

EVALUATION OF TURKISH
TEXT INFORMATION RETRIEVAL USING

RELATIONAL DATABASES VERSUS
INFORMATION RETRIEVAL SYSTEMS

Ahmet ARSLAN

Master of Science Thesis

Computer Engineering Program
July, 2008

JÜRİ VE ENSTİTÜ ONAYI

Ahmet Arslan’nın “Türkçe bilgi erişiminin, ilişkisel veri tabanlarının

bilgi erişim sistemleri ile karşılaştırılması yoluyla değerlendirilmesi” başlıklı

Bilgisayar Mühendisliği Anabilim Dalındaki, Yüksek Lisans Tezi 30.06.2008

tarihinde, aşağıdaki jüri tarafından Anadolu Üniversitesi Lisansüstü Eğitim-

Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca değerlendirilerek

kabul edilmiştir.

 Adı-Soyadı İmza

Üye (Tez Danışmanı): Yard. Doç. Dr. ÖZGÜR YILMAZEL ...………….

Üye : Yard. Doç. Dr. CÜNEYT AKINLAR ...………….

Üye : Yard. Doç. Dr. HAKAN G. ŞENEL ...………….

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun

……………… tarih ve ………… sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

i

ABSTRACT

Master of Science Thesis

 EVALUATION OF TURKISH TEXT INFORMATION RETRIEVAL
USING RELATIONAL DATABASES

VERSUS INFORMATION RETRIEVAL SYSTEMS

Ahmet ARSLAN

Anadolu University
Graduate School of Sciences

Computer Engineering Program

Supervisor: Assist. Prof. Dr. Özgür YILMAZEL
2008, 41 pages

Many of today's applications have a need for full-text search capabilities

for various reasons. Although full-text search has traditionally been the domain of

Information Retrieval (IR), nowadays popular Relational Database Management

Systems (RDBMS) started to implement functionalities that support full-text

indexing and searching.

The present thesis covers a comparison of the text retrieval performances

of relational databases and IR Systems, as well as a comparison of the execution

times during indexing and retrieval tasks over a Text REtrieval Conference

(TREC)-like test collection for Turkish that contains 408,305 documents and 72

ad hoc queries. The effects of language specific processing for different systems

are investigated. Also the effects of different query lengths and operators on

retrieval performance are investigated. It is found that language specific

preprocessing improves retrieval performance for all systems. Relational

Databases are generally slower with longer queries.

Keywords: Information retrieval, Relational databases, Turkish language

ii

ÖZET

Yüksek Lisans Tezi

TÜRKÇE BİLGİ ERİŞİMİNİN, İLİŞKİSEL VERİ TABANLARININ
BİLGİ ERİŞİM SİSTEMLERİ İLE KARŞILAŞTIRILMASI YOLUYLA

DEĞERLENDİRİLMESİ

Ahmet ARSLAN

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yard. Doç. Dr. Özgür YILMAZEL
2008, 41 sayfa

Günümüzde birçok uygulama çeşitli nedenlerden dolayı tam metin arama

özelliklerine ihtiyaç duymaktadir. Geneneksel olarak tam metin arama Bilgi

Erşimi (BE) alanına girmesine rağmen, birçok İlişkisel Veritabanı Yönetim

Sistemi (İVTYS) sağlayıcıları da tam metin arama özelliklerini ürünlerine

eklemeye başlamışlardır.

Bu tezde Bilgi Erişimi Sistemlerinin ve İlişkiseş Veri Tabanı Sistemlerinin

metin geri getirme performanslarının yanısıra geri getirme ve dizin oluşturma

sırasındaki hızlarıda karşılaştırılmıştır. Bu karşılaştırma işlemi Türkçe için

hazırlanmış olan içinde 408,305 döküman ve 72 test sorgusu içeren Text

REtrieval Conference (TREC) benzeri bir döküman kolleksiyonu üzerinde

yapılmıştır. Dillere özgü işlemelerin farklı sistemler üzerindeki etkileri

incelenmiştir. Ayrıca çeşitli sorgu uzunluklarının ve sorgu işleçlerinin geri getirim

performansı üzerindeki etkileri de incelenmiştir. Dillere özgü ön işlemelerin bütün

sistemlerin geri getirim performanslarını artırdığı bulunmuştur. İlişkisel

veritabanları genel olarak uzun sorgularda yavaş çalışmaktadır.

Anahtar Kelimeler: Bilgi Erişimi, İlişkisel Veritabanları, Türkçe Dili

iii

ACKNOWLEDGEMENTS

 I would like to thank my advisor Asst. Prof. Dr. Özgür Yılmazel for his

guidance and support during my study. It was my pleasure to work with him

during this study.

Ahmet Arslan

July, 2008

iv

CONTENTS

ABSTRACT.. i

ÖZET.. ii

ACKNOWLEDGEMENTS... iii

CONTENTS.. iv

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

ABBREVATIONS.. viii

1. INTRODUCTION ... 1

2. BACKGROUND .. 3

2.1. Information Retrieval .. 3

2.1.1. Indexing ... 4

2.1.2. Searching and Ranking .. 5

2.2. Turkish Information Retrieval... 8

2.3. Full Text Search in Databases... 11

3. EXPERIMENTAL SETUP... 12

3.1. Linguistic Preprocessing Methods for Turkish Language 12

3.1.1. Stemming Methods .. 12

3.1.2. Stopword List ... 13

3.2. Lucene ... 14

3.3. MySQL.. 15

v

3.4. PostgreSQL ... 17

3.5. Test Collection .. 19

3.5.1. Documents ... 19

3.5.2. Topics... 20

3.5.3. Relevance Judgments ... 21

3.6. System Overview .. 21

4. EXPERIMENTAL RESULTS ... 23

5. CONCLUSIONS AND FUTURE WORK... 29

REFERENCES.. 30

Appendix-1 A Turkish Stop Word List with 148 words.................................. 32

