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ABSTRACT 

 

 

MOTOR FAULT DETECTION 

 USING  

NEURAL NETWORKS 

 

Zehra ŞAHİN 

 

 

Department of Electrical and Electronics Engineering 

 

Anadolu University, Graduate School of Sciences, August 2018 

 

Supervisor: Assoc. Prof. Dr. Emin GERMEN 

 

Since the frequent breakdown of induction motors is a case of industry, the detection of 

faults is of great importance in order to protect motors and not interrupt vital processes. 

In this thesis, vibration data from asynchronous motors which are under different loading 

conditions are classified by using convolutional neural networks. In order to create 

vibration data, different fault types were deliberately made on asynchronous motors and 

dataset was created by experimenting with different loading values. The one-dimensional 

vibration data is transformed into two-dimensional grayscale images and then three-

dimensional color images using autocorrelation values, thereby allowing the 

convolutional neural networks to recognize the vibration data. Different motor faults can 

be distinguished easily thanks to the convolutional neural network which do not need any 

feature extraction method. 

 

Keywords: Induction motors, Convolutional Neural Networks, Fault detection 
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ÖZET 

 

 

 SİNİR AĞLARI KULLANILARAK  

MOTOR ARIZALARININ BELİRLENMESİ 

 

Zehra ŞAHİN 

 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Ağustos 2018 

 

Danışman: Assoc. Prof. Dr. Emin GERMEN 

 

Asenkron motorlarının sık arızalanması endüstride karşılaşılan bir durum olmasından 

dolayı, hataların tespiti hem motorları korumak, hem de hayati önem arz eden süreçleri 

bölmemek adına büyük önem taşır. Bu tezde farklı yükleme koşulları altındaki asenkron 

motorlardan gelen titreşim verileri evrişimsel sinir ağları kullanılarak sınıflandırılmıştır. 

Titreşim verilerini oluşturmak adına, asenkron motorların üzerine farklı arıza tipleri 

kasıtlı olarak yapılmış ve farklı yükleme değerleriyle deney yapılarak veriseti 

oluşturulmuştur. Bir boyutlu titreşim verileri otokorelasyon değerleri kullanılarak önce 

iki boyutlu gri renkli imgelere sonra üç boyutlu renkli imgelere dönüştürülmüş, böylece 

sinir ağlarının titreşim verilerini tanımasına olanak sağlanmıştır. Evrişimsel sinir ağları 

sayesinde, herhangi bir özellik çıkarma yöntemine gerek duyulmadan farklı motor 

hataları kolaylıkla ayırt edilmiştir.    

 

Anahtar Kelimeler: Asenkron motorlar, Evrişimsel Sinir Ağları, Arıza tespiti 
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1. INTRODUCTION 

 

 

          The energy in the world is mostly used in the industrial sector. In industrially 

developed nations, electrical motors responsible for a remarkable ratio of total national 

power consumption (R. Saidur, 2009). Thus, the expense of energy to operate electrical 

motors is a real concern for industries. In 2008, the consumption rate of electric motors 

was about 40 % of total national consumption (APEC, 2008). According to the research, 

electrical motors account for 65% of the electric consumption in industry sector in Turkey 

(Kaya et al., 2008). In general, electrical motor systems use about 70 % of the electricity 

in the industry in these days (Almeida et al., 2017). Among whole electrical motor types, 

squirrel cage induction motors (SCIMs) are the most preferred in the industry. Due to 

their strong mechanic, simple construction, low cost, self-starting mechanism and long 

lasting, the SCIMs have found wide applications in the industry. In order to facilitate and 

accelerate production lines in the industry, the use of SCIMs is increasing day after day 

(Ojaghi et al., 2018). Because of this rise in usage of SCIMs, the SCIMs are exposed to 

various stresses which may cause many faults such as magnetic, mechanical, thermal, and 

environmental stresses (Mehrjou and Mariun, 2011; Bindu and Tomas, 2014). If the 

incipent motor faults are not determined on time and removed, many undesirable 

conditions can occur, such as stopping the motor, reduction of efficiency and damage 

surrounding equipment or nearby people.Therefore, early detection of these faults is 

crucial and necessary in terms of vital situations and continuity of work. 

          In this thesis, critical SCIM faults are identified and classified by approaches based 

on Deep Learning (DL) where the features and the classifiers are together learned from 

the dataset. As a branch of Machine Learning (ML), DL has been successfully accepted 

in multiple areas such as computer vision, natural language processing, bioinformatics, 

audio and speech recognition (Ren et al., 2015; Collobert and Weston, 2008; Hinton et 

al., 2012; Leung et al., 2014). Up to date, there are many deep learning architectures such 

as Auto-Encoders (Vincent et al., 2008), Deep Belief Network (Hinton, Osindero and 

Teh, 2006), Convolutional Neural Networks (Sermanet, Chintala, and LeCun, 2012) and 

Recurrent Neural Networks (Funahashi and Nakamura, 1993). The success of these deep 
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learning models has proven recently by various researchers in several applications. In this 

thesis, Convolutional Neural Networks (CNNs or ConvNets), which has been found to be 

well-suited for visual document analysis tasks (LeCun et al., 1998), have been the 

preferred method for identifying and classifying SCIM faults. Some researchers have 

shown that, CNN models are used as basis classifiers (Ciresan, 2011) and they have been 

demonstrated to learn robust and interpretable image features (Zeiler and Fergus, 2013). 

Encouraged by positive results in the field of images, the CNN has been used with peace 

of mind for detection of SCIM faults. 

          CNNs have demonstrated their achievement in many machine learning problems 

and computer vision applications such as Handwritten Digit Recognition, Object 

Recognition (Jarrett et al., 2009), Image Classification (Krizhevsky et al., 2012), Natural 

Language Processing (NLP) (Collobert et al., 2011; Kim, 2014) and Speech Recognition 

(Abdel-Hamid et al., 2012). Moreover, CNN models have been shown excellent results 

in Semantic Parsing (Yih et al., 2014), Search Query Retrieval (Shen et al., 2014) and 

Sentence Modeling (Kalchbrenner et al., 2014). In addition, the CNN architecture has 

changed and developed. According to this, there are many types of CNN architecture such 

as LeNet-5 (LeCun et al., 1998), AlexNet, ZFNet (Zeiler and Fergus, 2013), VGGNet 

(Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2014), ResNet (He et al., 

2015) and DenseNet (Haung et al., 2017).  

 

1.1. Literature Overview 

 

          Asynchronous motors are preferred by the industry due to their usage areas such as 

blowers, centrifugal fans, pumps, lifts, conveyors, compressors, heavy duty cranes, lathe 

machines, oil or textile or paper mills. Asynchronous motors are called induction motors 

because of their working principle. In recent years, the responsibilities of induction 

motors have increased due to their ease of use and performance. Critical errors have 

started to appear in the induction motors in proportion to the use of them. These faults 

can be in places where they seriously affect the function of the induction motors like 

mechanical and electrical parts of the induction motor. As electrical-related faults are 

about imbalance supply current or voltage, under or over voltage of current, single 

phasing, reverse phase sequence, earth fault, overload, short-circuit fault, and crawling; 
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mechanical-related faults are broken rotor bar, mass unbalance, air gap eccentricity, 

bearing damage, rotor winding failure, and stator winding failure. Moreover, there is also 

some environmental-related faults of induction motors such as ambient temperature, 

external moisture, vibrations of a machine, due to any reason such as installation defect, 

foundation defect (Karmakar et al, 2016). Therefore, it becomes crucial early detection 

of possible induction motor faults. In the literature, motor current, vibration, temperature, 

speed and torque variations, and acoustic noise can be used in order to detect the induction 

motor faults (Benbouzid, 1999; Germen, Başaran and Fidan, 2014). 

          Detection of motor faults can be done using 3 major methods: model-based, signal-

based and knowledge-based (Ince et al.,2016). In model-based methods, mathematical 

models, which describe the normal operating conditions of the induction motor, are used 

(Giantomassi, 2015). In order to monitor consistency, fault diagnosis algorithms are 

developed between the measured outputs and the predicted outputs (Gao et al.,2015). 

Next, in the signal-based methods, some signal processing techniques are used such as 

time-domain analysis and frequency-domain analysis. Famous techniques like Fourier 

Transform (FT), Short-Time Fourier Transform (STFT) and Auto-Regressive Moving 

Average (ARMA) can be used to extract features of the data coming from the motor for 

detection the motor faults. The features such as time domain information energy, local 

extrema, kurtosis and skewness parameters are used (Günal et al., 2009).  

          In addition to model-based and signal-based methods, knowledge-based methods 

are also cover many topics to try detection of the induction motor faults. In knowledge-

based methods are both about the qualitative methods and quantitative methods. The 

qualitative methods which are on basis of symbolic intelligence are fault trees, diagraphs, 

and expert systems. In quantitative methods, a core of machine-learning intelligence, 

there are two types of learning systems which are called supervised and unsupervised. 

Nearest neighbor, principal component analysis (PCA), Self-organizing maps (SOMs), 

K-means and C-means are in unsupervised-learning systems which have input data and 

no corresponding output variables. The aim of unsupervised learning is learning more 

information about the data without any teacher and correct answer. Namely, all data is 

unlabeled in the unsupervised learning and the systems try to learn inherent structure from 

the input data. On the other hand, in supervised learning such as artificial neural networks 

(ANNs), fuzzy logic, support vector machines (SVMs), and hybrid systems; the system 
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has input and the output data. In supervised learning, all data is labeled and the system 

predicts the output from the input data (Brownlee, 2016).  

          All the listed methods are selected and applied as appropriate to the fault of the 

induction motor. In literature, there are multiple research about the detection of induction 

motor faults like in Kowalski et al., Tung et al., Chen et al., and Ballal et al. 

 

1.2. Thesis Outline 

 

          In this thesis, the induction motors and the errors of them to be used are explained 

in Chapter 2. In addition to this, the working principle and structure of the induction motor 

are given. Statistical information about the induction motor faults is given and the 

importance of the solution for the defined errors is grasped. Also, there is an explanation 

of how the data were taken as an experimental setup to create vibration dataset. 

          After, there are clear pieces of information about neural network (NN) and then 

how CNN works in Chapter 3. The layers which make up CNN are explained and 

information about their functions is given in turn. It is explained that the individual 

benefits of the parameters that must be set for the experiments.  

          In Chapter 4, pre-classification studies which are about converting one-dimensional 

vibration data into two-dimensional grayscale images and three-dimensional color images 

are given.  Moreover, the importance of the correlation values needed to create the image 

is emphasized. After the pre-classification studies, classification results of the faulty 

induction motors are given by usage of CNN with changing model parameters. In order 

to understand which parameters are best suited for the CNN model, some experiments are 

done. Furthermore, vibration data, which has distinct axis information, are used in order 

to detect and classify the vibration data of the induction motor faults. Classification 

performance of different types of optimizers is given. In the last chapter comments on 

inferences of the thesis are made.  
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2. INDUCTION MOTORS AND DEFINED FAULTS 

 

2.1. Induction Motors 

 

         Induction motor is a kind of asynchronous AC motor where is used many industrial 

plants. They play a significant role for continuity of an entire industrial process which is 

in the military, medical, commercial and transportation implementation (Wang, 2007). 

         Induction motors have multiple useful aspects. To illustrate, they do not require a 

starting mechanism or any additional power supply. They have also simple construction 

and low cost. Because of these positive characters, induction motors are preferred mostly 

in recent years. As it is highly preferred, the failure is unacceptable for vital situations. 

Thus, in order to prevent induction motor faults, there are many studies recently. Due to 

the challenging working environment, electrical and mechanical parts of the induction 

motor is failed especially in machine bearings, rotor bars, and stator windings.  

          An induction motor includes a magnetic circuit that connects the stator and rotor 

portion of the machine. As stator is the stationary part of the motor, rotor is the rotating 

part of it. Thanks to electromagnetic induction, power can pass between the stator and the 

rotor (Krause, 1986). There are two circuits which are an electric and a magnetic both in 

the stator and the rotor.  As an electric circuit carries current and the magnetic circuit 

carries the magnetic flux. As it is shown from Figure 2.1. the stator is the outer stationary 

part of the motor and it consist of the outer cylindrical frame, the magnetic path, and a set 

of insulated electrical windings (Karkamar et al., 2016). Rotor is placed in the stator and 

rotates coaxially with the stator. Induction motor is named according to the type of rotor 

winding like squirrel-cage type induction motor and wound-rotor type induction motor. 

Due to the fact that the bars of the squirrel-cage type induction motor are made of copper 

or aluminum or alloy, such motors are very durable. In addition to these parts, there are 

bearings, end-flanges, shaft, cooling fan and terminal box. 

          After the stator winding of an induction motor is connected to a three-phase supply, 

a uniform rotating magnetic field is produced (Say, 2002). This induces electromotive 

force (EMF) in the rotor and thus, rotor is started  to rotate coaxially with the stator core 

with the help of ball bearings. Due to the induced EMF, currents, which interacts with the 

magnetic field and thus forms a torque on the rotor, are produced. The torque, which  in 
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the direction of the rotating magnetic field ,will cause the rotor to move round in the 

direction of the stator field. This is the self-starting principle of the induction motors. 

