primarily used for uniquely

identifying fragments of an original IP datagram. Some experimental work has

53

suggested using the ID field for other purposes, such as for adding packet-tracing

information to datagrams in order to help trace back datagrams with spoofed source

addresses.

• Flags

A three-bit field follows and is used to control or identify fragments. They are

(in order, from high order to low order):

Don't Fragment (DF)

More Fragments (MF)

If the DF flag is set and fragmentation is required to route the packet then the

packet will be dropped. This can be used when sending packets to a host that does not

have sufficient resources to handle fragmentation.

When a packet is fragmented all fragments have the MF flag set except the

last fragment, which does not have the MF flag set. The MF flag is also not set on

packets that are not fragmented — an unfragmented packet is its own last fragment.

• Fragment Offset

The fragment offset field, measured in units of eight-byte blocks, is 13 bits

long and specifies the offset of a particular fragment relative to the beginning of the

original unfragmented IP datagram. The first fragment has an offset of zero. This

allows a maximum offset of 65,528 which would exceed the maximum IP packet

length of 65,535 with the header length included.

• Time To Live (TTL)

An eight-bit time to live (TTL) field helps prevent datagrams from persisting

(e.g. going in circles) on an Internet. Historically the TTL field limited a datagram's

lifetime in seconds, but has come to be a hop count field. Each packet switch (or

router) that a datagram crosses decrements the TTL field by one. When the TTL field

hits zero, the packet is no longer forwarded by a packet switch and is discarded.

Typically, an ICMP message (specifically the time exceeded) is sent back to the

sender that it has been discarded. The reception of these ICMP messages is at the

heart of how traceroute works.

54

• Protocol

This field defines the protocol used in the data portion of the IP datagram. The

Internet Assigned Numbers Authority maintains a list of Protocol numbers and were

originally defined in RFC 790.

• Header Checksum

The 16-bit checksum field is used for error-checking of the header. At each

hop, the checksum of the header must be compared to the value of this field. If a

header checksum is found to be mismatched, then the packet is discarded. Note that

errors in the data field are up to the encapsulated protocol to handle — indeed, both

UDP and TCP have checksum fields.

Since the TTL field is decremented on each hop and fragmentation is possible

at each hop then at each hop the checksum will have to be recomputed.

• Source address

An IPv4 address is a group of four eight-bit octets for a total of 32 bits. The

value for this field is determined by taking the binary value of each octet and

concatenating them together to make a single 32-bit value.

For example, the address 10.9.8.7 (00001010.00001001.00001000.00000111

in binary) would be 00001010000010010000100000000111.

This address is the address of the sender of the packet. Note that this address

may not be the "true" sender of the packet due to network address translation. Instead,

the source address will be translated by the NATing machine to its own address.

Thus, reply packets sent by the receiver are routed to the NATing machine, which

translates the destination address to the original sender's address.

• Destination address

Identical to the source address field but indicates the receiver of the packet.

• Options

Additional header fields may follow the destination address field, but these

are not often used. Note that the value in the IHL field must include enough extra 32-

bit words to hold all the options (plus any padding needed to ensure that the header

contains an integral number of 32-bit words). The list of options may be terminated

55

with an EOL (End of Options List, 0x00) option; this is only necessary if the end of

the options would not otherwise coincide with the end of the header. The possible

options that can be put in the header are given in Table 3.3.

Table 3.3 Option bits in IP header [19]

Field Size (bits) Description

Copied 1 Set to 1 if the options need to be copied into all

fragments of a fragmented packet.

Option Class

2 A general options category. 0 is for "control"

options, and 2 is for "debugging and measurement".

1, and 3 are reserved.

Option Number 5 Specifies an option.

Option Length
8 Indicates the size of the entire option (including this

field). This field may not exist for simple options.

Option Data
Variable Option-specific data. This field may not exist for

simple options.

The use of the LSRR and SSRR options (Loose and Strict Source and Record

Route) is discouraged because they create security concerns; many routers block

packets containing these options [4].

Data

The last field is not a part of the header and, consequently, not included in the

checksum field. The contents of the data field are specified in the protocol header

field and can be any one of the transport layer protocols [1, 4].

In this thesis, IP protocol is handled by a structure and two functions two send

and receive IP packets over the network. The header structure of the IP protocol is

handled by the following struct.

56

Also two functions are implemented to send/receive IP packets. In

IPReceive() function, an incoming packet’s header is analyzed and if the destination

IP address of the packet is equal to the receiver host’s IP address, the packet is

delivered to the upper layer after setting the transport layer offset in the packet

structure. Otherwise it is dropped.