vi

LIST OF FIGURES

2.1. Information Retrieval process .. 4

2.2. Inverted index example .. 5

2.3. Cosine similarity. sim(dj, q) = cos θ... 7

3.1. Document 63102 in Milliyet collection ... 20

3.2. Topic 298 in Milliyet collection... 20

3.3. System overview of indexing... 21

3.4. System overview of searching ... 22

4.1. Interpolated precision - recall graph .. 25

4.2. Interpolated precision - recall graph .. 26

4.3. Average searching times .. 27

4.4. Average indexing times ... 28

vii

LIST OF TABLES

2.1. Example usage of prefix in Turkish ... 8

2.2. Example usage of derivational suffix in Turkish ... 9

2.3. Example usage of inflectional suffix in Turkish .. 9

3.1. Analyzer building block... 14

4.1. Bpref values from title-only queries .. 24

4.2. Bpref values from title & description queries .. 25

4.3. Number of terms in each Lucene index ... 27

viii

ABBREVATIONS

CBR : Clustered Based Retrieval

DBMS : Database Management System

IR : Information Retrieval

TREC : Text Retrieval Conference

URL : Universal Resource Locator

1

1. INTRODUCTION

Relational Database Management Systems have been the preferred way of

managing data in many businesses for the past two decades. In recent years data

that many businesses use are changing and moving from structured to

unstructured (free form text). Although relational databases are designed to handle

structured data, many businesses are still trying to use databases to manage their

overall business data.

With the increase in unstructured text, developments of information

retrieval systems have been gaining momentum. There are over 17 open source

information retrieval libraries available with different features [1].

However businesses have been reluctant to move away from using

databases because of database’s familiarity. Many database vendors (IBM DB21,

Microsoft SQL Server2, MySQL3, Oracle4, PostgreSQL5) have recognized the

need for free form text search and started implementing features that would

support full-text search capabilities. Unlike structured information access,

unstructured information access or free form text search is language dependent.

Database vendors are initially focusing their efforts in implementing these

capabilities for the English Language. In this research we wanted to compare the

capabilities of different relational databases and an open source information

retrieval library on Turkish text documents.

We compare the retrieval performance of relational databases and IR

Libraries, both for efficiency and effectiveness.

1 http://www-306.ibm.com/software/data/db2/extenders/netsearch

2 http://msdn2.microsoft.com/en-us/library/ms142571.aspx

3 http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html

4 http://www.oracle.com/technology/products/text/index.html

5 http://www.postgresql.org/docs/8.3/static/textsearch-intro.html

2

We evaluate the effectiveness of each approach by running over a TREC

sized test collection and comparing the relevancy. Efficiency is evaluated by

comparing the searching and indexing times. The effects of query length and

different Boolean query operators on retrieval quality are also evaluated.

We run experiments with out-of-the-box settings and also try to do

language specific improvements for both relational databases and IR Libraries.

The organization of this thesis is as follows. Section 2 gives a background

of the general concepts of Information Retrieval and briefly summarizes the

related work on Turkish IR, Section 3 presents the details of our experimental

setup including dataset and stemming algorithms that we used in this thesis,

Section 4 contains the experimental results, and Section 5 provides concluding

remarks and future work.

3

2. BACKGROUND

Over the past decade, businesses and organizations have spent substantial

amount of money on relational database systems for managing and accessing their

structured data. However, the amount of electronically stored unstructured data

(web pages, manuals, reports, e-mails, faxes and presentations) is increasing

rapidly. With the increase of free-form textual data, Information Retrieval

Systems started to become new style of information access, taking the place of

traditional relational databases.

2.1. Information Retrieval

Information retrieval (IR) is a very broad field of study. However from an

academic perspective, information retrieval can be defined as follows:

“Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from within

large collections (usually stored on computers)” [2].

The main idea is to satisfy user information need by searching over a large

document collection and retrieving the relevant ones. A document collection can

be any type of source data, which can be used to extract text.

As shown on Figure 2.1 an IR system consists of several modules

interacting with each other. It can be described as three main areas: Indexing,

Searching and Ranking.

4

Linguistic
Processing

IR Index

Indexing

User

Query
Processing

Searhing

Ranking & Sorting

DB

Web
File

System
(.pdf, .doc,
.ppt, .xml,
.xls, .txt)

Manual Input

Get User Query

Display
Search
Results

Extract Text

Figure 2.1. Information Retrieval process

2.1.1. Indexing

In order avoid linear searching through documents in a file system using

“grep”; it is necessary to have the data stored in specially designed data structures.

Inverted index is the most used data structure which allows making fast searches

over the collection. The basic idea of an inverted index is shown in Figure 2.2. It

keeps dictionary of terms that contains all the unique words in the collection. For

each term there is a posting list that records which documents contains the term

and the positions in the document. The dictionary in Figure 2.2 has been sorted

alphabetically and each posting list is sorted by document identifier. The word

“çok” occurs one time in document 1 at position 12, occurs two times in

document 2 at positions 10, 14.

5

Bugün hava çok güzel.

Dün hava çok çok kötüydü.

D1

D2

bugün

çok

dün

hava

güzel

kötüydü

D1: <1>

D1: <12>; D2:<10, 14>

D2: <1>

D1: <7>; D2:<5>

D1: <16>

D2: <18>

Posting ListDictionary

Figure 2.2. Inverted index example

2.1.2. Searching and Ranking

Using the inverted index, queries can be performed efficiently. Initially the

query string is broken into words (terms). This process is called tokenization.

Then each query term is searched over the dictionary. Since dictionary is sorted

alphabetically this can be done using binary search which has a time complexity

of O(logn). Then the posting lists of found query terms are processed according to

query type. For example in Boolean retrieval model retrieved posting lists are

merged using one of three Boolean operators (AND, OR, NOT). However in this

model there is no scoring mechanism since in Boolean retrieval model index term

weights are zero or one. Retrieved documents are totally equal and considered as

relevant to the Boolean query. When the document collection size is large enough

the retrieved set of documents can be too many for the user to examine all of the

results. In order to satisfy user information need better, the retrieved result set

must be displayed to the user after sorting by relevancy. This stage is called

ranking and can be very imported for the Web search engines because web users

examine first 10 or 20 of the results and don’t look at the rest. Importance of

ranking brings us to the vector space model.