 

 

 

 

Figure 2.1. Parts of squirrel-cage induction motor 

 

         

  

2.2. Defined Induction Motor Faults 

 

          The common faults of the induction motor occur mostly in bearings, rotor bars and 

stator which can stop processes that are vital when they come out. Statistics about this 

subject are made by IEEE (Institute of Electrical and Electronics Engineers) and EPRI 

(Electric Power Research Institute) (Zhang et al., 2011). In the shade of researches, the 

most common faults of the induction motor are bearing faults, broken rotor bars and stator 

winding faults. Since the faults in the induction motors suddenly take place, it is very 

difficult to detect and to interfere in the fault immediately. Due to these faults, the heat 

on the motor may rise, the vibration may increase and the torque oscillation may become 

unbalanced. 
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2.2.1. Bearing faults 

 

          Bearings, which are placed the ends of the rotor of the induction motor, help the 

rotor to rotate by decreasing the frictions. An inner and an outer ring (called races) are the 

parts of each bearing. In addition, there are balls in between these two races. Any damage 

about these parts is termed as bearing faults. 

          The bearing fault is the mechanical failure and the most common one. About 40-

45% of failure in big industrial induction motors because of bearing faults as shown in 

IEEE and EPRI reports. Environmental conditions such as current distortion and local 

vibration can damage bearing components. If bearings run for a long time, fatigue failure 

which increase vibration and noise level is occured (Eschmann, 1958). Moreover, 

corrosion, contamination, lubricant failure, misalignment of bearings are the other types 

of the bearing faults, on which it is observed that increasing friction which causes rise in 

temperature and vibration. According to this, it can be said that temperature and the 

vibration of the bearings give necessary information about the bearing faults in order to 

detect and prevent them (Schoen et al., 1995). Since the bearings are an assistance of the 

rotor, early identification of the fault is of great importance (Gonçalves et al., 2015). 

           In this thesis, after taking the real faulty bearings which are used for a long time 

put into the motors in order to get bearing fault data. Figure 2.1 shows that faulty and 

unused bearings. 

 

 
 

Figure 2.2. Faulty and unused bearings respectively 
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2.2.2. Broken rotor faults 

 

          Rotor Faults include at about 10% of all failure. There are two main causes of the 

rotor failures: broken rotor bar and end ring fault. Unless it can be detected in time it can 

cause excessing heat, decreasing efficiency or iron core damage. Thus, like bearing faults, 

early detection of rotor faults is very important to avoid more motor failure (Pons-Linares 

et al., 2010) (Saleh et al., 2005). In this thesis, broken rotor bars are discussed as rotor 

faults. 

          The induction motor broken rotor faults can be caused by many reasons such as 

manufacturing defect, thermal stresses, mechanical stress, frequent starts of the motor and 

due to fatigue of metal of the rotor bar. 

          If there is a broken bar, there is no current through the broken bar and so, there is 

no magnetic flux around the broken bar which causes asymmetry in the rotor magnetic 

field (Sonje and Munje, 2011). Rotating field at slip frequency with respect to the rotor is 

forward since the cage winding is symmetrical. Unfortunately, if asymmetry in the rotor 

magnetic field occurs, a backward rotating field at slip frequency will emerge. Thus, there 

will be a twice slip frequency sideband in the air gap flux which finally causes ripples in 

speed and torque (Finley et al., 1999).   

           In order to obtain the faults like broken rotor bar for this thesis, the rotor bars have 

been damaged by means of drill. Different types of faults and their results have to be 

scrutinized by drilling different amount of bars. Broken rotor bars with 3 holes or 5 holes 

are created for getting data. Figure 2.2 shows how is formed of the broken rotor bar with 

5 holes. 

 

 
 

Figure 2.3. Substantiation broken rotor bar with 5 holes 
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2.3. Experimental Setup 

 

          Power Systems Laboratory of Anadolu University is used in order to construct a 

valuable database consisting of current, vibration and acoustic data. Thus, many different 

experiments are performed by induction motors supplied with the output of the isolation 

transformer located between AC network and the test rig which is self-designed. In the 

test rig, there is a single-phase permanent magnet synchronous generator acoupled to a 

test motor. All test motors are products of trademark GAMAK, 3-phase and 2-pole 

squirrel cage induction motors rated at 2.2kW, 50Hz, 380 VLL. The resistance values of 

the resistor load bank is connected to the output of the single-phase 4.2 kVA permanent 

magnet synchronous generator. The resistance values are regulated in order to adjust the 

different loading conditions of the test motors which have 0.82 power factor and 4.94 A 

of rated current. Between the AC network and the test rig, there is a Δ-Y connected 25 

kVA isolation transformer.  

         The most frequently encountered mechanical faults are created synthetically on four 

of these test motors for the experimental implemantation. One of identical motors is left 

untouched to compare clearly. In the following Table 2.1 demonstrate that list of fault 

types and their abbreviation used in this thesis. 

 

Table 2.1. List of faulty motors used for experimental setup 

 

Abbreviation Faulty Motor 

Healthy Untouched Motor 

BFE Motor with Bearing Fault Misalignment 

5BB Motor with 5 Broken Bars 

BFA Motor with Bearing Fault Ball Defect 

3BB Motor with 3 Broken Bars 

 

          The test motors are coupled with a single-phase 4.2 kVA permanent magnet 

synchronous generator which is connected to an adjustable resistive load bank. The  

different loading conditions are selected as 3.6, 4.1, 4.7, 4.9, 5 Amperes. Before the 

collecting data, the test motors function under no load conditions in a few minutes in 

order to reach the steady-state. After this, the resistor is adjusted for loading the motors 

in pre-planned loading condition levels in a controlled manner.      
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2.3.1. Receiving vibration data  

 

          In this thesis, only the vibration data which come from the squirrel-cage induction 

motor is used. In order to collect vibration data, five motors which are driven directly 

from AC are used. For vibration sensing, an integrated electronic piezoelectric (IEPE) 

accelerometer which is a product of trademark Metra Mess model KS943B.100 is used. 

In order to amplify vibration signals, the accelerometer is connected to a multichannel 

signal conditioner that is model M108 of the Metra Mess which can be shown in Figure 

2.4. NI 6251 data acquisition card is used to digitize vibration signals at a sampling rate 

20kHz with 16-bit vertical resolution. 

 

Figure 2.4. Metra Mess M108 

 

          Vibration data are collected from 5 test motors under 5 different loading conditions 

for forty seconds. The position of the accelerometer does not change to all test motors. 

From the Figure 2.5, it can be seen that the accelerometer and its position on fan cover. 

 

 
Figure 2.5. Accelerometer and its position 
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          These records were repeated 3 times for each test motors (except BFA which is for 

5 times, explains why in Chapter 4) to create more reliable and accurate test data such as 

in real industrial environment with different mounting conditions. 

          Figure 2.6 shows the experimental setup for collecting the vibration and acoustic 

data to detection of the induction motor faults.  

 

 

Figure 2.6. Experimental Setup for vibration and acoustic data 

 

 

          To mention briefly on  receiving of acoustic data, as in Figure 2.6, there are 5 

microphones and one is placed 60 cm above from the test rig. Others are located at a 

lower height and surround the system in a rectangular form. All experiments are carried 

out at the sound level of a real working environment. According to this, the average 

ambient sound pressure level (SPL) is recorded as 53.2 dB. The sound pressure levels 

related to all test motors during the experiments is given below in Table 2.2:  
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Table 2.2. Sound pressure levels of the experiments of the dataset  

            
     Environment SPL : 53.2 dB  

Sound Pressure Levels of the experiments 

 3.6 A 4.1 A 4.7 A 4.9 A 5.0 A 

Healthy 

Exp 1 73.8 76.5 78.5 78.5 78.5 

Exp 2 74.9 76.1 74.6 75.1 76 

Exp 3 73.8 73.8 73.8 73.8 73.8 

BFE 

Exp 1 86.2 84.5 84.2 84.3 84.2 

Exp 2 83.7 83.7 83.2 84.2 83.2 

Exp 3 83.2 83.2 83.4 83.7 83.2 

5BB 

Exp 1 80 78.8 79.1 79.1 78.5 

Exp 2 78.8 80.1 79.5 79.5 79.5 

Exp 3 76 75.4 76.1 76 76 

BFA 

Exp 1 84.6 83.7 83.3 83.2 83.2 

Exp 2 83.2 83.2 83.2 83.2 83.2 

Exp 3 83.2 83.7 83.4 83.4 83.8 

Exp 4 85.4 84.8 83.9 84.1 83.7 

Exp 5 83.2 83.2 83.3 83.5 83.7 

3BB 

Exp 1 75 76.1 77.1 77.1 78.1 

Exp 2 76 74.5 75 75 75.4 

Exp 3 75 74.5 74.1 74.1 74.2 
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3. CONVOLUTIONAL NEURAL NETWORKS 

 

          Nature has become one of the most important inspirations to be able to make 

scientific progress all the time. The neocortex in the human brain, inspired by artificial 

intelligence (AI) researchers, recognizes and perceives very complex patterns of any 

tangible or even abstract form very quickly. This process owes to the fact that neurons, 

which are about 20 billion small processing units, are miraculously linked and organized 

to each other (Platek et al., 2007; Kurzweil, 2013). In the field of AI with this inspiration, 

the brain function has been tried to be imitated with great simplifications and thus the 

artificial neural networks (ANN) structure has been improved (Altenberger and Lenz, 

2018). In this way, ANN has been an important research area in recent times and as a 

result of this research deep learning (DL) concept has been born (Hinton and 

Salakhutdinov, 2006; Hou et al., 2016; Yang et al., 2016). The most important reasons 

why deep learning is so popular in recent times are developed chip processing abilities 

(e.g. GPU units), lowering the cost of computer equipment, and advancement of machine 

learning algorithms (Deng, 2014). DL is a method which uses to model data with complex 

structures that combine different nonlinear transformations.  The basis of DL is the neural 

networks that are combined to perform learning. 

          Figure 3.1 shows the simple ANN layers which are steps of ANN. It consists of 3 

basic parts: Input layer which represent inputs, Hidden Layers which is optional and has 

detailed features of the inputs, and Output Layer which represents outputs. 

          The neurons in the same layer usually identify similar patterns, for example, 

neurons in the hidden layer 1, which is near the input layer, perceive simpler features 

(called Low-Level features) such as line, edge. As going deeper into the layers, neurons 

perceive more specific features (called High-Level features) of input. Moreover, all 

neurons in a layer have connected the neurons in the previous and subsequent layers. 

These connections from one neuron to another are called Synapses. All synapses have 

Weights which determines the importance of the result of the lower level neuron for the 

outcome of the higher level neuron. To illustrate, if the feature is more distinctive and  

dominant for the recognition of the induction motor faults, then the weight corresponding 

to that feature must be that much.Furthermore, each neuron also has a Bias which  
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                                          Input               Hidden             Output 

 

 

 

Figure 3.1. A simple artificial neural network, consisting of an input layer, an output layer and two hidden  

                  layers  (Altenberger and Lenz, 2018) 

 

 

indicates the likelihood of the presence of the corresponding pattern. These weights and 

biases are called Parameters of the network. These parameters are learned during the 

training process. The result is derived from the input from the setting of these parameters. 

The equation 3.1 demonstrate simply this procedure. After getting a result, an activation 

function which is mentioned later is applied to conclude the process. 

 

                                         𝑜𝑢𝑡𝑝𝑢𝑡 = (∑ 𝑖𝑛𝑝𝑢𝑡(𝑖) * 𝑤𝑒𝑖𝑔ℎ𝑡(𝑖)) + 𝑏𝑖𝑎𝑠𝑖                     (3.1)                                                 

 

          It is necessary to do many repetitions to train the network and these repetitions are 

evaluated by the loss function ( for more information: Janocha and Czarnecki, 2017). The 

gradient of the loss function is calculated so that the parameters are updated and the 

updated output layers are transmitted to the previous layers. This process is called 

Backpropagation. In this way, it is intended to give a more accurate result on the next 

repetition. 

          One of the main difficulties of deep learning architectures is that different layers 

can learn at different speeds and adapt accordingly. This brings two problems: vanishing 

gradient and exploding gradient. Vanishing gradient problem, which is caused by very 

low gradients, is about especially the layers near the input layer which are learning at very 
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slow speed. On the contrary, exploding gradient problem is caused by high gradients 

(Nielsen, 2015). It is, of course, possible to avoid these problems, but the manual 

adjustment of the required parameters is very difficult, especially in the networks with a 

large dataset. Appropriate choice of activation functions, suitable network parameter 

initialization, input normalization and gradient-norm clipping are the solutions of these 

problems. Even if all these parameters are set, the network has to optimize parameters. 

For this reason, the training process can be prolonged and information density can occur. 

To avoid such long-running processes, various network architectures have been 

developed such as convolutional neural networks. 

