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OZET

Yeni 1,3,4-Oksadiazol Tiirevleri ve Biyolojik Aktivitelerinin Arastirilmasi

Sana SAFFOUR
Farmasotik Kimya Anabilim Dali
Anadolu Universitesi, Saglik Bilimleri Enstitiisii, Haziran 2022
Danigsman: Prof. Dr. Leyla YURTTAS

1,3,4-Oksadiazol hem endiistriyel hem de farmasotik disiplinlerde genis capta
islevsellestirilmis bir heterosiklik yap1 iskelesidir. Son zamanlarda, cesitli hastalik
tirlerini tedavi etmek i¢in ¢ok sayida 1,3,4-oksadiazol igeren yapilar kullanilmistir.
Alzheimer hastaligi (AH), kolinerjik noronlarin 6liimii ve monoamin oksidaz-B (MAO-
B) enziminin artis1 ile karakterize karmasik, ¢ok faktorlii ve ilerleyici bir hastaliktir. Bu
tezde, bir dizi yeni 1,3,4-oksadiazol-kinolin hibridi bilesik sentezlenmis ve
asetilkolinesteraz  (AChE), butirilkolinesteraz ve MAO enzimlerinin potansiyel
inhibitorleri olarak biyolojik olarak degerlendirilmistir. Tiim nihai bilesiklerin kimyasal
yapilari, *H-NMR, ¥C-NMR ve kiitle spektrometrileri kullamlarak dogrulanmustir.
Bilesikler arasinda, 5a, 5c ve 6a, sirasiyla 0.033 pM, 0.096 uM ve 0.177 pM ICso
degerleriyle AChE’a kars1 onemli aktivite gostermistir. En gii¢li molekuller olan 5a, 5¢
ve 6a'nin baglanma modlar1 ve yapi-aktivite iligkisi, molekiiler yerlestirme kullanilarak
belirlenmis ve onaylanmistir. Bilesik 5a, AChE'nin hem katyonik anyonik site (CAS)
hem de periferik anyonik site (PAS) ile etkilesime girerek ek bir noroprotektif etki
saglayarak benzersiz baglanma Ozellikleri olusturmustur. Sentezlenen bilesiklerin

fizikokimyasal 6zellikleri de degerlendirilmistir.

Anahtar Sézcukler: 1,3,4-Oksadiazol, Kinolin, Alzheimer hastaligi, Antikolinesteraz,

Monoamin oksidaz inhibisyonu.



ABSTRACT

New 1,3,4-Oxadiazole Derivatives and Investigation of Their Biological Activity

Sana SAFFOUR
Department of Pharmaceutical Chemistry
Anadolu University, Graduate School of Health Sciences, June 2022
Supervisor: Prof. Dr. Leyla YURTTAS

1,3,4-Oxadiazole is a heterocyclic scaffold that is functionalized widely in both
industrial and pharmaceutical disciplines. Recently, a large number of 1,3,4-oxadiazole-
containing structures have been used to treat diverse types of diseases. Alzheimer's
disease (AD) is a complex, multifactorial and progressive disease characterized by the
death of cholinergic neurons and upregulation of monoamine oxidase (MAO-B) enzyme.
In this thesis, a series of novel 1,3,4-oxadiazole-quinoline hybrids have been synthesized
and biologically evaluated as potential inhibitors of acetylcholinesterase (AChE),
butyrylcholinesterase and MAQOs enzymes. The chemical structures of all final structures
were confirmed using IR, H-NMR, *C-NMR and mass spectrometry. Among all the
compounds, 5a, 5¢ and 6a possessed substantial activity against AChE with 1Cso values
of 0.033 uM, 0.096 uM and 0.177 uM, respectively. The binding modes and structural
activity relationship (SAR) of the most potent structures 5a, 5¢ and 6a have been provided
and confirmed using molecular docking. Compound 5a has established unique binding
properties by interacting with both catalytic anionic site (CAS) and peripheral anionic site
(PAS) of the AChE providing an additional neuroprotective effect. The physicochemical

properties of the synthesized structures have been also evaluated.

Keywords: 1,3,4-Oxadiazole, Quinoline, Alzheimer’s disease, Anticholinesterase,

Monoamine oxidase.
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1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that known to
affect the elderly, named after the German psychiatrist Alois Alzheimer the first person
who described the disease’s hallmarks in 1906. Alzheimer’s disease is mainly
characterized by abnormal B-amyloid plaque depositions, intraneuronal neurofibrillary
tangles (NFT) formation, and neuronal loss [1]. Alzheimer's disease is considered the
leading cause of dementia that affects more than 55 million people nowadays around the
world according to the World Health Organization [2].

Alzheimer’s disease early symptoms arise as memory-related difficulties, apathy
and depression proceeding with communication impairment, disorientation, behavioral
changes, swallowing and walking difficulties that interfere with the patient’s regular
activities [3, 4].

Although the disease’s etiology is not fully understood, the disease’s hallmarks are
probably driven by various factors including genetic susceptibility, psychosocial issues,
biological factors, vascular disorders including high blood pressure, obesity, diabetes,
elevated cholesterol levels, alcohol consumption, and smoking cigarettes [5].

Tremendous efforts have been made with a view to tracking the underlying
neuropathological pathways proposing several hypotheses that explain the resulted
pathological changes. Assorted studies suggest that B-amyloid (AP), the primary
component of senile plaques that are defined as lesions in the brain, is the leading cause
of pathophysiological alterations and cognitive dysfunction in AD. As, 40-42 amino acid
peptides, are produced by transmembrane glycoprotein amyloid precursor protein (APP).
Gene mutations cause abnormal APP splitting by secretase enzymes into neurotoxic Af
oligomers which eventually turn into senile plaques that accumulate in the extracellular
regions causing neuronal signal termination, cognitive functions declining and neuronal
cell death [3, 6]. It has been also reported that AP induces intracellular neurofibrillary
tangles formation and neuronal loss by producing reactive oxygen species (ROS) and
nitric oxides and inducing neuro-inflammatory cascades [7, 8]. Therefore, secretase
enzymes that are included in the APP splitting process are considered potential targets for
disease treatment and some inhibitors have reached clinical phases Il and I11. However,
none of them have so far succeeded to reach the market due to their divergent role in
homeostasis and other cellular functions thus higher selectivity inhibitors must be
developed [9, 10].



Other studies attribute cognitive impairment and memory loss to Tau protein
abnormal hyperphosphorylation and neurofibrillary tangles formation that destroy
neuronal microtubules causing cell death [11].

It has been also evidenced that monoamine oxidase (MAQO) enzymes are
responsible for hydrogen peroxide species which are in turn involved in oxidative stress
and ROS formation leading to neurodegenerative cascades through lipid, protein and
DNA oxidative damage inducement [12, 13]. MAOs are flavin-containing enzymes that
have a prominent role in the oxidative deamination of neurotransmitters in peripheral
tissues and central nervous system. MAQOs are subdivided into two distinct isoforms,
MAO-A and MAO-B exhibiting differential substrate and inhibitor specificity with
disparate tissue distribution. MAO-A subtype is mainly included in the oxidative
deamination of norepinephrine (NE) and serotonin (5-HT) neurotransmitters, and is
predominantly found in gastrointestinal, liver, placenta and pulmonary vascular
endothelium; whereas MAO-B retains a higher selectivity towards benzylamine and
phenylethylamine (PEA) oxidation and substantially located in blood platelets.
Catecholamines such as dopamine, epinephrine, norepinephrine and tyramine are
considered substrates for both isoenzymes [14, 15].

Moreover, it has been found that MAO-B is upregulated in Alzheimer’s-diseased
brains and its activity is noticeably increased up to three-fold in particular brain parts,
especially in plaque-associated astrocytes [16]. Several MAO-B inhibitors such as
selegiline, rasagiline and lazabemide have been used so far, aiming to hinder Alzheimer’s
disease-associated neurodegenerative process through various neuroprotective
mechanisms. It is proposed that MAO-B inhibitors have the ability to improve AD by
decreasing free radical formation, preventing environmental pre-toxins activation and
exhibiting protective effects against neuronal damage and apoptosis [17]. Therefore,
various studies have been conducted aiming to synthesize potent and safe MAO inhibitors
[18].

Another prevalent suggestion is the cholinergic hypothesis which established the
prominent damage of the cholinergic pathways that play a vital role in neural function,
learning and plasticity in the brain. Two cholinesterase enzymes are included in this
pathway, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) [19].

The primary cholinergic neurotransmitter acetylcholine is mainly hydrolyzed by

AChE into acetic acid and choline regulating the level of acetylcholine (ACh) in normal
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brains (Figure 1.1). However, in AD acetylcholine levels are noticeably reduced in the
synaptic gaps due to the higher acetylcholine degradation rate and cholinergic neuronal
degeneration resulting in synaptic transmission termination between the neurons [20].
Therefore, acetylcholine deficiency is responsible for memory loss, learning deficits and
cognitive function deterioration associated with Alzheimer’s disease. Furthermore,
cholinergic neurons loss plays an extensive role in other disease aspects worsening that
are implicated in progressive AB accumulation, inflammation and oxidative stress [3, 21].

Thus, acetylcholinesterase inhibitors are used as first-line pharmacologic
interventions to restore acetylcholine levels by prolonging the neurotransmitter duration
of action providing a symptomatic treatment for AD [3].

Although butyrylcholinesterase’s role is not fully understood, BUChE activity is
progressively upregulated in the advanced stages of Alzheimer's disease becoming the
main acetylcholine hydrolyzing enzyme [22]. Experimental studies suggested that dual
inhibitors of both AChE and BUChE have implicated with higher therapeutic benefits
[23]. While other studies proved that BuChE inhibitors are able to hinder amyloid-beta

fibril formation and aggregation [24].

|~ AChE |
N o + N
H3C)J\O/\/ > H,0 H3C)J\OH HO™ >N
acetylcholine acetic acid choline

Figure 1.1 Acetylcholine hydrolysis

The first approved drug for Alzheimer's disease was tacrine which acted as
cholinesterases inhibitor. However, due to its critical hepatotoxicity, it is no longer used
[25]. Currently, available agents provide symptomatic relief by increasing levels of
acetylcholine via cholinesterase inhibitors including donepezil, rivastigmine and
galantamine which are generally prescribed in mild to moderate cases, or by N-Methyl-
d-Aspartate Receptor (NMDAR) inhibitor memantine that commonly used in moderate
conditions as adjunctive therapy along with cholinesterase inhibitors (Figure 1.2) [6].

Recently in 2021, the first disease-modifying immunotherapy aducanumab has
been approved for mild cognitive impairment or mild Alzheimer’s. Although
aducanumab is proposed to work by removing abnormal beta-amyloid and reducing the



number of plaques in the brain, the drug's aptitude to slow-down cognitive functions
Impairment remains uncertain, therefore it should be prescribed with caution [26, 27].

Rivastigmine Galantamine Memantine

Figure 1.2 Anti-Alzheimer agents

On the basis of research that established AChE and BuChE dual inhibition ability
to promote therapeutic efficacy, ameliorate cognitive function and evade AChE
upregulation [28], several investigations have been carried out to develop highly efficient
anticholinesterase analogues [29, 30].

On the other hand, recent research approaches predominately aim to develop and
design novel agents that incorporate combinations of bioactive pharmacophores in a
single structure that has the ability to show different modes of action minimizing the
metabolic load and drug-drug interaction possibilities and improving treatment efficiency
[31].

The necessity to develop multi-target agents directed the researchers towards
heterocycle-based design to produce effective anti-Alzheimer drugs [32]. According to
literature, various heterocycles possess anti-Alzheimer activity including indole [33],
coumarin [34], pyridine [35], carbazole [36], piperidine [37], pyrrolidine [38], pyrazole
[39], thiazole [40], etc.

One of the most biologically active heterocycles is oxadiazole or furadiazole five-

membered ring that bears one oxygen, two nitrogen and two carbon atoms in its



constitution [41]. According to nitrogen atoms’ positions, oxadiazole exists in different
isomeric forms. However, 1,3,4-oxadiazoles isoform has been considered a vital synthon
in the drug design and development process due to its expansive chemical and biological
properties. For instance, 1,3,4-oxadiazole derivatives tend to behave as antiviral,
antimalarial, anti-inflammatory, antimicrobial, antioxidant, anticancer, anti-convulsant
[42-44], etc. Therefore , various 1,3,4-oxadiazole containing agents are found in the
market including, raltegravir (antiretroviral), tiodazosin and nesapidil (antihypertensive),

zibotentan (anticancer), and furamizole (antibacterial agent) (Figure 1.3) [43].
NH,
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Raltegravir Tiodazosin
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Nesapidil Furamizole Zibotentan

Figure 1.3. Drugs containing oxadiazole ring

Recently, 1,3,4-oxadiazole derivatives have demonstrated an outstanding aptness
to modulate Alzheimer’s disease through several pathways. For instance, various
derivatives established a neuroprotective effect against AP induced toxicity [45]. Other
compounds proved a glycogen synthase kinase-3p (GSK-3p) inhibitory activity which
afforded a reduction in tau hyperphosphorylation and -amyloid production [46-49]. It
has also been established that numerous 1,3,4-oxadiazole derivatives retain
anticholinesterase [50] and monoamine oxidase inhibitory actions which play an essential
role in AD pathogenesis [51, 52].

Another interesting fundamental heterocycle core is quinoline or 1-aza-naphthalene
or benzo[b]pyridine ring which is defined as a planner hetero-aromatic structure

composed of benzene and pyridine rings fused to each other with a molecular formula of



CoH7N [53]. Quinoline exhibits weak base properties and can also participate in both

nucleophilic and electrophilic substitution reactions [54].

Figure 1.4. Chemical structure and numbering of quinoline

Quinoline-containing compounds have generated considerable interest in the
medicinal chemistry of heterocyclic compounds due to their wide spectrum
pharmacological activity [55]. Among them, quinoline has been found to possess
antimalarial [56], antihypertensive, anticonvulsant [57], anti-inflammatory [58],
anticancer [59], antibacterial [60], antifungal [61], antioxidant activities [62], etc.

Quinoline is a part of several clinically approved drugs in the market including the
cholesterol-lowering agent pitavastatin, the antineoplastic tipifarnib, the antibacterial

ciprofloxacin and the antiretroviral saquinavir (Figure 1.5).