In Vector space model each document and user query is represented as a

vector with elements corresponding to each term in dictionary, with a non-binary

6

index term weight. These term weights are used in computation of similarity

between documents and queries. Dimension of the vector is equal to the number

of unique terms in the dictionary. If a dictionary term does not occur in a

document, corresponding weight in the vector becomes zero. The dictionary in

Figure 2.2 has 6 unique terms; therefore the vector dimension is 6. The vector that

represents document 1 would be

1d = (w1,1, w2,1, w3,1 = 0, w4,1, w5,1, w6,1 = 0)

 Note that third and sixth elements of the vector are zero, since document

one does not contain the words “dün” and “kötüydü”. And the query string “hava

durumu” will be represented as

q = (w1,q= 0, w2,q= 0, w3,q = 0, w4,q, w5,q= 0, w6,q = 0)

 Note that all the elements of vector are zero except the fourth one, since

query string contains only one word (“hava”) from the dictionary. After the

conversion of documents and query to vectors then the similarity is calculated as

follows:

sim(dj, q) =
qd
qd

j

j

×

• =

∑∑

∑

==

=

×

×

t

j
qi

t

i
ji

t

i
qiji

ww

ww

1
,

2

1
,

2

1
,,

 (2.1)

 Equation (2.1) is called cosine similarity of vectors of jd and q where

numerator is the dot product, while denominator is the product of Euclidean

lengths. This measure is the cosine of the angle between t-dimensional query and

document vector, shown in Figure 2.3, where t is the total number of unique terms

in the dictionary.

7

document j

query

θ

Figure 2.3. Cosine similarity. sim(dj, q) = cos θ

There are many ways to calculate term weights (wi,j). Gerard Salton and

Christopher Buckley [3] described eight different term-weighting approaches in

their work. The best known term-weighting scheme in IR is tf-idf weighting. It

uses multiplication of term frequency and inverse document frequency to

calculate a weight for each term in each document. Term frequency is the

occurrence number of a term t in document d and denoted as tft,d. Document

frequency of a term t is the number of documents that contain that term and

denoted as dft. Inverse document frequency of a term is defined in Equation (2.2).

idft = log
tdf

N (2.2)

Where N is the total number of documents in the collection and dft is the

document frequency. The weight assigned to a term t in document d by the tf-idf

weighting scheme is given in Equation (2.3).

wt,d = tft,d × log
tdf

N (2.3)

8

2.2. Turkish Information Retrieval

Turkish6 is a language spoken by over 70 million people worldwide,

making it the most commonly spoken of the Turkic languages. Other important

Turkic languages are Azeri and Uzbek. In this thesis only the language of modern

Turkey is considered.

Turkish is a part of the Turkic branch of the Altaic language family. The

Turkish alphabet is slightly modified from the Latin alphabet, consisting of 29

letters, a certain number of which (Ç, Ğ, I, İ, Ö, Ş, and Ü) have been adapted or

modified for the phonetic requirements of the language. The letters in alphabetical

order are: a, b, c, ç, d, e, f, g, h, ı, i, j, k, l ,m, n, o, ö, p, r, s, ş, t, u, ü, v, y, z. Of

these 29 letters, 8 are vowels (a, e, ı, i, o, ö, u, ü); the 21 others are consonants.

Turkish6 is an agglutinative language (the largest are Hungarian, Finnish

and Estonian) and frequently uses affixes. In linguistics, the term affix refers to

either a prefix or a suffix. However in Turkish language there are only a few

numbers of cases where prefix is added to a word. Table 2.1 gives an example of

such rare case.
Table 2.1. Example usage of prefix in Turkish

Turkish English Word Type Prefix English Word Type

mavi blue adjective mas+mavi deep blue adjective

pembe pink adjective pes+pembe rose-pink adjective

Turkish6 extensively uses suffixes to form new words from stems. The

suffixes used in Turkish fall approximately into two classes: derivational suffixes

and inflectional suffixes. A derivational suffix makes a new dictionary entry from

an old one; an inflectional suffix allows a dictionary-word to take its proper place

in a sentence7. The majority of Turkish6 words originate from the application of

derivational and inflectional suffixes to a relatively small set of core vocabulary.

6 http://en.wikipedia.org/wiki/Turkish_language

7 http://en.wikipedia.org/wiki/Turkish_grammar

9

That’s the main reason that Turkish language gains more benefit than other

languages from stemming. List of the words derived from a meaningful root by

using derivational suffixes are shown on table 2.2, by using inflectional suffixes

are shown on table 2.3.

Table 2.2. Example usage of derivational suffix in Turkish

Turkish Suffix English Word Type

göz göz eye Noun

gözlü göz + lü eyed, having an eye Adjective

gözsüz göz + süz blind Adjective

gözlük göz + lük eyeglasses Noun

gözlükçü göz + lük + çü optician Noun

gözlükçülük göz+lük+çü+lük the work of an optician Noun

Table 2.3. Example usage of inflectional suffix in Turkish

Turkish Suffix English Word Type

göz göz eye Noun

gözler göz + ler eyes Noun

gözüm göz + üm my eye Noun

gözün göz + ün your eye Noun

gözü göz + ü his or her eye Noun

gözleriniz göz + ler + i + niz your eyes Noun

gözlerimiz göz + ler + i + miz our eyes Noun

gözleri göz + ler + i their eyes Noun

The extensive use of suffix combinations can yield long words. For

example the Turkish word “Vedalaşamadıklarımız” means "Those with whom we

cannot say farewell to each other” in English.

The other main characteristics of Turkish other than agglutinative

morphology are no gendering of words, vowel harmony and free constituent order

in a sentence.

10

IR studies mostly focuses on English language and studies on Turkish

language are less common.

Kemal Oflazer [4] described a full scale two-level morphological

description of Turkish word structures. The description has been implemented

using the PC-KIMMO environment and is based on a root word lexicon of about

23,000 root words. Most of the present studies still use this morphological

analysis in their experiments.