          After Hubel & Wiesel found that the cells in the visual cortex in 1959 were 

responsible for the divergence of light in the receiving areas, Fukushima suggested that 

neocognitron in 1980 (Hubel and Wiesel, 1968; Fukushima, 1982). Thus, the first seeds 

of CNN were thrown. The first modern frame of CNN has been the LeNet-5 multi-layered 

artificial neural network, which is known to be developed to classify handwritten digits. 

Figure 3.2 shows LeNet-5 as an example of CNN. 

 

 

Figure 3.2. Architecture of LeNet-5 (LeCun et al.,1998) 

           

          Just as in time-delay neural networks (TDNN), CNN shares the weight in a 

temporal dimension. Thus, convenience is provided in the calculation. Convolution in 

CNN reduces the complexity of the network by decreasing the number of weights 

compared to a traditional neural network which is used in matrix calculation. Moreover, 

since the images from outside can be transferred directly to CNN, the feature extraction 

procedures in standard learning algorithms may not be needed. It is also the network that 

requires minimum pre-processing. Sparse interaction (sparse connectivity), parameter 

sharing and equivalent representation play an important role during the learning stage of 
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the CNN (Bengio and Courville, 2016). Since the relationship between input and output 

in CNN is applied to the entire image using filters which are smaller than inputs, the 

calculation is reduced with sparse interaction. Furthermore, parameter sharing is for better 

performance by learning in each place using only one set of parameters, not a separate set 

of them. In addition to this, equivalent representation due to parameter sharing means that 

the output will change when the input is changed.  

          In short, CNN needs fewer parameters than other classical neural networks, which 

reduces memory and provides efficiency. 

          CNN is composed of two main parts: feature extraction and classification. The most 

important point that separates CNN from other deep learning techniques is the feature 

extraction part. In this part, CNN extract features directly, without having to manually 

configure. This section contains convolution layer, rectifier linear unit, and pooling layer 

in order. A fully connected layer can be considered as part of the classification and the 

last one is an output layer. 

       

3.1. Convolution Layer 

 

          In the convolutional layer, CNN uses some filters called kernel to recognize and 

learn all the images which come in as input and intermediate maps of the input. The input 

is first convolved with a filter introduced into the system and then, an element-wise non-

linear activation function is applied to the obtained convolved results. In this way, a 

feature map or convolved feature is obtained.  Each neuron of the feature map is 

connected to a region of neighboring neurons in the previous layer called receptive field. 

The receptive field is meant to be a region of square size only in height and width 

dimensions. There is no hyperparameter that must be defined for the depth dimension of 

the receptive field because this dimension is necessary to combine the information as it 

identifies the different colors of the input and, in addition to this, the default convolution 

is applied all along the depth. But, when it comes to the definition of depth in the 

convolution layer, it is related to how much filter is used. Namely, depth is the number of 

the kernel that used for the convolution operation. For example, if the convolved feature 

has a depth of 5, the number of filters used is 5. Furthermore, the kernel must be used by 

all locations of the input to generate the feature map. If more feature maps are to be 
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extracted, more filters should be used and thus, CNN becomes better at recognizing 

patterns. 

          The input image of size 3X3 and the kernel of size 2X2 are shown in Figure 3.3 to 

demonstrate one-dimensional convolution operation. In the convolution operation, the 

kernel is sliding over the input and the overlapping pixel values are multiplied and then 

all are summed. Next, the filter is shifted one more time and the same process is repeated. 

Briefly, the convolution operation applies dot product between the local area of the input 

image and the kernel to produce the feature map as an output of the layer. In addition, a 

feature map occurs when input and kernel are convolved as shown in Figure 3.4.          

 

 

Figure 3.3. An example of 2D Convolution Operation 

 

 
Figure 3.4. The operation of the convolution layer (Guoa et al., 2016) 

 



18 
 

          From mathematical point of view, Equation 3.2 and 3.3 show the convolution 

operation: 

𝑧(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎                                           (3.2) 

           

          It is also indicated by asterisk as:  

𝑧(𝑡) = (𝑥 ∗ 𝑤)(𝑡)                                                  (3.3) 

          In CNN, the first function x is usually called as the input and the second argument 

was the kernel. The output z is the feature map. While input x and the kernel has only 

integer values, the discrete convolution operation can be defined by Equation (3.3): 

𝑧(𝑡) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)∞
𝑎=−∞                                           (3.4) 

 

          Since the input image I and the kernel K are two dimensional, the operation 

becomes as in Equation (3.5): 

𝑧(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) 

   𝑧(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛𝑚                                        (3.5)             

 

          Convolution operation has generally three advantages: i) sharing parameters in the 

same feature map reduce the number of weight, ii) local link learns the correlation 

between neighboring pixels, iii) invariance to the location of the object (Guoa et al., 

2016). These are related to sparse connectivity, parameter sharing, and equivalent 

representation as mentioned a little earlier. In sparse connectivity, the kernel needs to be 

smaller than the input so that when the image is processed only small and meaningful 

edges can be picked and hundreds of unnecessary pixels can be ignored. Figure 3.5 shows 

the sparse connectivity clearly. As can be seen, the memory requirement is reduced and 

the efficiency of the network increases with the aid of sparse connectivity. In addition to 

this, because of parameter sharing, CNN uses a kernel for each member of the input to 

scroll through the input, unlike a classical neural network used the kernel which is 

multiplied by only one member of the input and is never used again. Following Figure 

3.6 explains the parameter sharing briefly. Moreover, parameter sharing leads to 
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equivalence translation which means that when the input changes, the result of output 

changes in the same way, which is very useful for classification and recognition of tasks. 

 

 

 

Figure 3.5. Sparse connectivity, viewed from below. x3 is highlighted one input unit, and units are 

                     hihglighted the output units  in s that are affected by this unit. (Top) When s is formed by 

                     convolution with a kernel of width 3, only three outputs are affected by x. (Bottom) When 

                    s is formed by matrix multiplication, connectivity is no longer sparse, so all the outputs  

                    are affected by x3. (Goodfellow et al., 2016) 

 

 

Figure 3.6. Parameter sharing. Black arrow shows the connections that use particular parameter in two 

                   distinct models. (Top)The black arrows indicate uses of the central element of a 3-element 

                   kernel in a convolutional model. Because of parameter sharing, this single parameter is used 

                  at all input locations. (Bottom)The single black arrow indicates the use of the central element  

                  of  the weight matrix in a fully connected model. This model has no parameter sharing, so the  

                  parameter is used only once (Goodfellow et al., 2016) 
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          A hyperparameter called stride can be defined that specifies how much space 

between the two scanned zones should be during the convolution operation. In other 

words, the stride is the number of pixels that is slid the kernel matrix over the input region. 

Another hyperparameter that can be identified to the network is padding which is used 

for the prevent feature map from shrinking. In order to do this, a zero-valued pixel is 

inserted to surround the input with zeros (called zero-padding). By this way, it increases 

the performance. Sometimes padding can also be applied to ensure that the convolution 

result is of the desired size.  Figure 3.7 demonstrate that the distinct hyperparameters of 

convolutional layers. Following Equation 3.7 displays the output size of the convolution 

layer: 

 

𝑜𝑢𝑡 =  
𝑖𝑛−𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝑓𝑖𝑒𝑙𝑑+2∗𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1                                     (3.7) 

 

          It would be useful to talk about a preliminary method, Batch Normalization, that 

may well be done before moving to the rectifier linear unit. In general, all data is 

normalized to certain values before the CNN process is started, such as the conversion of  

 

 

Figure 3.7. A visualization of the different hyperparameters of convolutional layers: receptive field, stride 

                   and  padding (Altenberger and Lenz, 2018) 
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one-dimensional vibration data values to image pixel values 0 to 255 in order to construct 

an image. But, while the CNN operation is in progress, as the data travels deeper into the 

inner layers, it will be distributed and modified so the learning capacity of the network 

will decrease. To avoid this, a batch normalization (BN) has been developed after each 

mini-partition far from the entire variation set, in which the mean and variance inputs are 

calculated (Ioeffe et al., 2015). BN has important advantages such as reducing internal 

covariant shift, enabling the use of higher learning rate by reducing the dependence of 

gradients on the scale of the parameters or of their initial values and also reducing the 

need to dropout which will be encountered at the fully-connected layer. 

 

3.2. Rectifier Linear Unit (ReLU) 

 

          Rectifier linear unit (ReLU) is one of the most known activation function. ReLU is 

a function that translates the negative part to zero and protects it as if it were positive 

(Nair and Hinton, 2010). Although backpropagation part of the network can damage due 

to the discontinuity over zero in ReLU, this simple operating principle allows ReLU to 

work faster and empirically than sigmoid and tanh activation functions (Maas et al.; 2013, 

Zeiler et al., 2013). Figure 3.8 displays the ReLU operation. 

 

                                           𝑟𝑒𝑙𝑢(𝑥) = max (0, 𝑥) 

 

Figure 3.8. The ReLU Operation 

 

          In this way, the network can approach very complex functions by making non-

linear transformations. Researchers recommend using ReLU even at deeper layers to 

simplify network optimization, accelerate convergence, better expansion, and 

acceleration of computation (Zeiler et al., 2013).  
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3.3. Pooling Layer 

 

          The Pooling Layer (PL) stands between the convolution operation (usually after 

ReLU) and the CNN architecture. This layer is sometimes called as a down-sampling or 

subsampling. 

          Due to the high dimensions in CNN, a classification process can cause overfitting 

because it will be difficult to maintain translation invariance by adding additional filters 

when the size of the inputs remains equal to the filter of the outputs. Translation 

invariance allows an object to be identified even if the image changes for different reasons 

and is therefore important. It can be said that it increases the resistance to noise (Boureau 

et al., 2010). So, the aim of PL is to reduce the spatial size but not the depth of the CNN 

representation. Pooling reduces the size of feature maps and network parameters exactly 

as desired. In this way, the complexity and computation of the network are reduced.  

          There are different types of pooling operation that is the max, average, sum, etc. 

The most preferred one is the max pooling. Firstly, max pooling was developed to be sub-

sampling to the LeNet-5 architecture. From a series of neurons, the maximum one is 

selected. Figure 3.9 and 3.10 show the max-pooling operation: 

 

 

 Figure 3.9. An example of max pooling (Guoa et al., 2016) 
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 Figure 3.10. The examples of pooling. Left-side: In this example, the input volume of size [224x224x64] 

is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Right-side: the example of 

max pooling with a stride of 2 (http-2) 

 

          Pooling layer is reduced spatially, independent of the depth of the input dimension 

independent of the depth of the input dimension. According to left-side example of Figure 

3.10, the input volume of size [224x224x64] is pooled with kernel size 2, stride 2 into 

output volume of size [112x112x64]. In the right side of the Figure 3.10, each max is 

taken over 4 numbers and small 2X2 square occurs. 

 

3.4. Fully Connected Layer 

 

          Fully connected (FC) layer works like a traditional neural network. In the FC layer, 

2D feature maps are converted to 1D feature maps, thereby providing more features. Since 

FC layer contains about 90 percent of the parameters found in CNN, there is a lot of effort 

in calculations. On the other hand, this layer allows the neural network to advance to a 

predetermined size and a certain number of categories. In addition, all neurons from the 

convolution layer (from the feature extraction section) must be flattened (sometimes 

called Flatten Layer) in order to pass to the fully connected layer. Figure 3.11 shows the 

operation of this layer, each neuron coming from the previous layer are attached to each 

activation on the following layer in this figure. 

          Furthermore, FC Layer does not only work in classification but it also aids learning 

non-linear combinations of the features. Once a few convolutions and pooling layers have 

been used, one or more FC layers may be used, which is good for a better prediction. 

Additionally, it is not always necessary to use the FC layer in some cases because it can 

change with the 1x1 convolution layer (Yin et al., 2014). 
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Figure 3.11. The operation of Fully Connected Layer (Guoa et al., 2016) 

 

 

3.5. Output Layer 

 

          The last part of the CNN is the output layer. After the FC Layer, the CNN needs a 

function to classify the input image in this layer. For classification task, softmax and 

sigmoid functions are generally chosen according to the label of the input. The most 

important difference between the two is a determination of the number of the label. 

Softmax function is used for multi-classification tasks, on the other hand, the sigmoid 

function for binary classification tasks (Polamuri, 2017). Thus, in this thesis, as there are 

5 labels of the motors faults, the softmax function is used. Moreover, if a selection of 

some internal variables in the model is needed, softmax function can also be used in the 

model. 

          Softmax Function (or normalized exponential function) computes the probabilities 

of every destination label over each feasible target label. For multi-class classification 

problems, softmax function yields the probability of all class and the destination one has 

the higher probability than others. Probability range is between 0 to 1. The sum of the 

entire the probabilities is equal to 1. In other words, the output layer consists of one 

neuron per class. Using softmax, each neuron is given values between 0 and 1, which is 

considered as a probability of belonging to that class.  
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          The mathematical representation of the softmax function is as in Equation 3.8:  

 

𝑆(𝑧𝑝) =
𝑒𝑧𝑝

∑ 𝑒𝑧𝑡𝐾
𝑡=1

 p = 1..K          (3.8) 

 

          Equation 3.8 gives the exponent power of the input value divided by the 

exponential sum of the other values of the input. That is probability distribution over K 

different possible outcomes. Thus, the range will always be between 0 and 1, and also the 

sum of the probabilities will be 1. In order to compare the softmax and the sigmoid 

function, the mathematical representation of the sigmoid function is shown in Equation 

3.9: 

      

𝑆(𝑡) =  
1

1 + 𝑒−𝑡
  (3.9) 

 

 

          The sigmoid function is defined for all real input values and each point has a 

positive derivative. In addition to this, the sum of the possible input values does not have 

to be 1. Moreover, the output of the sigmoid function is used to determine the probability 

of yes or no. 

