

DESIGN AND IMPLEMENTATION
OF A VoIP PHONE USING

 A MICROPROCESSOR BOARD

Metin ÇIKRIKÇIOĞLU
Master of Science Thesis

Computer Engineering Program

August-2008

JÜRİ VE ENSTİTÜ ONAYI

Metin Çıkrıkçıoğlu’nun “Mikroişlemci Tabanlı Bir VoIP Telefon Tasarımı ve

Gerçeklemesi” başlıklı Bilgisayar Mühendisliği Anabilim Dalındaki, Yüksek Lisans Tezi

02.07.2008 tarihinde, aşağıdaki jüri tarafından Anadolu Üniversitesi Lisansüstü Eğitim-

Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca değerlendirilerek kabul edilmiştir.

 Adı-Soyadı İmza

Üye (Tez Danışmanı) : Yard. Doç. Dr. CÜNEYT AKINLAR …..……….

Üye : Yard. Doç. Dr. YUSUF OYSAL …..……….

Üye : Yard. Doç. Dr. AHMET YAZICI ..………….

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun

.……………… tarih ve …………… sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

i

ABSTRACT

Master of Science Thesis

DESIGN AND IMPLEMENTATION OF A VoIP PHONE USING A
MICROPROCESSOR BOARD

Metin ÇIKRIKÇIOĞLU

Anadolu University
Graduate School of Sciences

Computer Engineering Program

Supervisor: Assist. Prof. Dr. Cüneyt AKINLAR
2008, 65 pages

Transmission of voice over an IP network (VoIP) is very important as it lays the

ground for data and voice network convergence, which allows tremendous cost savings

for both enterprises and carriers. Session Initiation Protocol (SIP), developed by the

Internet Engineering Task Force (IETF), is the emerging VoIP signaling protocol that is

used to setup, terminate and modify associations between Internet end systems,

including conferences and point-to-point calls. With the emergence of VoIP using SIP,

many SIP phones have emerged on the market. These phones both come in software,

called a SoftPhone, and hardware varieties. A hardware SIP phone is implemented using

a cheap microprocessor board with a network interface such as Ethernet or 802.11. Such

phones must have a full-fledged SIP stack with a small footprint requiring minimal

system resources.

In this thesis, our goal is to design and implement a hardware SIP phone using a
microprocessor board. The main motivation is to obtain a standards-compliant, small

footprint SIP stack implementation that would require minimal resources when run in an
embedded system. We have implemented a layered SIP stack and deployed it on the

Ubicom microprocessor board. To test the implemented SIP stack, a SIP proxy server, a
SIP presence server and a SIP registrar have also been implemented. Finally, we have

integrated a commercial SIP SoftPhone, X-Lite, into the system, and successfully tested
the compatibility of our SIP stack implementation with X-Lite.

Keywords: VoIP, SIP, Embedded System, Proxy Server, Presence Server, Registrar

Server

ii

ÖZET

Yüksek Lisans Tezi

MİKROİŞLEMCİ TABANLI BİR VoIP TELEFON TASARIMI VE
GERÇEKLEMESİ

Metin ÇIKRIKÇIOĞLU

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yard. Doç. Dr. Cüneyt AKINLAR
2008, 65 sayfa

IP ağları üzerinden ses iletimi (VoIP), veri ve ses ağlarını bir birine yakınlaştırıp,
şirketlerin maliyetlerini büyük ölçüde azaltmasına yardımcı olduğu için çok önemli hale

gelmiştir. Internet Engineering Task Force (IETF) tarafından geliştirilen Session
Initiation Protocol (SIP), İnternet uç sistemleri arasında oturumların kurulmasını,

sonlandırılmasını ve değiştirilmesini sağlayan ve aynı zamanda konferansların
yapılmasına ve uçtan uca aramalara imkan veren ve son zamanlarda öne çıkan bir

oturum kurma protokolüdür. SIP kullanan VoIP’in ortaya çıkmasıyla, pazarda çok
sayıda SIP telefon görünür hale geldi. Bu telefonlar hem SoftPhone denen yazılımlar

şeklinde hem de donanım olarak yapıldılar. Donanımsal bir SIP telefonu, üzerinde
Ethernet veya 802.11 ağ arayüzü olan ucuz bir mikroişlemci kartı ile gerçeklenebilir

hale geldi. Bu telefonlar, minimum sistem kaynağı gereksinimi olan eksiksiz bir SIP
yığınına sahip olmalıdır.

Bu tezde amacımız, gömülü bir kart kullanarak, donanımsal bir SIP telefonu

tasarlamak ve gerçeklemektir. Ana motivasyonumuz, standarda uyumlu, minimum SIP
yığın gereksinimlerini karşılayan ve gömülü bir sistemde çalıştığında en alt seviyede

kaynak kullanacak bir SIP yığını elde etmektir. Bu tezde katmanlı bir SIP yığını
gerçekledik, ve bu yığını Ubicom mikroişlemci kartına yükledik. Gerçeklenen SIP

yığınını test etmek için bir SIP vekil sunucu, bir SIP kaydedici sunucu ve bir de SIP
durum sunucusu gerçeklendi. Son olarak yazılım tabanlı ticari X-Lite telefonu sisteme

entegre edildi, ve SIP yığın gerçeklememizin uyumluluğu başarılı bir şekilde test edildi.

Anahtar Kelimeler: VoIP, SIP, Gömülü Sistem, Vekil Sunucu, Durum Sunucusu,

Kaydedici Sunucu

iii

CONTENTS

ABSTRACT..i

ÖZET... ii

CONTENTS .. iii

LIST OF FIGURES ...v

ABBREVATIONS... vii

1. INTRODUCTION..1

2. SESSION INITIATION PROTOCOL (SIP)...4

2.1 SIP Functionality ..4

2.2 SIP Enabled Network ...5

2.3 SIP Messages ..8

2.3.1 SIP Request...9

2.3.2 SIP Response ..10

2.4 SIP Network Elements ...11

2.4.1 User Agent ..11

2.4.2 Proxy ...20

2.4.3 Registrar ..21

2.4.4 Redirect Server ...23

2.5 Basic SIP Operation ...24

3. DESIGN AND IMPLEMENTATION OF THE SYSTEM31

3.1 Hardware Components of the System...31

3.1.1 Ubicom Architecture ..31

iv

3.1.2 ARM Architecture ..32

3.2 Software Components of the System ..34

3.2.1 SIP Stack ...34

3.2.2 Registrar, Proxy and Presence Server ...51

3.2.3 User Interface..56

4. INTEGRATION AND TESTING OF THE SYSTEM ..57

4.1 Integration ...57

4.2 Testing...58

4.3 X-Lite Demonstration of the System...60

5. CONCLUSION...63

REFERENCES ...64

v

LIST OF FIGURES

2.1 Components of a SIP Enabled IP-Communication Network......................................6

2.2 Register Example ...22

2.3 SIP Session Setup Example with SIP Trapezoid ...25

3.1 IP5160 Block Diagram ..32

3.2 Ubicom Architecture Evaluation Board ...32

3.3 STR91 Block Diagram ..33

3.4 MCBSTR9 Evaluation Board..34

3.5 SIP Layered Architecture ..35

3.6 The structure of the Parsing/Generating Layer implementation..............................36

3.7 The structure of the Transport Layer implementation ...42

3.8 Client Transaction..45

3.9 Server Transaction ...46

3.10 The structure of the Transaction Layer implementation ...47

3.11 The structure of the Transaction User Layer implementation-149

3.12 The structure of the Transaction User Layer implementation-250

4.1 Integration of the System...57

vi

4.2 Testing Software of Ubicom Architecture ...58

4.3 X-Lite Software, Ali is registered...60

4.4 X-Lite Software, Ayşe is online..61

4.5 Ali and Ayşe sent messages to each other..62

vii

ABBREVATIONS

ARM : Advanced RISC Machine

DHCP : Dynamic Host Control Protocol

FQDN : Fully Qualified Domain Name

HTTP : Hypertext Transfer Protocol

RISC : Reduced Instruction Set Computer

RTP : Real-Time Protocol

SDP : Session Description Protocol

SIP : Session Initiation Protocol

SMTP : Simple Mail Transfer Protocol

TCP : Transport Control Protocol

UDP : User Datagram Protocol

URI : Uniform Resource Identifier

1

1. INTRODUCTION

Voice over IP (VoIP) offers the opportunity to design a global multimedia

communications system that will eventually replace the existing century-old

telephony infrastructure [11]. This is due to the fact that VoIP offers enormous cost

savings and ease of development both for enterprises and carriers, while integrating

new services [17]. Internet telephony differs from Internet multimedia streaming

primarily in the control and establishment of sessions, i.e., “signaling”. While we

usually assume that a stored media resource is available at a given location,

participants in a phone call are not so easily located. Personal mobility, call

delegation, availability, and willingness to communicate make the process of

signaling more complex. Session Initiation Protocol (SIP) is the emerging VoIP

signaling protocol, which is used to set up, modify and tear down multimedia

communication sessions over the Internet [7]. SIP also provides instant messaging

and presence to end points [19-21].