Aysin Solak and Fazli Can [5] presented a stemming algorithm developed

for the Turkish language. They tested the algorithm in terms of its effect on

retrieval performance using 553 news articles and 71 queries.

F. Çuna Ekmekçioglu and Peter Willett [6] investigated effectiveness of

stemming for Turkish text retrieval using 6,289 news stories extracted from

Turkish newspapers and a set of 50 natural-language queries.

Hayri Sever and Yiltan Bitirim [7] evaluated the effectiveness of a new

stemming algorithm, FINDSTEM, using 2,468 Turkish documents and 15 queries,

and compared this algorithm with the other two previously defined Turkish

stemmers. (One of them is developed by Aysin Solak and Fazli Can)

F. Canan Pembe and Ahmet Celal Cem Say [8] implemented and tested a

linguistically motivated information retrieval system, which uses knowledge of

the morphological, lexico-semantical and syntactical levels of Turkish. In their

experiments, they used 615 Turkish documents from the Web and five natural-

language queries.

Recently Fazli Can and Bilkent Information Retrieval Group created

(Milliyet Colleciton) the first large-scale Turkish IR test collection and conducted

first experiments on it. At SIGIR ’06, they examined the effectiveness of four

different stemming techniques with eight query-document matching functions [9].

At SIGIR ’07 they presented cluster-based retrieval (CBR) experiments on the

same test collection [10]. They made an important, positive impact on comparable

Turkish IR research by making this TREC-like test collection available to other

researchers [11].

Among existing studies, the SIGIR ’06 poster by Fazli Can and Bilkent

Information Retrieval Group [9] is probably the most relevant to the present work,

11

since they also used the same data set, the same evaluation measure and several

stemming algorithms. We also used fixed prefix stemming at length five that they

used in their work for comparison. While the aim of them is to determine which

stemming algorithm and matching function provides more effective retrieval

environment in Turkish, the present study covers comparison of open source

information retrieval libraries and relational databases in order to determine which

system is more suitable for an application that requires full-text search in Turkish

language.

2.3. Full Text Search in Databases

Traditionally, relational database management systems are designed to
manage structured data; IR systems are designed to manage unstructured free
form text. However nowadays with the increase of unstructured data, popular
Relational DBMS started to support full-text indexing and searching.

There are many studies which evaluated the performance of information
retrieval libraries over Text REtrieval Conference (TREC)8 collections. Database
vendors also have evaluated their full-text search capabilities by participating in
TREC competitions [12, 13].

There are publications that investigated the features and capabilities of the

relational databases’ full text search methods (IBM DB2 [14], Microsoft SQL

Server [15], Oracle [16]).

The studies on comparison of IR systems are common, but there are no

studies on Database Management Systems’ information retrieval performances.

Other studies have been focused on hybrid IR–DB system solutions and

integration of IR and relational databases. A systematic comparison of retrieval

performances of IR libraries and relational databases has not been done.

8 http://trec.nist.gov

12

3. EXPERIMENTAL SETUP

We want to show that Information Retrieval systems are more suitable

than relational databases for applications that require full-text search in Turkish

language.

In order to prove IR systems yield better retrieval quality and have better

speed, in our retrieval experiments, we used one open source information retrieval

library (Apache Lucene 2.3.2) and compared its performance to two open source

relational database management systems with full-text search capabilities

(PostgreSQL 8.3.1 and MySQL Server 5.0). We also have run our experiments

over other popular relational database vendors such as IBM DB2, Microsoft SQL

Server, and Oracle unfortunately their end-user license agreements do not allow

publication of their results.

All of the experiments were completed on Dual Intel(R) Xeon(TM) 3.2

GHz machine with 2GB of RAM running Microsoft Windows Server 2003.

3.1. Linguistic Preprocessing Methods for Turkish Language

There are several pre-processing steps that can be performed during

indexing to increase retrieval efficiency. Two of the well known methods are

stemming and stop-word elimination.

3.1.1. Stemming Methods

For grammatical reasons, documents use different forms of a word, such as

kitap, kitaplar, kitapta and kitabım [2]. Plural, gerund forms and tense suffixes are

examples of variations which prevent a string match between a query and a

document [17]. Additionally, there are families of derivationally related words

with similar meanings, such as demokrasi, demoratik, and demokratikleşme [2]. In

many situations, it would be useful for a search for one of these words to return

documents that contain another word in the set, since a user who runs a query on

"üniversite" would probably also be interested in documents that contain the word

"üniversiteler".

Stemming is the process of removing inflectional suffixes (or sometimes

derivational suffixes) from words in order to reduce them to a common base form.

For instance:

13

araba, arabalar, arabam, arabası, arabada, arabalarımız ⇒ araba

Stemming is an important issue for the enhancement of the IR

performance especially for the agglutinative languages like Turkish.

We implemented and incorporated four different stemming algorithms for

Turkish and used them to improve retrieval performance of the each retrieval

system.

No Stemming: All words (tokens) are indexed with the out-of-the-box

settings of each system without stop-word elimination. This has formed our

baseline for comparison.

Snowball Stemmer: A stemmer implemented by Evren (Kapusuz) Çilden

using Snowball9, which is a small string processing language designed for

creating stemming algorithms for use in Information Retrieval. Original algorithm

[18] analyses Turkish words with an affix stripping approach and without using

any lexicon.

Fixed Prefix Stemmer: Keeps the first n characters of a given term as a

stem and removes the rest. Bilkent Information Retrieval Group [9] shows that

using a prefix length of 5 provides an effective retrieval environment in Turkish.

In our runs n = 5 is used.

Zemberek Stemmer: Zemberek10 is an open source general purpose

Natural Language Processing library written entirely in JAVA. We implemented a

stemmer based on Zemberek’s morphological analysis. Our stemmer removes the

inflectional suffixes from terms.

3.1.2. Stopword List

Other well known trick, other than stemming in IR is stop word removal.