Tipifarnib
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Ciprofloxacin Sequanavir

Figure 1.5. Drugs containing quinoline ring

Based on the previous research, we attempted to synthesize several compounds

incorporating quinoline and 1,3,4-oxadiazole cores in their skeleton to pursue a better



therapeutic profile in the continuation of the ongoing investigations on Alzheimer’s
diseases related to simultaneously targeting cholinesterase/ monoamine oxidase enzymes
inhibition. Furthermore, we intended to further analyze the most potent candidates in-

silico by applying molecular docking technique to predict the relevant ligand-receptor
binding clues.
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Figure 1.6. Targeted structures’ general representation

Table 1. Targeted 2-[(substituted)thio]-5-[(quinolin-8-yloxy)methyl]-1,3,4-oxadiazole products

Ri1 Ro Rs
4a 4b 4c 4d 5a 5b 5c¢ 6a 6b 6c
4- 2,5-di- ) 4-CHjs, 4-
-H 4-CHs 4-Cl  4-F 4-OCH;  4,5-di-CHj3
OCHs OCHjs 5-COOEt phenyl




2. LITERATURE REVIEW
2.1. Oxadiazole Chemistry

Oxadiazoles are heterocycle structures that could be defined in four different
isomers according to the positions of nitrogen atoms. These isomers are 1,2,4-oxadiazole
(@), 1,2,5-oxadiazole (b), 1,3,4-oxadiazole (c¢) and 1,2,3-oxadiazole (d1) as shown in
(Figure 2.1). However, 1,2,3-oxadiazole is considered unstable due to ring opening and
formation of diazoketone tautomer (d2). All these isomers possess the same general
formula of C2H20ON: [63].

3/_N4 3 4 N N4 3N 4 -
R ] - _y A~ Noy
/N N 0 N
2N Ps 2N N5 QO 5 2N ~5
1 1 1 1
a b c d, d,

Figure 2.1. Oxadiazole isomers

Due to its pharmacological applications versatility, 1,3,4-oxadiazole isoform is
considered an auspicious core that offers a wide range of application in the field of
medicinal chemistry [64]. One of the most interesting oxadiazole attributes is its aptness
to be metabolized by ring cleavage in the body [65].

1,3,4-Oxadiazole tends to act as a weak base because of the inductive effect resulted
from the extra heteroatom. The presence of the 1,3,4-oxadiazole ring has an impact on
the entire compound's physicochemical and pharmacokinetic properties. In some
circumstances, it serves as a flat aromatic linker to retain the structure orientation [66].
Furthermore, oxadiazoles are considered virtuous bio-isosteres for relatively unstable
carbonyl-containing groups such as amides, esters, carbamates and hydroxamic esters
[67].

In 1965, 1,3,4-oxadiazole was first synthesized and isolated as a liquid having a
boiling point of 150° C by Ainsworth starting from ethyl formate (formyl hydrazine) by
thermolysis process (Figure 2.2) [42].

O

H)LN'NVOEt B ( )
H N-N

Figure 2.2. 1,3,4-Oxadiazole formation by thermolysis
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A myriad of 1,3,4-oxadiazole synthesis procedures has been reported earlier to
afford the 1,3,4-oxadiazole ring [68, 69]. According to the literature, the most prevalent
method to synthesize 1,3,4-oxadiazoles is the cyclodehydration of a preformed ring
skeleton using dehydrating agents such as phosphorus oxychloride, thionyl chloride,
chlorosulphonic acid, phosphorus pentoxide, oleum, phosphoric acid, zinc chloride, etc.
The ring might also be closed through condensation reaction by alcohol, carboxylic acid,
mercaptans, or hydrogen cyanide elimination (Figure 2.3). Some 1,3,4-oxadiazole
derivatives are able to be performed through oxidative cyclization using an oxidizing
agent. Furthermore, various ring systems such as pyrazoles, hydantoins, and tetrazole
have the ability to convert into oxadiazole structures [70].
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Figure 2.3. 1,3,4-Oxadiazole synthesis pathways



2.1.1. 5-Substituted-1,3,4-oxadiazole-2-thiols synthesis methods

In 1952, Hoggarth proved that 2-phenyl-5- mercapto-1,3,4-oxadiazole could be
prepared through methyl 2-benzoyldithiocarbazinate ester and salts cyclization. These
esters and salts are produced through acyl hydrazine refluxing with carbon disulfide in
pyridine [71].

Later in 1954, Young and Wood prepared a series of 2-substituted-5-mercapto-
1,3,4-oxadiazoles by direct refluxing of hydrazides and carbon disulfide mixture in
alcoholic potassium hydroxide without acyldithiocarbazic acid esters isolation (Figure
2.4) [72].

0 S
R)J\N,NH2 % ro N o R\«OW/SH
H E{OH/ KOH \[Or y 5 N-}

Figure 2.4. 5-Substituted-1,3,4-oxadiazole-2-thiols synthesis using CS;

In 1960, Sherman synthesized 5-substituted-1,3,4-oxadiazole-2-thiols by reacting
hydrazides with thiophosgene in dioxane (Figure 2.5) [73].

o
)J\N'NHZ cscl, R\<O>/SH
N-N

R
H

Figure 2.5. 5-Substituted-1,3,4-oxadiazole-2-thiols synthesis using CSCl;

5-Substituted-2-mercapto-1,3,4-oxadiazoles have been synthesized from 2-
acyldithiocarbazininate salts under microwave irradiation with a satisfactory yield ranged
from 69% to 84%. The reaction was performed within 30 seconds when DMF and DMSO
were used as solvents, while 120 seconds were needed in the case of pyridine (Figure
2.6) [74].

S
R\H/E\NJ\S " MWI HS\«O)/R
5 H N-N

Figure 2.6. 5-Substituted-1,3,4-oxadiazole-2-thiols synthesis under microwave irradiation
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Soleiman-Beigi et al. have developed a simple and practical catalyst-free method
to synthesize 5-substituted-1,3,4-oxadiazole-2-thiols from hydrazides and carbon
disulfide (CS2) in DMF. The reaction was started by stirring the mixture for 15 min at
room temperature then proceeded at 70°C until the ring closure. It was confirmed that

thiol tautomer is the only produced product during this reaction (Figure 2.7) [75].

(@]
)]\ _NH CS R o SH
R e

Figure 2.7. 5-Substituted-1,3,4-oxadiazole-2-thiols synthesis using CS; in DMF

Based on the absolute energy values and solvent-solute interactions energy
calculations, it has been reported that both thione and thiol tautomers have improved
stability in higher polarity solvents. It has also been revealed that the thiol tautomer is
generally observed in DMF, whilst the thione form is preferred in acetonitrile [75]. Other
studies have emphasized that the thione form is predominant in the solid-state [76].

2.1.2. 5-Substituted-2-amino-1,3,4-oxadiazoles synthesis methods

5-Aryl-2-amino-1,3,4-oxadiazole derivatives have been attained by refluxing acyl-
hydrazines and arylsemicarbazide with cyanogen bromide in ethanol or aqueous
bicarbonate (Figure 2.8). However, 1,2,4-triazolin-5-ones might be generated as by-

products under basic conditions [77].

TZ

Figure 2.8. Oxadizole synthesis using BrCN

Kosmrlj et al. described an interesting method to produce 1,3,4-oxadiazoles through
acylhydrazines reaction with isocyanates to afford 1,4-disubstituted semicarbazides that
oxidizes into stable diazenes. At room temperature, diazenes undergo further oxidation in
the presence of triphenylphosphine (PhsP) or tributylphosphine (BusP) forming 1,3,4-
oxadiazoles (Figure 2.9) [78].
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Figure 2.9. Oxadiazole synthesis using PPhs

Hetzheim and Mdckel have explained 1,3,4-oxadiazole synthesis using HgO,
CuSOs, and I.. However, this method produced undesirable by-products and poor yields
[70]. Several desulfurizing agents have been reported so far to produce 5-substituted 2-
amino-1,3,4-oxadiazole derivatives from N- acyl-thiosemicarbazide at various conditions
with higher  yields (Figure 2.10). Among them, 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC-HCI) in DMSO or p-TsCI [79] I./KI and
NaOH under ultrasound conditions [80], N,N-dicyclohexylcarbodiimide (DCC), Burgess
reagent, N,N-carbonyldiimidazole (CDI) [69], etc.

S
H
RN RO\ _NH,

Figure 2.10. Oxadiazole synthesis from N-acyl-thiosemicarbazide

Nesynov and Grekov have obtained 5-substituted-2-amino-1,3,4-oxadiazoles from
thiosemicarbazides using excess lead monoxide as catalyst and ethanol as solvent (Figure
2.11) [81].

S
H H
r.__N. JL__r oo R— O~ _N_
TNN S e

o

Figure 2.11. Oxadiazole synthesis using lead monoxide

Rivera, Balsells and Hansen have attempted to synthesize 5-substituted-2-amino-
1,3,4-oxadiazoles from thiosemicarbazides using 1,3-dibromo-5,5-dimethylhydantoin as
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an oxidizing agent, NaOH as a base, potassium iodide as catalyst and isopropyl
alcohol/acetonitrile as solvent. This procedure is characterized by using a safe and
economic oxidant besides the scrapping readiness of dimethylhydantoin byproducts

during aqueous workup due to its high-water solubility (Figure 2.12) [82].

o B
S ;I\:N>:O
R\H/II;II\N)J\N’RI Br R\«O)/NHZ
H H KI N-N

(0)

Figure 2.12. Oxadiazole synthesis using 1,3-dibromo-5,5-dimethylhydantoin

In 2006, Dolman et al. synthesized 5-alkyl- and 5-aryl-2-amino-1,3,4-oxadiazoles
by thiosemicarbazide activation toward cyclization using tosyl-chloride and pyridine in
tetrahydrofuran (THF). This method provides a simple one-pot approach to prepare a
wide variety of 5-alkyl- and 5-aryl-2-amino-1,3,4-oxadiazole derivatives with an
excellent yield between 78—99% (Figure 2.13) [83].

O

H
)J\ 1% § TsCl / pyridine R~ O N
ey, T prigne gy
H S THF N-N

Figure 2.13. Oxadiazole synthesis using tosyl chloride/pyridine

In 2012, Guin et al. developed a convenient, simple method to produce 2-amino-
1,3,4-oxadiazoles from thiosemicarbazide precursors using eco-friendly element iodine
and potassium carbonate salt in biphasic medium of ethyl acetate/water (Figure 2.14).
This method could be introduced to a wide range of functional groups with potential

industrial applications due to its high yields [84].

O

H H I,/ K,CO o_ H
NN ¥ s R, N

- ~ N
R™ N R EtOAc/H,0 \(g_z/ R

S

Figure 2.14. N-acyl-thiosemicarbazide desulfurization
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2.1.3. 2,5-Diaryl(alkyl)-1,3,4-oxadiazole synthesis methods

1,3,4-Oxadiazoles have been obtained by reacting acyl hydrazine with carboxylic
acid or ester using a dehydrating agent in a one-step process (Figure 2.15). Among them,
phosphoric acid, phosphorus pentachloride, phosphorus pentoxide, sulfuric acid, thionyl
chloride, Burgess reagent, trifluoroacetic acid, carbodiimide derivatives and tosyl-
chloride /pyridine [51]. Nevertheless, in the presence of aryl substituents, the dehydrating
agent must be selected carefully as these compounds undergo sulfonation by electrophilic
attack pathway in the presence of sulfuric acid, oleum, etc., Chlorides of phosphorus and
thionyl chloride and phosphorus oxychloride are considered appropriate choices in these
cases [85].

(@]

. o .
R)J\N'NHZ R'COOH R—OyR
H -H,O N-N

Figure 2.15. One-step synthesis of 2,5-diaryl-1,3,4-oxadiazole using carboxylic acids

Moreover, 2,5-diaryl(alkyl)-1,3,4-oxadiazole might be obtained in one-pot
procedures starting from acylhydrazine and substituted aldehydes by direct condensation
followed by oxidative cyclization under various conditions (Figure 2.16), including
sodium bisulfite in a mixture of ethanol and water under microwave irradiation,
trichloroisocyanuric acid (TCCA) at room temperature and cerium ammonium nitrate
(CAN) in dichloromethane [51].

(@]
! O |
R)J\N’NHz R'CHO R\« )/R
H N-N

Figure 2.16. One-step synthesis of 2,5-diaryl-1,3,4-oxadiazole using aldehydes

Mashraqui et al. have proposed a simple, one-pot procedure to attain 2,5-
disubstituted-1,3,4-oxadiazoles from hydrazides and acid chlorides in N-(2-
hydroxypropyl)methacrylamide (HMPA) solvent under the microwave conditions

obviating the necessity to use strong acid or any cyclodehydrating agent [86].
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N )J\N'NHZ R'COCI Ry R
H HMPA, MWI N-N

Figure 2.17. One-step synthesis of 2,5-diaryl-1,3,4-oxadiazole using acid chlorides

Another way to produce 1,3,4-oxadiazole was performed by N-acylhydrazines
reaction with orthoformic esters, imido esters and imido chlorides (Figure 2.18). When
aromatic hydrazines were reacted with substituted imidochlorides in basic conditions,

amine hydrochloride was eliminated [70].

O 0
0
\ \ R
R)J\N,NHz + CH(OR'); — 3 R)LN,N\VOR — > ( ]
H N -R'OH N-N
j\ Cl__NR" R\(OyR’
e T . \
H R' -R"NH,.HCI N-N

Figure 2.18. 1,3,4-Oxadiazole synthesis using orthoformic ester(up) and imidochloride (down)

In 1978, Link described a compelling method to produce 1,3,4-oxadiazoles using
azirine as a carbon donor in the ring-closing process. Aryl hydrazide was reacted with 3-
dimethylamino-2,2-dimethyl-2H-azirine to yield 1,3,4-oxadiazole. The reaction
proceeded through oxadiazoline formation and dimethylamine elimination in the final
step (Figure 2.19) [87].

0]
o1 L
N
HyC . N R)J\ _NH, R ITIH |
N H

NN

7

| NH,
/Nl; o
N ] -HN(CH) VI
N™ "R

Figure 2.19. 1,3,4-Oxadiazoles by using azirine
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In 1988, Rigo et al. proposed an efficient method to prepare 1,3,4-oxadiazole
derivatives starting from diacyl-hydrazine using hexamethyldisilazane (HMDS) as

catalyst triflic acid and acetonitrile (Figure 2.20) [88].

(@]
L N R HMDS R—9~_R'
R E \g/ ACN/triflic acid \i_z/

Figure 2.20. 1,3,4-Oxadiazole synthesis using HMDS/ trifilic acid

In 1993, 1,3,4-oxadiazole derivatives were produced through oxidative cyclization
of aldehyde hydrazones using phenyl-iodine(lll) diacetate (PIDA) as oxidizing agent at

room temperature with an acceptable yield [89].

R NN
H

)J\ N R PhI(OAc), R \o/ R’
\;_Iz/
Figure 2.21. 1,3,4-Oxadiazole synthesis using PIDA

In 1994, Jedlovské and Lesko described a new method to obtain 2,5-disubstituted

1,3,4-oxadiazoles by N-acyl-aldehyde hydrazones refluxing with chloramine T (CAT) in
ethanol for 1-4 hours with an excellent yield ranged from 95-96% [90].