          Due to the use of deep architects in CNN makes it more advantageous than other 

traditional networks. But, the size caused by the complexity of the network can lead to a 

problem called overfitting. Overfitting means that CNN is only compatible with the 

training data, not the test data, and thus, while training stage it gives perfect result above 

99% accuracy. That is, with limited training in large networks, many of the complex 

relationships will only be a result of sampling loudness, which will only be found in the 

training part, not in the test part. Lately, many methods have been developed to deal with 

this problem called Regularization such as Dropout (Srivastava et al., 2014). Dropout 

means that the remove a unit with incoming and outgoing connections temporarily from 

the network. Which unit will be removed is a random process. The process can take the 

form of holding a certain probability of active neurons, releasing others. Figure 3.12 

illustrates a simple example of a dropout operation. 
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Figure 3.12. (a) Standard neural net (b) After applying dropout (Srivastava et al., 2014) 

 

          In addition to this, some optimization methods have been developed to reduce the 

loss of the network. In this thesis,  Stochastic gradient descent (SGD), Adam and Nadam 

are discussed as regularization methods. Before coming to these subjects, it has to be 

known that a large number of repetition needs to be done for the training process and the 

parameters must be updated each time. This update happens with back-propagation 

(LeCun, 1992). Updates made for the entire training set, if the training set is large, the 

calculation of the gradient can be both very difficult and very costly.  

          Gradient Descent (GD) is the way to reduce the objective function of a model to 

the lowest. It minimizes by updating the parameters in the opposite direction of the 

gradient of the objective function. Equation 3.10 shows how this works: 

 

𝜃 = 𝜃 − 𝜂 ∙ ∇𝜃𝐽(𝜃)  (3.10) 

                                         

𝐽(𝜃) is the objective function and 𝜂 is the learning rate which is step taken to reach 

minimum level. 

          Stochastic gradient descent (SGD): In a classical network, GD is used and the aim 

is to make an approximate estimate of the cost and gradient taking into account the entire 

training set. Whereas SGD goes from a simple path, with only one or few training 

examples to be expected in the update. SGD helps to find better new local minima than 

the standard one. Unfortunately, the learning rate in SGD is lower than in standard GD. 

Equation 3.11 displays the different between them: 

 

𝜃 = 𝜃 − 𝜂 ∙ ∇𝜃𝐽(𝜃; 𝑥𝑖; 𝑦𝑖)  (3.11) 
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SGD update a parameter for each training instance, xi label yi which are a pair from the 

training set.  

          In addition to being popular, the SGD learning phase may be too slow and therefore 

the Momentum method has been developed (Polyak, 1964). In order  to accelerate learning 

in the face of more highly-spirited and noisy gradients. The momentum term γ is added 

to the current update vector as in Equation 3.12: 

 

𝜗 (𝑡)  =  𝛾. 𝜗( 𝑡 − 1)  +  𝜂. ∇𝜃𝐽(𝜃)  (3.12) 

𝜃 = 𝜃 −  𝜗 (𝑡)    (3.13) 

 

The momentum term is assumed to be 0.9 in experiments performed in this thesis. 

According to Equation 3.12 and 3.13, the convergence becomes faster and the oscillation 

falls with momentum. Figure 3.13 shows this more clearly:  

 

 

                                              (a)                                                                 (b) 

Figure 3.13. (a) SGD without momentum (b) SGD with momentum (Ruder, 2018) 

 

          Although the momentum with SGD produce fast solution to SGD without 

momentum, it does not guarantee where to slow down and therefore causes missing local 

minima. Therefore, another momentum technique called Nesterov has been further 

developed to solve this problem, which can be interpreted as a correction touch of 

momentum (Nesterov, 1983; Sutskever et al.,2013). The difference between the 

momentum and the Nesterov momentum is where the training is assessed. The Nesterov 

momentum gradient is evaluated after the current speed is applied. The goal is to give a 

rough idea of where the parameters are going to be. The SGD with Nesterov is shown : 

 

𝜗 (𝑡)  =  𝛾. 𝜗( 𝑡 − 1)   +  𝜂. ∇𝜃𝐽(𝜃 −  𝛾. 𝜗( 𝑡 − 1))                      (3.14) 

𝜃 = 𝜃 −  𝜗 (𝑡)                                                         (3.15) 
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          Adaptive moment estimation optimizer (Adam): Adam is the adaptive moment 

estimation which computes adaptive learning rates for each parameter. It is only a method 

that requires gradients from the first order, so it works fast in practice. The adam update-

rule is : 

 

𝜃(𝑡 + 1) = 𝜃(𝑡) −    
𝜂

(√𝜗 (𝑡) +  𝜀)⁄   . 𝑚(𝑡)                           (3.16) 

 

 

where m(t) and ϑ(t) bias-corrected first and second moment estimates. Adam behaves in 

a similar way with momentum; two of them keep an exponentially decaying average of 

past gradients (Heusel et al., 2017). However, for example, If the momentum is seen a 

ball rolling down the slope, Adam is more frictional and acts like a heavy ball. 

           In addition to this, a method called Nadam (Nesterov-accelerated Adaptive 

Moment Estimation) which consists of combining adam and Nesterov comes out (Dozat, 

2016).       

           In order to observe which optimization technique works better in a model of this 

thesis, each of these techniques is repeated under the same conditions. The results are in 

the next section. 

          To summarize this section, the information is transferred to the following layers in 

the first step and the properties of the input are obtained with the help of filters. Then, the 

error between the expected and actual values of the output is introduced to the system and 

the weight parameters are regulated according to this. In this way, the output is expected 

to target to the right class. Unlike other classical networks, preprocessing is not used and 

only CNN is expected to be trained. The nicest, CNN does not need human intervention 

in extracting features. Figure 3.14 shows a summary of the CNN architecture. 

 

 

Figure 3.14. The summary of CNN architecture (Peng et al., 2016) 
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4. FAULT CLASSIFICATION 

 

          In this thesis, vibration data were selected to classify induction motor faults among 

acoustic, current and vibration data. Then, it might be good to mention vibration briefly. 

The fact that the vibration was the first time to enter the life of people with musical 

instruments (Maggiore, 2010). In fact, vibrations, from humans to machines, are in every 

area of life. For example, light waves coming to eyes through the vibration, the ear needs 

vibration to hear and even breathing is due to the periodic vibration of the lungs. At 

present, vibration is observed for solving more industrial problems and improving 

systems. Especially the point of interest in the industry is the vibrations of the machines, 

which is handled in this thesis as well as related to the vibration of an induction motor. 

The unusal vibration in machines is not wanted because it produced by definitive or 

undefined problems such as excessive deformation of the motor and wear on motor parts 

Moreover, it gives a lot of information about the problem types such as imbalance, shaft 

bow, the conditions of couplings, and misalignment (Tsypkin, 2011). Therefore, it is 

important to observe the vibration of the induction motor in order to prevent motor and 

to deal with the problems early. 

 

 

4.1. Formation of Dataset 

           

          IEPE accelerometer, which is a product of trademark Metra Mess model 

KS943B.100, is used to collect vibration data. The most important point to note when 

collecting vibration data is the direction. Vibration data were taken from 3 axes, which 

are horizontal, vertical and axial, for measurement each axis was used separately and in 

combination to classify the induction motor faults. Three directions are used because it is 

thought that each direction could give different information according to the types of 

motor fault. Namely, vibration readings from specific axes provide the best indications of 

particular problems (Shannon, 2008). To illustrate this, while unbalance can be 

understood by information from radial (horizontal and vertical) axes, the information 

from the axial for misalignment is more discriminating. According to the classification 
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method proposed in this thesis, the discriminating properties of each axis are combined 

together. The directions of the vibration data to be used in this thesis are given in Figure 

4.1. Horizontal, vertical, and axial directions are assigned x, y, and z-axis respectively. 

 

 

 

Figure 4.1. The directions of the vibration data (http-1) 

 

          As explained in Chapter 2, vibration data are collected from 5 test motors under 5 

different loading conditions (3.6, 4.1, 4.7, 4.9, 5 Amperes) for forty seconds. These 

records were repeated 3 times for each test motors (except BFA which is for 5 times, the 

reason is explained in this chapter). 

 

 

4.1.1. Formation of dataset from 1D vibration data 

 

          Since the vibration data taken from each axis is one dimensional (1D) and the 

classification method, CNN, works well in two or three-dimensional (2D, 3D) inputs, all 

data convert into 2D and 3D dataset respectively. In other words, grayscale (2D) and color 

(3D) images are created from the collected vibration data and thus prepared for the 

classification process. 
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4.1.1.1. 2D Image representation from 1D vibration data 

 

          Converting 1D data into the 2D images is a fairly recent method in order to classify 

(Gerek and Ece, 2004). As the images which show the characteristic of the data have used 

in many ways, every 1D data like vibration can be converted into the images. In this way, 

the system is prepared for classification by using CNN. 

          Figure 4.2 , 4.3 and 4.4 show the first 1000 vibration data from each x, y, and z-

axes respectively under 4.1 Amperes  of each faulty induction motor from the experiment 

1. When looking at the vibration data according to these figures, it has been determined 

that faults in different induction motors are sufficiently distinguishable.Thus, looking at 

the visible difference between the vibration data of faulty induction motors, it is thought 

that a visual method (CNN) for separating them may be useful. Taking into account all 

the vibration data, since it is observed that there is a distinction between each vibration 

data of faulty motor, 1D data can be transformed into 2D to construct images. It is 

generally known that computers see the grayscale (2D) images as a number of pixel 

values that have the range of 0-255. According to this, vibration data coming from each 

induction motors is needed to normalize between 0 and 255. After the normalization, the 

obtained values in the range of 0-255 becomes the pixel intensity of the formed image.  

          As already mentioned, the induction motor is first fed from the AC network without 

any load and then gradually loaded with different load values such as 3.6, 4.1, 4.7, 4.9, 5 

Amperes for forty seconds. Under the same load conditions, the tests are repeated by 

removing and then reconnecting the motor and generator. Thus, different experiments are 

formed. Three experiments per each induction motor (BFA has 5 experiment) for each 

loading conditions.  
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                                             (a)                                                                             (b) 

 

     (c)                                                                              (d) 

 

(e) 

 

 

Figure 4.2. The first 1000 vibration data from x- axis of (a) Healthy (b) BFE (c) 5BB (d) BFA (e) 3BB    

                   faulty induction motor under 4.1 Amperes 
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      (a)                                                                             (b) 

 

     (c)                                                                              (d) 

 

 

(e) 

 

Figure 4.3. The first 1000 vibration data from y- axis of (a) Healthy (b) BFE (c) 5BB (d) BFA (e) 3BB    

                   faulty induction motor under 4.1 Amperes 
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      (a)                                                                             (b) 

 

     (c)                                                                              (d) 

 

(e) 

 

Figure 4.4. The first 1000 vibration data from z- axis of (a) Healthy (b) BFE (c) 5BB (d) BFA (e) 3BB    

                   faulty induction motor under 4.1 Amperes 

 

 

          As it is repeated in experiments, when an induction machine without load is fed 

from the AC network, it rotates slightly more slowly than the synchronous speed. The 

increasing loading conditions, increases the stator current which will cause the rotation 

speed to fall (Germen, Başaran, and Fidan, 2014). For example, induction motor rotation 
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speed under 3.6 A is slightly faster than the rotor speed under 4.1 A. Moreover, the type 

of faults have different influences on the speed of rotation of the motor. Because of all 

these reasons, the actual rotor frequency, which can vary with each load and fault, must 

be determined so that motor faults can be distinguished. Since the 2D image will be 

generated from the vibration data, the determination of rotor frequency has a vital 

importance for the widths of the images. Because the width of the images is based on a 

full period of the power signal. Thus, the correct information is obtained from the 

vibration data. In other words, the 2D image can be created only after a full period size is 

determined. If each motor creates an image with the same common period value, the 

imaginary lines can be angularly rotated in the image, which leads to an erroneous 

information about the vibration data. For the determination of the complete period, 

Autocorrelation, which is a correlation between values of a signal at different times, is 

used. Since vibration data coming from the induction motor faults are asynchronous, the 

sample size of the complete period differs due to the fault type. Autocorrelation peaks of 

each vibration data help to determine the size of the 2D grayscale image. 

          While the image is generated from the one-dimensional vibration data, the first 

element of normalized vibration data between 0 and 255 is assigned as the first pixel 

value, which is the upper left corner of the image. There is only one sample axis of 

vibration values in Figure 4.5. Apparent values in Figure 4.5 are one of the real x-axis 

values of the healthy motor recorded under the 3.6A. As shown in the figure, after the 

normalization, the first value fills the first-pixel position which is pixel [0,0] and goes 

like this on the row up to the specified width of the image. 