Stop words are frequently used words that do not carry meaning in natural

language and therefore do not help distinguish one document from other, such as

9 http://snowball.tartarus.org

10 http://code.google.com/p/zemberek

14

ve, veya, de, da and ile for Turkish. Removing extremely common stop words

during indexing process significantly reduces the inverted index size on disk.

The stop word list used in this thesis contains 148 words and is given in

Appendix-1, in alphabetical order.

3.2. Lucene

Apache Lucene11 is a high performance, scalable Information Retrieval

(IR) library written entirely in Java. It is a technology suitable for nearly any

application that requires full-text search, especially cross-platform.

Analysis is the process of converting free form text into its most

fundamental indexed representation, terms. Analysis process starts with a

Tokenizer and continues with series of TokenFilters. An analyzer is an

encapsulation of the analysis process. Analyzers are used for both indexing and

query parsing.

For both index time and query time Lucene’s sophisticated grammar-based

StandardTokenizer class, which holds the honor as the most generally useful built-

in Tokenizer, is used to break given free form text into tokens. Then the created

token stream is fed into chains of several TokenFilters, giving the filter a chance

to add, remove or change the stream as it passes through. Table 3.1 shows the

Tokenizer and TokenFilter chaining pattern used in our Lucene runs.

Table 3.1. Analyzer building block

1 StandardTokenizer

2 StandardFilter

3 TurkishLowerCaseFilter

4 StopFilter

5 TurkishStemFilter

11 http://lucene.apache.org

15

StandardTokenizer: Splits words at punctuation characters, removing

punctuation. However, a dot that's not followed by white space is considered part

of a token. Splits words at hyphens, unless there's a number in the token, in which

case the whole token is interpreted as a product number and is not split.

Recognizes email addresses and internet hostnames as one token.

StandardFilter: Designed to be fed by a StandardTokenizer.

TurkishLowerCaseFilter: Lowercases token text. We implemented our

own TurkishLowerCaseFilter because the built-in lowercase filter that came with

Lucene, fails with one character of Turkish alphabet. Although lower case of

letter ‘I’ is ‘ı’ (LATIN SMALL LETTER DOTLESS I) in Turkish alphabet,

Lucene’s built-in lowercase filter lowercases letter ‘I’ to ‘i’ as in English alphabet.

StopFilter: Removes words that exist in a provided set of stop-words.

TurkishStemFilter: Stems each token according to a given stemming

algorithm. We implemented three types of TurkishStemFilter that applies the

stemming methods explained in Section 4. To implement no stemming option we

removed StopFilter and TurkishStemFilter from our analyzer building block.

Totally 4 different Analyzer obtained that represent four stemming options.

Indexing: Document numbers (docno) are indexed verbatim; contents

fields are indexed analyzed as described above. Four different Lucene Index are

created using each stemming method.

Query Formulation: Title and description portions of the topics are directly

used as an input to Lucene’s QueryParser. The same analyzer that used for

indexing is used for query parsing. Default query parser operator (“OR”) is used

in our runs because it yields better results than (“AND”) operator.

3.3. MySQL

MySQL has support for full-text indexing and searching however MySQL

full-text search functions has no language specific linguistic support for any

language (only stop-word elimination for English).

Indexing: For no stemming option, document numbers (docno) and

contents were directly entered into a MySQL database table named documents.

For the other three stemming options, document numbers are entered verbatim

16

and contents are passed through analyzer that represents corresponding stemming

option and then entered into a MySQL database table. Full-text indexes are built

on the tables thus:

ALTER TABLE documents ADD FULLTEXT(contents);

Four different MySQL full-text index is created for each stemming

method.

Query Formulation: MySQL supports three types of full-text searches:

• Natural Language Full-Text Searches

• Boolean Full-Text Searches

• Full-Text Searches with Query Expansion

Boolean full-text search mode with + operator and no operator (stands for

AND, OR respectively) are also tested; however among all of these three full-text

search types, natural language search yields best results.

For no stemming option, we removed punctuations from title and

description portions of topic and then performed natural language search as

follows:

SELECT docno, MATCH(contents) AGAINST('<title>')

AS relevance FROM documents WHERE

MATCH(contents) AGAINST('<title>') LIMIT 1000;

For the other three stemming options, title and description portions of the

topic are passed through analyzer that represents corresponding stemming option

to obtain query.

17

3.4. PostgreSQL

PostgreSQL uses OpenFTS12 (Open Source Full Text Search engine)

which is an advanced search engine that provides online indexing of data and

relevance ranking for database searching. PostgreSQL provides several predefined

dictionaries for linguistic support, available for many languages, and Turkish

language is one of them.

Indexing: In PostgreSQL tsvector is a data type, which represents

preprocessed document, and optimized for full text search.

For the out-of-the-box settings option, document numbers (docno) and

contents were entered into a PostgreSQL database table named documents.

PostgreSQL provides a data type for storing preprocessed document and a

function to_tsvector, which transforms document to tsvector data type.

A separate tsvector type column is created to hold the output of to_tsvector

using configuration for Turkish language that comes with out-of-the-box settings

of PostgreSQL.

ALTER TABLE documents ADD COLUMN ts_col tsvector;

UPDATE documents SET ts_col = to_tsvector('turkish', contents);

For the other three stemming options, document numbers are entered

verbatim and contents are passed through analyzer that represents corresponding

stemming option and then entered into a PostgreSQL database table.

A separate tsvector type column is created to hold the output of

to_tsvector, but this time using configuration which behaves like no language is

specified because data in the table already analyzed.

ALTER TABLE documents ADD COLUMN ts_col tsvector;

UPDATE documents SET ts_col = ('pg_catalog.simple', contents);

12 http://openfts.sourceforge.net

18

PostgreSQL offers two kinds of indexes that can be used to speed up full

text searches.

• GiST (Generalized Search Tree) based index

• GIN (Generalized Inverted Index) based index

Since GIN indexes are best for static data because lookups are about three

times faster than GiST, GIN index was created to speed up the search:

CREATE INDEX text_index ON documents USING gin(ts_col);

Query Formulation: Tsquery is a data type for textual queries with support

of boolean operators. PostgreSQL provides two functions to_tsquery and

plainto_tsquery for converting a query to the tsquery data type.