This thesis concentrates on the design and implementation of a SIP stack on

an embedded system. The goal is to obtain a small-footprint, standards-compliant SIP

stack that would require minimal resources in an embedded system. To test the

designed SIP stack, an instant messaging and presence awareness application have

been implemented. In order to fully provide a working system, a proxy server and a

registrar server have also been implemented for the PC architecture. To test the

compatibility of our SIP stack with existing SIP stack implementations, a commercial

SoftPhone from CounterPath Corporation, called X-Lite [10], is used. We

demonstrate that our SIP stack implementation not only requires a meager 10 Kbytes,

but also interoperates seamlessly with X-Lite SoftPhone.

Our SIP stack has a layered architecture. Specifically, there are four layers.

The first is the parsing/generation layer, which accomplishes SIP message generation

and parsing. The next is the transport layer, which provides networking by using TCP

or UDP. The transport layer achieves retransmissions of requests or responses,

2

matching of responses to requests and handling of timeouts. The third layer is the

transaction layer, which initiates transactions and uses them for specific SIP methods.

Finally there comes the application layer, which provides message transmission,

reception, registration and getting/sending presence information.

As our embedded system, we use the Ubicom board, which has a unique

architecture for networking and media processing. Ubicom has a 32-bit processor

called IP5K. The processor has powerful multithreading functionality, called

Multithreaded Architecture for Software I/O (MASI), which allows the execution of

threads at fully deterministic time intervals.

To have users interact with the Ubicom board and to display messages and

presence information, a companion embedded board is used. This is a MCBSTR9

Evaluation Board from Keil Company, and has an ARM core processor. The board

has an LCD display and some buttons, which are required for user interaction. The

processor used on this board is STR9 produced by STMicroelectronics Company, and

has an ARM9 core. In order to achieve the communication between Ubicom board

and the MCBSTR9 companion board, we have implemented a software module that

runs over TCP/IP.

 Our SIP stack for the Ubicom board is implemented using the C programming

language, and consists of 4362 lines of C code. When compiled, the stack footprint is

10,348 bytes, which easily fits on the Ubicom’s 196,608 bytes flash memory

SIP proxy and registrar servers are implemented using Java SIP servlet of

cafesip, which is an open source project. These java SIP servlets are called Jiplets.

Cafesip provides a jiplet container, which allows developing SIP server-side

applications. Proxy and registrar server software is developed using Jiplet API, and is

run in a Jiplet Container. The container enables application developer to create

server-side SIP applications using a component-based model similar to the J2EE

architecture.

3

The rest of the thesis is organized as follows: In Chapter 2, components of the

SIP architecture is explained in a detailed manner. In Chapter 3, we talk about the

details of our SIP stack, proxy and registrar software. We also give the architectural

details of the embedded boards used in this project. Finally, chapter 4 describes the

integration and testing of the developed system with the X-Lite SoftPhone.

4

2. SESSION INITIATION PROTOCOL (SIP)

It is very important to be able to create and manage sessions among

applications in the Internet for such purposes as data exchange and communication.

But there are some difficulties to make this reality possible. In particular, users may

have transient positions, and may use different media types to communicate. This

dynamic nature of the users’ locations and preferences necessitates a signaling

protocol for on-demand session establishment. Session Initiation protocol (SIP) [1]

developed by Internet Engineering Task Force (IETF) is one such signaling protocol,

which helps an Internet endpoint discover other endpoints and agree on a description

of the session that they would like to set up. SIP is a general protocol that allows

Internet end points to send registrations, invitations for sessions, and other requests

with no dependency to the underlying transport protocol.

2.1 SIP Functionality

SIP is a text-encoded protocol based on elements from HyperText Transport

Protocol (HTTP) [2] and also Simple Mail Transport Protocol (SMTP) [3]. It is an

application layer protocol [18]. It can establish, modify and terminate multimedia

sessions. SIP can also invite participants to existing sessions. SIP supports name

mapping and redirection services so that personal mobility can be achieved. In other

words, a user just has to deal with one external identifier regardless of her/his

network location. There are five facets of establishing and terminating multimedia

sessions using SIP. In a nutshell these are:

User Location

Frequently a user might be reached at several locations during the day. For

example, a student using computer laboratory in the university generally works on a

different computer each time s/he logs into the system. Therefore, s/he can be reached

at different IP addresses. Another user may want to receive session invitations at

lunch in her/his office using desktop computer, using a notebook at home in the

evening, and at a mobile terminal when s/he is traveling [4].

5

Uniform Resource Identifier (URI) and Registration concepts serves this user

identity and location problems. A person using SIP should have SIP URI, which is

similar to an email address and looks like: sip:bob@somecompany.com. Bob

registers to a registrar using this URI. He will then be accessible through his URI.

User Availability

Users can define if they are willing to accept a call.

User Capabilities

During session setup, media and media parameters can be determined.

Session Setup

Session parameters are established for both called and calling end.

Session Management

Transfer or termination of sessions and changing session parameters and

invoking services are legitimate.

2.2 SIP Enabled Network

Figure 2.1 shows the components of a SIP-enabled IP communication

network. SIP servers accomplish functions specific to SIP. SIP servers can be

stateless, similar to other Internet devices. SIP servers can be deployed in

geographically distributed clusters to avoid service failures. All this ensures very fast

response time and avoids failures in the network to disable calls, since the call state is

kept at the periphery of the network and not in the core. Users do not depend on any

potential central points of failure in the network and can communicate as long as they

have working end devices.

6

Figure 2.1 Components of a SIP Enabled IP-Communication Network

A caller can send an INVITE message to establish a session to the called

party, without knowing exactly where the other endpoint may be, and the SIP servers

will route the call to the destination. The route to the destination can be forked in the

network in order to find the other endpoint. The same infrastructure can also serve for

an instant message and presence service. A watcher can subscribe to a presentity, and

receive NOTIFY messages from the presentity. The watcher and presentity can

exchange short text messages using SIP itself, or Real-Time Protocol (RTP) packets

for any other communication media: audio, various data applications, video, or games

for instant communications.

Major benefits of SIP for end-points are the following:

Web-style and telephony-type addressing: SIP devices can use URIs that are

location-independent, and URLs that point to a specific host. Addresses can take the

form of e-mail addresses or telephone numbers.

7

Registration: Devices connected to the network are registered in order to route

calls to and from the device. Users may register themselves using their URIs to get

access to their particular information and services, independent from the device

registration. This is similar to e-mail access from web kiosks or Internet cafes. Such

dynamic routing to/from the user is accomplished without needing “switch

translations” or other static routing tables.

Security: SIP is designed to use the Internet security mechanisms so as to

protect sensitive signaling information from various types of attacks. User location

and traffic patterns can be kept confidential. SIP security can be quite complex and

uses the advances in all generic IP security mechanisms.

Redirect: A SIP server can redirect a request to another address.

Forking: A request from a user can be forwarded in several directions

simultaneously, as, for example, when trying various locations where the called party

may be found.

Rendezvous and presence: The active form of rendezvous consists of routing a

request for call setup to another server or endpoint where the desired service may be

performed, such as communication with an individual, or with a machine. The

passive form of rendezvous consists of presence information (that is, letting someone

know that a party of interest is connected to the network and its communication state,

such as available or busy).

Mobility: Users may have many communication devices such as phones, fax

machines, computers, palm computers, and pagers, at home, at work, and while

traveling. User devices can be attached to various types of networks, if proper

gateways are provided: IP, PSTN, mobile telephony, wireless mobile data, or paging.

SIP call setup can proceed without regard to the type of network or type of device the

parties may use at a certain instance.

8

User preferences: Callers can specify how servers and the network should

handle their requests, and also specify what type of service is desired or acceptable,

whom they would like to reach, and whom they would like to avoid (for example, to

avoid making calls to busy lines or to speak to machines). Called parties can specify

how to handle incoming calls, depending on a very large set of criteria, such as who

the caller is, where the call is coming from, time of day, the communication device,

and others.

Routing control: The route taken by SIP messages can be specified and

recorded for various services [5].

2.3 SIP Messages

A SIP Message could be request or response, which could be sent from client

to the server or from server to the client. These are called, SIP Request and SIP

Response. These two messages have something in common; they both have a start

line, some header fields, and an empty line, which indicates the end of the message.

At the end they may have an optional body [13]. Lines are distinguished from each

other by two consecutive ASCII characters, which are Carriage Return (CR) and Line

Feed (LF), characters 13 and 10 respectively. So the general structure of a SIP

message is shown below:

start-line CRLF

message-header1 CRLF

message-header2 CRLF

.

.

.

CRLF

9

[message-body]

Start-line can be a request line or a response line depending on the type of the

SIP message. After the start-line and each of the header lines, there has to be CRLF

(Carriage Return and Line Feed characters in order), which indicates the end of the

line. Before SIP message-body there has to be a secondary CRLF even if message-

body does not exist in the SIP message.

2.3.1 SIP Request

Start-line of a SIP Request is a request line, which has to be ended with a

CRLF. A request line contains three elements: (1) a method name, e.g., REGISTER,

INVITE, ACK, BYE, CANCEL, OPTIONS, etc., (2) a request-URI, (3) the protocol

version, e.g., SIP/2.0. These three elements have to be separated from each other with

exactly one space character (SP). It is not allowed to have more than one space

characters between these elements. At the end of the protocol version CRLF sequence

must exist, which denotes the end of the line.