(0]
CAT O \
H ethanol N-N

Figure 2.22. 1,3,4-Oxadiazole synthesis using CAT

In 1995, Oussaid et al. prepared 2,5-disubstituted-1,3,4-oxadiazoles under
microwave irradiation starting from diacyl-hydrazines in the presence of thionyl chloride
with a considerable yield between 78-92% (Figure 2.23). The reaction took less time than
conventional methods due to microwave acido-basic catalysis [91].

o)
P B r socl, R _O__Rr
A hig MWI \i_z/

Figure 2.23. 1,3,4-Oxadiazole synthesis under microwave conditions
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In 1999, Isobe and Ishikawa proposed an efficient method to produce 1,3,4-
oxadiazoles using 2-chloro-1,3-dimethylimidazolinium chloride (DMC) as a powerful
dehydrating agent to cyclize diacylhydrazines in triethylamine (TEA) and
dichloromethane with a substantial yield reached to 100% in some cases. The method was
also used to prepare 1,3,4-oxadiazole derivatives by direct reaction of acylhydrazine and
carboxylic acids (Figure 2.24) [92].

H . DMC o .
R)]\N N\n/R R\« W/R
H o N-N

Q o)
. )J\N’NH2 R'COOH R~y R
H DMC N-N

Figure 2.24. 1,3,4-Oxadiazole synthesis using DMC

In 2001, Tendon and Chhor produced 1,3,4-oxadiazoles in situ by reacting
hydrazine hydrate with acid chloride at 0 °C in dry dioxane using BF3EtO as
cyclodehydrating agent. The major attribute of this procedure is its simplicity and

feasibility with various aromatic and aliphatic substrates [93].

0

P
R™ °Cl  BF;E,0 N-N

Dioxane

Figure 2.25. 1,3,4-Oxadiazoles synthesis from acid chloride

Ma et al. have developed a novel synthesis method of symmetrical 2,5-
disubstituted-1,3,4-oxadiazoles from hydrazides using potassium iodide (KI) in basic
methanol media under electrochemical conditions. That approach may be a preferable
way to synthesize oxadiazoles because of the mild conditions, cheap oxidant, and
environmental friendliness (Figure 2.26). However, this method failed to produce the
equivalent oxadiazole from aliphatic hydrazides therefore it could be applied only with

aromatic hydrazides [94].
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KI/ KOH/MeOH R—_O~__R
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H MWI N-N

Figure 2.26. 1,3,4-Oxadiazole synthesis using KI and MWI

Yu et al. proposed a convenient and transition metal-free oxidative cyclization of
acylhydrazones in the presence of potassium carbonate and iodine at 100° C. It has been

demonstrated that DMSO was the most effective solvent for this reaction [95].

o

PR 1) EtOH, reflux R\«OW/R'

)L, K,CO5.DMSO. N-N

o)
_NH
R)J\N 2+ g
H

Figure 2.27. Oxadiazole synthesis using I»

In 2011, Pouliot et al. prepared 1,3,4-oxadiazole from 1,2-diacylhydrazines using
XtalFluor-E ([EtoNSF2]BF4) as a cyclodehydrating agent. XtalFluor-E is a thermally
stable compound that enables to perform the reaction at higher temperatures in 1,2-
dichloroethane (DCE). They also found that using acetic acid as an additive generally

increased yield [96].

)Oj\ - XtalFluor-E
j N R AcOH R 0) R1
e B \([)]/ DCE \i-z/

Figure 2.28. 1,3,4-Oxadiazole synthesis using XtalFluor-E

2.2. 1,3,4-Oxadiazole Derivatives as Anticholinesterases and Monoamine Oxidase
Inhibitors

In 1990, Mazouz et al. produced a novel 5-aryl-1,3,4-oxadiazol-2(3H)-one
derivatives and evaluated their in-vitro inhibitory properties against monoamine oxidase
A and B. Several compounds displayed potent inhibitory activity and selectivity towards
the targeted enzymes. However, it was found that 5-(phenyl)-3-(2-cyanoethyl)-1,3,4-
oxadiazol2(3H)-thione established a selective inhibitory action towards MAO-A enzyme.
Extension of the previous structure with an extra phenyl group has inverted the selectivity
toward MAO-B enzyme [97].
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MAO A: IC55=2.1 uM MAO A: IC55=22.5 uM
MAO B: IC5(=37 uM MAO B: I1C5(=0.074 pM

Figure 2.29. 5-Phenyl-3-(2-cyanoethyl)-1,3,4-oxadiazol2(3H)-thione (left) and 5-(4-biphenylyl)-3-(2-
cyanoethyl)-1,3,4-oxadiazol2(3H)-thione (right)

Later in 1993, they developed another 5-[4-(benzyloxy)phenyl]-1,3,4-oxadiazol-
2(3H)-one series as inhibitors of monoamine oxidase type B. According to the
preliminary results, 5- (4-(benzyloxy)phenyl)-3-(2-cyanoethyl)-1,3,4-oxadiazol-2(3H)-
one) demonstrated a high selectivity towards MAO-B with an ICso in the nanomolar range
[98].

O
O\J{N f CN
ore
e

MAO B: IC5)=1.4 nM

Figure 2.30. 5-(4-(Benzyloxy)phenyl)-1,3,4-oxadiazol-2(3H)-one structure

In 2013, Rehman et al. developed a novel series of (5-substituted-1,3,4-oxadiazole-
2yl)-N-[(2-methoxy-5-chlorophenyl)-2-sulfanyl]acetamide  then  evaluated their
anticholinesterase activities. Amongst the tested compounds, o-methyl and o-nitro
substituted aromatic ring structures were observed as potent AChE inhibitors (ICso values
34.61 and 40.21 uM), respectively; While the benzyl substituted compound possessed the
best BUChE inhibition with an I1Csp of 33.31 uM [99].
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Figure 2.31. (5-Substituted-1,3,4-oxadiazole-2yl)-N-[(2-methoxy-5-chlorophenyl)-2-sulfanylJacetamide

anticholinesterase potent derivatives

Siddiqui et al. developed a new set of N-substituted derivatives of 5-benzyl-1, 3, 4-
oxadiazole-2yl-2"-sulfanyl acetamides and screened them against acetylcholinesterase
enzyme. The results showed that 2-[(5-benzyl-1,3,4-oxadiazol-2-yl)thio]-N-(2,6-
dimethylphenyl)acetamide and 1-[(5-benzyl-1,3,4-oxadiazol-2-yl)thio]-3-phenylpropan-
2-one have the potential to inhibit AChE enzyme with 1Cso values of 17.5 and 24.61
pmoles, respectively [100].

wa© Q%:f

AChE: IC5,=17.5 uM AChE: IC5y=24.61 pM

Figure 2.32. 2-[(5-Benzyl-1,3,4-oxadiazol-2-yl)thio]-N-(2,6-dimethylphenyl)acetamide (left), and 1-[(5-
benzyl-1,3,4-oxadiazol-2-yl)thio]-3-phenylpropan-2-one (right)

In 2014, Kamal et al. synthesized (E)-2-aryl-5-styryl-1,3,4-oxadiazole and (E)-2-
aryl-5-(2-benzo[d][1,3]dioxol-5-yl)vinyl)-1,3,4-oxadiazole derivatives and studied their
biological activity against AChE enzyme. The results revealed that all the synthesized

compounds have an acceptable inhibitory activity with 1Csg values in the range of 13 to
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65 uM. Molecular modeling studies proved that the most active compounds perform the

same binding manner of donepezil [101].

N'N\
\ 0 N
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o |
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R,R ;= (substituted) phenyl, pyridyl, benzofuryl

Figure 2.33. 2-Aryl-5-styryl-1,3,4-oxadiazole(up) and 2-aryl-5-(2-benzo[d][1,3]dioxol-5-yl)vinyl)-1,3,4-

oxadiazole (down)

Rehman et al. developed a new series of heterocyclic 3-piperidinyl-1,3,4-
oxadiazole derivatives and evaluated their activities against AChE. All the derivatives

demonstrated a significant inhibition of acetylcholinesterase enzyme [102].

O
Cl
Cl

OEt

N—N

AChE: IC5y=3.64 uM AChE: IC5y=7.62 uM

Figure 2.34. 3-[(5-(1-[(4-Chlorophenyl)sulfonyl]piperidin-3-yl)-1,3,4-oxadiazol-2-yl)
thio]-N-[(tetrahydrofuran-2-yl)methyl]propanamide (left), and 3-[(5-(1-[(4-
chlorophenyl)sulfonyl]piperidin-3-yl)-1,3,4-oxadiazol-2-yl)thio]-N-
ethoxyphenyl)propanamide (right)

In 2018, lbrar et al. developed novel coumarin-oxadiazole and coumarin-thiazole
hybrids and evaluated their activities against acetylcholinesterase and
butyrylcholinesterase with the aim to investigate their potential for the prevention of AD.
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Molecular docking studies established that coumarin-oxadiazole derivatives have high
inhibitory activity against BuChEg [103].

0._0
Cl
NN,
N7\
HN
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)

BuChE: IC5p= 0.15+0.09uM

Figure 2.35. 3-(4-{[(3-Chlorophenyl)amino]methyl}-5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2H-

chromen-2-one

Abbasi et al. synthesized N-(5-methyl-1,3-thiazol-2-yl)-2-[5-((un)substituted-
phenyl)1,3,4-oxadiazol-2-yl] sulfanyl acetamide derivatives and screened for their
potential AChE inhibitory properties. Among all the structures, 2,4-dichloro and 4-amino
substituted derivatives showed maximum AChE inhibition with I1Cso values of 11.49 and
19.35 uM, respectively [104].
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AChE: IC5y=19.35 uM

Figure 2.36. 2-[(5-(2,4-Dichlorophenyl)-1,3,4-oxadiazol-2-yl)thio]-N-(5-methylthiazol-2-yl)acetamide
(up), and 2-[(5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)thio]-N-(5-methylthiazol-2-

yl)acetamide (down)

Novel hybrids of 1,3-thiazole and 1,3,4-oxadiazole have been developed and
screened for their inhibitory potential against AChE and BuChE enzymes. The results
revealed that 3-nitrophenyl group and benzyl group retaining structures emerged with the
highest inhibitory effect against AChE with an 1Cso of 17.25 and 18.36 uM, respectively.
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Nevertheless, substitution with 2-nitrophenyl group turned out to BUuChE inhibitory
action with an ICsp value of 56.23 uM [105].

CH;
(0] N \

o_s A M
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if R=3-nitrophenyl, benzyl (potent AChEI)
R= 2-nitrophenyl (potent BuChEI)

Figure 2.37. 1,3-Thiazole-1,3,4-oxadiazole hybrids

In 2019, Tripathi et al. developed new hybrids of 2-aminopyrimidine moiety linked
to substituted 1,3,4-oxadiazoles. The study demonstrated AChE inhibitory activity and
antioxidant potential of the synthesized 1,3,4-oxadiazole derivatives. 5-(Naphthalen-1-
yl)-N-(pyrimidin-2-yl)-1,3,4-oxadiazol-2-amine showed a considerable AChE inhibitory
activity with a non-competitive enzyme inhibition. Therefore, this compound is expected

to be an expedient lead for cognitive dysfunction treatment [106].
N
Cr
=N =N
O__N

AChE: IC5y= 6.52 uM

Figure 2.38. 5-(Naphthalen-1-yl)-N-(pyrimidin-2-yl)-1,3,4-oxadiazol-2-amine

Mishara et al. designed and synthesized 5-(substituted) phenyl-N-(pyridin-4-yl)-
1,3,4-oxadiazol-2-amine derivatives. The resulted products were tested against AChE and
BuChE enzymes. According to results, it was apparent that 4-OH substituted derivative
has the potential to inhibit AChE-induced AP aggregation with an ICsp of 1.098 uM in

addition to its antioxidant properties [107].
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Figure 2.39. 4-(5-(Pyridin-4-ylamino)-1,3,4-oxadiazol-2-yl)phenol

Bingul et al. developed 2-(indol-2-yl)-1,3,4-oxadiazoles and evaluated their
acetylcholinesterase and butyrylcholinesterase inhibitory activity. Based on biological
assay findings, oxadiazole-containing compounds displayed appreciable AChE and
BuChE inhibitory performance [108].

AChE inhibitory =88.22%
BuChE inhibitory =86.87%
comparing to galanthamine

Figure 2.40. 2-(4,6-Dimethoxy-1H-indol-2-yl)-5-phenyl-1,3,4-oxadiazole

Triazole-oxadiazole conjugates have been synthesized and screened for their
inhibitory activity against AChE enzymes. According to behavioral and biochemical
results, it was revealed that 2-hydroxyphenyl, 3-hydroxyphenyl and pyridyl substituted
moieties possessed noticeable anticholinesterase and antioxidant activities [109].

R= (substituted) phenyl, pyridyl

Figure 2.41. Triazole-oxadiazole conjugates

In 2020, Tripathi et al. designed, synthesized ferulic acid-based 1,3,4-oxadiazole
hybrids and evaluated their inhibitory activity against acetylcholinesterase (AChE),
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butyrylcholinesterase (BuChE) and beta-secretase-1 (BACE-1). The results revealed that
2-methoxy-4-(2-(5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)vinyl)phenol
compound had a neuroprotective activity against AB-induced oxidative stress showing an
inhibitory potential for AChE, BUChE and BACE-1 enzymes with 1Cses of 0.068 uM,
0.218 uM and 0.255 pM, respectively [110].

AChE:IC5)=0.068 uM
BuChE: IC5,=0.218 uM

Figure 2.42. 2-Methoxy-4-(2-(5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)vinyl)phenol

In 2021, Mirzazadeh et al. synthesized a new set of quinoxalin-1,3,4-oxadiazoles
and evaluated their activities against multiple metabolic enzymes including AChE
enzyme. According to the results, 3-fluoro substituted derivative showed a twofold higher
inhibitory activity against acetylcholinesterase and butyrylcholinesterase in comparison
with tacrine [111].

AChE=IC5,= 594 nM
BuChE= IC5,= 624 nM

Figure 2.43. 2-(2,3-Diphenylquinoxalin-6-yl)-5-[(3-fluorobenzyl)thio]-1,3,4-oxadiazole

Choubey et al. developed novel hybrids bearing N-benzylpyrrolidine
tethered with substituted 1,3,4-oxadiazole nucleus and screened against AChE,
BuChE and BACE-1 enzymes. AIll compounds showed noticeable AChE

inhibitory activities; However, the most promising results against this enzyme
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were shown by highly lipophilic and strong electron-withdrawing substitutes,
especially CFs group containing compounds [112].

Qﬁ’j\w"@@

X=NH, AChE:IC5,=0.091uM, BuChE: ICs,=0.106 pM
X=NHCH,, AChE:IC5,=0.064uM, BuChE: IC5;=0.074 uM

Figure 2.44. N-Benzylpyrrolidine-oxadiazole hybrids

A novel series of 5-pyrid-3-yl-1,3,4-oxadiazoles developed and evaluated as
potential inhibitors of acetylcholinesterase and butyrylcholinesterase by Elghazawy et al.
Almost all of the compounds showed considerable inhibition against both cholinesterases
with ICsp values in the nanomolar range. Amongst the tested compounds, 2-(4-
chlorophenyl)-5-(5-phenylpyridin-3-yl)-1,3,4-oxadiazole exhibited the best inhibitory
potential against both AChE and BUChE with an ICso of 50.87 nM and 4.77 nM,
respectively [50].