• to_tsquery creates a tsquery value from querytext, which must consist of

single tokens separated by the Boolean operators & (AND), | (OR) and !

(NOT).

• plainto_tsquery transforms unformatted text querytext to tsquery. The

text is parsed and normalized much as for to_tsvector, then the & (AND)

Boolean operator is inserted between surviving words.

Both of the functions tested however the results of plainto_tsquery were

lower than the results of to_tsquery with OR operator.

For the out-of-the-box settings option, we tokenized title and description

portions of the topics according to white spaces, removed punctuations and

inserted OR operator (“|”) between each token. Turkish language configuration is

used for to_tsquery function. Then we submit our SQL queries as follows:

SELECT docno, ts_rank(ts_col, query) AS rank FROM documents,

to_tsquery('turkish','<title>') query WHERE

query @@ ts_col ORDER BY rank DESC LIMIT 1000;

19

For the other three stemming options, title and description portions of the

topic are tokenized using the corresponding analyzer and then OR operator (“|”)

inserted between each token to obtain query. Simple dictionary is used as a

configuration for to_tsquery function because query text is already analyzed. Then

we submit our SQL queries as follows:

SELECT docno, ts_rank(ts_col, query) AS rank FROM documents,

to_tsquery('pg_catalog.simple','<title>') query WHERE

query @@ ts_col ORDER BY rank DESC LIMIT 1000;

PostgreSQL provides two predefined ranking functions;

• ts_rank: standard ranking function

• ts_rank_cd: cover density ranking function [19].

Both of the functions tested however standard ranking (ts_rank) which

yields better results are used in our experiments.

3.5. Test Collection

In this study Milliyet Collection [11] was used. The collection consists of

408305 documents (news stories), 72 information needs (called topics in TREC)

and relevance judgments, the collection is roughly 800MB in size. The collection

is created and made available to the other researchers by Bilkent Information

Retrieval Research Group.

3.5.1. Documents

Each document in Milliyet Collection consists of eight fields: {author,

date, DOCNO, headline, source, text, time, URL}. An example of a Milliyet

Collection document is shown in Figure 3.1. Among these eight fields only

headline and text fields contain searchable textual information. So a new field

named content is constructed, which is simply concatenation of headline and text

fields. In our runs we used DOCNO as a unique identifier and content as a textual

field.

20

Figure 3.1. Document 63102 in Milliyet collection

3.5.2. Topics

Information needs in Milliyet Collection consists of three parts (title,

description and narrative) which are similar to a typical TREC topic. Title field

consist a few words that best describe the topic. The description field is one or

two sentence description of the topic. The narrative gives a more explanation

about the topic. In the TREC terminology, each test information need is referred

as a topic. An example of an information need in Milliyet Collection is illustrated

in Figure 3.2.

Figure 3.2. Topic 298 in Milliyet collection

There is a distinction between a statement of information need (the topic)

and the data structure that is actually given to a retrieval system (the query);

however we didn’t develop any special query construction technique to obtain

queries from topics. We directly used title and description portions of the topics as

our queries and ignored narrative portion.

21

3.5.3. Relevance Judgments

The relevance judgments are the "right answers" that contains the

information of which documents are relevant to which topics. Since relevance

judgments provided within the Milliyet Collection is created by using pooling

[20] technique, it is an incomplete judgment set. Also the judgments are biased

against our runs, because systems that used in this work didn’t contribute anything

to construction process of the pool of judged documents.

3.6. System Overview

Figure 3.3 summarizes the index creation process and Figure 3.4

summarizes the query construction and searching process, for each system with

four different stemming options.

Milliyet Collection
Document

Standard
Analyzer

Zemberek
Analyzer

Fixed Prefix
Analyzer

Snowball
Analyzer

MySQL
Index

Postgre
Index

Lucene
Index

MySQL
Index

Postgre
Index

Lucene
Index

MySQL
Index

Postgre
Index

Lucene
Index

Lucene
Index

MySQL
Index

Postgre
Index

Out-of-the-box Settings

<DOCNO>667</DOCNO>
<SOURCE>Milliyet v.01</SOURCE>
<URL>www.milliyet.com.tr/2001/01/05/
sanat/san05.html</URL>
<DATE>2001/01/05</DATE>
<HEADLINE>Ajanda</HEADLINE>
<TEXT>Hazırlayan Gaye Tekelioğlu
İSTANBUL Selanik Aristotelis Üniversitesi
Güzel Sanatlar Okulu... </TEXT>

Figure 3.3. System overview of indexing

22

Topic

Standard
Analyzer

Zemberek
Analyzer

Fixed Prefix
Analyzer

Snowball
Analyzer

MySQL
Index

Postgre
Index

Lucene
Index

MySQL
Index

Postgre
Index

Lucene
Index

MySQL
Index

Postgre
Index

Lucene
Index

Lucene
Index

MySQL
Index

Postgre
Index

Out-of-the-box Settings

<QueryID>298</QueryID>
<Title>Ekonomik kriz</Title>
<Description>Türkiye'de ekonomik krize
neden olan olaylar</Description>
<Narrative>Türkiye'de son bir kaç yıl içinde
olan ekonomik krizlerin nedenleri ve bunlara
zemin hazırlayan olaylar </Narrative>

WhitespaceTokenizer
Punctiation Removal

Boolen Operator Insertion Between Tokens

Query
Figure 3.4. System overview of searching

23

4. EXPERIMENTAL RESULTS

The choice of an evaluation measure is crucial since it directly affects the

effectiveness of a retrieval system. Many of the traditional evaluation measures

frequently used in information retrieval are derived in some way from recall and

precision. (Precision is the proportion of retrieved documents that are relevant,

while recall is the proportion of relevant documents that are retrieved). These

evaluation measures are unable to deal with the problem of incomplete relevance

data.

At SIGIR ’04, Chris Buckley and Ellen Voorhees [21] introduced a new

evaluation metric called binary preference (bpref) which has been designed for

comparing systems over test collections with incomplete relevance judgments,

like the Milliyet Collection.