 

 

 
Figure 4.5. An Example of 1D to 2D Vibration Data         
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From the Figure 4.6, which gives the first 2000 samples of the vibration data (recording 

from Experiment 1), it is obvious that each induction motors under the same amperes load 

have different autocorrelation values. The healthy motor has 411 as an autocorrelation 

value, while the last figure has 413. This means that they have to have different size of 

images. 

 

 

 

 

 

Figure 4.6. Autocorrelation sequences of the vibration data recorded for five different induction 

                            motor under 4.1 Amperes load                      
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Even though it is the same motor, it can give different autocorrelation values in different 

loading conditions as shown in Figure 4.7. 

 

 

 

 

 

Figure 4.7. Autocorrelation sequences of the vibration data recorded for healthy induction 

                              motor under different loading conditions  

 

The autocorrelation peaks vary on all induction motor faults as seen from the figures. In 

addition to this, the autocorrelation peaks in BFA are not shown clearly compared to other 

fault types as shown in Figure 4.6. It is very difficult to set the complete period for BFA 

according to the peak values. Because of this autocorrelation peak complexity of BFA, it 

is thought that even if the images are constructed at a certain size, they may interfere more 
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with other faults. Thus, there are five experiments for BFA under different loading 

conditions. Figure 4.8 demonstrates the complexity of autocorrelation peaks under 

different loading conditions clearly.  

 

 

 

 

Figure 4.8. Autocorrelation sequences of the vibration data recorded for BFA under different loading 

                   conditions  

 

 

          After autocorrelation, the 2D grayscale images can be created. The peak value of 

autocorrelation is the period of the sample, which is the size of the horizontal axis. All 

images were created separately according to the axis of the data. For each experiment, it 

has been observed that the period of each axis of vibration data is the same as expected. 
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Once the period value is obtained according to the autocorrelation values, a square image 

is created. Following Table 4.1 shows the autocorrelation values of all induction motors 

under varied loading conditions and experiments. As shown in the Table 4.1, image 

database, whose widths vary from 406 to 419 is created according to those autocorrelation 

values. 

 

Table 4.1. Autocorrelation Values of the vibration dataset 

Loading Conditions & Autocorrelation Values 

 3.6 A 4.1 A 4.7 A 4.9 A 5.0 A 

Healthy 

Exp 1 408 411 414 414 415 

Exp 2 409 411 414 415 416 

Exp 3 408 411 414 415 416 

BFE 

Exp 1 409 411 413 415 416 

Exp 2 410 413 411 415 416 

Exp 3 410 412 415 416 417 

5BB 

Exp 1 409 412 415 416 417 

Exp 2 409 412 415 416 417 

Exp 3 409 412 415 416 417 

BFA 

Exp 1 407 411 414 414 416 

Exp 2 410 411 413 414 416 

Exp 3 409 412 410 416 415 

Exp 4 406 410 412 413 414 

Exp 5 408 411 413 414 415 

3BB 

Exp 1 410 413 416 417 418 

Exp 2 410 414 417 418 419 

Exp 3 411 414 417 418 419 

 

           

          The 2D images of the vibration data obtained from different motors under 4.1 A is 

shown in Figure 4.9, 4.10 and 4.11. While images are being created, all the axis of the 

vibration data was considered according to their autocorrelation values. The vibration 

data obtained from the same induction motor form different images under different 

loading conditions. However, the characteristics of the images that consist of the same 

induction motor data are similar. Figure 4.12 and 4.13 show examples of 2D grayscale 

images taken from x- axis vibration data of healthy motor and 5BB respectively under 

different loading conditions. 

 

 



40 
 

 

 

 

 

 

 

 

           

Figure 4.9. 2D Grayscale Images of the x- axis vibration data under 4.1 A 
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5BB BFA 

 

 

3BB 
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Figure 4.10. 2D Grayscale Images of the y- axis vibration data under 4.1 A 

 

 

Healthy BFE 

5BB BFA 
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Figure 4.11. 2D Grayscale Images of the z- axis vibration data under 4.1 A 
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                       (a)                                                       (b)                                                      (c) 

                                          
                                                       (d)                                                          (e) 

 
Figure 4.12. 2D Grayscale Images of the x- axis vibration data from the healthy motor under (a) 3.6 A  

                  (b) 4.1 A (c) 4.7 A (d) 4.9 A (e) 5 A  

 

                 

                       (a)                                                       (b)                                                      (c) 

                                        

                                                       (d)                                                          (e) 

Figure 4.13. 2D Grayscale Images of the x- axis vibration data from 5BB under (a) 3.6 A (b) 4.1 A  

                    (c) 4.7 A (d) 4.9 A (e) 5 A 
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          The 5 motors, 5 different load conditions with 3 experiments each (5 of BFA) and 

3 different axis produce 85 grayscale images. Those images are not proper for CNN by 

themselves. Instead each image firstly divided into a smaller part in order to use them for 

training and test in CNN classification. For this approach two different model have been 

created with 40X40 images model is used, each gray level image produces 100 small size 

images. According to this, each induction motor has 1.500 images, except BFA (has 2.500 

images). 

          Figure 4.14 shows multiple image formation from the 1D image. In this process it 

is obvious that every gray scale image has been segmented 100 different size images 

which forms the dataset of CNN. 

          In the second model, the gray level images from vibration data are also divided into 

50x50 size for comparison with the model of 40x40 size of the images. In this time, 960 

pictures are created from a one motor fault type (each image gives 64 small images), 

except BFA (has 1600 test images).  In this thesis, a comparison of the two datasets 

coming from 40x40 and 50x50 size of images is given. 

 

 

Figure 4.14. Multiple Image Formation from 2D Grayscale Image of healthy motor under 4.1 A. 

           

          The following Table 4.2 displays that the number of samples in an image database 

prepared for classification of the induction motor faults. 
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Table 4.2. The number of samples in the dataset prepared for classification of the induction motor faults. 

 

 

4.1.1.2 3D Image represantation from  combination of 1D vibration data 

 

          In the previous section, 2D images were extracted from one-dimensional data. In 

this section, 3D images were created using the vibration data of each axis of the induction 

motor. X, Y and Z axis of the vibration data were recorded during the acquiring the whole 

data. Thus, these three axes can be combined and converted into a new color image of the 

existing data. A color image consists of three dimensions that include color information 

of each dimension and so each pixel. It has red, green and blue component, in this way, 

x, y and z-axes are appointed to red, green and blue component respectively.    

 

 
 

Figure 4.15. The formation of color image from the combination of three axes 
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Figure 4.16. 3D Color Images under 4.1 A 
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            Figure 4.16 is about formed color images according to the combination of the x,y, 

z-axes values. It shows five distinct data of motor fault types under 4.1 Amperes. 

Following the previous method, the formed color images were split into 40x40 and 50x50 

images in order to compose the dataset of the network. Then, the number of samples in 

the dataset for colored ones are prepared for classification of the induction motor faults. 

Moreover, 3D images constructed from the same induction motor data reflect similar 

character traits, even if they are under different loading conditions, just like the 2D 

grayscale ones. Figure 4.17 and 4.18 show this by 3D color images which is constructed 

from BFA and 3BB respectively under distinct loading conditions. 

 

                 

                       (a)                                                       (b)                                                      (c) 

                                        

                                                       (d)                                                          (e) 

 

Figure 4.17. 3D Color Images of BFA under (a)3.6 A (b) 4.1 A (c) 4.7A (d) 4.9 A (e) 5 A 
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                       (a)                                                       (b)                                                      (c) 

                                       

                                                       (d)                                                          (e) 

Figure 4.18. 3D Color Images of 3BB under (a)3.6 A (b) 4.1 A (c) 4.7A (d) 4.9 A (e) 5 A 

 

 

4.2. Classification Result 

 

          In order to use CNN, many parameters need to be set such as the number of 

convolution layer, number of the filter, epoch, batch size, kernel size, and optimizer. As 

already mentioned, CNN needs iterations in order to update training process. These 

iterations are called epoch. Namely, one epoch consists of all the training data set 

processed back and forths (Sharma, 2017). Kernel size is the parameter that determines 

the height and width of the 2D convolution window (Keras, http). The number of filters 

is the number of output filters in the convolution. In addition, batch size is the number of 

training samples in one iteration.  Iteration as a term is different from epoch and batch 

size. Iteration is the number of batches required to complete an epoch. As mentioned in 

Chapter 3, optimizers, which are used in this thesis, are SGD, SGD with momentum, SGD 

with Nesterov, SGD with momentum and Nesterov, Adam and Nadam. 
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          The first approach to classify the vibration data is based on the x-axis dataset. The 

parameters which are better to classify have been focused on the x-axis dataset for 

subsequent experiments. Moreover, 80 % of the dataset is left as a train set and remainder 

set to as a test set during the whole experiments. 

          As shown in Table 4.3, various experiments were performed on the basis of x-axis 

image dataset according to different parameters. The number of the filter is seen like 2-

32, 2-64 mean that first two Conv2D layers use a number of 32 filters, following two 

Conv2D layers use a number of 64 filters as shown in Table 4.5. The following 

experiments on the whole dataset contain 50 epoch, 4 Conv2D layers that 2 of them have 

32 filters and the others have 64, each Conv2D layer has (3,3) kernel size. Because, as 

shown by the Table 4.3, if the number of epoch size and convolution are increased, it is 

observed that the test accuracy is getting higher. Although the number of epochs is not so 

large, the test accuracy is not so bad. Conversely, if the kernel size is increased, the test 

accuracy is decreased. Batch size is also like the kernel size, it is better at low values for 

classification. But, according to Table 4.3, there is not a big difference in the batch size. 

In addition, batch size is set to 32 and batch normalization is used for following 

experiments. Up to the last activation (5 activations), ReLU is used and the last one is 

Softmax function.  

          Furthermore, the model was created using these parameters and the Table 4.4 and 

Table 4.5 show the outline of it for the size of 40x40 and 50X50 of 2D grayscale image 

dataset respectively. According to Table 4.4 and 4.5, total 4 convolution layers are used. 

The first two of the convolution layers use the number of 32 filters with the kernel size of 

(3,3) and the next two convolution layers use the number of 64 filters with the kernel size 

of (3,3). Batch normalization and activation- ReLU are used after each convolution layer. 

Note that batch normalization and ReLU have no affect on output shape. After the first 

two convolution layer, batch normalization and ReLU, the size of (2,2) max pooling is 

used in order to reduce the output shape. 
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Table 4.3. Parameters tested for the finding best classification of the dataset 

 

 Test # Of # Of Kernel Batch   Batch 

Exp Accuracy 
Conv 

2D 
Filter Size Norm. Optimizer Epochs Size 

         

1 0.9064 2 32 3,3 not used SGD 5 32 

2 0.9329 2 32 3,3 not used SGD 10 32 

3 0.9582 2 32 3,3 used SGD 5 32 

4 0.8941 2 64 3,3 used SGD 5 32 

5 0.9535 2 32 5,5 used SGD 5 32 

6 0.9552 4 
2-32 

2-64 
3,3 used SGD 5 32 

7 0.9688 4 
2-32 

2-64 
3,3 used SGD 10 32 

8 0.9976 4 
2-32 

2-64 
3,3 used ADAM 10 32 

9 0.9952 4 
2-32 

2-64 
3,3 used ADAM 10 64 

 

 

          After the next two of them, (2,2) max pooling is reused. Flatten is used to transmit 

to the fully connected layer. The first dense function regulates the neurons which come 

from the flatten part. The last dense operation is appointed according to output labels 

which are healthy, BFE, 5BB, BFA, and 3BB in this thesis. In addition to this, with the 

use of last activation, inputs are dispatched to the corresponding labels. There is one 

dropout operation in the model to make the network less complicated. 

          As seen in Table 4.4, a different output shape (None, 38, 38, 32) is seen, after the 

first convolution layer. This shape can be calculated from the equation 3.7 in Chapter 3: 

 

 𝑜𝑢𝑡 =  
𝑖𝑛−𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝑓𝑖𝑒𝑙𝑑+2∗𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1                                (3.7) 

 

After the shape of input image (40,40,1) output of convolution layer gives, (None, 38, 38, 

32) means that out = 38 and 32 is the number of filters with the size of 3. Padding is the 

same which means there is no padding in here. So, the padding value is zero. Moreover, 

the stride is the default value which is 1. According to Table 4.4, the out is: 

𝑜𝑢𝑡 =  
40−3+2∗0

1
+ 1   = 38                                              (4.1) 
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Each filter has 3*3= 9 parameters plus bias. In addition to this, there are 32 filters. 

According to this after the first convolution layer, there are (9+1) *32 = 320 parameters 

as seen from the Table 4.4. The same procedure is repeated for the other convolution 

layers. In addition, (2,2) max-pooling operation reduces the size of the output height and 

width but not depth, after the activation. Moreover, the reason for the output shape seen 

in the flatten() is that the max-pooling from the previous layer (None, 7, 7, 64) gives 

7*7*64 = 3136.  