There are 6 major SIP requests listed in SIP RFC [16]: These are REGISTER,

INVITE, ACK, CANCEL, BYE, OPTIONS. Additional methods are defined in RFC

3428, which are SUBSCRIBE and NOTIFY. REGISTER method is used for

registering the client at the location server, called a registrar. INVITE, ACK and

CANCEL methods are used for session setup. BYE method is used for ending a

session. By using OPTIONS method, someone can query the capabilities of a server.

SUBSCRIBE method is used when someone wants to know the real-time presence of

her/his friend. The server uses the NOTIFY method to inform the user of her/his

friend’s presence status.

Another element of the request line is request-URI. The request-URI is a SIP

or SIPS uri. This URI is directly related to the method of the request. It can not have

unescaped characters or control characters.

10

And the last element of the request-line is SIP-Version. This part shows the

SIP version in use. In this thesis, SIP version 2.0 is used. That’s why all requests

contain version as “SIP/2.0”. RFC3261 requires the version to be sent in uppercase.

2.3.2 SIP Response

A SIP Response is sent for a SIP request indicating the status of the request.

The only difference between a SIP Response and a SIP Request is the status line.

Status line for a SIP Response contains three elements which are protocol version,

status code and a textual phrase. There has to be exactly one space character between

these elements and at the end of the line there has to be CRLF sequence.

SIP version is the same with SIP Request, i.e., “SIP/2.0”.

Textual phrase is a representation of the response as a human understandable

text. The software written for SIP doesn’t have to deal with this textual phrase. It is

intended only for humans. In SIP specification these are defined in English but they

do not have to be in English only. Depending on the Accept-Language header field,

software may choose other equivalents in any language.

The status code is a three digit integer number, which shows the result of a

request. It can be thought as a result code. The status codes are grouped by the first

digit. Every group, which has the same first digit, has a distinguishing property in a

sense. There are six groups of error codes. The first group, error codes in the range

100-199, indicates that a request is successfully received and it is still being

processed. The second group, error codes in the range 200-299, indicates that a

request is received and processed successfully. The third group, error codes in the

range 300-399, indicates that a separate request is required in addition to the request

sent recently. This is a redirection response actually. The fourth group, error codes in

the range 400-499, indicates that the receiver of the request has encountered a syntax

error or cannot process the request due to some lack of implementation. The fifth

group, error codes in the range 500-599, is similar to the fourth group but request

11

does not have to be a syntax error or a meaningful error. The last group, error codes

in the range 600-699, indicates a global failure. That kind of response shows that

there is a global error, so that the request cannot be processed or received by any

server [1].

2.4 SIP Network Elements

SIP Networks are composed of several elements. The basic elements are user

agents, proxies, registrars and redirect servers. A minimal SIP network contains at

least two user agents. More complex versions may also contain other elements. Note

that, these elements are considered to be logical entities, so there might be more than

one logical element in one physical entity. For example one server may act as a

redirect server but also as a proxy server.

2.4.1 User Agent

An Internet end point that uses SIP to find other end points in the system and

to negotiate a session is called a “user agent” [6]. A user agent can be a SIP

SoftPhone, software running on a computer, or a gateway that makes SIP phones to

receive and make calls to the PSTN [5]. A user agent can be seen as an end system.

There are two types of user agents. The first one is UAC (UAC). UAC is

capable of sending a request, and receiving responses for that request and processing

them. This request generation is probably an external event such as clicking a button.

The other one is “User Agent Server” (UAS). UAS is capable of receiving a

request, and generating a response corresponding request based on a configuration,

user input, external event or result of a program execution.

All SIP user agents have both a UAC and a “User Agent Server”. In operation

both of them are used simultaneously. Compared to the HTTP protocol, SIP differs

by having both a client and a server at the same time. For the HTTP protocol, a client

12

always only generates requests and the server always generates responses. But a SIP

end system is a client and a server at the same time.

A request is sent by a UAC through some proxy servers to a “User Agent

Server”. These proxy servers forward messages among themselves and eventually to

the “User Agent Server”. The response of this request is generated by the UAC and

forwarded to the “User Agent Server” [1].

User Agent Client Behavior

In this section, we explain basic UAC functionality. A UAC is responsible for

generating a request, sending a request and processing incoming responses. First

Request generation will be explained in a detailed manner.

A valid SIP Request generated by a UAC must contain at least the following

header fields: To, From, CSeq, Call-id, Max-Forwards and Via. The existence of

these header fields is a must for a SIP request. These header fields help critical

message routing services, limiting request propagation, unique transactions, and

ordering of the messages.

Request-URI

This value has to be the same as the URI value of To header field. There is

only one exception that this value is not the same as the URI value of To header field

is REGISTER method. The meaning of this URI is directly related to the method of

the message.

To

To header field basically shows the recipient of the request. But this value

does not have to be the ultimate destination. This header field can be a SIP or SIPS

URI. RFC 3261 compels the support of SIP URI. It may have a display name.

From an implementation point of view, a UAC may acquire To header field in

a number of ways. Generally user enters the To header field through a human

interface, probably entering value using a keyboard etc, or choosing it from a list of

13

addresses. But for the sake simplicity, a user should be able to enter just “bob” in

order to communicate with Bob. At this point implementation may choose bob as a

left hand and the domain that the user registered as a right hand and constructs the

value of To header field.

A typical example of To header field is shown below.

To: Bob <sip:bob@example.com>

In this example Bob shows the display name and the part between “>“ and

“<” shows the SIP URI.

From

From header field shows the sender of the request. It also may have a display

name similar to To header field, and must have a URI. There might have been some

pre-defined rules on the end systems. For example an end system may have rule like

when someone calls, automatically reject the call. From header field is used for these

kinds of purposes. Note that, From header field does not have an IP address because

it is just a logical name of the initiator.

From an implementation point of view, From header field is generally pre-

configured before the sending the request and not entered more than once. But there

is a possibility that there might be obligatory rules for limiting From header field

defined by the administrator of the domain. If a particular UA is used by multiple

users, it may have switchable profiles that include a URI corresponding to the identity

of the profiled user. Recipients of requests can authenticate the originator of a request

to be able to ascertain that they are who their From header field claims they are. From

header field must have a tag parameter.

Call-ID

The Call-ID header field acts as the transaction identifier to tie up a series of

messages. It should be the same for all requests and responses sent by either UA in a

session. It has to be the same in each registration from a UA.

14

In a new request created by a UAC, which is not in any dialog, the Call-ID

header field has to be selected by the UAC as a globally unique identifier over space

and time unless overridden by method-specific behavior. All SIP UAs must achieve

to guarantee that the Call-ID header fields they produce will not be the same as those

generated by any other UAs.

CSeq

This header field shows the order of the transaction of messages. There are

two elements in CSeq header field. One of them is sequence number and the other

one is method of the request. For the requests other than which are not in a dialog, the

sequence number doesn’t have any importance. The sequence number is 32 bit

unsigned number that’s why this value cannot be bigger than 2^32. If these rules are

obeyed, the implementation may choose different strategies that generate this header

field. An example of CSeq header field is show below.

Call-ID: f81d234234s1d0-a765-00asdfss324f6@foo.bar.com

Max-Forwards

The Max-Forwards header field’s aim is to limit the number of hops a request

that can transit on the way to its ultimate point. It consists of an integer, that is,

decremented by one at each point. If the Max-Forwards value reaches 0 before the

request reaches its ultimate point, it will be rejected with a 483 (Too Many Hops)

error response.

A UAC has to insert a Max-Forwards header field into each request it

originates with a value that could be 70. This number was chosen to be sufficiently

large to which makes sure that a request would not be dropped in any SIP network

when there were no loops, but not so large as to consume proxy resources when a

loop does occur. Lower values should be used with caution and only in networks

where structure is known by the user agent.

15

Via

There are two aims of the Via header field. The first one is to indicate the

transport of the transaction. The second one is to indicate where the response should

be sent to. At each point, a Via header field is added to the request. There has to be

branch parameter, which is a transaction identifier, used by both client and server.

This value must be unique like call-id header field. But there is obligatory thing that

each branch parameter must start with “z9hG4bk” string. The rest of the parameter is

not important as long as it starts with this string and is unique.

Contact

The Contact header field provides a SIP or SIPS URI that can be used to

contact that specific instance of the “User Agent” for the following requests. The

Contact header field has to exist and contain exactly one SIP or SIPS URI in any

request that can result in the creation of a dialog.

Which URI, SIP or SIPS URI is selected depending on the Request-URI. If

Request-URI has a SIP URI, contact header field is also a SIP URI else Request-URI

has a SIPS URI, then contact header field is also a SIPS URI.

Supported and Require

If there is capability of the server which can provide support for some other

SIP methods, it is best to add a supported header field which contains a list of options

of supported methods, to the request.

If the UAC wishes to insist that a “User Agent Server” understands an

extension that the UAC will apply to the request in order to process the request, it has

to insert a Require header field into the request listing the option tag for that

extension. If the UAC wishes to apply an extension to the request and insist that any

proxies that are traversed understand that extension, it has to insert a Proxy-Require

header field into the request listing the option tag for that extension.

16

The destination for the request is computed. Unless there is a local policy

specifying otherwise, the destination has to be defined by applying the DNS

procedures as follows. If the first element in the route set indicated a strict router, the

procedures have to be applied to the Request-URI of the request. Otherwise, the

procedures are applied to the first Route header field value in the request (if one

exists), or to the request’s Request-URI if there is no Route header field exist. These

procedures yield an ordered set of address, port, and transports to try. Independent of

which URI is used as input, if the Request-URI specifies a SIPS resource, the UAC

MUST follow the procedures as if the input URI were a SIPS URI.