In IPSend() function, the packet is received from the transport layer and

network layer header is added in front of it. To set the destination IP address field in

the network layer header, ARP is used to determine the MAC address of the

destination host. Until the reply comes back from ARP, it waits for the response.

When the response comes, this function constructs the IP protocol header and sends it

thorough the lower layer, i.e., data link layer.

3.9 Transport Layer

The transport layer is the second highest layer in the five layer TCP/IP

reference models, where it responds to service requests from the application layer and

struct IP_Hdr

{

 unsigned char VersionAndIHL;

 unsigned char TypeOfService;

 unsigned char TotalLength[2];

 unsigned char Identification[2];

 unsigned char FlagsAndFragmentOffset[2];

 unsigned char TimeToLive;

 unsigned char Protocol;

 unsigned char HeaderChecksum[2];

 unsigned char SourceIP[4];

 unsigned char DestinationIP[4];

};

57

issues service requests to the network layer. It is also the name of layer four of the

seven layer OSI model, where it responds to service requests from the session layer

and issues service requests to the network layer.

 A transport protocol is a protocol on the transport layer. The two most widely

used transport protocols on the Internet are the connection oriented Transmission

Control Protocol (TCP), and connectionless User Datagram Protocol (UDP). TCP is

more complicated and most common one. Other options are the Datagram Congestion

Control Protocol (DCCP) and Stream Control Transmission Protocol (SCTP) [8, 9].

The transport layer is typically handled by processes in the host computer

operating system, and not by routers and switches. The transport layer usually turns

the unreliable and very basic service provided by the network layer into a more

powerful one.

In the TCP/IP model, the transport layer is responsible for delivering data to

the appropriate application process on the host computers. This involves statistical

multiplexing of data from different application processes, i.e. forming data packets,

and adding source and destination port numbers in the header of each transport layer

data packet. Together with the source and destination IP address, the port numbers

constitutes a network socket, i.e. an identification address of the process-to-process

communication.

Some transport layer protocols, for example TCP but not UDP, support virtual

circuits, i.e. provide connection oriented communication over an underlying packet

oriented datagram network [8]. A byte-stream is delivered while hiding the packet

mode communication for the application processes. This involves connection

establishment, dividing of the data stream into packets called segments, segment

numbering and reordering of out-of order data.

Finally, some transport layer protocols, for example TCP but not UDP,

provides end-to-end reliable communication, i.e. error recovery by means of error

detecting code and automatic repeat request (ARQ) protocol. The ARQ protocol also

provides flow control, which may be combined with congestion avoidance [2].

58

UDP is a very simple service, and does not provide virtual circuits, or reliable

communication, leaving these to the application. UDP packets are called datagrams

rather than segments [1].

TCP is used by many protocols, including web browsing (HTTP) [9] and

email transfer (SMTP). UDP may be used for multicasting and broadcasting, since

retransmissions are not possible to a large amount of hosts. UDP typically gives

higher throughput and shorter latency, and is therefore often used for real-time

multimedia communication, where packet loss occasionally can be accepted, for

example IP-TV and IP-telephony, and for online computer games.

In many non-IP-based networks, for example X.25, Frame Relay and ATM,

the connection oriented communication is implemented at network layer or data link

layer rather than the transport layer. In X.25, in telephone network modems and in

wireless communication systems, reliable node-to-node communication is

implemented at lower protocol layers [2, 3].

3.10 Implementation of Transport Layer

In this thesis, User Datagram Protocol (UDP) is implemented as the transport

layer protocol. The implementation details of this protocol are explained in Section

3.10.1.

3.10.1 User datagram protocol (UDP) and its implementation

User Datagram Protocol is one of the core protocols of the Internet protocol

suite. Using UDP, programs on networked computers can send short messages

sometimes known as datagrams (using Datagram Sockets) to one another. UDP is

sometimes called the Universal Datagram Protocol. The protocol was designed by

David P. Reed in 1980.

UDP does not guarantee reliability or ordering in the way that TCP does.

Datagrams may arrive out of order, appear duplicated, or go missing without notice.

59

Avoiding the overhead of checking whether every packet actually arrived makes UDP

faster and more efficient, for applications that do not need guaranteed delivery. Time-

sensitive applications often use UDP because dropped packets are preferable to

delayed packets. UDP's stateless nature is also useful for servers that answer small

queries from huge numbers of clients. Unlike TCP, UDP is compatible with packet

broadcast (sending to all on local network) and multicasting (send to all subscribers) .