 

Table 4.4. Summary of model of the CNN for the size of 40X40 of 2D Grayscale Images classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

Layer (type) Output Shape Param # 

conv2d_1 (Conv2D) (None, 38, 38, 32) 320 

batch_normalization_1(Batch) (None, 38, 38, 32) 128 

activation_1 (Activation) (None, 38, 38, 32) 0 

conv2d_2 (Conv2D) (None, 36, 36, 32) 9248 

batch_normalization_2 (Batch) (None, 36, 36, 32) 128 

activation_2 (Activation) (None, 36, 36, 32) 0 

max_pooling2d_1 (MaxPooling2) (None, 18, 18, 32) 0 

conv2d_3 (Conv2D) (None, 16, 16, 64) 18496 

batch_normalization_3 (Batch) (None, 16, 16, 64) 256 

activation_3 (Activation) (None, 16, 16, 64) 0 

conv2d_4 (Conv2D) (None, 14, 14, 64) 36928 

batch_normalization_4 (Batch) (None, 14, 14, 64) 256 

activation_4 (Activation) (None, 14, 14, 64) 0 

max_pooling2d_2 (MaxPooling2) (None, 7, 7, 64) 0 

flatten_1 (Flatten) (None, 3136) 0 

dense_1 (Dense) (None, 512) 1606144 

batch_normalization_5 (Batch) (None, 512) 2048 

activation_5 (Activation) (None, 512) 0 

dropout_1 (Dropout) (None, 512) 0 

dense_2 (Dense) (None, 5) 2565 

activation_6 (Activation) (None, 5) 0 

 Total params: 1,676,517 

 
Trainable params: 

 
1,675,109 

 Non-Trainable params: 1,408 
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           As shown in Table 4.5, when the same procedure is applied to the size of 50X50 

2D grayscale images, number of parameters are increased because of the size of images. 

Moreover, the same procedure is also applied to the size of 40X40 and 50x50 color 

images. However, because of the nature of the color images, number of parameters are 

changed since depth has been increased by 3.  

Table 4.5. Summary of model of the CNN for the size of 50X50 of 2D Grayscale Images classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer (type) Output Shape Param # 

conv2d_1 (Conv2D) (None, 48, 48, 32) 320 

batch_normalization_1(Batch) (None, 48, 48, 32) 128 

activation_1 (Activation) (None, 48, 48, 32) 0 

conv2d_2 (Conv2D) (None, 46, 46, 32) 9248 

batch_normalization_2 (Batch) (None, 46, 46, 32) 128 

activation_2 (Activation) (None, 46, 46, 32) 0 

max_pooling2d_1 (MaxPooling2) (None, 23, 23, 32) 0 

conv2d_3 (Conv2D) (None, 21, 21, 64) 18496 

batch_normalization_3 (Batch) (None, 21, 21, 64) 256 

activation_3 (Activation) (None, 21, 21, 64) 0 

conv2d_4 (Conv2D) (None, 19, 19, 64) 36928 

batch_normalization_4 (Batch) (None, 19, 19, 64) 256 

activation_4 (Activation) (None, 19, 19, 64) 0 

max_pooling2d_2 (MaxPooling2) (None, 9, 9, 64) 0 

flatten_1 (Flatten) (None, 5184) 0 

dense_1 (Dense) (None, 512) 2654720 

batch_normalization_5 (Batch) (None, 512) 2048 

activation_5 (Activation) (None, 512) 0 

dropout_1 (Dropout) (None, 512) 0 

dense_2 (Dense) (None, 5) 2565 

activation_6 (Activation) (None, 5) 0 

 Total params: 2,725,669 

 
Trainable params:  

 
2,724,261 

                                                                Non-Trainable params:     1,408 
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          The number of parameters that are trainable and non-trainable is also given. Non-

trainable parameters are about weights that are not updated by the system during the 

training stage. The default value of it is zero, 1,408 parameters are kept constant according 

to this model. 

 

 

4.2.1. Classification results for images from the x-axis of the vibration dataset 

 

4.2.1.1. Classification results for the size of 40x40 Images from x -axis of the vibration   

             dataset 

 

 

          Classification results for the size of 40X40 images from the x-axis of the vibration 

dataset regardless of various optimization technique can be seen from the Table 4.6. It 

seems that SGD and SGD with momentum give lower test accuracy compared to others. 

           

Table 4.6. Test Accuracy for 40x40 Images formed of x-axis of the vibration data classification after 50 

                 epochs with different optimizer 

 

 

 

 

 

 

 

          Although Nadam and Adam have good test accuracy and training performance, it 

does not imply a good approximation on their validation accuracy according to Figure 

4.19 (a), (b). Training and validation accuracy are similar in SGD Nesterov that is the 

green line in Figure 4.19 and thus, in here model will give the best result to input images 

for classification. Unlike test accuracy from the Table 4.6, the SGD has low validation 

loss. Only SGD with Nesterov and SGD with Nesterov and Momentum fit the model after 

50 epochs compared to others which are still underfitting. This could be a small number 

of epochs. Figure 4.19 (c) and (d) gives training loss and validation loss respectively. By 

Optimization Technique Test_accuracy 

SGD 0.95 

SGD + Nesterov 0.99 

SGD + Momentum 0.98 

SGD + Nesterov +Momentum 0.99 

Adam 0.99 

Nadam 0.99 
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looking at these figures, the learning rate is usually good. The amount of “wiggle” in the 

loss Figure 4.19 is about to the batch size (http-8).   

 

     

                                          (a)        (b) 

         

                                         (c)        (d) 

Figure 4.19. (a) Train accuracy (b) Validation accuracy (c) Train loss (d) Validation loss for 40x40 Images 

                    of the X-axis of the vibration data classification after 50 epochs with different optimizers 

 

          For more detailed information, confusion matrix for 40x40 images from the x-axis 

of the vibration data are given in Table 4.7 to Table 4.12. Confusion matrix or error matrix 

is often used to check the output performance of CNN for target and actual values of 

classification the target qualities. In other words, a confusion matrix gives summary of 

results of prediction of the model. Thus, by checking confusion matrix, it is easy to 

understand the similarities of the classification result. For example, two results may have 

the same test accuracy value under different optimization techniques, but with confusion 

matrix, it is possible to estimate the output quality of the model in more detail. According 

to the confusion matrix in Table 4.7, BFE is thought to BFA using SGD in some cases. 

Moreover, 5BB is confused with BFA. When the Table 4.8 to 4.12 are checked, it can be 
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deducted that SGD with Nesterov and Momentum produce better performance compared 

to others from point of view of classification. 

 

Table 4.7. Confusion Matrix for 40x40 Images of the X-axis vibration data classification using SGD  

 

Predicted  

 Healthy BFE 5BB BFA 3BB 

Healthy 284 0 0 0 0 

BFE 0 241 0 67 0 

5BB 0 0 318 3 0 

BFA 0 0 0 518 0 

3BB 0 0 0 0 269 

 

Table 4.8. Confusion Matrix for 40x40 Images of the X-axis vibration data classification using SGD + 

Nesterov 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 284 0 0 0 0 

BFE 0 300 0 8 0 

5BB 0 0 320 1 0 

BFA 0 0 0 518 0 

3BB 0 0 0 0 269 

 

Table 4.9. Confusion Matrix for 40x40 Images of the X-axis vibration data classification using SGD + 

momentum 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 284 0 0 0 0 

BFE 0 288 0 20 0 

5BB 0 0 320 1 0 

BFA 0 0 0 518 0 

3BB 0 0 0 0 269 

 

Table 4.10. Confusion Matrix for 40x40 Images of the X-axis vibration data classification using SGD + 

Nesterov +momentum 

Predicted 

Healthy BFE 5BB BFA 3BB 

Healthy 284 0 0 0 0 

BFE 0 304 0 4 0 

5BB 0 0 321 0 0 

BFA 0 0 0 518 0 

3BB 0 0 0 0 269 
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Table 4.11. Confusion Matrix for 40x40 Images of the X-axis vibration data classification using Adam 

 

 

 

 

 

 

 

 

Table 4.12. Confusion Matrix for 40x40 Images of the X-axis vibration data classification using Nadam  

 

 

 

 

 

 

 

          According to this part, SGD with Momentum and Nesterov gives the best 

classification results for 40x40 images from the x-axis of the vibration data. 

 

4.2.1.2. Classification results for the size of 50x50 images from x -axis of the vibration   

             dataset 

 

          In this section, the classification of 50x50 Images from the x-axis vibration dataset 

does not include adam and nadam optimizers. The same procedure will be applied to 

images of 50x50 size in further experiments. By looking at Table 4.13, SGD classifies 

better with images of size 50x50 than 40x40. For 50X50 images, SGD and SGD with 

momentum and Nesterov show best test accuracy.   

 

 

 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 284 0 0 0 0 

BFE 0 304 0 4 0 

5BB 0 0 319 2 0 

BFA 0 0 0 518 0 

3BB 0 0 1 0 268 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 284 0 0 0 0 

BFE 0 304 0 4 0 

5BB 0 1 320 0 0 

BFA 0 0 0 518 0 

3BB 0 0 0 0 269 
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Table 4.13. Test Accuracy for 50x50 Images of x-axis of the vibration data using different Optimizer    

 

 

 

 

 

          As shown in the Figure 4.20 (a) and (b), validation accuracy have ripples in many 

places compared to training accuracy. According to this, although the test accuracy gives 

good results, it is possible to deduce the model needs more epochs. Moreover, there is not 

a big difference between the lines, it is possible to say that there is no overfitting. Figure 

4.20 (c) and (d) show that validation loss is nearly the same as the training loss. This gives 

the learning rate is good enough. So in those experiments it is possible to say that the 

learning rate is chosen properly. 

 

 

  (a)                                                                              (b) 

 

(c)                                                                               (d) 

 

Figure 4.20. (a) Train accuracy (b) Validation accuracy (c) Train loss (d) Validation loss for 50x50 Images  

                    from X-axis of the vibration data classification after 50 epochs using different optimizers 

 

 

Optimization Technique Test_accuracy 

SGD 0.98 

SGD + Nesterov 0.97 

SGD + Momentum 0.96 

SGD + Nesterov +Momentum           0.98 
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          When we look at to the confusion matrix which are given in Table 4.14 to Table 

4.17, classification using SGD with momentum and Nesterov gives the best result in this 

time, too. This is about the combination of the Nesterov and momentum works well for 

the classification. Images of size 40x40 from x-axis vibration data regardless of the SGD 

with momentum and Nesterov overcomes the images of size 50x50 for classification. 

 

Table 4.14. Confusion Matrix for 50x50 Images of X-axis of the vibration data classification using SGD 

 

 

 

 

 

 

 

 

Table 4.15. Confusion Matrix for 50x50 Images of X-axis of the vibration data classification using SGD +   

                    Nesterov 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 197 1 0 0 0 

BFE 0 173 0      23 0 

5BB 0 2 201 3 0 

BFA 0 0 0 285 0 

3BB 0 0 0 0 203 

 

Table 4.16. Confusion Matrix for 50x50 Images of X-axis of the vibration data classification using SGD + 

                   Momentum 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 198 0 0 0 0 

BFE 0 175 0 21 0 

5BB 0 13 191 2 0 

BFA 0 0 0 285 0 

3BB 0 0 0 0 203 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 198 0 0 0 0 

BFE 0 187 0 9 0 

5BB 0 2 199 5 0 

BFA 0 0 0 285 0 

3BB 0 0 0 0 203 
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Table 4.17. Confusion Matrix for 50x50 Images of X-axis of the vibration data classification using SGD + 

                  Nesterov + Momentum 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 198 0 0 0 0 

BFE 0 187 0 9 0 

5BB 0 0 203 3 0 

BFA 0 0 0 285 0 

3BB 0 0 0 0 203 

 

          In order to conclude this Section 4.2.1, it is necessary to stress that CNN confuses 

BFE and BFA, and also SGD with momentum and Nesterov serves the best result for 

images from x-axis vibration dataset. 

 

 

4.2.2. Classification results for images from y-axis of the vibration dataset 

 

4.2.2.1. Classification results for the size of 40x40 images from the y-axis of the 

vibration dataset  

          Table 4.20 demonstrates that the result of SGD with momentum and Nesterov 

comes out on top. Looking at deeper with the Figure 4.21 (a)-(d), its validation accuracy 

does not fluctuate so much like others and the learning rate is fit better.   

 

 Table 4.18. Test Accuracy for 40x40 Images from  y-axis of the vibration data classification after 50   

                     epochs with various optimizers 

 

Optimization Technique Test_accuracy 

SGD 0.98 

SGD + Nesterov 0.96 

SGD + Momentum 0.93 

SGD + Nesterov +Momentum 0.99 

Adam 0.71 

Nadam 0.94 
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      (a)                                                                          (b) 

 

                                            (c)                                                                           (d) 

Figure 4.21. (a) Train accuracy (b) Validation (c) Train loss (d) Validation loss for 40x40 Images from  

                     Y-axis of the vibration data classification after 50 epochs with different optimizers 

 

          A detailed look for classification error is shown in the Table 4.19 to 4.24. Not only 

there is a confusion between BFE and BFA for images from y-axis vibration, some of 

fault types are confused.  