AChE:IC5y=50.87 nM
BuChE: IC5y=4.77 nM

Figure 2.45. 2-(4-Chlorophenyl)-5-(5-phenylpyridin-3-yl)-1,3,4-oxadiazole

George et al. developed 1,3,4-oxadiazole-coumarin hybrids and evaluated their
anticholinesterase, antioxidant and anti-inflammatory activities. The most potent AChE
inhibitors were 7-[(5-(3,4-dihydroxyphenyl)-1,3,4-oxadiazol-2-yl)methoxy]-4-methyl-
2H-chromen-2-one and  4-methyl-7-[(5-(3,4,5-trihydroxyphenyl)-1,3,4-oxadiazol-2-
yl)methox]-2H-chromen-2-one with ICso values of 29.56 and 28.68 uM), respectively.
While 7-[(5-(3,4-dihydroxyphenyl)-1,3,4-oxadiazol-2-yl)methoxy]-4-methyl-2H-
chromen-2-one displayed a notable inhibition of BUChE with ICsg value of 23.97 uM
[113].
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Figure 2.46. 1,3,4-Oxadiazole- coumarin hybrids

Harfenist et al. also developed a series of 5-aryl-2- alkyl-1,3,4-oxadiazole

analogues that have been concluded to be potent monoamine oxidase inhibitors [114].

Figure 2.47. 5-Aryl-2-alkyl-1,3,4-oxadiazole analogues

Later on, a novel set of 1,3,4-oxadiazole-3(2H)-carboxamides have been produced
and screened for their inhibitory activities toward MAO enzymes. The synthesized
compounds demonstrated remarkable inhibitory activity at the concentration of 107°—
107% M [115].

Figure 2.48. 1,3,4-Oxadiazole-3(2H)-carboxamide derivatives

In 2016, Distinto et al. prepared a novel 3-acetyl-2-dichlorophenyl-5-aryl-2,3-
dihydro-1,3,4-oxadiazole derivatives and identified their ability to inhibit MAO enzymes.
According to preliminary results, various compounds demonstrated preferential

inhibitory activity against MAO-B with medium to low nanomolar range 1Csos [116].
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Figure 2.49. 2-(3,4-Dichlorophenyl)-3-acetyl-5-(4-nitrophenyl)-2,3-dihydro-1,3,4-oxadiazole

Recently, Tok et al. developed a new set of 2,5-disubstituted-1,3,4-oxadiazole
derivatives and evaluated their potential to inhibit MAO-A and B enzymes. They reported
that 1-(4-chlorophenyl)-3-(5-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyridin-2-yl)urea
possessed a superior MAO-B inhibitory activity with an 1Cso value of 0.039 uM [52].

MAO B: 1C5,=0.039 pM

Figure 2.50. 1-(4-Chlorophenyl)-3-(5-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyridin-2-yl)urea

In 2022, a series of 5-Aryl-1,3,4-oxadiazoles was synthesized and screened for
inhibition of AChE and BuChE. All compounds were found as efficient dual inhibitors
of both enzymes with ICso range of 12.8-99.2 uM for AChE and from 53.1uM for
BuChE.[117].

N-N
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R=aromatic, heteroaromatic rings

Figure 2.51. 5-Aryl-1,3,4-oxadiazoles

2.3. Quinoline Derivatives as Anticholinesterase and Monoamine Oxidase Inhibitors

Several tacrine analogues was designed, synthesized and screened for their

cholinesterases inhibition ability. It was revealed that 6H-indeno[2,1-b]quinolin-11-
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amine retained higher selectivity toward acetylcholinesterase over butyrylcholinesterase

by comparison with tacrine [118] .

AChE : IC55= 0.35 uM
BuChE : IC5y=3.1 uM

Figure 2.52. 6H-indeno[2,1-b]quinolin-11-amine

In 1999, Carlier et al. developed tacrine-based acetylcholinesterase inhibitors by
introducing basic amines bearing different hydrophobic properties along with tacrine
structure. The optimal acetylcholine inhibitory activity was provided by 4-

aminoquinoline containing heterodimers showing potencies in nanomolar ranges [119].

7 n=7,8

Figure 2.53. Tacrine-based acetylcholinesterase inhibitors

In 2009, Camps et al. developed two isomeric series of quinoline-chlorotacrine
hybrids and evaluated their ability to inhibit AChE, BUChE AChE-induced B-amyloid
(AP) aggregation. Both series were linked by oligomethylene linker with an amido group
at an alterable position. The results showed that the synthesized structures are capable to
inhibit AChEs with ICso values in the nanomolar range with a remarkable ability to inhibit

the self-induced AP aggregation [120].
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n=0,2 n=4-10 R=H,Cl

Figure 2.54. Quinoline-chlorotacrine hybrids

In 2010, Bachiller et al. designed and synthesized novel tacrine-8-
hydroxyquinoline hybrids then evaluated their abilities to treat AD. The synthesized
compounds showed superior potent inhibitory activity against acetyl- and
butyrylcholinesterase enzymes in comparison with tacrine. They also displayed

remarkable antioxidant properties and neuroprotective activity [121].

OH

Figure 2.55. Tacrine-8-hydroxyquinoline hybrids

A novel series of tacrine analogs were produced and screened for selective
inhibitory activities on AChE and BuChE. The obtained results showed that the
synthesized structures have a higher affinity and superior activity to that of tacrine
towards AChE. Among all synthesized compounds, the preferential acetylcholinesterase
inhibitory was shown by the compound having nine-carbons bridge between the
nicotinamide moiety and 2,3-dihydro-1H-cyclopenta[b]quinolin-9-amine part showing
an ICso value of 3.65 nM. Conversely, the highest affinity and inhibition activity toward

BuChE was exhibited by ethyl bridge containing structure [122].
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Figure 2.56. Tacrine analogues

In 2012, Khorana et al. evaluated some B-carboline and quinoline derivatives'
ability to inhibit acetylcholinesterase enzyme. The results revealed that 1-benzyl-6-
methoxyquinolin-1-ium structure possessed a potent human AChE inhibitory activity
with an 1Cso of 5.29 uM [123].

AChE: IC5y=2.46 uM

Figure 2.57. 1-Benzyl-6-methoxyquinolin-1-ium

In 2015, a novel set of 2-arylethenylquinolines were developed and tested for their
AChE/BUChE inhibitory potential. The study revealed that the synthesized structures had
the potential to act as multifunctional treatments for AD. The most active agent displayed
anticholinesterases abilities with 1Csos of 64 uM and 0.2 uM against AChE and BuChE,
respectively. [124].
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AChE: ICsy= 64 uM

BuChE: IC5= 0.2 uM

Figure 2.58. (E)-N,N-diethyl-4-(2-(4-(piperidin-1-yl)quinolin-2-yl)vinyl)aniline

In 2015, Ziab et al. synthesized a series of quinolinyl-thienyl chalcones and studied
their monoamine oxidases A and B inhibitory activity. Based on biological study results,
most structures exhibited potent MAQO inhibitory action [125].

N €l N Cl HN
I N, \\
\O NG S NG
0 0

MAO A: IC5,=0.047 uM MAO A: IC5,=0.085 uM
MAO B: IC5;=0.350 uM MAO B: IC5)=0.063 puM

Figure 2.59. Quinolinyl-thienyl chalcones

Mantoani et al. described the synthesis and biological assessment of new tacrine-
donepezil hybrids containing a triazole-quinoline system in the course of inhibition of
AChE and BuChE enzymes. Biological assay findings demonstrated that triazole-
quinoline hybrids have the potential to bind and inhibit both enzymes with ICsos in the

micro-molar range [126].
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Figure 2.60. Triazole-quinoline hybrids

Xia et al. synthesized new 2-arylethenyl-N-methylquinolinium derivatives and
proved their potential to be propitious agents in the treatment of AD. Some of the
synthesized compounds displayed significant cholinesterases inhibition potential. 5-
(diethylamino)-2-[(E)-2-(1-methylquinolin-1-ium-2-yl)ethenyl]phenol;iodide revealed a
remarkable AChE and BuChE inhibitory activity with 1Cso values of 1.5 and 1.1 puM,
respectively. The compound also showed a considerable neuronal cell protection effect

against the glutamate-induced cytotoxicity [127].
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Figure 2.61. 5-(diethylamino)-2-[(E)-2-(1-methylquinolin-1-ium-2-yl)ethenyl]phenol;iodide

In 2018, two series of quinolinyl chalcones derivatives, 2,6-dimethylquinoline
derivatives and 2-methyl-6-methoxyquinoline were designed, synthesized and screened
for ChEs inhibition by Shakil shah et al. The majority of the synthesized structures were

concluded to be effective inhibitors for both BuChE and AChE. The most potent
compounds have also demonstrated good oral bioavailability and safety profile [128].
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Figure 2.62. Quinolinyl chalcones derivatives

Khan et al. developed a series of quinoline carboxylic acids and studied their in-
vitro and in-silico inhibitory potential against acetylcholinesterase, butyrylcholinesterase,
monoamine oxidase A and B enzymes. The results established that most of the tested
compounds retained a significant MAO inhibitory activity with superior selectivity
towards MAO-B. Moreover, it was found that introducing di-methoxy moiety at ortho-
and para-position of the aryl ring linked at C» of the quinoline construction played a
crucial role in AChE inhibitory activity which reached a five-fold higher than the control

agent neostigmine [129].

O OH

Cl X
O = Br
i

MAO-A: IC5,=0.18 uM MAO-A: IC5)=0.51 pM AChE :ICs5=4.36 uM
MAO-B: IC5;=5.39 uM MAO-B: IC5;=0.51 uM MAO-B: IC5=1.19 uM
AChE :ICsy= 15.78 uM AChE :ICsy=23.70 uM

Figure 2.63. Quinoline carboxylic acid most potent derivatives

Wau et al. developed a novel quinoline-containing series and evaluated their activity
against AChE and BuChE enzymes. The synthesized series skeleton also holds tacrine-
triazole moieties with an alterable bridge connecting them. Biochemical assay results
demonstrated that ethyl piperazine-bridge containing hybrid possessed a noteworthy
cholinesterase inhibitory action with ICsos of 4.89 uM and 3.61 uM against AChE and
BuChE, respectively [130].
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AChE: 1Cs)=4.89 uM

BuChE: IC5)=3.61 uM

Figure 2.64. 9-(4-(3-(1-(7-Chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl)propyl)piperazin-1-yl)-1,2,3,4-

tetrahydroacridine

Huang et al. developed a multi-target-directed ligand strategy that aims to reduce
acetylcholine hydrolysis and inhibit the aggregation of AP by integrating AChE inhibitors
with a metal chelator functionality. 6-(1-(Dimethylamino)ethyl)quinolin-8-yl
ethyl(methyl)carbamate structure showed a promising cognitive improvement in the
zebrafish model with a potent AChE inhibitory action reached 1.2 uM which is 7-fold
higher than rivastigmine [131].

AChE: ICs5=1.2 uM

Figure 2.65. 6-(1-(Dimethylamino)ethyl)quinolin-8-yl ethyl(methyl)carbamate

Barth et al. have conducted a study to investigate the ability of 7-chloro-4-
(phenylselanyl)quinoline (4-PSQ) to ameliorate aging-related cognitive impairment in
rats. Acetylcholinesterase activity, cholesterol levels and neuroplasticity markers of aged
rats were performed throughout the research period. The results revealed that treatment
of older rats with 4-PSQ restored short and long term memories by altering synaptic

plasticity, modulating the cholinergic system, and modifying cholesterol levels (Barth et
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al. 2019). Later on, another study evidenced the ability of 4-PSQ to amend the activity of
MAO A and B enzymes and alleviate neuroinflammation [33].

X
=
Cl N

Figure 2.66. 7-Chloro-4-(phenylselanyl) quinoline (4-PSQ)

Recently, Youdim 2022 rationally designed dual inhibitors of cholinesterase-
monoamine oxidase enzymes by incorporating multiple active moieties within a single
structure aiming to afford potent and selective agents. The study results demonstrated that
5-[(methyl(prop-2-yn-1-yl)amino)methyl]quinolin-8-ylethyl(methyl)carbamate
possessed selective and potent MAO-A inhibitory action, moderate MAO-B inhibition
and AChE high selectivity [132].

/

NO

=

NS

N MAO-A: IC5,=0.0077 pM

|
O_N_~ MAO-B: IC5,=7.90 uM
il AChE :IC5=0.52 uM
o BuChE :IC5;=44.9 uM

Figure 2.67. 5-[(Methyl(prop-2-yn-1-yl)amino)methyl]quinolin-8-yl ethyl(methyl)carbamate
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3. MATERIALS AND REAGENTS

3.1. Chemicals Reagents

2-Bromo-2’,5’-dimethoxyacetophenone : Sigma-Aldrich, Germany

2-Bromo-3’-chloroacetophenone
2-Bromo-4’-chloroacetophenone

2-Bromo-4’-fluroacetophenone

2-Bromo-4’-methoxyacetophenone

2-Bromoacetophenone
4-Cloroaniline
4-Fluoroaniline
4-Methoxyaniline
8-Hydroxyquinoline
Acetone

Acetonitrile

Acetylcholinesterase (E.C.3.1.1.7)

Acetylthiocholine iodide (ATC)

Ampliflu™ Red

Butyrylcholinesterase (E.C. 3.1.1.8)

Butyrylthiocholine iodide (BTC)
Carbon disulfide

DNP hydrochloride

DTNB

Ethanol

Ethyl bromoacetate

H.0>

: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Merck, Germany

: Merck, Germany

: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Fluka, Germany

: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Fluka, Germany

: Fluka, Germany

: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Merck, Germany

: Merck, Germany

: Sigma-Aldrich, Germany
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hMAO-A

hMAO-B

Hydrazine monohydrate
Hydrochloric acid
Moclobemide

Peroxidase from horseradish
Potassium carbonate

Potassium hydroxide

: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany
: Sigma-Aldrich, Germany

: Sigma-Aldrich, Germany

Selegiline : Sigma-Aldrich, Germany
Tacrine : Sigma-Aldrich, Germany
THF : Fisher, UK

Tyramine hydrochloride

: Sigma-Aldrich, Germany

3.2. Instruments and Tools

Electronic analytical balance : Shimadzu, Libror EB-330 HU, Japan

Mass spectrometer : Shimadzu, LCMS-IT-TOF, Japan

Melting point detector : Mettler Toledo-MP90 Melting Point

Microplate reader

Nuclear magnetic resonance
spectrometer

Robotic pipetting table

Ultraviolet cabinet

System
: BioTek-Synergy H1, USA

: Bruker, USA

: BioTek- Precision XS, USA

. Camag, Cabinet, Switzerland
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4. METHODS
4.1. Chemical Synthesis Methods
4.1.1. Ethyl 2-(quinolin-8-yloxy)acetate synthesis 1 (Method A)
8-Hydroxyquinoline (7.25 g, 0.05 mol) was refluxed with ethyl bromoacetate (6.61
mL, 0.06 mol) and potassium carbonate (13.82 g, 0.1 mol) in acetone (100 ml) for 2-3

hours. After TLC analysis, acetone was evaporated and the product was washed and

filtered out of water. The product was recrystallized from ethanol [133].