Local policy might specify an alternate set of destinations to try. If the

Request-URI contains a SIPS URI, any alternate destinations has to be contacted with

TLS (Transport Layer Security). Beyond that, there are no restrictions on the different

destinations if the request doesn’t have any Route header field. This makes a simple

alternative to a pre-existing route set as a way to specify an outbound proxy.

However, that way for configuring an outbound proxy is not advised; a pre-existing

route set with a single URI could be used instead. If the request contains a Route

header field, the request could be sent to the points derived from its topmost value,

but might be sent to any server that the “User Agent” is certain will honor the Route

and Request-URI policies. In particular, a UAC configured with an outbound proxy

could try to send the request to the location indicated in the first Route header field

value instead of changing the policy of sending all messages to the outbound proxy.

This guarantees that outbound proxies that do not add Record-Route header

field values will go out of the path of subsequent requests. It lets endpoints that

cannot resolve the first Route URI to give that job to an outbound proxy.

Sometimes there may not be received a message at all. There might have been

a communication error. This error must be treated as 408 (Request Timeout) status

error code. But if there is a more serious situation like connection error, it should be

treated as a 503 (Service Unavailable) status code.

17

A UAC may not have implemented all the status codes. Because of this, it can

safely assume the status code is x00 equivalent. For example it received a 431 status

code response. But it doesn’t know the meaning, basically it can understand that there

was a problem with the request and treat the response as if it is 400 (Bad Request)

response code.

If there is more than one Via header field in the response, this response must

be ignored.

User Agent Server Behavior

User Agent Server behavior is atomic. When a request is received, it

immediately processed and state changes are applied. There are some steps while

processing request. These are:

Method Inspection

When a request is received, firstly method of the request is inspected. If

method is recognized successfully, but not supported, 405 (Method Not Allowed)

response should be generated and sent. Also Allowed header field has to be added to

the response, which lists the supported methods of the endpoint. If method is

recognized and supported, processing the request goes on.

Header Inspection

If a “User Agent Server” doesn’t recognize a header field in a request, it

simply ignores it and continues processing the request. And also any corrupted header

fields are ignored, too.

The To header field shows the final recipient of the request where From

header field shows originator of the request. At that point, “User Agent Server” may

not be the original recipient of the request because of there is possibility that it might

be proxy or a redirect server. If the To header value is not its URI, then “User Agent

Server” is free to process the request. But it is recommended to do process the

18

request. However if it decides to reject the request, it has to generate 403 (Forbidden)

status code.

Request-URI is another property for “User Agent Server” for deciding if to

reject or to process. If scheme of the URI is not known, then 416 (Unsupported URI

Scheme) response should be sent. If URI is known but this server is not the recipient

of the request, then request should be rejected by sending a 404 (Not Found)

response.

After that if “User Agent Server” finds the request correct, it looks for the

Require header field.

The Require header field is used by a UAC to tell a “User Agent Server”

about SIP extensions that the UAC expects the “User Agent Server” to support in

order to process the request properly. If a “User Agent Server” does not know an

option-tag listed in a Require header field, it should answer by generating a response

with status code 420 (Bad Extension). The “User Agent Server” has to add an

Unsupported header field, and list in it those options it does not understand among

those in the Require header field of the request.

Presumably “User Agent Server” can understand all extensions that are

needed by the client; it checks the body of the message and the related header field. If

there are any bodies whose type, language or encoding are not understood, and that

body part is not optional, the “User Agent Server” has to reject the request with a 415

(Unsupported Media Type) response. The response has to contain an Accept header

field listing the types of all bodies it understands, in the event the request contained

bodies of types not supported by the “User Agent Server”. If the request contained

content encodings not known by the “User Agent Server”, the response has to contain

an Accept-Encoding header field listing the encodings understood by the “User Agent

Server”. If the request contained content with languages not known by the “User

Agent Server”, the response has to contain an Accept-Language header field

19

indicating the languages understood by the “User Agent Server”. Other than these

checks, body handling depends on the method and type.

If there is no problem until this point, then it generates the response to the

corresponding request.

For methods other than INVITE “User Agent Server” should not send a 1xx

response to the requester.

From field of the response has to be equal to From header field of the request.

The Call-ID header field of the response has to be equal to Call-ID header field of the

request. CSeq header field of the response has to be equal to CSeq field of the

request. The Via header field values in the response has to be equal Via header field

values in the request and the order of the elements of header must be the same.

If a To tag exists in the request, the To header field in the response has to be

equal that of the request. However, if the To header field in the request doesn’t

contain a tag, the URI in the To header field in the response has to be equal the URI

in the To header field; additionally, the “User Agent Server” has to add a tag to the

To header field in the response. The same tag has to be used for all responses to that

request, both final and provisional.

A stateless User Agent Server is a “User Agent Server” that doesn’t preserve

transaction state. It just replies the request normally. If a request, which is a repetition

of previous one, arrives to this kind of server, it would re-send the response, as if it

encounters the request for the first time. A “User Agent Server” can’t be stateless

unless the request processing for that method would always conclude in the same

response if the requests are the same. There is an exception for stateless registrars, for

example. Stateless “User Agent Servers” don’t use a transaction layer; they receive

requests directly from the transport layer and send responses directly to the transport

layer.

20

The most important behaviors of a stateless “User Agent Server” are; a

stateless “User Agent Server” must not send 1xx responses, must not retransmit

responses has to ignore ACK requests, must ignore CANCEL requests and To header

tags have to be generated for responses in a stateless manner - in a manner that will

generate the same tag for the same request consistently [1].

2.4.2 Proxy

In general, proxy is a server that acts as an intermediary between a

workstation user and the Internet so that the enterprise can ensure security,

administrative control, and caching service [14]. Basically, definition of a proxy is

SIP requests are received from user agents or some other proxy and forwards the

request to another location [5].

In fact it is an entity, which acts as both a server and client and its main

purpose is routing the request. Destination of routing is probably a closer location or

itself the destination. Of course there are possibilities for local policies for proxies,

which can be applied.

A request may pass several proxies on its path to a “User Agent Server”. Each

will make routing decisions, modifying the request before forwarding it to the next

element. Responses will go through the same set of proxies passed by the request in

the reverse order.

For a SIP element, being a proxy is a logical role. When a request comes, an

element that can play the role of a proxy first concludes if it needs to respond to the

request on its own. For example, the request may be corrupted or the element may

need credentials from the client before acting as a proxy. The element may respond

with any proper error code.

There are two types of proxy servers. First one is stateful proxy and the

second one is stateless proxy. Stateless proxy doesn’t preserve any client or server

transactions when it processes the requests. It just forwards every request received to

21

a single point by making a decision based on the request. And it simply forwards

every corresponding response, which receives. When this kind of proxy forwards the

request or response, it deletes all the information about the request or response. On

the other hand a stateful proxy preserves the client and server transaction state

machines while processing the request. It remembers all incoming requests and all

requests, which is sent because of the incoming ones. The future of the messages is

affected with this kind of proxy. A stateful proxy may fork a request, which means it

can send the same request to more than one location. A proxy, which forks a request,

must use the stateful mechanism to handle the forking situation. At this point note

that a proxy may use a stateful transport mechanism such as Transport Control

Protocol (TCP) but this doesn’t mean proxy is stateful. It may use the same

connection to send some requests which is sign of statefulness but in fact there is no

statefulness from SIP point of view.

At any time a proxy server can switch from either from stateful situation to

stateless situation or from stateless situation to stateful situation, as long as it prevents

to switch to stateless situation, for example forking. When switch from stateful

situation to stateless situation, all the states are simply discarded [1].

2.4.3 Registrar

Registrar is a server which receives REGISTER requests and preserves this

data on a location service for the domain it is included [1].

Basically, registrar receives a register request and saves this information to a

location service. This service could be a database. When the result of this request is

successful, a 200 OK response is generated and sent to the user agent. This step is

essential for the operation of SIP mechanism because if a user agent doesn’t register

itself to a registrar, it wouldn’t be able to get a message from at all. There is generally

a proxy or a redirect server with a registrar, which could send a received message to

the appropriate destination based on this registration information.

22

When a SIP-based endpoint becomes online, the first thing it normally does is

to send out a REGISTER message looking for a Registrar [15]. A registrar could be

thought as a front door for a location service. Register requests are received and

depending on the request, some operations such as reading or writing mappings of

users are achieved. Then the proxy server, which is near the registrar takes requests

other than REGISTER, and forwards them to proper destinations. An example is

shown in figure 2.2

1
 R

e
g
is
te
r

3
 I
N
V
IT
E
 c
a
ro
l@

c
h
ic
a
g
o
.c
o
m

Figure 2.2 Register Example

By using REGISTER request, you can add, remove and query bindings. A

REGISTER request can add a new binding between an address-of-record and one or

more contact addresses. Registration for a particular address-of-record can be

23

performed by an authorized third party. A client can also remove bindings or query to

determine which bindings are in place for an address-of record at that moment.

For a REGISTER request, Request-URI is a must. For a REGISTER request,

Request-URI contains the domain of the location service. To header field in

REGISTER request contains an address-of-record. This address-of-record can be

anyone whose registration is to be created, queried, or modified. Different from the

Request-URI, this header field contains SIP URI. From header field of a REGISTER

request contains the address-of-record of the person responsible for the registration.