 

Table 4.19. Confusion Matrix for 40x40 Images of Y-axis of the vibration data classification using SGD 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 305 0 0 0 0 

BFE 0 251 0 24 0 

5BB 0 0 276 0 0 

BFA 0 0 0 531 0 

3BB 0 0 9 0 304 
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Table 4.20. Confusion Matrix for 40x40 Images of Y-axis of the vibration data classification using SGD +    

                    Nesterov 

 

 

 

 

 

Table 4.21. Confusion Matrix for 40x40 Images of Y-axis of the vibration data classification using SGD +  

                   Momentum 

 

 

 

 

 

Table 4.22. Confusion Matrix for 40x40 Images of Y-axis of the vibration data classification using SGD +  

                   Momentum + Nesterov 

 

 

 

 

 

 

Table 4.23. Confusion Matrix for 40x40 Images of Y-axis of the vibration data classification using Adam 

                  

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 305 0 0 0 0 

BFE 22 185 0 68 0 

5BB 211 0 50 0 15 

BFA 0 0 0 531 0 

3BB 177 0 0 0 136 

 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 298 0 1 6 0 

BFE 0 227 0 48 0 

5BB 0 0 272 2 2 

BFA 0 0 0 531 0 

3BB 0 0 0 0 313 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 305 0 0 0 0 

BFE 0 170 0 105 0 

5BB 0 0 274 0 2 

BFA 0 0 0 531 0 

3BB 0 0 0 0 313 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 305 0 0 0 0 

BFE 0 275 0 0 0 

5BB 0 0 274 0 2 

BFA 0 0 0 531 0 

3BB 0 0 0 0 313 
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Table 4.24. Confusion Matrix for 40x40 Images of Y-axis of the vibration data classification using Nadam 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 296 0 9 0 0 

BFE 0 201 0 74 0 

5BB 0 0 276 0 0 

BFA 0 0 0 531 0 

3BB 0 0 3 0 310 

 

 

4.2.2.2. Classification results for the size of 50x50 images from the y-axis of the 

             vibration dataset 

 

          From Table 4.25, CovnNet works best with the SGD+Momentum and 

SGD+Nesterov than others. 

 

Table 4.25. Test Accuracy for 50x50 Images of y-axis of the vibration data classification after 50 epochs  

                    with Various Optimizer 

 

 

Optimization Technique Test_accuracy 

SGD 0.92 

SGD + Nesterov 0.98 

SGD + Momentum 0.98 

SGD + Nesterov +Momentum           0.97 

 

           

          There are ripples between the values as shown in Figure 4.22 (b). This shows that 

more epochs would be better for the 50x50 images from y-axis vibration dataset. 

Furthermore, the learning rate is not fit well as seen from the Figure 4.22 (d). 
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 (a)                                                                               (b) 

 

(c)                                                                               (d)                                                                                                  

Figure 4.22. (a) Train accuracy(b) Validation accuracy (c) Train loss (d) Validation loss for 50x50 Images 

                    from Y-axis of the vibration data classification after 50 epochs with various optimizers 

 

          Classification results regardless of all optimizers demonstrate that BFE is still 

supposed as BFA, even in the use of SGD with momentum which is the best in this part. 

 

Table 4.26. Confusion Matrix for 50x50 Images of Y-axis of the vibration data classification using SGD 

 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 198 0 0 0 0 

BFE 2 128 2 72 0 

5BB 1 0 187 0 1 

BFA 0 0 0 317 0 

3BB 0 0 1 0 178 
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Table 4.27. Confusion Matrix for 50x50 Images of Y-axis of the vibration data classification using SGD + 

                   Nesterov 

 
Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 198 0 0 0 0 

BFE 0 187 0 18 0 

5BB 0 0 188 0 1 

BFA 0 0 0 317 0 

3BB 0 0 0 0 179 

 

 
Table 4.28. Confusion Matrix for 50x50 Images of Y-axis of the vibration data classification using SGD +  

                   Momentum 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 198 0 0 0 0 

BFE 0 194 0 11 0 

5BB 0 0 189 0 0 

BFA 0 0 0 317 0 

3BB 0 0 0 0 179 

 

 

 

Table 4.29. Confusion Matrix for 50x50 Images of Y-axis of the vibration data classification using SGD +  

                   Nesterov + Momentum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 198 0 0 0 0 

BFE 0 176 0 29 0 

5BB 0 0 189 0 0 

BFA 0 0 0 317 0 

3BB 0 0 0 0 179 
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4.2.3. Classification results for images from z-axis of the vibration dataset 

4.2.3.1. Classification results for the size of 40x40 images from the z-axis of the 

             vibration dataset  

 

          In Table 4.32, optimization techniques which are SGD with momentum and SGD 

with momentum and Nesterov have higher test accuracy than the others. Moreover, 

validation accuracy from using SGD with momentum and Nesterov has nearly the same 

training accuracy according to Figure 4.23 (a) and (b). In addition to this, it can be 

deducted from the Figure 4.23 (c) and (d), the learning rate is good enough for SGD with 

Nesterov, SGD with momentum and, also SGD with momentum-Nesterov. 

 

Table 4.30. Test Accuracy for 40x40 Images of z-axis of the vibration data classification after 50 epochs 

                    with different optimizer 

Optimization Technique Test_accuracy 

SGD 0.95 

SGD + Nesterov 0.97 

SGD + Momentum 0.98 

SGD + Nesterov +Momentum 0.98 

Adam 0.92 

Nadam 0.92 

 

 

          For a more detailed look, Table 4.31 to Table 4.36 of the confusion matrices give 

a deeper information. It seems that images in BFE of size 40x40 from z-axis vibration 

data are also confused with the images in BFA by the system. The top result which is with 

SGD and momentum shows that healthy motor and 5BB motor are supposed to in 3BB 

label. 
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(a)                                                                                   (b) 

 

(c)                                                                                   (d) 

 

Figure 4.23. (a) Train accuracy (b) Validation accuracy (c) Train loss (d) Validation loss for 40x40 Images  

                    from Z-axis of the vibration data classification after 50 epochs with different optimizers 

 

 

Table 4.31. Confusion Matrix for 40x40 Images from Z-axis of the vibration data classification using SGD 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 303 0 1 0 0 

BFE 0 253 0 58 0 

5BB 0 0 272 1 12 

BFA 0 0 0 515 0 

3BB 0 0 4 0 281 
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Table 4.32. Confusion Matrix for 40x40 Images of Z-axis of the vibration data classification using SGD +  

                   Nesterov 

 

 

 

 

 

 

Table 4.33. Confusion Matrix for 40x40 Images of Z-axis of the vibration data classification using SGD +  

                  Momentum 

 

 

 

 

 

 

 

Table 4.34. Confusion Matrix for 40x40 Images of Z-axis of the vibration data classification using SGD +  

                   Momentum + Nesterov 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 302 0 1 0 1 

BFE 0 302 0 9 0 

5BB 0 0 275 2 8 

BFA 0 0 0 515 0 

3BB 0 0 1 0 284 

 

Table 4.35. Confusion Matrix for 40x40 Images of Z-axis of the vibration data classificationusing Adam 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 243 0 1 0 0 

BFE 0 308 0 3 0 

5BB 0 0 229 1 55 

BFA 0 0 0 515 0 

3BB 0 0 0 0 285 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 304 0 0 0 0 

BFE 1 272 0 38 0 

5BB 3 0 285 0 0 

BFA 0 0 0 515 0 

3BB 0 0 1 0 284 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 303 0 0 0 1 

BFE 0 311 0 0 0 

5BB 1 7 275 0 2 

BFA 0 3 0 512 0 

3BB 0 0 5 0 280 
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Table 4.36. Confusion Matrix for 40x40 Images of Z-axis of the vibration data classification using Nadam 

 

 

 

 

 

 

 

 

4.2.3.2. Classification results for the size of 50x50 images from the z-axis of the  

              vibration dataset 

 

          Just change the size of the image to 50x50 from the z-axis vibration data, 

classification of the test data results are increased as seen in Table 4.37.  

 

Table 4.37. Test Accuracy for 50x50 Images of  z-axis of the vibration data classification after 50 epochs  

                   using different Optimizer 

 

Optimization Technique Test_accuracy 

SGD 0.98 

SGD + Nesterov 0.98 

SGD + Momentum 0.99 

SGD + Nesterov +Momentum 0.99 

 

         

           By looking Figure 4.24 (a) and (b), although validation accuracy with various 

optimizers contain fluctuations, SGD with momentum in validation accuracy graph is 

close to training one. This says that the model fits well. In addition, this situation is also 

true for the loss charts which gives an information about the learning rate.  

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 304 0 0 0 0 

BFE 0 206 0 105 0 

5BB 0 0 258 13 14 

BFA 0 0 0 515 0 

3BB 1 0 0 0 284 
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                                           (a)                                                                               (b) 

 

                                          (c)                                                                                 (d) 

Figure 4.24. (a) Train accuracy (b) Validation accuracy (c) Train loss (d) Validation loss for 50x50 Images 

                    from Z-axis of the vibration data classification after 50 epochs using different optimizers 

 

 

          To look more closely, according to Table 4.41, SGD with momentum and Nesterov 

gives the best classification result, only with five errors. On the other hand, it is 

understood from the Table 4.40, 5BB are supposed to 3BB. 

 

Table 4.38. Confusion Matrix for 50x50 Images of Z-axis of the vibration data classification using SGD 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 174 0 0 0 1 

BFE 0 184 0 15 0 

5BB 0 0 222 0 1 

BFA 0 0 0 292 0 

3BB 0 0 1 0 198 
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Table 4.39. Confusion Matrix for 50x50 Images of Z-axis of the vibration data classification using SGD +  

                   Nesterov 

 

 

 

 

 

 

 

 

Table 4.40. Confusion Matrix for 50x50 Images of Z-axis of the vibration data classification using SGD +  

                   Momentum 

 

 

 

 

 

 

 

 

Table 4.41. Confusion Matrix for 50x50 Images of Z-axis of the vibration data classification using SGD +  

                   Momentum and Nesterov 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 175 0 0 0 0 

BFE 0 194 0 5 0 

5BB 0 0 223 0 0 

BFA 0 0 0 292 0 

3BB 0 0 1 0 198 

 

 

          It can be said in total for this section, the images of size 50x50 from z-axis vibration 

data give more accurate results than the images of the size 40x40. 

 

 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 174 0 0 0 1 

BFE 0 195 0 4 0 

5BB 0 0 219 2 2 

BFA 0 0 0 292 0 

3BB 0 0 5 0 194 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 173 0 1 0 1 

BFE 0 198 0 1 0 

5BB 1 3 210 0 9 

BFA 0 1 0 291 0 

3BB 0 1 0 0 198 
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4.2.4. Classification results for color images from of the vibration dataset 

 4.2.2.1. Classification results for the size of 40x40 color images of the vibration dataset 

 

          The results were expected to be more accurate with the color images because of the 

combination of information of all axes. As seen from the Table 4.42, the result with SGD 

gives such a high result for the first time. Except for the technique Adam, the other results 

are also not bad. It can be said by looking at Figure 4.25 (a)-(d) that SGD conforms to the 

CNN. 

Table 4.42. Test Accuracy for 40x40 Color Images of the vibration data classification after 50 epochs using 

                  different Optimizer 

 

Optimization Technique Test_accuracy 

SGD 0.99 

SGD + Nesterov 0.99 

SGD + Momentum 0.98 

SGD + Nesterov +Momentum 0.99 

Adam 0.87 

Nadam 0.98 

  

 
                                  (a)                                                                              (b) 

 

                                 (c)                                                                              (d) 

Figure 4.25. (a) Train accuracy (b) Validation accuracy (c) Train loss (d) Validation loss for 40x40 Color 

                     Images of the vibration data classification after 50 epochs regardless of various optimizers 
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          The network with SGD gives a good result as shown in Table 4.43. 

Table 4.43. Confusion Matrix for 40x40 Color Images of the vibration data classification using SGD 

               

 

 

 

 

 

Table 4.44. Confusion Matrix for 40x40 Color Images of the vibration data classification using SGD +  

                    Nesterov 

 

 

 

 

 

 

Table 4.45. Confusion Matrix for 40x40 Color Images of the vibration data classification using SGD + 

                   Momentum 

 

 

 

 

 

Table 4.46. Confusion Matrix for 40x40 Color Images of the vibration data classification using SGD +  

                   Momentum and Nesterov 

 

 

 

 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 290 0 1 0 0 

BFE 0 316 0 1 0 

5BB 0 0 308 0 1 

BFA 0 7 0 497 0 

3BB 0 0 0 0 279 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 291 0 0 0 0 

BFE 0 312 0 5 0 

5BB 1 0 307 1 0 

BFA 0 1 0 503 0 

3BB 0 0 1 0 278 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 291 0 0 0 0 

BFE 0 317 0 0 0 

5BB 0 0 309 0 0 

BFA 0 29 0 475 0 

3BB 0 0 0 0 279 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 290 0 1 0 0 

BFE 0 315 0 2 0 

5BB 0 0 306 0 3 

BFA 0 2 0 502 0 

3BB 0 0 1 0 278 
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Table 4.47. Confusion Matrix for 40x40 Color Images of the vibration data classification using Adam 

 

 

 

 

 

Table 4.48. Confusion Matrix for 40x40 Color Images of the vibration data classification using Nadam 

 

 

 

 

 

          Since better results are expected for the color images, the model is once run with 

300 epochs and with only for SGD with momentum and Nesterov which gives the best 

classification result in total. With the change of this parameter, test accuracy showed 

0.999. Thus, Table 4.49 demonstrate the best result up to now, with only one classification 

error. 