Common network applications that use UDP include: the Domain Name

System (DNS), streaming media applications such as IPTV, Voice over IP (VoIP),

Trivial File Transfer Protocol (TFTP) and online games [7, 11].

In the Internet protocol suite, UDP provides a very simple interface between a

network layer below (e.g., IPv4) and a session layer or application layer above.

UDP provides no guarantees to the upper layer protocol for message delivery

and a UDP sender retains no state on UDP messages once sent (for this reason UDP

is sometimes called the Unreliable Datagram Protocol). UDP adds only application

multiplexing and checksumming of the header and payload. If any kind of reliability

for the information transmitted is needed, it must be implemented in upper layers [4].

The packet structure of the UDP is shown in Table 3.4.

Table 3.4 User datagram protocol header [19]

 Bits 0-15 Bits 16-31

0 Source Port Destination Port

32 Length Checksum

64 Data

The UDP header consists of only 4 fields [19].

• Source port

This field identifies the sending port when meaningful and should be assumed

to be the port to reply to if needed. If not used, then it should be zero.

60

• Destination port

This field identifies the destination port and is required.

• Length

A 16-bit field that specifies the length in bytes of the entire datagram: header

and data. The minimum length is 8 bytes since that's the length of the header.

The field size sets a theoretical limit of 65,535 bytes for the data carried by a

single UDP datagram. The practical limit for the data length which is imposed

by the underlying IPv4 protocol is 65,507 bytes.

• Checksum

The 16-bit checksum field is used for error-checking of the header and data.

In this thesis, UDP is implemented by defining a structure to construct the

UDP header, and two functions to send and receive UDP packets over the network. .

The UDP header structure is handled by the following struct.

To send/receive UDP packets over the network, two distinct functions are

implemented. These are UDPReceive() and UDPSend() functions.

In UDPReceive() function a UDP packet structure is received from the

network and UDP header is analyzed. According to the header information, the

packet is sent to the application waiting for this packet from a specific port after

setting the application layer offset. The distinction between different applications is

made with port number values in the incoming packet. There would be 216, i.e.,

struct UDP_Hdr{

 unsigned char SourcePort[2];

 unsigned char DestinationPort[2];

 unsigned char Length[2];

 unsigned char CheckSum[2];

};

61

65536, possible port number values, and multiplexing of applications are done with

those distinct port values.

In UDPSend() function a UDP packet is prepared using the source and

destination port numbers. The length of the datagram including the UDP header is

calculated and written into the length field of the header. Finally, a 16-bit checksum

is added for error detection.

3.11 Application Layer

The application layer is the seventh level of the seven-layer OSI model, and

the fifth layer of the five-layer TCP/IP model. It interfaces directly to and performs

common application services for the application processes; it also issues requests to

the presentation layer.

The application layer of the five-layer TCP/IP model corresponds to the

application layer, the presentation layer and session layer in the seven layer OSI

model [1, 3].

3.12 Implementation of Application Layer

To demonstrate that our device driver and the TCP/IP stack implementation

works and interoperates with existing standards compliant TCP/IP implementations,

we have developed a simple distributed game called tic-tac-toe. The game is

developed as a client/server application and works by exchanging messages between

the applications over the network.

3.12.1 Tic-tac-toe game

Tic-tac-toe, also called doughnuts and crosses, hugs and kisses, and many

other names, is a pencil-and-paper game for two players, O and X, who take turns

marking the spaces in a 3×3 grid. The player who succeeds in placing three respective

62

marks in a horizontal, vertical or diagonal row wins the game [18]. The game shown

in Figure 3.3 is won by the first player, X:

Figure 3.3 A sequence of tic-tac-toe game [18]

3.12.2 Structure of client/server application

Game is served by one of the players. The client application joins the game

and the game is started by putting an X by the server. Then game continues by

putting Xs and Os respectively by client and server players. At the end, according to

the sequence of the game either one of the players wins the game or a draw happens.

In this thesis, the application server is run in a computer running Microsoft

Windows XP and the client application is run on OSman. Using different platforms,

i.e., two different operating systems, shows that not only the implemented device

driver works perfectly, but also the implemented TCP/IP protocol stack is able to

communicate with another standards-compliant TCP/IP protocol stack

implementation.

 In Figures 3.4 and 3.5 two screenshots are demonstrated. In these figures

OSman is emulated with an emulator (qemu) having RTL8139 type Ethernet card

emulation. Communication between Windows XP and OSman is done in the

following way: A virtual private network is established on Windows XP, which

creates a virtual local area network called Tap. This local area network’s parameters

are configured to communicate with emulated OSman and packets sent from

Windows XP passes through Tap and reach OSman. Also the packets generated and

sent from OSman by RTL8139 emulation are received by Tap. With this emulation

system, some screenshots are taken. Also the system is able to do the same job by

running on two different real computers as well.