This value is generally the same as To header field. CSeq guarantees the order of the

REGISTER requests. For every REGISTER request with the same Call-ID value

CSeq number must be incremented by one. Contact header field may have more than

one value. The main purpose of this header field is maintaining the binding or

bindings. Another important header field in a REGISTER request is Expires.

Specified in seconds Expires shows how long the user agent is willing to be

registered to the registrar [1].

2.4.4 Redirect Server

A redirect server is a server that generates 3xx responses and returns a list of

alternate URIs of the person being queried.

In proxy servers not depending on being a stateless or stateful, all

communication goes through proxy back and forth. That sometimes requires huge

resources in terms of computing and networking. That’s why redirect servers are

defined which just generates some alternate URIs and get out from the loop of the

transactions which reside between client and servers. This approach, which takes the

responsibilities from core and gives them to the edges, allows great network and

computing scalability. This kind of server doesn’t generate a SIP request for its own.

It just accepts or refuses a request. When it accepts the request, it gathers the

information from a location service like a registrar and sends them as a final response

24

to the UAC. When a redirect server accepts the request, it will fill the contact header

field with a list of alternative locations [1].

2.5 Basic SIP Operation

This section includes a simple example of SIP operation. Example consists of

signal of desire to communicate, negotiation of session parameters to establish the

session, and closing of the session. Figure 2.3 shows a typical example of a SIP

message exchange between two users, Alice and Bob. In this example, Alice uses a

SIP application on her PC to call Bob on his SIP phone over the Internet. Also there

are two SIP proxy servers that for Alice and Bob to achieve the session

establishment.

Alice calls Bob using his SIP URI, which is sip:bob@bloxy.com.

“bloxy.com” is the domain of Bob’s SIP service provider. Alice’s SIP URI is

sip:alice@atlanta.com. Since SIP is based on a HTTP-like request/response

transaction model, each transaction consists of a request that invokes a specific

method or function, on the server and at least one response. In this example, the

transaction begins with Alice’s SoftPhone sending an invite request addressed to

Bob’s SIP URI. INVITE is an example of a SIP method that specifies the action that

the requestor (Alice) wants the server (Bob) to take. The INVITE request contains a

number of header fields. Header fields are named attributes that provide additional

information about a message.

25

Alice’s

Softphone

Bob’s

Softphone

atlanta.com

proxy

bloxy.com

proxy

INVITE F1

INVITE F2

INVITE F4100 Trying F3

100 Trying F5

180 Ringing F6

180 Ringing F8

180 Ringing F7

200 OK F9

200 OK F10

200 OK F11

ACK F12

Media Session

BYE F13

200 OK F14

Figure 2.3 SIP Session Setup Example with SIP Trapezoid

26

The ones present in an INVITE include a unique identifier for the call, the

destination address, Alice’s address, and information about the type of session that

Alice wishes to establish with Bob. The INVITE (message F1 in Figure 2.3) may

look like this:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

(SDP is not shown)

The first line the ASCII encoded message contains the method name, which is

the case INVITE now. The following lines are a list of header fields. These fields are

compulsory fields.

Via contains the address (pc33.atlanta.com) at which Alice is expecting to

receive responses to this request. It also contains a branch parameter that identifies

this transaction.

To contains a display name (Bob) and a SIP or SIPS URI

(sip:bob@biloxi.com) towards which the request was originally directed.

27

From also contains a display name (Alice) and a SIP or SIPS URI

(sip:alice@atlanta.com) that indicate the originator of the request. This header field

also has a tag parameter containing a random string (1928301774) that was added to

the URI by the SoftPhone. It is used for identification purposes.

Call-ID contains a globally unique identifier for this call, generated by the

combination of a random string and the SoftPhone’s host name or IP address. The

combination of the To tag, From tag, and Call-ID completely defines a peer-to-peer

SIP relationship between Alice and Bob and is referred to as a dialog.

CSeq or Command Sequence contains an integer and a method name. The

CSeq number is incremented for each new request within a dialog and is a traditional

sequence number.

Contact contains a SIP or SIPS URI that represents a direct route to contact

Alice, usually composed of a username at a fully qualified domain name (FQDN).

While an FQDN is preferred, many end systems do not have registered domain

names, so IP addresses are permitted. While the Via header field tells other elements

where to send the response, the Contact header field tells other elements where to

send future requests.

Max-Forwards serves to limit the number of hops a request can make on the

way to its destination. It consists of an integer, that is, decremented by one at each

hop.

Content-Type contains a description of the message body.

Content-Length contains an octet (byte) count of the message body.

Alice’s SoftPhone doesn’t know the location of Bob’s location. That’s why

her SoftPhone sends the INVITE to the proxy which servers for her domain,

atlanta.com. atlanta.com’s IP address is already either stored in her SoftPhone or

discovered using Dynamic Host Control Protocol (DHCP).

28

atlanta.com is a SIP server, which is a type of proxy server. A proxy server

receives SIP requests and forwards them to for the requesters. In this example proxy

server receives Alice’s INVITE request and sends 100 Trying response to Alice’s

SoftPhone. 100 Trying response means, proxy has got the request and is trying to

forward the request to the proper destination. Responses are three digit codes and

there is reason phrase after the code. In this example the headers of response and

request are the same. Reason of that, Alice’s SoftPhone can achieve response request

relationship. atlanta.com acquires biloxy.com’s IP address and forwards request there.

Before forwarding the request atlanta.com server adds an additional via header to the

request, which contains its address. Likewise when biloxy.com receives the request,

sends 100 Trying response to atlanta.com that states request is being processed by

biloxy.com server. biloxy.com obtains current IP address of Bob by using some

methods such as database look up, and sends the request to Bob’s SoftPhone by

adding one more additional via header to request, which is its own address. Then

Bob’s phone receives the request, which comes from Alice. At this point Bob’s

SoftPhone sends 180 Ringing response to biloxy.com and then Atlanta.com and

finally to Alice’s SoftPhone. At each point one via header field is removed from the

response and obviously each point figures out where to send the response by using

these via header fields.

When Bob answers the call, his SoftPhone sends a 200 OK response, which

shows that the call was accepted. This response contains a body with a SDP. SDP

data contains, which formats of media, is wanted by Bob’s SoftPhone. The response,

which is sent by Bob’s SoftPhone, may look like this:

SIP/2.0 200 OK

Via: SIP/2.0/UDP server10.biloxi.com ; branch = z9hG4bKnashds8; r

received=192.0.2.3

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com

29

;branch=z9hG4bK77ef4c2312983.1;received=192.0.2.2

Via: SIP/2.0/UDP pc33.atlanta.com

;branch=z9hG4bK776asdhds ;received=192.0.2.1

To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.4>

Content-Type: application/sdp

Content-Length: 131

The first line contains response code and response phrase, which are “200”

and “OK” respectively. The other lines are the header fields. These header field

values are copied from INVITE request. There is tag attribute in the To header field

of the response, which is sent by Bob’s SoftPhone. This tag value is used as an

identifier of the dialog, which is established by the call between Alice’s and Bob’s

SoftPhones. This tag value is used with every request and response within this call.

Contact header field contains the URI, which Bob could be reached directly. The

content type and content length header fields contains “application/sdp” and the

length of the SDP data respectively.

Finally, Alice’s SoftPhone sends an ACK back to Bob’s SoftPhone. But at

this point ACK doesn’t go through proxies because Alice’s SoftPhone has already

learned the address of Bob’s SoftPhone. It sends ACK directly to Bob’s SoftPhone.

From this point on, proxies are out of the picture, and Alice’s SoftPhone and Bob’s

SoftPhone communicates without any delegation.

30

When the call ends, in other words one party hangs up the phone, BYE

message is sent to the other party. At this point, when Bob hangs up the phone, BYE

message is sent to Alices’s SoftPhone. This BYE message is sent without proxies,

too. Alice’s SoftPhone sends a 200 OK response, which ends the call [1].

31

3. DESIGN AND IMPLEMENTATION OF THE SYSTEM

This chapter gives the details of our SIP phone implementation. The hardware

and software components of the system and how they are integrated together are

explained in a detailed manner. We start by detailing the hardware components:

Embedded boards used in the design and how they are plugged in together. We then

describe the software components of the system, i.e., the SIP stack and the SIP user

agent, and how they are implemented and integrated together.

3.1 Hardware Components of the System

As embedded board of our VoIP Phone, we use Ubicom architecture, which is

an evaluation board containing a IP5160 Ubicom processor. For display and user

interaction purposes, we use an MCBSTR9 Evaluation Board, which has an ARM

core processor manufactured by Keil Company.

3.1.1 Ubicom Architecture

IP5160 processor is a network processor having a multithreaded architecture

for software I/O. This feature allows ten threads to run with no context switching

overhead. It is a 32-bit CPU supporting ten-way multithreading operation. All tasks to

be executed have real-time capability with completely deterministic time constraints.

Block diagram of the processor is in figure 3.1.

The evaluation board, which has an IP5160 processor, has 4 Ethernet ports.

This allows connectivity not only to the proxy and registrar but also to the user

interface board. The evaluation board is shown in figure 3.2.