The bpref metric calculates a preference relation of whether judged

relevant documents are placed before judged irrelevant documents in the ranked

result list. Thus, it uses relative ranks of judged documents and ignores un-judged

documents. In this thesis we initially concentrated on bpref measure to evaluate

the effectiveness of different retrieval systems.

The evaluation measures presented in this thesis are calculated by using

Chris Buckley’s trec_eval13 package (version 8.1) which is the standard tool used

by the TREC community for evaluating an ad hoc retrieval run, given the results

file and a standard set of judged results.

In our calculations a cut-off level of 1000 is used, which defines the

retrieved set as the top 1000 documents in the ranked list which is similar to

official TREC usage:

trec_eval -c -M1000 official_qrels submitted_results

All retrieval systems are designed in a similar fashion to standard TREC-

type ad hoc runs that retrieve maximum 1000 documents per topic.

13 http://trec.nist.gov/trec_eval

24

We ran retrieval experiments over each system with four stemmers by

using title-only queries. Title-only queries had on average 3 terms. We did another

set of experiments with title & description queries (average length 16 terms) to

measure the scalability of the matching algorithm each system uses. Our

experiments consist of three systems, four stemming methods and two types of

query lengths. We present the results of total 24 runs.

Table 4.1 shows the performances of each system with four stemmers

obtained by using title-only queries. In terms of bpref values of title-only queries,

PostgreSQL is the best performing one with out-of-the-box settings because it has

a built-in Turkish snowball template dictionary that performs stemming and stop-

word removal. PostgreSQL's standard stop-word lists are also provided by the

Snowball14 project. With linguistic preprocessing best performing system is

Lucene with Zemberek stemmer.

Table 4.2 shows the performances of each system with four stemmers

obtained by using title & description queries. In terms of bpref values of title &

description queries, Lucene is best performing one with all settings. And also the

overall winner for both title-only and title & description queries is also Lucene

with Zemberek stemmer.

Table 4.1. Bpref values from title-only queries

 No Stem Snowball Fixed Prefix Zemberek

Lucene 0.3505 0.4313 0.4413 0.4506

MySQL 0.2899 0.3388 0.3637 0.3644

PostgreSQL 0.4249 0.4187 0.4308 0.4389

14 http://snowball.tartarus.org

25

Table 4.2. Bpref values from title & description queries

 No Stem Snowball Fixed Prefix Zemberek

Lucene 0.3947 0.4867 0.5067 0.5124

MySQL 0.3019 0.3808 0.4139 0.4140

PostgreSQL 0.2672 0.2932 0.2808 0.2660

We observed that increase in query length, improved the retrieval

performance (bpref) of all systems except PostgreSQL. However improvement

obtained by increase in query length in relational databases caused impractical

searching times.

We also observed that stemmers also improved the retrieval performance

of all systems. However the improvement of Lucene is greater than the relational

databases.

In our experiments, the most effective stemmer is Zemberek because all

systems received their maximum bpref values with Zemberek Stemmer. That’s

why we also wanted to present the best representative of each system’s

interpolated recall - precision curve which is one the most commonly used method

for comparing systems.

Eleven point recall-precision graphs of each system are presented for title-

only queries on Figure 4.1, for title & description queries on Figure 4.2.

title-only queries

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Recall

P
re

ci
si

on

Lucene
MySQL
PostgreSQL

Figure 4.1. Interpolated precision - recall graph

26

title & description queries

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Recall

P
re

ci
si

on

Lucene
MySQL
PostgreSQL

Figure 4.2. Interpolated precision - recall graph

The plots of each system for two different runs (title-only queries and title

& description queries) are superimposed on the same graph to determine which

system is superior.

For both graphs, Lucene whose curve is closest to the upper right-hand

corner of the graph (where recall and precision are maximized) indicate the best

performance.

“Comparisons are best made in three different recall ranges: 0 to 0.2, 0.2 to

0.8, and 0.8 to 1. These ranges characterize high precision, middle recall, and high

recall performance, respectively” [22]. Lucene is the best performing one in all

three recall ranges.

On Figure 4.3, we present a graphical comparison of the average searching

times of best representative of each search engine for title and title & description

queries.

27

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Lucene MySQL PostgreSQL

Ti
m

e
(m

ill
is

ec
on

ds
)

title queries

title & description queries

Figure 4.3. Average searching times

We observed that there is big searching time difference between Lucene

and relational databases. Also we observed that searching times of relational

databases with out-of-the-box settings is three times slower with title-only

queries, eight times slower with title & description queries than stemmed and stop

word eliminated settings. That’s because without stop-word elimination and

stemming the term document matrix consists over 500 Giga entries and the

execution of the ranking algorithm that relational databases use becomes very

slow. Table 4.3 gives the number of unique terms (in content field only) in Lucene

Index of each stemming method. Most aggressive stemmer is fixed prefix

stemmer.
Table 4.3. Number of terms in each Lucene index

Stemming Method Number of unique terms

No Stemming 1,346,183

Snowball Stemmer 801,548

Zemberek Stemmer 597,658

Fixed Prefix Stemmer 262,347

28

On Figure 4.4, we present a graphical comparison of indexing times of

each search engine with out-of-the-box settings.

0

15

30

45

60

75

90

105

120

135

150

165

180

195

210

225

Lucene MySQL PostgreSQL

Ti
m

e
(m

in
ut

es
)

Figure 4.4. Average indexing times

Although relational database settings are optimized for static data in our

experiments, their indexing times are much slower than Lucene. When it comes to

the real world, collections are dynamic. New documents are added frequently.

Relational databases indexes are created after the insertion of the all documents.

When it comes to incremental indexing their executions times would become

much worse. Lucene is very robust to handle inverted index updates.

Additionally we observed that in each search engine, Boolean query

operator OR yields better retrieval quality than AND operator for this evaluation

data set.

29

5. CONCLUSIONS AND FUTURE WORK

This thesis covers the comparison of Turkish text retrieval performances of

relational databases versus Lucene - which is an open source information retrieval

library - and presents the results obtained after performing tests with different

stemming options and different query lengths. Execution times of each system

during indexing and searching are also compared.