/]N ) /|N 0
1
AN OH = X O\)J\O/\
1

i:ethyl bromoacetate , K,COj3, acetone, reflux

Figure 4.1. Ethyl 2-(quinolin-8-yloxy)acetate synthesis method

4.1.2. 2-(Quinolin-8-yloxy) acetohydrazide 2 (Method B)

The product of the first step, ethyl 2-(quinolin-8-yloxy)acetate (10.3 g, 0.047 mol)
was stirred with hydrazine monohydrate 85% (0.01 mol, 7.3 ml) in ethanol (250 mL) for
1 hour at room temperature to afford 2-(quinolin-8-yloxy)acetohydrazide. The reaction

was controlled using TLC, the precipitated product was filtered and recrystallized from

ethanol [133].
~ "N 0 . N 0
P O\)J\O/\ "o ! O\/U\N,NHZ
H

1 2
ii: hydrazine monohydrate, ethanol, r.t

Figure 4.2. 2-(Quinolin-8-yloxy)acetohydrazide synthesis method

4.1.3. 5-[(Quinolin-8-yloxy)methyl]-1,3,4-oxadiazole-2-thiol 3 (Method C)

An ethoxide solution was prepared by dissolving KOH (2.44g, 0.043 mol) in
absolute ethanol (100 mL) in 250 mL round-flask. 2-(quinolin-8-yloxy) acetohydrazide
(9.27 g, 0.0432 mol) was added to the basic solution then CS, (5.1 mL, 0.085 mol) was

added dropwise to the reaction solution. The mixture was refluxed for 5-6 hours and
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monitored by TLC. Afterward, the resulted mixture was poured onto iced water and
acidified using aqueous HCI until pH=5-6. The precipitated product was filtered and dried
[134].

X 0\/[?\ NH i I O/Z<NH
N e | o K M

iii: 1) CS,, KOH, ethanol, reflux; 2) aq. HCI

Figure 4.3. 5-[(Quinolin-8-yloxy)methyl]-1,3,4-oxadiazole-2-thiol synthesis method

4.1.4. 1-(Substituted phenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]ethan-1-one (Method D)
5-[(Quinolin-8-yloxy)methyl]-1,3,4-oxadiazole-2-thiol (0.5g, 0.001 mol) was
stirred with substituted phenacyl bromide (0.001 mol) in the presence of potassium
carbonate and acetone (20 mL ) at ambient temperature. The reaction was monitored
using TLC, the solvent was evaporated and the product was washed with water, filtered,

dried and recrystallized from ethanol [135].

7 N\
i
o\_<\:/

iv: K,CO3, acetone , 1.t

Figure 4.4. 1-(Substituted phenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-yl]thio]ethan-1-

one synthesis
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4.1.5. 2-Chloro-N-(substituted)acetamide (Method E)

2-Chloro-N-(thiazol-2-yl/phenyl) acetamide (0.005 mol) was dissolved in
tetrahydrofuran THF (20mL) and triethylamine TEA (0.005 mol) at 0-5 °C, then
chloroacetylchloride (0.005 mol) was added dropwise to the reaction medium with
constant stirring for 1-2 hours. The reaction was controlled using TLC, after THF was
evaporated, the products were washed with water, dried and recrystallized from ethanol
[136].

H O vii L

+ Emm——— R'
Rl/N\H )K/ \N
H

vii; THF,TEA at (0-5 °C)

Figure 4.5. 2-Chloro-N-(substituted)acetamide synthesis method

4.1.6. N-(Substituted  phenyl/thiazol-2-yl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-
oxadiazol-2-yl]thio]lacetamide (Method F)

A solution of 2-chloro-N-(substituted)acetamide (0.001 mol) in acetonitrile was
added dropwise to a solution of 5-[(quinolin-8-yloxy)methyl]-1,3,4-oxadiazole-2-thiol
(0.5g, 0.001 mol) and (0.04 g ,0.001 mol) NaOH in acetonitrile (10 mL). The resulted
mixture was refluxed for 10 hours then monitored using TLC. After the solvent was
evaporated, the product was washed with brine water and recrystallized from ethanol
[137].

Ry N
g
=N
= H o._N
I 0 pe N viii j
%
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o
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=
:\gz

R'": substituted phenyl/ thiazol-2-yl
viii - NaOH, acetonitrle, reflux

Figure 4.6. N-(Substituted phenyl/thiazol-2-yl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-

yl]thio]Jacetamide synthesis
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4.2. Thin Layer Chromatography (TLC) Studies

In all synthesis procedures, TLC applications have been utilized to control the
reactions. Samples of reaction medium were taken, diluted in ethanol then applied onto
silica gel 60 F2s4 coated aluminum plates using capillary tubes. The plate was then put in
a mobile phase composed of ethyl acetate/ petroleum ether mixtures in different
concentrations (9:1, 3:1 and 1:1).

The reaction progression was controlled by comparing the reaction sample spots to
starting reactants spots under UV light (254 nm and 366 nm).

4.3. Chemical Analysis

4.3.1. Infra-red (IR) spectrometry
The Shimadzu-IR Affinity-1S equipment was used to obtain the IR spectra of the

synthesized compounds. 10 mg of each substance was introduced into the attenuated total
reflection (ATR) chamber to obtain the spectrum.

4.3.2. High-resolution mass spectroscopy (HRMS)

Mass spectra of the compounds were detected by LCMS-IT-TOF (Shimadzu,
Kyoto, Japan) instrument using electron spray ionization (ESI) technique in negative and
positive modes. The samples were prepared by dissolving the synthesized compounds in
acetonitrile.

4.3.3. 'H-NMR spectral acquisition

'H-NMR spectra were detected using Bruker 400 MHz. in DMSO-gs. The data were
expressed as chemical shifts or & values (ppm) at 400 MHz relative to the internal standard
TMS, coupling constants (J) were given in Hz.

4.3.4. 3C-NMR spectral acquisition

13C-NMR spectra were detected in DMSO-gs using Bruker at 100 MHz. The results
were expressed as chemical shifts or 6 values (ppm) relative to the internal standard TMS
and coupling constants (J) were given in Hz.

4.4. Melting Points Detection

Melting points (M.P) of the synthesized compounds were determined using the

Mettler Toledo MP90 Melting Point System. The compounds were placed in close-ended

capillary tubes up to 0.5 cm and then located in the designated orifice of the instrument.
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After the process was completed, the melting points were determined from the recorded
video. Melting points were uncorrected.

4.5. Determination of Anticholinesterase Activity

Acetylcholinesterase and butyrylcholinesterase inhibitory activity of the
synthesized compounds were evaluated in 96-well plates using modified Ellman’s
spectrometric method. A robotic system, Biotek Precision XS (Winooski, VT, USA) has
been used to perform the pipetting processes. BioTek-Synergy H1 microplate reader
(Winooski, VT, USA) was utilized to measure the inhibition percentage at 412 nm. All
solutions were brought 20-25°C prior to the analysis process. Each well contained a
mixture of 140 puL phosphate buffer (0.1 M, pH = 8), 20 uL 5,5'-dithiobis-(2-nitrobenzoic
acid) DTNB (0.01 M), 20 uL enzyme solution from electric eel AChE or equine serum
BuChE in 1% gelatin solution (2.5 U/mL), 20 pL inhibitor solution prepared in 2%
aqueous DMSO and 10 pL substrate solution (0.075 M acetylthiocholine iodide (ATC)
or butyrylthiocholine iodide (BTC)) producing a final volume of 210 pL. A primary
prescreening evaluation for the enzyme inhibitory activities was performed and displayed
as percentage at 10°M and 10™* M concentrations. Donepezil was used as a reference
to AChE inhibitory activity while Tacrine was used with BuChE.

The enzyme-inhibitor solutions were prepared by enzyme, inhibitor and the
chromogenic reagent DTNB addition to the phosphate buffer and incubation for 15 min
at 25 °C. After that, the substrate solution of ATC or BTC was added to the mixture. The
absorbance of the produced yellow color was recorded for 5 min at 412 nm. Another
inhibitor free enzyme solution was prepared as a control. The readings of the control and
inhibitors were corrected with the blank readings. The % inhibition was calculated by

applying the following formula (1) using the absorbance difference values.

[(A(C)-A(B)—-(A(N-AB))]

% inhibition = (A(0)-A(B))

«100 (1)

Blank (B): inhibitor and substrate free well.

Control (C): inhibitor free well.

A(B): Difference in absorbance measurement for blank.
A(C): Difference in absorbance measurement for control.
A(l): Difference in absorbance measurement for inhibitors.
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Compounds with higher than 50% inhibition at 10*M were screened at lower
concentrations (107°-10° M). The dose-response curve was obtained using GraphPad
‘PRISM’ software (version 5.0) by plotting the percentage inhibition versus the log
concentration in order to determine the 1Cso values. [138, 139].

4.6. Determination of Monoamine Oxidase Inhibitory Activity

The synthesized compounds were screened for their potential to inhibit MAO
iIsoenzymes using in-vitro fluorometric method. Freshly prepared solutions of inhibitors
in 2% DMSO (103-10°M), recombinant hMAO-A (0.5U/mL) and recombinant
hMAO-B (0.64 U/mL) enzymes in phosphate buffer and a working solution mixture of
horseradish peroxidase (200 U/mL, 100 uL), Ampliflu™ Red (20 mM, 200 uL) and
tyramine (100 mM, 200 pL) in phosphate buffer have been used. All the volumes were
adjusted to 10 mL.

The inhibitor solution (20 uL/well) and hMAO-A (100 uL/well) / hMAO-B
(100 puL/well) were added to 96-well micro test plate then incubated for 30 min at 37 °C.
The working solution (100 uL/well) was added and re-incubated for another 30 min. After
that, the fluorescence (Ex/Em = 535/587 nm) was measured at 5 min intervals. Another
parallel reading was measured using %3 H20: solution (20 mM 100 pL/well) instead of
enzyme solutions to investigate the probable inhibitory effect of the targeted compounds
on horseradish peroxidase. Furthermore, the probable non-enzymatic inhibition of the
compounds was assessed by mixing inhibitor and working solutions [140, 141]. All
experiments were analyzed in quadruplicate then the following equation (11) was applied

to calculate the inhibition percentage:

(FCt2—FC¢1)—(Flgz—Flty)

%inhibition =
FCry—FCpy

«100  (11)

FCi: Fluorescence of a control well detected at t2 time,
FCi1: Fluorescence of a control well detected at t; time.
Flio: Fluorescence of an inhibitor well detected at t2 time
Fli: Fluorescence of an inhibitor well detected at t; time.

4.7. Prediction of the Pharmacokinetic Profile

SwissADME online tool had been used to predict the pharmacokinetic profile and
physicochemical properties of the active structures. The number of hydrogen-bond (H-

bond) acceptors and donors, lipophilicity, blood-brain barrier permeability, topological
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polar surface area, and drug likeness properties were evaluated in comparison to
donepezil [142].
4.8. Molecular Docking

The binding modes of the most potent derivatives were determined using docking
simulation targeting the crystal structure of human acetylcholinesterase (PDB ID: 4EY7)
retrieved from protein data bank (PDB) [143]. The crystal structure was optimized by
removing the water molecules, heteroatoms and co-factors using the Protein Preparation
Wizard protocol of the Schrodinger Suite 2020. The ligands were prepared and optimized
by assigning the protonation states, bond orders, atom types using LigPrep module in
Schrodinger Maestro. The grid was generated using the Glide module before the docking

runs were conducted applying standard precision docking mode [140].
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5. RESULTS AND DISCUSSION
5.1. Synthesis of the Targeted Compounds
5.1.1. Ethyl 2-(quinolin-8-yloxy)acetate 1

= IN 0
N O\)J\O/\

1

Figure 5.1. Compound 1 structure

Ethyl 2-(quinolin-8-yloxy)acetate 1 was synthesized according to method A. Brown
crystals, compound 1 yield: 95%, measured M.P.=56 °C, literature melting point= 60 °C
[144].

Figure 5.2. Schematic representation of method A mechanism

5.1.2. 2-(Quinolin-8-yloxy)acetohydrazide 2

Z N 0
. O\/U\N,NHz
H
2

Figure 5.3. Compound 2 structure

2-(Quinolin-8-yloxy)acetohydrazide 2 was synthesized according to method B.
Compound 2 yield: 90%, measured M.P. =144 | literature melting point = 140 °C [144].
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Figure 5.4. Schematic representation of method B mechanism

5.1.3. 5-[(Quinolin-8-yloxy)methyl]-1,3,4-oxadiazole-2-thiol 3

Figure 5.5. Compound 3 structure
5-[(Quinolin-8-yloxy)methyl]-1,3,4-oxadiazole-2-thiol 3 was synthesized

according to method C. Compound 3 yield: 60%, measured M.P. =222 °C , literature
melting point= 224 °C [145].
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Figure 5.6. Schematic representation of method C mechanism

5.1.4. 1-(Substituted phenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]ethan-1-one (4a-d)
1-(Substituted phenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-

yl]thio]ethan-1-one derivatives (4a-d) were synthesized according to method D and F.

0O
/ N\
=N
O:fN
0)
N
| N
=
4a-d

Figure 5.7. Compounds 4a-d general structure
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Figure 5.8.

Schematic representation of method D mechanism
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5.1.4.1. 1-Phenyl-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-yl]thio]ethan-1-
one (4a)

0)

O

=N

O__N

o

N
A

=

Figure 5.9. Chemical structure of compound 4a

Compound 4a was synthesized according to method D. Yield 73%, M.P. =110-111
°C.

FTIR (ATR, cm™): 3053 (aromatic C-H stretching), 2920-2960 (aliphatic C-H
stretching), 1676 (C=0), 1500-1600 (N=C, C=C stretching), 1261 (aromatic C-O
stretching, oxadiazole), 1172 (aliphatic C-O stretching), 1118 (monosubstituted
benzene).

'H-NMR: (400 MHz, DMSO-ds, ppm) é: 5.16 (2H, s, CO-CH?>), 5.60 (2H, s, O-
CHy), 7.36 (1H, dd , J1= 7.74 , J»=1.06 Hz, quinoline C7-H),7.52 (1H,t, J= 8.04 Hz,
phenyl C4-H) ,7.55-7.63 (4H, m, aromatic-H), 7.71 (1H, t, J=7.42 Hz, phenyl Cs-H), 8.02
(2H, d, J=7.12 Hz, phenyl C,5-H), 8.35 (1H, dd , J1=8.30, J>=1.70 Hz, quinoline Cs-
H),, 8.87 (1H, dd , J1=4.13, J2=1.74 Hz, quinoline Cz-H).