32

Figure 3.1 IP5160 Block Diagram

Figure 3.2 Ubicom Architecture Evaluation Board

3.1.2 ARM Architecture

STR912F microcontroller is used for this purpose. It has a RISC core, which

is based on the Harvard architecture, and has a 5-stage pipeline and tightly-coupled

33

memories. Its most important feature is low power consumption [8]. Block diagram

of the microcontroller is shown in figure 3.3.

Figure 3.3 STR91 Block Diagram

MCBSTR9 evaluation board has a STR91 microcontroller, a LCD display and

a three buttons, which is required for user interaction. The evaluation board is shown

in figure 3.4.

34

Figure 3.4 MCBSTR9 Evaluation Board

3.2 Software Components of the System

Software components of the system consist of a SIP User Agent implemented

on top of our SIP stack, a SIP proxy and a Registrar. In this section we explain these

components one at a time.

3.2.1 SIP Stack

SIP stack is at the heart of our implementation and is conformant to RFC3261.

The stack is designed and implemented in a modular way, and has a layered

architecture. Layering allows different parts of the stack to be independent of each

other. In other words, layers are loosely coupled.

There are 5 layers including the application layer. The layers are shown in the

figure 3.5.

35

Figure 3.5 SIP Layered Architecture

Each layer and how they’re implemented and by what functions are explained

below from bottom to top manner.

Parsing/Generating Layer

This is the lowest layer, and is responsible for SIP message parsing and

generation. This layer has 5 public interface functions available to the upper transport

layer, and 22 private functions that implement the Parsing/Generating Layer itself.

The structure of the Parsing/Generating Layer implementation is shown in figure

3.6.

36

generate_request

generate_headers

generate_response
determine_request_or_res

ponse
extract_response extract_request

find_line_end extract_line extractSP SPfree extract_headers

check_double_line_end find_line_end extract_header extract_one_value extract_first_value

extract_second_value extractDU
extract_via_header_wra

pper

extract_body

extract_tag extract_till_angle extract_uri_from_angle extract_via_header

extractPM

extract_coma

get_line_end

Figure 3.6 The structure of the Parsing/Generating Layer implementation

37

Functions of the Parsing/Generating Layer

Before explaining the functions of this layer, it is required to point out the

structures used by these functions. Below we give the C structures used by the

implementation of this layer:

struct request {

 request_type_t rt;

 char *request_uri;

 struct Headers headers;

 char *body;

};

struct Headers {

 char *call_id;

 u32_t content_length;

 struct CSeq *cseq;

 struct Contact *contact;

 struct From *from;

 u8_t max_forwards;

 struct Via *via;

 struct To *to;

 char *content_type;

 u32_t expires;

 char *record_route;

38

 char *event;

 char *accept;

};

struct CSeq {

 u32_t sequence;

 request_type_t rt;

};

struct Contact {

 char *display_name;

 char *uri;

};

struct From {

 char *display_name;

 char *uri;

 char *tag;

};

struct To {

 char *display_name;

 char *uri;

 char *tag;

39

};

struct Via {

 transport_type_t tt;

 char *domain;

 u16_t port;

 char *received;

 char *branch;

 struct Via *next;

};

struct response {

 u16_t status_code;

 char *reason_phrase;

 struct Headers headers;

};

Finally, structures used by the private functions of the layer are shown below:

struct SP {

 char *afterSP;

 char *extracted;

};

struct DU {

 char *display_name;

40

 char *uri;

 char *tag;

};

struct PM {

 char *parameter;

 char *value;

};

struct netbuf *generate_request(struct request *req)

Netbuf struct is a special kind of network buffer structure provided by

Ubicom. “struct request” contains the request type, which can be REGISTER,

MESSAGE, SUBSCIBE and NOTIFY. Since every request must have a request URI,

this structure has a request_uri attribute, which is in a char array type. It also has a

Headers structure. This structure has the minimum requirements of the headers and

the attributes needed for specific methods. That’s why it has call_id, record_route and

accept attributes specified in a char array. It also has content_length, max_forwards

and expires attributes specified in numerical values. Struct CSeq shows the sequence

number and the request type; struct Contact has display name and uri of the contact;

struct From has a display name, URI and a tag value; struct Via has transport type,

domain, transport port, received IP and a branch parameter; and finally, struct To has

a display name, URI and a tag value.

 The job of this function is to take a request structure, and generate a

serialized version of the structure ready for transmission. The serialized version is

laid into the netbuf buffer, and this value is returned by the function.

41

struct netbuf *generate_response(struct response *resp)

struct response structure is very similar to struct request. The only difference

is that it has a reason phrase and a status code, which shows the response code of the

answer.

The job of this function is similar to generate_request: It is responsible for

taking a response structure and generating a serialized version of the structure, which

is ready for transmission. The serialized data is put into the netbuf buffer and this

value is returned by the function.

bool_t determine_request_or_response(struct netbuf *nb)

This function takes a serialized version of a request or a response, and

determines if the buffer contains a request or a response. If the buffer contains a

request, the function returns true otherwise it returns false.

struct response *extract_response(struct netbuf *nb)

This function takes a serialized response message and extracts the response.

struct request *extract_request(struct netbuf *nb)

This function takes a serialized request and extracts the request.

Transport Layer

Transport layer’s main duty is actual transmission of requests and responses

over the network. If transport layer uses a connection oriented transport protocol such

as TCP then it is responsible for persistence of these connections. It is recommended

to keep the connections open at least for one transaction duration. It is obligatory to

support both TCP and UDP in an implementation and they’re both implemented in

our stack.

For the client side of the transport layer, it is required to be able to send

requests and receive responses. If a request is within 200 bytes of the path MTU, or if

it is larger than 1300 bytes when the path MTU is not known, the request has to be

42

sent using congestion controlled transport protocol, such as TCP. In this thesis, TCP

is used as the default transport protocol for transmission of SIP requests.

In general, responses to requests are sent over the same connection, that’s why

for connection oriented protocols, the response is received over the same connection.

Only if an error occurs the response is sent over a new connection.

When a response is received by the transport layer, Via header field value is

analyzed. If the value of this parameter is different than the one sent in the request,

then the response is discarded.

The transport layer must also be prepared to receive requests at TCP or UDP

ports 5060, which is what we use in this thesis [1].

The implementation of this layer has 2 public functions available to the upper

Transaction Layer, and 10 private functions that implement that Transport Layer

itself. The structure of the Transport Layer implementation is shown in figure 3.7.

transport_request_send

data_received

transport_layer_init

connection_requested data_received_from_list

en_udpicmp_error_occured connection_established

connection_closed

response_received

data_received_from_list

en

connection_closed_from

_listen

send_response

Figure 3.7 The structure of the Transport Layer implementation

43

Functions of the Transport Layer

transport_layer_init function must be called during initialization. This

function initializes the connections and required buffers. Data receiver functions are

designed as callbacks, which get invoked when data are received. When sending a

request transport_request_send function is used. Before explaining this and the

related functions, we need to show the structures used by the public and private

functions of the Transport Layer.

struct tcp_client_transaction_instance {

 tcp_client_transaction_state_t tcts;

 struct oneshot *timerF;

 proceeding_callback_t pc;

 completed_terminated_callback_t ctc;

 struct response *resp;

 struct tcp_connection *tc;

 struct netbuf *nb;

 char *branch;

 struct CSeq *cseq;

 bool_t send_successful;

};

Although tcp_client_transaction_instance structure is mainly used by the

transaction layer, it is also required by transport_request_send function.

Detailed explanation of the functions is as follows:

44

void transport_request_send(struct request *req, struct

cp_client_transaction_instance *tcti)

This function firstly allocates a connection, and then uses the struct request

parameter and the public function generate_request of the Parsing/Generating Layer

to generate a serialized version of the request. This serialized data is then sent to the

proxy or registrar. While sending the request, some callback functions are setup,

which are required to know the state of the connection and make the proper action.

void transport_layer_init(void)

This function is responsible for allocating permanent sockets. Specifically,

TCP and UDP ports 5060 are set up to listen to incoming messages, and the required

callback functions are installed.

Transaction Layer

SIP is a transactional protocol with request and responses being part of the

transactions. Transactions have a client side and a server side. The client side is called

as a client transaction and the server side is called a server transaction. The client

transaction sends the request, and the server transaction sends the response. Receiving

responses is also the responsibility of the client transaction.

For each client transaction, a finite state machine defines the actions to be

taken in response to sent/received messages. As an example, we show the finite state

machine for the non-INVITE client transaction which is shown in figure 3.8.

45

Figure 3.8 Client Transaction

The first state entered is Trying state. At this point a new client transaction is

initiated. Timer F is set up to fire in 32 seconds. If that’s the case then terminated

state is entered. If an unreliable transport is used Timer is set up. If a provisional

response is received while in the Trying state, then Proceeding state is entered. If a

final response is received in Proceeding state, completed state is entered. This is also

the case when final response is received during the Trying state. While in the

Completed state, if an unreliable transport is used Timer K is set up to fire in 4

seconds. When this timer is fired, Terminated state is automatically entered. If a

reliable transport is used, then the duration to fire for Timer K is zero seconds. In

other words, for reliable transport when the state is completed, Terminated state is

entered momentarily.

Server transaction has a similar state machine shown in figure 3.9.

46

Trying

/ Request received pass toTU

Proceeding

Completed

Terminated

/ 1xx resp. from TU

/ Request send response

/ 200-699 from TU send response

/ 200-699 from TU send response

/ Timer F of transport err.