We show that information retrieval library with language specific

improvements performed best effectively and efficiently for the Turkish

evaluation set. The results of Lucene with Zemberek stemmer presented in this

thesis are best results among the published works on this data set up to now.

Lucene with Zemberek stemmer showed over 55% improvement over relational

databases without any language specific improvements. And Lucene’s execution

time during indexing is ten times, during searching is fifty times better than

relational databases.

Although relational databases provide easy to use full text search

capabilities, without linguistic preprocessing their performance is quite low.

Linguistic preprocessing improves the performance on relational databases. Also

ranking algorithms in information retrieval library is more robust to increase in

query length.

We will expand our experiments to compare relational databases and

information retrieval systems to English and other languages; also we will add

more open source retrieval libraries to our set.

30

REFERENCES

[1] Middleton C. Baeza-Yates R. A comparison of open source search

engines; available at http://wrg.upf.edu/WRG/dctos.

[2] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze.

Introduction to Information Retrieval. Cambridge University Press,

Cambridge, UK, 2008.

[3] Salton, G., Buckley, C. Term weighting approaches in automatic text

retrieval. IPM 24, 513-523, 1988.

[4] Oflazer, K. Two-level Description of Turkish Morphology, Literary and

Linguistic Computing, 9(2), 137–148, 1994.

[5] Solak, A., Can, F., Effects of stemming on Turkish text retrieval. ISCIS

Conf., pp. 49-56, 1994.

 [6] Ekmekçioğlu, F.C., & Willett, P. Effectiveness of stemming for Turkish

text retrieval. Program, 34(2), 195–200, 2000.

[7] Sever, H., Bitirim Y. FindStem: analysis and evaluation of a Turkish

stemming algorithm. LNCS 2857: 238-251, 2003.

[8] Pembe, F.C., & Say, A.C.C. A linguistically motivated information

retrieval system for Turkish. Lecture Notes in Computer Science, 3280,

741–750, 2004.

[9] Can F., Kocberber, S., Balcik E., Kaynak C., Ocalan H. C., Vursavas O.

M. First large-scale information retrieval experiments on Turkish texts. In

SIGIR 2006, 627-628, 2006.

[10] Altingovde S. I., Ozcan R., Ocalan H. C., Can F., Ulusoy O. Large-scale

clustered-based retrieval experiments on Turkish texts. In SIGIR 2007,

891-892, 2007.

[11] Can F., Kocberber, S., Balcik E., Kaynak C., Ocalan H. C., Vursavas O.

M. Information retrieval on Turkish texts. Journal of the American Society

for Information Science and Technology, 59(3):407–421, 2008.

[12] Mahesh K., Kud J., and Dixon P., Oracle at Trec8: A Lexical Approach, in

Proceedings of the Eighth Text Retrieval Conference (TREC-8), 1999.

[13] Alpha S., Dixon P., Liao C., and Yang C., Oracle at TREC10. Notebook

paper, 2001; available at http://trec.nist.gov/pubs/trec10/papers/

31

[14] Maier A. and Simmen D. DB2 optimization in support of full text search.

IEEE Data Engineering Bulletin, 24(4):3–6, 2001.

[15] Hamilton J. and Nayak T. Microsoft sql server full-text search. IEEE Data

Engineering Bulletin, 24(4):7–10, 2001.

[16] Dixon P. Basics of Oracle text retrieval. IEEE Data Engineering Bulletin,

24(4):11–14, 2001.

[17] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley, Wokingham, UK, 1999.

[18] Eryiğit G. and Adalı, E. An Affix Stripping Morphological Analyzer for

Turkish, Proceedings of the IASTED International Conference Artificial

Intelligence and Applications pp. 299-304, Innsbruck, 16-18 February

2004.

[19] Clarke, C. L., Cormack, G. V., and Tudhope, E. A. 2000. Relevance

ranking for one to three term queries. Inf. Process. Manage., 36(2):91–311,

2000.

[20] Spärck Jones, K., Van Rijsbergen, C. J. Report on the need for and

provision of an “ideal” information retrieval test collection. British Library

Research and Development Report 5266, Computer Laboratory,

University of Cambridge, 1975.

[21] Buckley, C. and Voorhees, E. M. Retrieval evaluation with incomplete

information. ACM SIGIR Conf, pp. 25-32, 2004.

[22] The Fifteenth Text REtrieval Conference (TREC 2006) Proceedings:

Appendix - Common Evaluation Measures.

32

Appendix-1 A Turkish Stop Word List with 148 words

ama

ancak

arada

ayrıca

bana

bazı

belki

ben

beni

benim

beri

bile

bir

birçok

biri

birkaç

biz

bize

bizi

bizim

böyle

böylece

bu

buna

bundan

bunlar

bunları

bunların

bunu

bunun

burada

çok

çünkü

da

daha

de

değil

diğer

diye

dolayı

dolayısıyla

edecek

eden

ederek

edilecek

ediliyor

edilmesi

ediyor

eğer

etmesi

etti

ettiği

ettiğini

fakat

gibi

göre

halen

hangi

hatta

hem

henüz

her

herhangi

herkesin

hiç

hiçbir

için

ile

ilgili

ise

işte

itibaren

itibariyle

kadar

karşın

kendi

kendilerine

kendini

kendisi

kendisine

kendisini

ki

kim

kimse

mı

mi

mu

mü

nasıl

ne

neden

nedenle

o

olan

olarak

oldu

olduğu

olduğunu

olduklarını

olmadı

olmadığı

olmak

olması

olmayan

olmaz

olsa

olsun

olup

olur

olursa

oluyor

ona

onlar

onları

onların

onu

onun

oysa

öyle

pek

rağmen

sadece

siz

şey

şöyle

şu

şunları

tarafından

üzere

var

vardı

ve

veya

ya

yani

yapacak

yapılan

yapılması

yapıyor

yapmak

yaptı

yaptığı

yaptığını

yaptıkları

yerine

yine

yoksa

zaten