63

Figure 3.4 UDP packet receiving and printing in OSman

Figure 3.5 A game sequence in GUI platform of OSman

64

4. CONCLUSIONS AND FUTURE WORK

In this thesis, a device driver for a network interface card is implemented for a

newly developed operating system, which has various capabilities such as real multi-

programming, high resolution VESA graphics card driver, virtual x86 Mode support,

PCI driver system base, PCI device detection, MFC like event table based GUI

system, and cross platform gcc and g++ port. Also a TCP/IP protocol stack is built on

top of the implemented Ethernet device driver. Thus our operating system, called

OSman, is able to establish network connections.

Driver implementation of the system is done for a specific network interface

card. Since all PCI based cards have different configuration and programming

specifications, the implementations for some other cards must be done according to

their specifications. But PCI configuration space has a standard structure. According

to this structure, program design of the device driver is written and packets coming

from the network are received.

A standards-compliant TCP/IP protocol stack has been implemented to

interpret the incoming bits to the card and also send packets to the network. Finally, a

distributed game application has been developed on top of the TCP/IP stack to

demonstrate that the implemented device driver and the TCP/IP protocol stack can

interoperate with another standards-compliant TCP/IP protocol suite, that of the

Windows XP Operating System. This game is a simple client/server application to

show that system works perfectly.

As for future work, other widely used Ethernet cards’ driver implementations

can be developed for OSman to support a variety of Ethernet cards. Similarly, drivers

for other PCI based cards, e.g., sound cards, video cards, can be developed on this

system based on the PCI driver implementation of this thesis.

As an enhancement to the developed protocol stack implementation, other

transport layer protocols such as TCP, SCTP can be added for reliable, in-order, and

connection oriented communications. This way, other important applications such as

a web explorer can be developed on OSman.

65

REFERENCES

[1] Kurose J., F., Ross, K., W., Computer Networking, Addison Wesley

Longman, Inc., USA, 2001.

[2] Taylor, E., TCP/IP Complete, McGraw-Hill Professional Book Group, USA,

1998.

[3] Wetteroth, D., OSI Reference Model for Telecommunications, McGraw-Hill

Professional Publishing, USA, 2001.

[4] Blank, A., G., TCP/IP JumpStart: Internet Protocol Basics, Sybex, Inc.,

USA, 2002.

[5] Herbert, T., Linux TCP/IP Stack: Networking for Embedded Systems, Charles

River Media, USA, 2004.

[6] Muller, N., J., IP from A to Z, McGraw-Hill Professional Publishing, 2002.

[7] Stevens, W., R., TCP/IP Illustrated, Volume 1: The Protocols, Addison

Wesley, 1994.

[8] Stevens, W., R., TCP/IP Illustrated, Volume 2: The Implementation, Addison

Wesley, 1995.

[9] Stevens, W., R., TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP,

NNTP, and the UNIX Domain Protocols, Addison-Wesley, 1996.

[10] Carne, B., A Professional's Guide to Data Communication in a TCP/IP

World, Artech House, Inc., 2004.

[11] Feit, S., TCP/IP: Architecture Protocols & Implementation with IPV6 & IP

Security, McGraw-Hill Professional Book Group, 1998.

[12] Miller, M., A., Internet Technologies Handbook: Optimizing the IP Network,

John Wiley & Sons, Inc., 2005.

[13] Keogh, J., Ethernet in the First Mile, McGraw-Hill Professional Publishing,

2002.

[14] Axelson, J., Embedded Ethernet and Internet Complete, Lakeview Research,

2003.

66

[15] Russell, T., Telecommunications Basics, McGraw-Hill Professional

Publishing, 1997.

[16] Datasheet, Realtek 3.3V Single Chip Fast Ethernet Controller With Power

Management RTL8139C(L), Realtek Semiconductor Corp., Rev 1.4, 2002.

[17] Datasheet, RTL8139 Programming guide: (V0.1), Realtek Semiconductor

Corp., 1999.

[18] Wikipedia, the Online Free Encyclopedia, http://www.wikipedia.org, 2008.

[19] RFC web site, http://www.ietf.org, 2008.

[20] GeekOS project web site, http://geekos.sourceforge.net, 2008.

[21] Video Electronics Standard Association web site, http://www.vesa.org, 2008.