/ 1xxx from TU send response

/ Timer J

/ Transport Err. Inform TU

/ Transport Err. Inform TU / Request send response

Figure 3.9 Server Transaction

The first state entered is Trying state. When 1xx response is sent from the

server, Proceeding state is entered. While in this state if another 1xx response is sent,

then this shows that it has to remain in this state. When a final response is sent then it

is time to enter Completed state. While in the Proceeding or in the Completed state if

a transport layer error occurs then state machine transits to Terminated state. When in

the Completed state Timer J is set up to fire in 32 seconds for unreliable transports. If

a reliable transport is used then Timer J’s fire duration is zero second.

Another important aspect of transaction layer is matching responses to client

transactions. There are two required conditions for a response to be owned by a client

transaction. First one, the branch parameter value in the top Via header of the

response must be the same with the branch parameter value in the top Via header of

request, which is created for that transaction. The second one, the CSeq header value

of the response must be the same as the CSeq header value of the matching request

[1].

47

The implementation of this layer has 6 public functions available to upper

layers, and 4 private functions that implement the Transaction Layer itself. The

structure of the Transaction Layer implementation is shown in figure 3.10.

request_send
append_tcp_client_transac

tion_list

tcp_create_client_transa

ction

remove_from_tcp_client_tr

ansaction_list

find_matching_tcp_client_t

ransaction

tcp_transaction_match_pro

cess

init_transaction_layer

response_is_provisional

tcp_client_transaction_c

ompleted_terminatedcopy_cseq

Figure 3.10 The structure of the Transaction Layer implementation

Functions of the Transaction Layer

The first function to be called for this layer is init_transaction_layer. After this

initialization, other public functions can be called from upper or lower layers. Private

functions on the other hand are only callable from within the Transaction layer.

Before explaining the functions of this layer, we need to show structures defined by

this layer:

struct tcp_client_transaction_list {

 struct tcp_client_transaction_instance *tcti;

 struct tcp_client_transaction_list *next;

}

48

void init_transaction_layer(void)

This function simply calls transport_layer_init function, which is required to

not only itself but also to initialize the lower layer.

bool_t request_send(struct request *req, transport_type_t tt, proceeding_callback_t

pc, completed_terminated_callback_t ctc)

This function takes transport type and depending on the value TCP or UDP

transaction is initiated. Req parameter is the request for that transaction. pc and ctc

are functions to be called when the transaction transits to proceeding and terminated

states, respectively.

bool_t append_tcp_client_transaction_list (struct tcp_client_transaction_instance

*tcti)

This function takes tcp_client_transaction_instance as an argument and adds

this instance to transaction list. If successfully added, then true is returned otherwise

false is returned.

bool_t remove_from_tcp_client_transaction_list(struct

tcp_client_transaction_instance *tcti)

This function takes the transaction instance, finds it in the list and removes it.

If it can’t be found then false is returned, otherwise true is returned.

struct tcp_client_transaction_instance *find_matching_tcp_client_transaction(struct

response *resp)

This function tries to find a transaction, which is matched with the response

given as a parameter. If a transaction instance is found, than this value is returned,

otherwise null is returned.

void tcp_transaction_match_process(struct tcp_client_transaction_instance

*found_tcti, struct response *resp)

This function takes transaction instance and response as parameters and

makes the required state changes for that transaction.

49

Transaction User Layer

The layer above the Transaction Layer is Transaction User Layer. This layer

is responsible for the creation of a transaction based on the method being used, and

for sending the transaction to the Transaction Layer. The methods supported by our

implementation in this thesis are REGISTER, MESSAGE, SUBSCRIBE and

NOTIFY.

This layer consists of 6 public functions, and 14 private functions that

implement the Transaction User Layer itself. The structure of the Transaction User

Layer implementation is shown in figure 3.11 and in figure 3.12.

Figure 3.11 The structure of the Transaction User Layer implementation-1

Functions of the Transaction User Layer

The first function to be called in this layer is init_TU_layer, which initializes

the Transaction User Layer. The public functions of the layer are explained below:

struct response *notify_received(struct request *req)

With the notify method, user information is received. This information is

about the status of the users, specifically, if the users are online or offline. This

50

function gets the user and user information, and updates the buddy list whose status

have been subscribed before. The request body has a pidf format which is in xml.

That’s why some simple functions defined as private are used to parse the pidf data.

send_message

generate_register_uri

register_to_registrar init_TU_layer

register_completed

do_nothing

send_message_complet

ed

Figure 3.12 The structure of the Transaction User Layer implementation-2

char *generate_register_uri(void)

This function generates the SIP URI used for registration with the Registrar.

bool_t subscribe(void)

This function generates subscribe requests for all buddies, and sends these

requests to the presence server. If all subscribe requests complete successfully, this

function returns true otherwise returns false.

void send_message(TU_completed_callback_t comp, char *uri, char *message)

This function takes three parameters. The first one is a callback function to be

called when the transaction ends. The second one is the SIP URI of the receiver of the

message. And the last one is the message that will be sent to the SIP URI, which is

passed as the second parameter.

51

void register_to_registrar(TU_completed_callback_t comp)

This function’s job is to send a Register request to the proxy. The only

parameter is a callback function to be called at the end of the transaction.

TU_completed_callback_t type is function pointer which takes only one parameter, a

Response structure. When the transaction ends, the response is received by calling

this function.

void init_TU_layer(ipv4_addr_t i_outbound_proxy_ip, u16_t i_outbound_proxy_port,

u16_t i_tcp_listen_port, u16_t i_udp_listen_port, char *i_user_display_name, char

*i_user_name, char *i_register_request_domain, TU_message_received_callback_t

i_message_received)

This function is to be called first before any other function is invoked. The

parameters of the functions are i_outbound_proxy_ip, which is the proxy server’s IP,

i_outbound_proxy_port, which is the proxy server’s port, i_tcp_listen_port is the TCP

port to be listened, i_udp_listen_port is the UDP port to be listened,

i_user_display_name is the display name, i_user_name is the username of the SIP

URI, i_register_request_domain is the domain of the SIP URI, i_message_received is

the callback function to be invoked when a messaged is received.

3.2.2 Registrar, Proxy and Presence Server

Registrar, Proxy and Presence Server are implemented using jiplets of

Cafesip, an open source project. Jiplet stands for Java SIP Servlet. The servers are

written in Java using Jiplet API and deployed in the Jiplet container. The container is

an open source container for SIP server applications. Support for SIP message

parsing and formatting, scoped variables, authentication and authorization, thread-

pooling, logging, custom class loading, management interface are provided by the

container. So it is possible to create server-side SIP applications such as Registrar,

Proxy or Presence Server easily. The Jiplet container can be run in two modes. One of

them is standalone mode, the other one is in a J2EE server as a service. The jiplet

container provides Java classes that jiplet applications extend or use [9].

52

The most important part about deployment is “jip.xml” descriptor file. That

file defines the jiplets and configurations. It is possible to use “context-mapping”

element to define which requests are processed by the container. In this

implementation three variables are used for this “context mapping”. These are (1)

URI host, (2) To URI host, and (3) From URI host. All of these are in

“anadolu.edu.tr” domain. The code snippet regarding this part is shown below:

 <context-mapping connector="sip-connector">

 <mapping>

 <or>

 <subdomain-of>

 <var>request.uri.host</var>

 <value>anadolu.edu.tr</value>

 </subdomain-of>

 <subdomain-of>

 <var>request.to.host</var>

 <value>anadolu.edu.tr</value>

 </subdomain-of>

 <subdomain-of>

 <var>request.from.host</var>

 <value>anadolu.edu.tr</value>

 </subdomain-of>

 </or>

 </mapping>

53

 </context-mapping>

Three jiplets are written for this thesis: (1) SIPRegistrarJiplet, which is

responsible for registration requests and responses, (2) SIPProxyJiplet, which proxies

the requests and response, (3) PresenceServiceJiplet, which handles Subscribe and

Notify requests and responses. The code snippet of “jip.xml” regarding this part is

shown below:

<jiplet>

 <jiplet-name>SIPRegistrarJiplet</jiplet-name>

 <jiplet-class>org.anadolu.jiplet.SipRegistrar</jiplet-class>

 <jiplet-connector>sip-connector</jiplet-connector>

 <startup-order>0</startup-order>

</jiplet>

<jiplet>

 <jiplet-name>SIPProxyJiplet</jiplet-name>

 <jiplet-class>org.anadolu.jiplet.sip.ProxyJiplet</jiplet-class>

 <startup-order>1</startup-order>

 </init-params>

 </jiplet>

 <jiplet>

 <jiplet-name>PresenceServiceJiplet</jiplet-name>

 <jiplet-class>org.anadolu.reference.jiplet.SipPresence</jiplet-class>

 <jiplet-connector>sip-connector</jiplet-connector>

54

 <startup-order>2</startup-order>

 </jiplet>

Finally, method mappings of the jiplets are accomplished. These mappings

show which methods will be handled by which jiplets. The code snippet regarding

this part is shown below:

<jiplet-mapping jiplet="SIPRegistrarJiplet">

 <mapping>

 <equals ignore-case="true">

 <var>request.method</var>

 <value>REGISTER</value>

 </equals>

 </mapping>

 </jiplet-mapping>

 <jiplet-mapping jiplet="SIPProxyJiplet">

 <mapping>

 <and>

 <not>

 <equals ignore-case="true">

 <var>request.method</var>

 <value>REGISTER</value>

 </equals>

 </not>

55

 <not>

 <equals ignore-case="true">

 <var>request.method</var>

 <value>SUBSCRIBE</value>

 </equals>

 </not>

 </and>

 </mapping>

 </jiplet-mapping>

 <jiplet-mapping jiplet="PresenceServiceJiplet">

 <mapping>

 <or>

 <equals ignore-case="true">

 <var>request.method</var>

 <value>SUBSCRIBE</value>

 </equals>

 </or>

 </mapping>

 </jiplet-mapping>

56

3.2.3 User Interface

To have users interact with our VoIP phone, an auxiliary MCBSTR9

Evaluation board is used. This board has a 2x16 character LCD and an ARM core

processor manufactured by Keil Company. Connectivity between MCBSTR9 and

Ubicom architecture is achieved by TCP/IP. The physical link between these two

architectures is an Ethernet cable.