13C-NMR: (100 MHz, DMSO-dg, ppm) J - 41.10(S-CH>), 60.89(0-CH>), 111.94,
121.94,122.53,127.03,128.91, 129.36, 129.61, 134.46, 135.45, 136.45, 140.135, 140.91,
153.35, 164.14, 165.05, 192.71(C=0).

HRMS (m/z): [M+H]" calculated for C2oH1sN303S: 378.0907; found: 378.0910.
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Figure 5.10. IR spectrum of compound 4a
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Figure 5.11. *H-NMR spectrum of compound 4a
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Figure 5.12. 3C-NMR spectrum of compound 4a
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Measured region for 378.0910 m/z
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Figure 5.13. Mass spectrum of compound 4a
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5.1.4.2. 2-[[5-((Quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-yl]thio]-1-(p-tolyl)ethan-
1-one (4b)

0]

O

=N

O __N

b

Figure 5.14. Chemical structure of compound 4b

Compound 4b was synthesized according to method D. Yield 64%, M.P. = 148-
149°C.

FTIR (ATR, cm™): 3053 (aromatic C-H stretching), 2848-2954 (aliphatic C-H
stretching), 1674 (C=0O stretching), 1602-1490 (C=N ,C=C stretching), 1261 (C-O
stretching, oxadiazole), 1165 (C-O stretching, ether), 1118 (1,4 disubstituted benzene).

'HNMR: (400 MHz, DMSO-ds, ppm) &: 2.40 (3H, s, phenyl-CHs), 5.11 (2H, s,
CO-CH?y), 5.60 (2H, s, O-CH>), 7.36 (1H, d, J=1.76 Hz, quinoline C7-H), 7.52(1H, t, J=
7.95 Hz, phenyl-H) 7.56-7.63 (3H, m, aromatic-H), 7.93 (2H, d, J=8.2 Hz, aromatic-H),
8.36 (1H, dd, J;= 8.3, J>=1.67 Hz, quinoline C4-H), 8.95 (1H, dd, J1= 4.12, J,=1.7 Hz,
quinoline C2-H).

13C-NMR: (100 MHz, DMSO-ds, ppm) . 21.69 (CHs), 41.10 (S-CH>), 60.88 (O-
CHy), 111.97, 121.94, 122.53, 127.07, 129.02, 129.62, 129.89, 132.96, 136.55, 140.02,
145.05, 149.86, 153.30, 164.10, 165.09, 192.19(C=0).

HRMS (m/z): [M+H]" calculated for C21H17N303S: 392.1063; found: 392.1049.
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Figure 5.15. IR spectrum of compound 4b



1

g

w | |
(= = S
5] L= I [ 5]

E ¥ S 9 L

=l

ot

Ll

ol

wdd
onr d
1] H0
HIED q1
0 H58
WH MM

HH n.uun.m_ﬂ.a__un_ﬂ n“m
Ewmﬁﬂwnd_mmn_ﬁmouﬁ -

A SENG6FE T lald

3N (5 Id
HI 130N

THIN SOFTEITOY  T0S
[ DOLL

238 CO000000 1 Ia

M £ THT AL

25T (05T 0

26T (i 79 ma
BOEL o

THOTRTI0R HME

i 50

BTI 5N

OsWa INFNTOS

SELCY (L

[gfz DO

VRO (IHHOHEA

12 WMTHLEN]

9IFE .mEF
FLRITTOT

S ALEIE] E:_f_n&uﬂ b

1 ONI0HEd

il OxdXE

- ¥NAW AWYN

EINMIIEDE] EVE(] JW2Lm)

LB

[ e rorr o o B T W T 71 nl
ha S B e B e B e B e B e et e B B e I I s v s O o e o ]
s — o L NN in®®m o m MWD W Wi w i oo
= e e R U R R R R R Rl

Figure 5.16. *H-NMR spectrum of compound 4b
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Figure 5.17. **C-NMR spectrum of compound 4b
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Measured region for 392 1043 m/z
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Figure 5.18. Mass spectrum of compound 4b
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5.1.4.3. 1-(4-Methoxyphenyl)-2-[[5-[(quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]ethan-1-one (4c)

0)

O
=N

O__N

O

N
AN

=

Figure 5.19. Chemical structure of compound 4c

Compound 4c was synthesized according to method D. Yield 71%, M.P. =170-171
°C.

FTIR (ATR, cm™): 3010-3057 (aromatic C-H stretching), 2918-2848 ( aliphatic
C-H stretching), 1668 (C=0 stretching), 1500-1595 (C=N, C=C stretching), 1257 (C-O
stretching, oxadiazole), 1165 (C-O stretching, ether), 1107 (1,4 disubstituted benzene).

'HNMR: (400 MHz, DMSO-ds, ppm) ¢: 3.86 (3H, s, O-CHs), 5.09 (2H, s, CO-
CH2), 5.61 (2H, s, O-CHy), 7.08 (2H, d , J=1.76 Hz, phenyl-H), 7.37 (1H, d , J=6.93 Hz,
quinoline C7-H), 7.52-7.63 (3H, m, quinoline-H), 8.02 (2H, d, J=8.9 Hz, phenyl-H), 8.36
(1H, dd, J1=8.29, J>=1.50 Hz, quinoline Cs-H), 8.88 (1H, dd , J:= 4.09 , J,=1.58 Hz,
quinoline C2-H).

13C-NMR: (100 MHz, DMSO-ds, ppm) 6 -40.91 (S-CH>), 56.12 (O-CHs), 60.91
(O-CHy), 112.01, 114.57, 121.94, 122.53, 127.08, 128.30, 129.62, 131.34, 136.62,
139.96, 149.83, 153.28, 164.07, 164.21, 165.17, 190.98 (C=0).

HRMS (m/z): [M+H]" calculated for C21H17N304S:408.1013; found:408.1019.
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Figure 5.21. *H-NMR spectrum of compound 4c
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Figure 5.22. 3C-NMR spectrum of compound 4c
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Measured region for 405.1019 m'z
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Figure 5.23. Mass spectrum of compound 4c
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5.1.4.4. 1-(2,5-Dimethoxyphenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]ethan-1-one (4d)

=N
O\ 257&

o

N
| A
0

Figure 5.24. Chemical structure of compound 4d

Compound 4d was synthesized according to method F. Yield 69%, M.P. = 124-
125°C.

FTIR (ATR, cm™): 3000-3050 (aromatic C-H stretching), 2835-2937 (aliphatic C-
H stretching), 1643 (C=0 stretching), 1608 (C=N stretching), 1494 (C=C stretching),
1263 (C-O stretching, oxadiazole), 1157 (C-O stretching, ether).

'HNMR: (400 MHz, DMSO-ds, ppm) ¢: 3.37 (3H, s, O-CHs), 3.89 (3H, s, O-
CHz3), 4.92 (2H, s, CO-CHy), 5.60 (2H, s, O-CHy), 7.19 -7.22 (2H, m, aromatic-H), 7.37
(1H, d, J1= 7.7, J2=1.02 Hz, quinoline C7-H), 7.50-7.63 (4H, m, aromatic-H), 8.34 (1H,
dd, Ji= 8.33, J,=1.72 Hz, quinoline C4-H), 8.87 (1H, dd , Ji= 4.14 , J»=1.71 Hz,
quinoline Cz-H).

13C-NMR: (100 MHz, DMSO-ds, ppm) §:45.01 (S-CH>), 56.04 (O-CHs3), 56.95
(O-CHs), 60.91 (O-CH2), 111.94, 114.15, 114.80, 121.81, 121.93, 122.51, 125.48,
127.01, 129.61, 136.44, 140.13, 149.89, 153.37, 153.47, 153.88, 164.06, 165.27, 192.64
(C=0).

HRMS (m/z): [M+H]" calculated for C22H19N305S:438.1118; found: 438.1119.
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Figure 5.25. IR spectrum of compound 4d
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Figure 5.26. *H-NMR spectrum of compound 4d
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Figure 5.27.**C-NMR spectrum of compound 4d
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Figure 5.28. Mass spectrum of compound 4d

5.1.5. N-(4-Substituted phenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-

yl]thio]acetamide (5a-c)

S5a-c

Figure 5.29. Compounds 5a-c general structure
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N-(4-substituted phenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]acetamide derivatives were synthesized according to method E and F.

. > /(Z?Q\’H‘_ "N/\//
NI/
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Figure 5.30. Schematic representation of method E mechanism
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Figure 5.31. Schematic representation of method F mechanism
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5.1.5.1. N-(4-Chlorophenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-

yl]thio]acetamide (5a)

O
i
-
\
(0)

N
| A
C0

Figure 5.32. Chemical structure of compound 5a

Compound 5a was synthesized according to method E and F. Yield= 79%, M.P.
=182-183 °C.

FTIR (ATR, cm™): 3172-3207 (N-H stretching), 3051-3061 (aromatic C-H
stretching), 2920-2978 (aliphatic C-H stretching), 1730 (C=0O stretching),1662 (C=N
stretching), 1490-1570 (C=C stretching), 1240 (C-O stretching, oxadiazole), 1087(C-O
stretching, ether), 1116 (1,4 disubstituted benzene).

'H-NMR: (400 MHz, DMSO-ds, ppm) 6: 4.10 (2H, s, CO-CHy), 4.75 (2H, s, O-
CHy), 7.30 (1H, d, J=7.67 Hz, aromatic-H), 7.36 (1H, d, J=8.86 Hz, quinoline C7-H),
7.50-7.60 (6H, m, aromatic-H), 8.34-8.37 (1H, m, quinoline-H), 8.80-8.89 (1H, m,
quinoline-H), 10.52 (1H, s, NH).

13C-NMR: (100 MHz, DMSO-ds, ppm) d: 37.22 (S-CH>), 56.49 (S-CHy), 111.98,
121.20, 121.96, 122.51, 127.04, 127.69, 129.21, 136.44, 138.05, 140.14, 149.90, 153.37,
164.19, 165.07, 165.27 (C=0).

HRMS (m/z): [M+H]" calculated for C2oH15N403CIS:427.0626; found: 427.0609.
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Figure 5.34. *H-NMR spectrum of compound 5a
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Figure 5.35. 3C-NMR spectrum of compound 5a
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Figure 5.36. Mass spectrum of compound 5a
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5.1.5.2. N-(4-Fluorophenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]acetamide (5b)

Figure 5.37. Chemical structure of compound 5b

Compound 5b was synthesized according to method E and F. Yield= 87%, M.P.
=182-183 °C.

FTIR (ATR, cm™): 3292-3122 (N-H stretching), 3066 (aromatic C-H stretching),
2976-2841 (aliphatic C-H stretching), 1707 (C=0 stretching), 1618 (C=N stretching),
1544 (C=C stretching), 1228 (C-O stretching, oxadiazole), 1116 (1,4 disubstituted
benzene).

'H-NMR: (400 MHz, DMSO-ds, ppm) 6: 3.92 (2H, s, CO-CH>), 4.55 (2H, s, O-
CHy), 7.28-7.37 (4H, m, aromatic-H), 7.51-7.58 (4H, m, aromatic-H), 8.36 (1H, d, J=6.17
Hz, quinoline C4-H), 8.77-8.80 (1H, m, quinoline Cs-H).

13C-NMR: (100 MHz, DMSO-ds, ppm) ¢: 32.49 (S-CHy), 51.04 (S-CH>), 116.07,
116.29, 120.31, 122.45, 127.60, 129.19, 130.85, 132.53, 136.84, 139.80, 149.65, 172.05
(C=0).

HRMS (m/z): [M+H]" calculated for C20H15N4O3FS: 411.0922 ; found: 411.0916 .
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Figure 5.38. IR spectrum of compound 5b
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Figure 5.39. *H-NMR spectrum of compound 5b
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Figure 5.41. Mass spectrum of compound 5b
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5.1.5.3. N-(4-Methoxyphenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]acetamide (5c)

Figure 5.42. Chemical structure of compound 5¢

Compound 5c¢ was synthesized according to method E and F. Yield= 74%, M.P. =
206-207°C.

FTIR (ATR, cm™): 3251-3196 (N-H stretching), 3053 (aromatic C-H stretching),
2954-2848 (aliphatic C-H stretching), 1674 (C=0 stretching), 1620 (C=N stretching),
1556 (C=C stretching), 1244 (C-O stretching, oxadiazole), 1170 (C-O stretching, ether),
1029 (1,4 disubstituted benzene).

'H-NMR: (400 MHz, DMSO-g, ppm) J: 3.79 (3H, s, O-CH3), 4.20 (2H, s, CO-
CH2), 4.85 (2H, s, O-CH2), 7.03 (2H, d, J=8.9 Hz, phenyl Cz,5-H ), 7.23 (2H, d, J=8.9
Hz, phenylCz,6-H ), 7.29 (1H, d ,J=7.44 Hz, quinoline C7-H), 7.50-7.63 (3H, m,
aromatic-H), 8.38 (1H, dd , J1=8.28 , J,=1.5 Hz, quinoline Cs-H), 8.95 (1H, dd , J1=4.12
, J2=1.5 Hz, quinoline C>-H), 10.79 (1H, s, NH).

13C-NMR: (100 MHz, DMSO-ds, ppm) ¢: 33.44 (S-CHy), 55.84 (O-CHs), 69.28
(O-CHy), 113.00, 114.74, 121.20, 121.75, 122.54, 127.27, 127.82, 129.82, 136.64,
140.35, 150.01, 154.40, 159.58, 159.68, 164,59, 171.77(C=0).

HRMS (m/z): [M+H]" calculated for C21H1sN4O4S: 423.1122 ; found: 423.1122 .
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Figure 5.45. 33C-NMR spectrum of compound 5¢
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Figure 5.46. Mass spectrum of compound 5¢
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5.1.6. N-(Substituted thiazol-2-yl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-
2-yl]thio]acetamide (6a-c)
N-(Substituted thiazol-2-yl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]acetamide derivatives were also synthesized according to method E and F.

R; ié_\ )
HN ’<'
I
J

6a-c

Figure 5.47. Compounds 6a-c general structure
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5.1.6.1. N-(4,5-Dimethylthiazol-2-yl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-
oxadiazol-2-yl]thio]acetamide (6a)

=N
O:rN
O

N
| A
CO

Figure 5.48. Chemical structure of compound 6a

Compound 6a was synthesized according to method E and F. Yield= 83 %, M.P. =
175-176 °C.

FTIR (ATR, cm™): 3153 (N-H stretching), 3045 (aromatic C-H stretching), 2918
(aliphatic C-H stretching), 1670 (C=0 stretching), 1618-1500 (C=N ,C=C stretching),
1253 (C-O stretching, oxadiazole), 1163 (C-O stretching, ether).

'H-NMR: (400 MHz, DMSO-ds, ppm) d: 2.15 (3H, s, thiazole CH3), 2.23 (3H, s,
thiazole CHs), 4.36 (2H, s, CO-CHy), 5.60 (2H, s, O-CH), 7.36 (1H, d, J= 7.45 Hz,
quinoline C7-H), 7.50-7.63 (3H, m, aromatic-H), 8.35 (1H, d, J=8.16 Hz, quinoline Cs-
H), 8.87 (1H, d, J= 2.56 Hz, quinoline C,-H), 12.27 (1H, s, NH).

3C-NMR: (100 MHz, DMSO-ds, ppm) &: 10.81 (-CHs), 14.68 (-CH3), 35.93 (S-
CHy), 60.97 (O-CHy), 112.02, 121.97, 122.49, 127.02, 129.61, 136.41, 140.15, 149.90,
153.37, 164.28, 164.82 (C=0).

HRMS (m/z): [M+H]" calculated for C19H17N503S; :428.0846; found 428.0851.
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Figure 5.50. *H-NMR spectrum of compound 6a
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Figure 5.51. 3C-NMR spectrum of compound 6a
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Figure 5.52. Mass spectrum of compound 6a
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5.1.6.2. Ethyl 4-methyl-2-[2-[(5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yhthio]acetamido]thiazole-5-carboxylate (6b)

Figure 5.53. Chemical structure of compound 6b

Compound 6b was synthesized according to method E and F. Yield 88%, M.P. =
208-209 °C.

FTIR (ATR, cm™): 3145 (N-H stretching), 3062 (aromatic C-H stretching), 2985-
2873 (aliphatic C-H stretching), 1693 (C=0O stretching), 1622-1500 (C=N , C=C
stretching), 1284 (C-O stretching, oxadiazole), 1166 (C-O stretching, ether).

'H-NMR: (400 MHz, DMSO-ds, ppm) 6: 1.27 (3H,t, J =7.1 Hz, CH3-CH,), 2.54
(3H, s, thiazole-CH3), 3.34 (2H, q, J=7.1, CH3-CHy), 4.43 (2H, s, CO-CH>), 5.60 (2H, s,
O-CHy), 7.36 (1H, dd , Ji= 7.7, J.=1.03 Hz, quinoline C;-H), 7.50-7.61 (3H, m,
aromatic-H) , 8.34 (1H, dd , J1=8.33, J2=1.68 Hz, quinoline Cs-H), 8.86 (1H, dd , Ji=
412, J,=1.71 Hz, quinoline C»-H), 12.91 (1H, s, NH).

13C-NMR: (100 MHz, DMSO-dg, ppm) J: 14.63(CHs-CHy>), 17.44 (thiazole-CHs),
35.89 (S-CHy), 60.93 (CH3-CH)), 61.04 (O-CH.), 111.96, 114.87, 121.95, 122.47,
127.00, 129.60, 136.40, 140.13, 149.87, 153.36, 162.42, 164.35, 166.60 (C=0).

HRMS (m/z): [M+H]" calculated for C21H19NsOsS2: 486.0900 ; found: 486.0908.
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Figure 5.54. IR spectrum of compound 6b
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Figure 5.55. *H-NMR spectrum of compound 6b
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Figure 5.56. 3C-NMR spectrum of compound 6b



Measured region for 486.0908 m/z
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Figure 5.57. Mass spectrum of compound 6b
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5.1.6.3. N-(4-Phenylthiazol-2-yl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-
yl]thio]acetamide (6c)

=N
O
N
| N
=

Figure 5.58. Chemical structure of compound 6¢

Compound 6¢ was synthesized according to method E and F Yield 86%, M.P. =
188-189°C.

FTIR (ATR, cm-1): 3128 (N-H stretching), 3062-3026 (aromatic C-H stretching),
2991-2848 (aliphatic C-H stretching), 1678 (C=0 stretching), 1698-1562 (C=N, C=C
stretching), 1236 (C-O stretching, oxadiazole), 1163 (C-O stretching, ether).

'H-NMR: (400 MHz, DMSO-ds, ppm) J: 4.46 (2H, s, CO-CHy), 5.61 (2H, s, O-
CHy), 7.33 (1H, t, J= 7.28 Hz, aromatic-H), 7.37 (1H, d, J=7.64 Hz, quinoline C7-H),
7.44 (2H, t, J= 7.48 Hz, aromatic-H), 7.50-7.62 (3H, m, aromatic-H), 7.67 (1H, s,
thiazole-H), 7.9 (2H, d, J= 7.98, aromatic-H), 8.35 (1H, d , J=8.15 Hz, quinoline C4-H),
8.87 (1H, d, J=3.97 Hz, Quinoline C>-H), 12.75 (1H, s, NH).

13C-NMR: (100 MHz, DMSO-dg, ppm) J: 35.89, 61.02, 108.91, 112.13, 121.99,
122.50, 126.15, 127.06, 128.33, 129.22, 129.62, 134.62, 136.55, 140.04, 149.45, 149.86,
149.86, 153.31, 158.03, 164.33, 164.80, 164.87 (C=0).

HRMS (m/z): [M+H]" calculated for C23H17NsO3S;: 476.0846; found: 476.0805.
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Figure 5.60. *H-NMR spectrum of compound 6¢

SLel



wdd 02 o 09 08 ool 021 ovlL 091 081 002
| . | ] | | | ! | . | ! | . | ! |
o r
W T T
1] a0
TH O a1
0 H58
Wi M
HW nanwm_mm_uo_ “m
siaurered hmqmﬁ__,,.h,u,....n_.d.ﬁ_ -4
M O0FISER0D £l
A 001159800 Chald
A FED00GFE T TAId
225 (006G T d
SlaEs  TIHA0dD
HI TINN
THIN SO0 TE D0 048
M EDLBGSAT 6 LaTd
20 (5] Id
JEN LINN
THW BGTRICS 00 1045
! L
22 (0N0E0TD 11
228 (O00000N T 11
A TLAD AL
DT ()5 a0
Xs0 )R TC Ml
16°FE fak |
228 BRPITREN v
TH 96EEELD SHE
IH 199 BE0FT HAMS
F 50
Il SN
OSWa INAANTOS
SERLD (L
neddez DOHd 1
1 000 1 7 (IHHDA
12 WIELEN]
QSFR a1
STRITINE aE(]
staurETe] wamsmhay - 74
1 O 0Hd
11 OxdXH
w...—zm___w.& —_— “m_ﬁ.qu
’ .-..... i ) _.r{f. —/_/ f/
- e - \ . | )
' \\_.\ _..\W..W_\ _//fw.,/ i // _“fff
L L= e i e i
4 = BSRRBNBEBRE55688223
o ra D 2owm= o Mo Mo & Lo w o
S S = R [y C O T = =

Figure 5.61. 3C-NMR spectrum of compound 6¢
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Figure 5.62. Mass spectrum of compound 6¢
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5.2. Chemical Synthesis Evaluation

The compounds in the study were obtained by a four-steps synthetic procedure. In
the first step, 8-hydroxyquinoline was reacted with ethyl bromoacetate (method A) in
order to introduce an ethyl acetate group. In this nucleophilic substitution reaction, the
reaction is carried out by increasing the nucleophilic power of the nucleophilic O atom
with potassium carbonate. In the later step, acylhydrazine was produced after hydrazine
monohydrate addition (method B). Thirdly, the produced hydrazide was cyclized into
1,3,4-oxadiazole using carbon disulfide compound (method C). Finally, two different
substitution reaction (SN2) procedures have been performed to synthesize the final
products. The first one was performed in potassium carbonate and acetone at room
temperature (method D) while the other was in sodium hydroxide and acetonitrile at 100°
C (method F). The reason behind using two different procedures in the last step is
explained by the reaction’s low rate in acetone and potassium carbonate. The reaction
proceeded at a higher rate using acetonitrile and strong base. According to SciFinder
database, all final products were found original except for compound 4b that had been
previously evaluated as metallocarboxy peptidase inhibitor [146]. Structures of the
obtained 5-[(quinolin-8-yloxy)methyl]-1,3,4-oxadiazole-2-(substituted) thiol derivatives
have been verified using NMR and HRMS spectral methods.
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Figure 5.63. Schematic representation of the synthetic pathways

Reaction conditions: a) ethyl bromoacetate, KoCOs, acetone, reflux; b) hydrazine monohydrate, ethanol,
r.t; ¢) CS,, KOH, ethanol, reflux; d) substituted phenacyl bromide derivatives in K,COs, acetone, r.t, or in
acetonitrile, NaOH; e) 2-chloro-N-(substituted)phenylacetamide derivatives, acetonitrile, NaOH, reflux; f)
2-chloro-N-(substituted) thiazole derivatives, NaOH acetonitrile .
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5.3. Chemical Analysis Results Evaluation
5.3.1. IR analysis results

The IR analysis was used to characterize the main functional groups in the
synthesized products.

IR analysis of the compounds (4a-4d) showed characteristic absorption band at
1643-1676 cm™ because of carbonyl (C=0) group. For amide containing structures (5a-
5¢, 6a-6¢), the N-H band observed at 3100-3300 cm™* while the carbonyl group detected
at 1670-1707 cm™.

C-H stretching of sp? hybridized carbons observed above 3000 cm™, while the sp®
hybridized carbons recognized in the region 2885-2990 cm™ .

The signals at 1228-1284 cm™ were indicative of the aromatic C-O stretching of
oxadiazole ring. The peaks that occurred in 1170-1000 cm™ indicated the aliphatic C-O.
5.3.2. Mass spectrometry

Mass spectra of all final compounds were taken using high resolution mass-
spectrometry device in accordance with ESI method. The peak of the M+1 ion was
detected in the mass spectra of all compounds according to their molecular weights [147].
5.3.3. 'H-NMR analysis results

'H-NMR analysis was conducted using Bruker UltraShield 400 MHz. All samples
were dissolved in DMSO-ds that appeared as a quintet at 2.5 ppm in all spectra. A strong
singlet appeared in all of the compounds’ spectra at around 3.34 ppm which indicates
protons of water.

All compounds are composed of 1,3,4-oxadiazole ring connected by a quinolin-8-
yloxy methyl group at the 5™ position. Various derivatives were designed by changing
the groups attached to the thiol group at position 2 of the 1,3,4-oxadiazole ring.

When the *H-NMR spectra of the compounds were examined, the C7, C4 and C»
protons of the quinoline ring were observed as doublets or doublet of the doublets within
(7.29-7.45), (8.34-8.38) and (8.77-8.95) ppm ranges, respectively. Whereas Csz-H, Cs-H
and Ce-H appeared as multiplate within (7.5-7.63) range. Except for substituted phenyl
acetamide containing structures, the protons of the oxymethylene group connected to
quinoline-Cg were recognized as singlets in (5.60-5.61) ppm. In substituted phenyl
acetamide containing structures, oxymethylene protons were detected in (4.55-4.85) ppm

as singlets. The methylene’s protons attached to phenyl acyl group in compounds 4a-4c

104



were shown as singlets in (4.90-5.16) ppm. Whereas the methylene attached to the
acetamide group was shielded to (3.90- 4.46) in 5a-c and 6a-c compounds. In 4b, phenyl-
CHjs protons were detected at 2.40 ppm as singlets; however, the methyloxy protons were
within the downfield in compound 4c due to the deshielding effect of the oxygen atom.
5.3.4. BC NMR analysis results

13C-NMR analysis was performed using Bruker UltraShield instrument using
DMSO-de as solvent at 100 MHz. The solvent peak appeared as septet at around 39.95
ppm. Each sample required 1 hour to be analyzed. The chemical shift of the oxymethylene
carbon and thiomethylene were displayed in the upfield region in (56-70) ppm and (32-
45) ppm, respectively. The carbonyl carbon was the most deshielded in all compounds.
The carbonyl carbon in the amide groups was shown in the range of (164-173) ppm while
it was deshilded to (190-192) ppm in non-amidic structures. All aromatic carbons were
seen within the range of 111-165 ppm.

5.4. In-vitro Anticholinesterase Inhibition Results

The cholinesterase inhibitory activities of the final products were investigated by
the colorimetric method developed by Ellman et al. in 1961 [148]. The method mainly
depends on the measurements of the yellow color produced from dithiobisnitrobenzoate
ion reaction with thiocholine released after the hydrolysis of acetylthiocholine. The
resulted absorbance change that reflects the enzyme activity is detected at 412 nm.
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Figure 5.64. Chemical mechanism of Ellman's method

All the synthesized compounds in this thesis were found to have a higher inhibition
profile on AChE compared to BUChE. Except for compound 4d, all compounds exhibited
an inhibition percentage higher than 50% at 103 M concentration compared to donepezil
as shown in Table 2.

Interestingly, all acetamide-containing structures (5a-c and 6a-c) have displayed
inhibitory percentages higher than 75% at 10 M for AChE. When the concentrations
were reduced to 104 M, compounds 5a, 5¢ and 6a indicated more than 80% activity. It
was also observed that all 1-(substituted phenyl)-2-[[5-((quinolin-8-yloxy)methyl)-1,3,4-
oxadiazol-2-yl]thio]ethan-1-one compounds showed low activity against AChE enzyme.

After the preliminary screening, compounds 5a, 5¢ and 6a were chosen to calculate
their 1Cso values for acetylcholinesterase. The inhibition values of these compounds were
tested at 10°-10"° M concentrations against AChE along with the reference drug
donepezil. The ICsp value was recorded as 0.0201 uM for donepezil whereas the 1Cso
values of 5a, 5c and 6a were calculated as 0.033 puM, 0.096 puM and 0.177 uM,
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respectively. The most potent compound among this series 5a (ICso = 0.033 pM) was that
having 4-chlorophenyl acetamide substitution attached by the thioether bridge to the fifth
position of 1,3,4-oxadiazole. Replacing the chlorine at the para position of
compound 5a by methoxy group 5¢ (ICso = 0.096 uM) resulted in three folds decrease of
the inhibitory activity while replacing it with fluorine 5b resulted in non-significant
activity. Further replacement of the 4-chlorophenyl acetamide in5aby 4,5-
dimehylthiazole 6a led to a decrease in inhibitory activity (ICsg = 0.177 uM). Other
thiazole substitutions were relatively inactive.

The synthesized compounds and standard drug tacrine were studied on BuChE at
concentrations 10~ M and 10~* M. The results revealed that 5a, 5¢ and 6a resulted in an
enzyme inhibition of more than 50% at 10~ M. However, the inhibition percentages were

reduced to less than 35%10~* M; thus, they were not tested at lower concentrations.