The software written for MCBSTR9 is a server, which uses TCP port 1999.

The software related to User Interface of Ubicom architecture is a client, which also

uses TCP port 1999. The server listens to connections at TCP port 1999, and the

client connects to the server from TCP port 1999.

The server side is simpler than the client side, because the server side only

takes the character stream and displays it to the LCD. The client side on the other

hand client, prepares message, cuts it if necessary so that it can be displayed on a

2x16 character display, and sends the stream to the server for display.

57

4. INTEGRATION AND TESTING OF THE SYSTEM

This chapter explains how the integration and testing of the system is done.

For some of the testing purposes, X-Lite SoftPhone from Counterpath Corporation

[10] is used as an instant messenger.

4.1 Integration

The Proxy, Registrar and Presence server reside on a PC. Another PC runs the

X-Lite SoftPhone and works as an end-system. The other end-system is our VoIP

Phone realized by the Ubicom board. An ARM board is connected to the Ubicom

board to display incoming messages. This architecture of the system is illustrated in

Figure 4.1. Our VoIP phone can send/receive messages, subscribe for other users’

presence information and receive notifications from the Presence server.

Figure 4.1 Integration of the System

Upon startup, both X-Lite and our VoIP phone register with the Registrar.

When a message is sent from either X-Lite to Ubicom or vice versa, the message is

taken by the proxy and forwarded to the registered end-point. Both X-Lite and

Ubicom subscribes for each other’s presence status with the Presence server. Thus,

when one of them is online or offline, the presence information is sent to the other

one by the Presence server and displayed on the screen.

58

4.2 Testing

For the testing of the system, a simple firmware was implemented for our

VoIP phone. The figure 4.2 represents the general structure of the firmware deployed

inside the Ubicom board.

Figure 4.2 Testing Software of Ubicom Architecture

Let’s explain each of these test functions:

void init_TU_test(void)

This function configures outbound proxy IP address and initializes

Transaction User Layer.

void test_register_to_registrar(void)

This function generates a register request according to the information entered

in init_TU_test function and registers with the Registrar.

void test_send_message(void)

This function sends a sample message to sip:ali@anadolu.edu.tr.

void test_generate_request(void)

This function generates a test request and prints it to the console. In fact, there

is a private function used by this function. This function constructs a request structure

59

and returns it. Then test function calls generate_request of Parsing/Generating Layer,

and returned stream is printed and checked visually.

void test_generate_response(void)

This function generates a test response and prints it to the console. There is a

private function used by this function that constructs a request structure and returns it.

The test function then calls generate_response of Parsing/Generating Layer, and

returned stream is printed and checked visually.

void test_extract_request(void)

This function uses a private function to generate a request stream. The

generated stream is taken by extract_request function of Parsing/Generating Layer as

a parameter. The returned request structure’s elements are compared with those in the

request stream. For every successful comparison, a message is printed on the console.

If a comparison fails, an error message is printed.

void test_extract_response(void)

This function uses a private function to generate a response stream. The

generated stream is taken by extract_response function of Parsing/Generating Layer

as a parameter. The returned response structure’s elements are compared with those

in the request stream. For every successful comparison, a message is printed on the

console. If a comparison fails, an error message is printed.

void init_subscribe_test(void)

This function constructs a buddy list whose status will be subscribed for, and

initializes the Transaction User Layer.

void test_subscribe(void)

This function calls subscribe function of Transaction User Layer and

subscribes for the status of each person in buddy list.

60

4.3 X-Lite Demonstration of the System

X-Lite is a commercial SoftPhone by Counterpath Coportation [10]. Figure

4.3 below shows a snapshot of X-Lite when it starts running. In this figure, user “Ali”

has logged in from X-Lite and registered himself with the Proxy server. Since the

Registration is complete, X-Lite displays the user’s name on its screen pad.

Figure 4.3 X-Lite Software, Ali is registered

Although not demonstrated, user Ayse logs in from our VoIP Phone and also

registers herself with the Proxy server. The next step for Ali and Ayse is to subscribe

for each other’s presence status. This is done by sending SUBSCRIBE requests to the

Presence server. The Presence server then notifies each VoIP Phone by sending

NOTIFY requests. Figure 4.4 shows a snapshot of the X-Lite user interface indicating

that Ayşe is online.

61

Figure 4.4 X-Lite Software, Ayşe is online

Now, Ali and Ayse exchange messages using the SIP MESSAGE request

through the Proxy. Messages coming from Ayse are displayed on X-Lite’s instant

messaging panel as depicted in Figure 4.5. Messages coming from Ali to Ayse at our

VoIP phone will be displayed on the 2x16 LCD displayed connected to the

MCBSTR9 board.

 These exchanges show that our SIP Phone runs a standards-compliant

SIP stack and can interoperate with commercial SIP Proxies and SIP phones.

62

Figure 4.5 Ali and Ayşe sent messages to each other

63

5. CONCLUSION

In this thesis, a SIP stack has been implemented for Ubicom architecture. This

stack structure is built in a layered manner. Instant messaging and presence awareness

are written using the implemented SIP stack. In order to support the application, a

proxy server, a registrar server and a presence server is written for PC architecture.

There are four layers in the stack. These layers are Transaction User Layer,

Transaction Layer, Transport Layer and Parsing/Generating Layer. These layers are

introduced in SIP RFC [1]. Transaction User Layer is responsible for the creation of a

transaction based on the method being used, and for sending the transaction to the

Transaction Layer. Transaction Layer is responsible for handling client and server

transactions and state machines that are defined in SIP RFC [1]. Transport Layer is

responsible for actual transmission of requests and responses over the network.

Parsing/Generating Layer is responsible SIP message parsing and generation.

SIP proxy server, presence server and registrar server are written using an

open source project called Cafesip [9]. The registrar server handles the registration

process of the application written upon on the stack and the X-lite softphone. The

presence server sends the presence information to the subscribed users. And proxy

server proxies the messages between two users.

64

REFERENCES

[1] Rosenberg J., Schulzrinne H., Camarillo G., Johnston A., Peterson J., Parks

R., Handley M., and Schooler E., Sip: Session initiation protocol, RFC 3261,

2002.

[2] Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P. and

Berners-Lee T., Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616 1999.

[3] Postel J. B., Simple Mail Transfer Protocol, RFC 821, 1982.

[4] Gonzalo, C., SIP Demystified, McGraw-Hill, 2002.

[5] Sinnreich H., Johnston A.B., Internet Communications Using SIP, Wiley

Publishing, 2006.

[6] Kuthan J. J. J. and Lancu B., Sip Express Router V0.8.8-Developer’s Guide,

2002.

[7] Wikipedia Foundation, Inc, Session Initiation Protocol, 2007.

http://en.wikipedia.org/wiki/Session_Initiation_Protocol

[8] STMicroelectronics, UM0216 Reference Manual STR91xF ARM9-Based

Microcontroller Family, 2006.

[9] Cafesip, Cafesip Project, 2007.

http://www.cafesip.org

[10] Counterpath Corparation, X-Lite SoftPhone, 2007.

http://www.counterpath.com

[11] Low C., The Internet Telephony Red Herring, Global Telecommunications

Conference, 72-80, 1996.

[12] 3cx Corparation, Sip phones / VOIP Phones types, 2007.

http://www.3cx.com/PBX/VOIP-phones.html

65

[13] Johnston A. B., Sip: Understanding the Session Initiation Protocol, Artech

House, 2001.

[14] Whatis.com, 2007.

http://www.whatis.com

[15] Dang L., Jennings C. and Kelly D., Practical VoIP, O’reilly, 2002.

[16] Davidson J., Peters J., Gracely B., Voice Over IP Fundamentals, Cisco Press,

2000.

[17] Smith C., Collins D., 3G Wireless Networks, McGraw-Hill, 2002.

[18] Leon-Garcia A., Widjaja I., Communication Networks: Fundamental

Concepts and Key Architectures, McGraw-Hill, 2003.

[19] Campbell B., Rosenberg J., Schulzrinne H., Huitema C., Gurle D., Session

Initiation Protocol (SIP) Extension for Instant Messaging, RFC 3428, 2002.

[20] Rosenberg J., A Presence Event Package for the Session Initiation Protocol

(SIP), RFC 3856, 2004.

[21] Sugano H., Fujimoto S., Klyne G., Bateman A., Carr W., Peterson J.,

Presence Information Data Format (PIDF), RFC 3863, 2004.