Table 2. Inhibition results of the cholinesterase

Code % IAnﬁirt])IiEtion A;CC:EOE % ?r?hci:tr:i%ion Blljg:aE Selectivity SI*
108M  10*M (M)  10°M  10*M  (UM)
W BT TE e BEDE oo e
o BB R L BE ORE e e
©  Loam soses 10 igop soges 100 ACKE 510
- N E U
S i@ w013 w0000 soe08  sios 00 ACE g
o BB S L EE OBE L e
. ST LD M OIE OSE e
o ZEEE BT EE ER e wao
® L5 soqe P10 Lops soms W00 ACE >0
G Jlose sos7 10 iz spemp 100 ACKE 510
sl

. 99.827  98.651  0.0064
Tacrine - - - +1378  +1.402 00002 BUChE -

*Sl: selectivity Index (SI=1Cso BUChE/ ICs9 AChE)
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5.5. In-vitro Monoamine Oxidase Inhibition Results

MAO isoenzymes inhibitory activities of the synthesized compounds were
performed using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red™) that oxidizes into
the fluorescent compound, resorufin. The assay mainly depends on the horseradish
peroxidase and H20- to oxidize the non-fluorescent Amplex Red to the highly fluorescent
resorufin [149].

The screening results for MAO-A inhibitory potential at 10° M showed an
inhibition percentage ranging from 26% to 39% in comparison with moclobemide (94%)
and clorgyline (96%). Meanwhile, the range was between 30% and 48% for MAO-B
inhibition activity at the same concentration. When the concentrations were reduced to
10* M, the % inhibition against MAO-A and MAO-B were 20-31% and 20-35%,
respectively. Therefore, further investigations at lower concentrations have been omitted
due to the weak inhibitory action of the compounds. The results are displayed in Table
3.

Table 3. % Inhibition of the synthesized compounds against MAO-A and MAO-B enzymes

MAO-A % inhibition MAO-B % inhibition

Compound
10° M 104 M 10° M 104 M
4a 29.421+0.922 23.751+0.732 41.787+0.933 29.361+0.836
4b 38.911+0.949 20.248+0.857 45.408+1.275 30.733+0.920
4c 26.308+0.758 22.812+0.790 40.967+1.098 35.964+1.154
4d 30.134+0.836 20.435+0.846 48.048+1.348 31.012+0.830
5a 37.875+0.902 31.928+1.128 31.855+0.862 27.457+0.764
5b 30.590+0.777 27.116+0.875 36.223+0.935 20.628+0.622
5¢c 27.056+0.859 23.564+0.836 30.714+0.914 26.267+0.875
6a 39.621+0.921 31.355+1.044 40.695+1.262 33.018+1.091
6b 31.764+0.720 27.486x0.751 46.414+1.146 30.126+0.861
6¢ 35.599+1.246 29.804+0.880 43.768+1.451 28.430+0.728
Moclobemide  94.121+2.760 82.143+2.691 - -
Clorgyline 96.940+ 1.250 91.308+ 1.305 - -
Selegiline - - 98.258+1.052 96.107£1.165
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5.6. Physicochemical Properties Evaluation

SwissADME online tool was used to determine physicochemical descriptors,
pharmacokinetic properties and medicinal chemistry friendliness of the active
compounds. Log P values that indicate the lipophilicity via partition coefficient between
octanol and water of 5a, 5¢ and 6a were found 3.52, 2.99 and 3.12, respectively. The
topological polar surface area (TPSA) of the structures was high which anticipate the
inferior BBB permeation of the compounds. The synthesized compounds were designed
to treat AD by targeting AChE and MAO in the central nervous system, therefore a high
BBB permeability is required. Compounds 5a and 5c are predicted to have a high
gastrointestinal absorption ability, while thiazole-containing structure 6a has lower
bioavailability. The number of hydrogen bond acceptors (HBA) in all active structures
was 6 or 7 whereas only one hydrogen bond donor (HBD) was detected. 5a and 5c
structures showed no deviation from Lipinski, Ghose, Veber, Egan and Muegge rules that
indicate the drug-likeness properties. 6a deviated from these rules due to its high TPSA.

The prediction of the physicochemical parameters for the active compounds and the

reference drug donepezil are illustrated in Table 4.

Table 4. In-silico physicochemical parameters of the compounds

MW TPSA DL BBB
HBA  HBD LogP Gl abs.

(g/mol) (A?) perm.
5a 426.88 6 1 115.44 3.52 High 5/5 No
5¢ 422.46 7 1 124.67 2.99 High 5/5 No
6a 427.50 7 1 156.57 3.12 Low 2/5 No

Donepezil 379.49 4 0 38.77 4.00 High 5/5 Yes

MW, molecular weight; HBA, the number of hydrogen bond acceptor; HBD, the number of hydrogen bond
donor; TPSA, the topological polar surface area; Log P, partition coefficient (Consensus Log Pow); Gl
abs, gastrointestinal absorption; DL, drug likeness (including Lipinski, Ghose, Veber, Egan and Muegge
rules); BBB perm., the Blood-Brain Barrier permeability.

5.7. Molecular Docking Study Results
5.7.1. Acetylcholinesterase enzyme binding sites

According to protein data bank resources, AChE structure has been identified from
eight different eukaryote species using X-ray diffraction methods. These eukaryotes
include Tetronarce californica, Mus musculus, Homo sapiens, Dendroaspis angusticeps,

Anopheles gambiae, Drosophila melanogaster, Electrophorus electricus and Bungarus
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fasciatus. In this work, a high-resolution crystal structure (2.35 A resolution) of human
acetylcholinesterase (Homo sapiens) co-crystallized with donepezil (PDB ID: 4EY7) has
been used to perform the molecular modeling study. The crystal structure of

acetylcholinesterase is defined as two subunits A and B as shown in (Figure 5.55) [143].
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Figure 5.65. Crystallographic structure of human acetylcholinesterase combined with donepezil

According to the X-ray analysis, AChE active site is mainly composed of two main
binding regions including the peripheral anionic site (PAS) and catalytic active site
(CAS). The catalytic active site is distinguished as a narrow, long, hydrophobic gorge
with about 20 A length incorporating the acyl binding site that holds Phe295 and Phe297
amino acids, the active center bearing Glu202, Glu450 fragments, the hydrophobic
subsite having Tyr337, Tyrl33, Trp86 and Phe338 residues, the oxyanion binding site
which contains Gly120, Gly121 and Gly123 residues and a catalytic triad of Ser203-
His447-Glu334 amino acids [150-152] . Likewise, the peripheral anionic site (PAS) is
mainly constituted of aromatic residues Tyr72, Tyr124, Trp286, Tyr341, and Asp74
affording a binding site for allosteric inhibitors besides its recognition function for
acetylcholine at the gorge rim [153].

Molecular docking studies of recombinant human AChE (rhAChE) with donepezil
revealed that the drug’s benzyl ring stacks against Trp86 with the additional ability to
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interact with two amino acids of the catalytic triad Ser203 and His447 in the CAS. It has
been also observed that donepezil's piperidine ring retains the potential to form water-
mediated hydrogen bonds with Tyr341 and Tyr377 at the CAS [154], whereas the
indanone part makes strong hydrophobic interactions with Trp286 in the PAS. Thus, the
selective AChE inhibitor donepezil interacts with both CAS and PAS sites [143, 155].

It has been evidenced that the peripheral anionic site of AChE regulates the enzyme
expression and promotes the deposition of amyloid plagues. Therefore, enzyme inhibitors
that have the ability to interact with the PAS amino acids are predicted to attenuate
amyloid plaques deposition resulting in a neuroprotective effect [156]. Recent studies
have attempted to develop dual-binding site inhibitors targeting both the catalytic (CAS)
and the peripherical anionic (PAS) domains pursuing simultaneous prevention of
acetylcholine degradation and AChE-induced AP aggregation [22].

Molecular docking studies have concluded the most significant binding clues to
acquiring highly potent AChE inhibitors. These interactions include n-n overlapping with
Trp86 at the CAS and Trp286 at the PAS [157].

Therefore, the binding modes of the most potent derivatives 5a, 5¢ and 6a were
analyzed to determine their binding features with hAChE.

5.7.2. Molecular docking of compound 5a

The results of the molecular docking study of compound 5a with AChE revealed
that there were five n—x interactions between 5a and AChE. Three of them were between
the quinoline ring of the ligand and Trp286 in the PAS region and the other two were
between the phenyl ring and Trp86 within the CAS. The compound has also performed
two halogen interactions between the chloro-substitution and Tyrl33 and Gly120.
Another two ar-H interactions have been shown according to the 3D model
representation. The first one was performed between quinoline Cz-H and Ser293 whereas
the other was displayed between the oxygen in the ether bridge and Tyr341. The two-
dimensional (3D) and three-dimensional (2D) pose illustrations are displayed in (Figure
5.56) and (Figure 5.57).
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Figure 5.66 Three-dimensional interactions of compound 5a at the binding region (PBDID: 4EY7).

Blue carbons: compound 5a; white carbons: binding site residues; cyan dashes: aromatic
H-bond; blue dashes: n—= interaction; purple dashes: halogen interaction
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Figure 5.67. Two-dimensional interactions of compound 5a at the binding region (PBDID: 4EY7)
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5.7.3. Molecular docking of compound 5c

According to molecular docking study results, like compound 5a,
compound 5c¢ allowed five n—n interactions. Two of them were performed between the
quinoline ring and Trp86. While the oxadiazole ring displayed two m—m stacking
interactions with Tyr337 and Tyr341. Another n—x stacking was observed between the
phenyl ring and Trp286. Interestingly, the phenyl ring has shown additional two Ar-H
interactions between the phenyl Hz, Hs4 and Tyr341, and Arg296. The quinoline C>-H
interacted with Ser125 by Ar-H interaction. The positioning was also strengthened by the
hydrogen bonding between Phe295 and the carbonyl group. The interactions of
compound 5c¢ with the active site residues are illustrated in (Figure 5.58) and (Figure
5.59).

Figure 5.68. Three-dimensional interactions of compound 5c at the binding region (PBDID: 4EY7)
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Figure 5.69. Two-dimensional interactions of compound 5c¢ at the binding region (PBDID: 4EY7)

5.7.4. Molecular docking of compound 6a

According to molecular modeling results, it has been observed that the quinoline
ring is in interaction with the indole residue of Trp86 by m-n interaction. Another n-nt
interaction is detected between the oxadiazole ring and Tyr341. Also, the carbonyl moiety
of the structure interacts with Phe295 forming a hydrogen interaction. Besides, the
quinoline Cz-H and Ce-H create Ar-H interactions with Tyr133 and His447, respectively.
The interactions of compound 6¢ with the active site are illustrated in (Figure 5.60) and
(Figure 5.61).
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Figure 5.70. Three-dimensional interactions of compound 6a at the binding region (PBDID: 4EY7)
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Figure 5.71. Two-dimensional interactions of compound 6a at the binding region (PBDID: 4EY7)

5.7.5. Molecular docking results evaluation

According to the aforementioned results, compounds 5a, 5c and 6a showed the
ability to interact with Trp86 and Tyr341 similarly to the reference drug donepezil.
Compounds 5a and 5c¢ bearing 4-chloro and 4-methoxy substitution on the acetanilide
part displayed another fundamental interaction with Trp286 in the PAS.
Both 5c and 6a compounds exhibited the potential to interact with Phe295. 6a provided
crucial interactions with one part of the catalytic triad amino acids His447. All the

previous interactions have been performed by the potent AChE inhibitor,
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donepezil. Therefore, it is anticipated that 5a,5¢c and 6a compounds retain high inhibitory
action against AChE similar to donepezil.

It has also revealed that 5a and 6a possess the potential to interact with Tyr133 that
participate in the accommodation of these compounds similar to that involved in
huperzine A interaction with AChE [158].

Interestingly, compound 5a has the ability to bind with Gly120 which is considered
a part of the glycine loop that constitutes the gorge walls beside the catalytic serine. This
interaction may affect the glycine loop’s conformation which is considered one of the key
determinants in the huperzine active center geometry [152].

It has been also demonstrated that Tyr337 s involved in the
compound 5c interactions with the enzyme playing a central role in its positioning in the
same manner as huperzine A and tacrine [158]. Besides, it is predicted that Ser125
stabilizes the compound 5c in the pocket in a similar way to aflatoxins stabilization in the
CAS [159]. It is also suggested that the compound 5c¢ positioning is strengthened by the
bonding with Arg296 [160].

Based on these findings, in-vitro enzyme study outcomes have consorted with in-

silico study results.

116



5.8. Structure-Activity Relationship Evaluation

ACHE inhibition:
Cl>O0CH;>>>F & R,

Hydrophobic
interactions

Figure 5.72. Structure-activity relationship

Based on activity results and molecular docking studies, the preliminary structure-
activity relationship might be explained in multiple points. Firstly, the presence of the
quinoline ring bears significant importance in the activity explained by its ability to
perform hydrophobic interactions within the binding site of the AChE enzyme. Secondly,
the replacement of the amide group between the thioether bridge and the aromatic ring
by a carbonyl group results in a marked decrease in the compound's potency.
Furthermore, 4-substituted phenyl exhibits a notable inhibitory action due to its ability to
interact with the binding site by n-n interactions; Thus, replacing the 4-substituted phenyl
with 4,5-substituted thiazole-2-yl produces a pronounce declining in the activity.
Nevertheless, phenyl substitution with 4-chloro and 4-methoxy groups indicates a
superior inhibition towards AChE [161], conversely, the introduction of a fluorine atom

at the para position of the phenyl ring might dramatically reduce the inhibitory activity.
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6. CONCLUDING REMARKS AND FUTURE RECOMMENDATIONS

In considering the design of novel anticholinesterase and monoamine oxidase
inhibitors, a series of quinoline-oxadiazole hybrids have been synthesized and evaluated
as potential candidates to tread AD. The 1,3,4-oxadiazole ring was closed by reacting 2-
(quinolin-8-yloxy) acetohydrazide with carbon disulfide under basic conditions. The final
products were attained using two different SN reaction procedures. The first one was
proceeded using acetone and the weak base potassium carbonate at ambient temperature
while the other was performed in acetonitrile and the strong base sodium hydroxide at
reflux temperature. The second method introduced a higher reaction rate and enhanced
yield. The final products were analyzed using spectrometric analysis methods. Regarding
anticholinesterase inhibition, compounds 5a, 5¢ and 6a were the most potent structures
against AChE with 0.033 pM, 0.096 uM and 0.177 puM, respectively, while none of the
synthesized structures showed a significant inhibitory action against BUChE. The
compounds were also screened for their ability to inhibit MAO-A and MAO-B enzymes.
The inhibition percentages were less than 50% at 10 and 10 therefore the compounds’
ICsos were not calculated. The physicochemical properties of 5a, 5¢c and 6a were
calculated in comparison to donepezil. Besides, the binding modes of the potent structures
with AChE were studied using molecular modeling methods. By combining the activity
results with molecular docking findings, the higher potency of compound 5a was
explained by its ability to interact with the critical amino acid residues in the active site
similarly to donepezil. It was also revealed that 5c retains the ability to bind with the PAS
and CAS of AChE enzyme. Dual inhibition of AChE by 5c expects its additional
neuroprotective effect through decreasing amyloid plaques deposition. Structural-activity
relationship was also explained.

For future works, further modifications of compound 5c as a dual inhibitor for
AChE are recommended. The modifications might be done be implemented by
introducing further substitution to the quinoline expecting better interactions within the

binding site.
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