Table 4.49. Confusion Matrix for 40x40 Color Images of the vibration data classification using SGD +  

                   Momentum and Nesterov 

 

 

 

 

           

After trying the experiment with 300 epoch seen in the following Figure 4.26, CNN could 

be learned more stable compared to 50 epochs and so gives the better result. 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 291 0 0 0 0 

BFE 0 317 0 0 0 

5BB 2 2 292 0 13 

BFA 0 191 0 312 0 

3BB 0 0 0 0 279 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 283 0 4 0 4 

BFE 0 296 18 3 0 

5BB 0 0 305 0 4 

BFA 0 7 1 503 0 

3BB 0 0 0 0 279 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 293 0 0 0 0 

BFE 0 328 0 0 0 

5BB 0 0 280 0 0 

BFA 0 0 0 504 0 

3BB 0 0 1 0 294 
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                                           (a)                                                                             (b) 

 

                                          (c)                                                                             (d) 

 

Figure 4.26. (a) Train accuracy (b) Validation accuracy (c) Train loss (d) Validation loss for 40x40 Color 

                    Images of the vibration data classification after 300 epochs using different optimizers 

 

 

 4.2.2.2. Classification results for the size of 50x50 color images of the vibration dataset 

          Classification using SGD with momentum for the size of 50x50 color images of 

the vibration data gives more accurate results compared to the size of 40x40 color images 

from the Table 4.50. 

 

Table 4.50. Test Accuracy for 50x50 Color Images of the vibration data classification after 50 epochs using     

                  different Optimizer 

 

 

 

 

          Figure 4.24 (a) to (d) indicate that except usage of SGD + Nesterov + Momentum, 

the CNN fits well in other technique. 

Optimization Technique Test_accuracy 

  

SGD 0.99 

SGD + Nesterov 0.99 

SGD + Momentum 0.99 

SGD + Nesterov +Momentum 0.99 
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                                         (a)                                                                            (b) 

 
                                        (c)                                                                             (d) 

Figure 4.27. (a) Train accuracy (b) Validation accuracy (c) Train loss (d) Validation loss for 50x50 Color 

                     Images of the vibration data classification after 50 epochs using different optimizers 

 

           

          Table 4.51 to 4.54 prove above test accuracy from the point of view classification 

errors. The model with SGD + Nesterov overcomes the others by having only two errors. 

Table 4.51. Confusion Matrix for 50x50 Color Images of the vibration data classification using SGD 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 185 0 0 0 0 

BFE 0 200 0 1 0 

5BB 0 2 185 0 2 

BFA 0 1 0 326 0 

3BB 0 0 0 0 186 
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Table 4.52. Confusion Matrix for 50x50 Color Images of the vibration data classification using SGD + 

                   Nesterov 

 

 

 

 

 

Table 4.53. Confusion Matrix for 50x50 Color Images of the vibration data classification using SGD +  

                   Momentum 

 

 

 

 

 

 

Table 4.54. Confusion Matrix for 50x50 Color Images of the vibration data classification using SGD + 

                   Momentum and Nesterov 

 

 

 

 

 

          Like in previous part about the color images of size 40x40, classification of the 

color images of size 50x50 with 300 epochs is attempted. And finally, the best result is 

reached: test accuracy is 100%. It can see from the Table 4.55, there are no errors. 

Moreover, by looking the Figure 4.28, there is no overfitting. In addition to this, after 

such a long epoch, it can be said that the learning rate is so good. 

 

 

 

 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 185 0 0 0 0 

BFE 0 201 0 0 0 

5BB 0 0 187 0 2 

BFA 0 8 0 319 0 

3BB 0 0 0 0 186 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 185 0 0 0 0 

BFE 0 201 0 0 0 

5BB 0 0 189 0 0 

BFA 0 2 0 325 0 

3BB 0 0 1 0 185 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 184 0 0 0 1 

BFE 0 201 0 0 0 

5BB 0 0 189 0 0 

BFA 0 0 0 327 0 

3BB 0 0 4 0 182 
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Table 4.55. Confusion Matrix for 50x50 Color Images of the vibration data classification after 300 epochs 

                  using SGD with Momentum and Nesterov 

 

Predicted 

 Healthy BFE 5BB BFA 3BB 

Healthy 180 0 0 0 0 

BFE 0 187 0 0 0 

5BB 0 0 197 0 0 

BFA 0 0 0 319 0 

3BB 0 0 0 0 205 

 

 

 

      (a)                                                                               (b) 

 

     (c)                                                                              (d) 

Figure 4.28. (a) Train accuracy (b) Validation accuracy (c) Train loss (d) Validation loss for 50x50 Color  

                    Images of the vibration data classification after 300 epochs using different optimizers 
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5. CONCLUSION 

 

        Compared to other motor types used in the industry, the induction motors are more 

preferred because of their robust structure, easy to maintain, easy to use, and cost 

effectiveness. The fact that the induction motors are used extensively in the industry 

explain why it is desired to work on tracking the faults in many research. The early 

detection of faults and preventive maintenance studies are crucial so that industrial 

processes cannot be interrupted, and vital situations are not experienced. In addition, early 

detection of the problem also reduces the maintanance and production costs which is 

another issue that should be considered in the industrial work environment. In this thesis, 

vibration data are used which are collected in the laboratory environment in order to 

classifiy induction motor faults which which are frequently encountered in a real 

industrial environment. Those are synthetically created on test motors. In order to 

simulate the actual conditions that can be met in the industiral area the induction motors 

are operated under different load conditions. Then, the vibration data from each test 

induction motor is collected by the 3-axial accelerometer, and so information of 

horizontal, vertical and axial axes of the vibration data is formed. 

          The classification method used in this thesis is a knowledge-based method which 

is based on deep learning. Before moving on to the classification stage, vibration data 

based feature extraction technique is applied by studying the characteristics of vibration 

data. A feature extraction method that has been used frequently has been proposed. Thus, 

an image-based method is proposed to make the classification possible for a deep neural 

system. Transformation of one-dimensional vibration data into two-dimensional 

grayscale images is used by considering the pixel density differences between the 

vibration data of the induction motor faults. In addition to this, it is very important to 

determine the fundamental motor frequency of the motor in order to be able to create 

images. Because the speed of rotation of the motor will be affected  by the types of fault 

under different loading conditions. So, in order to obtain accurate information about the 

vibration data, the autocorrelation function is used which gives possible fundamental 

frequencies of the power signal of the vibration data. Then, 2D grayscale square images 

are created using this information. The classification method will be formed using those 
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images. Here in this phase, the Convolutional Neural Network is preferred to classify the 

vibration data. CNN, which has recently proven itself in the field of deep learning, has 

been very well suited for visual documents. By the knowledge of its tremendous 

performance in both 2D grayscale and 3D color images, 3D color images are also created 

using the same vibration data in this thesis. In order to use CNN, the images which are 

created from the vibration data are divided into smaller images, 40x40 and 50x50, and 

are thus trained and tested by the system. For the formation of 3D color images; 

horizontal, vertical and axial axes are assigned to red, green and blue respectively.  

          After both 2D grayscale and 3D color images are created, the induction motor faults 

differences are visually distinguishable. This motivated the CNN to work well to classify 

the faulty motors.  

          During the experiments, using the different parameters in CNN, the classification 

accuracy of images has been determined, inferences have been made about which engines 

are more similar to each other and observations have been done about which parameters 

fit better than others. In this way, a total of eight categories which are compared to each 

other can be summarized as: 

1. The size of 40x40 2D grayscale images of vibration data from the x-axis 

2. The size of 50x50 2D grayscale images of vibration data from the x-axis 

3. The size of 40x40 2D grayscale images of vibration data from the y-axis 

4. The size of 50x50 2D grayscale images of vibration data from the y-axis 

5. The size of 40x40 2D grayscale images of vibration data from the z-axis 

6. The size of 50x50 2D grayscale images of vibration data from the z-axis 

7. The size of 40x40 3D color images of vibration data from the combination of x-y-z-

axes 

8. The size of 50x50 3D color images of vibration data from the combination of x-y-z-

axes 

          Considering the experiments described in Chapter 4, these conclusions can be 

drawn:  

1. The size of 40x40 2D grayscale images of vibration data from the x-axis: In this section, 

as well as adaptive learning rate methods, stochastic gradient methods gave good results 

with Nesterov and momentum. Because, according to the input data, these optimizers are 

not trapped in the saddle points like SGD. The model produces the most unsuccessful 

result from the point of view distinguishing BFE. Thus, it can be deducted that motor with 
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bearing fault misalignment (BFE) can not be deduced using vibration data extracted from 

the horizontal axis.  

2. The size of 50x50 2D grayscale images of vibration data from the x-axis: Changing the 

size of the model to 50x50 increased the accuracy with SGD, but the issue of mixing the 

BFE with BFA still exists. This is because of the BFE has similar x-axis vibration data 

information to BFA. In addition to this, it can be said that SGD learns better with more 

training parameters from 50x50 images, this is a result confirming the generally known 

CNN operating principle.  

3. The size of 40x40 2D grayscale images of vibration data from the y-axis: If looking at 

the results of all the optimization techniques, except SGD with momentum and Nesterov, 

the model confuses the BFE with the BFA on the y-axis. Because BFE does not give 

enough information from the vertical axis. BFE shows similar characteristic to BFA, 

because they are similar fault types, bearing faults. On the other hand, interestingly, with 

the use of SGD with momentum and Nesterov, there is no error on BFE. It means that the 

model can be learned with the correct parameter. The SGD with momentum and Nesterov 

was not stuck in saddle points. 

4. The size of 50x50 2D grayscale images of vibration data from the y-axis: The situation 

of BFE, which does not have enough information with x and y-axis, continues in the same 

way with all optimizers.   

5. The size of 40x40 2D grayscale images of vibration data from the z-axis: With the 

optimizer SGD with momentum and Nesterov, 5BB is confused with the 3BB and BFE. 

Because 5BB from z-axis has less information 5BB from the x-axis and y-axis. On the 

other hand, it can be deducted from this part that BFE contains more distinguishing 

information on the z-axis. 

6. The size of 50x50 2D grayscale images of vibration data from the z-axis: It can be said 

that the test accuracy has increased but the system is still experiencing confusion in the 

same places.  

7. The size of 40x40 3D color images of vibration data from the combination of x-y-z-

axes: When it comes to color pictures, the confusion suddenly disappears, as can be 

understood from the confusion matrix. Because, the model (CNN) is built based on 

information from all axes, and the resulting system contains more information in order to 

classify fault types. This emphasizes the importance of combining information and 

introducing it to the network. When the epoch value is increased to 300, CNN works very 
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well in the classification with the only one error. So, it can be said that CNN learns very 

well with enough epoch. If the system can’t learn, it means that it needs more training.  

8. The size of 50x50 3D color images of vibration data from the combination of x-y-z-

axes: In this part, there are more training parameters and CNN gives a more accurate test 

result with 50 epochs compared to other. Because, it is well-known fact that even though 

the best parameters are selected, the number of training parameter always ensures better 

results in deep learning techniques. In other words, using more parameters can give much 

more accurate results than choosing the right optimization parameters. When the epoch 

value is increased to 300, there is no error.  

          To summarize, the vibration data of the induction motor with bearing fault 

misalignment (BFE) does not contain distinguishing information from x and y-axes. So, 

BFE has more oscillation in the z-axis. In addition to this, BFE has similar information 

to the vibration data of the induction motor with bearing fault ball defect (BFA). 

Moreover, the vibration data of the induction motor with 5-broken bars have similar 

information to 3-broken bars, and both of them have more information on radial axes. 

Furthermore, CNN, which is with SGD plus momentum and Nesterov, works well 

because the vibration data from induction motor faults probably not too complex and 

extensive data. If it were so, the Adam would be expected to work as well as SGD with 

momentum and Nesterov. 

          Even if the vibration data of the induction motor faults may sometimes look similar, 

CNN is a promising tool for the classification. 

          In conclusion, Convolutional Neural Network model proposed in this thesis in 

order to classify induction motor faults is produced surprising results. Furthermore, it has 

been observed that CNN with enough data and necessary amount of training cycles, it is 

possible to obtain 100% success.  

          This thesis is expected to be an important reference both in the industry and in 

future research. 

 

 

 

 

 

 



82 
 

REFERENCES 

 

Akcay, H., and Germen, E., (2015) “Subspace-Based Identification of Acoustic Noise 

Spectra in Induction Motors”. IEEE Transactions on Energy Conversion 30, sy 

1:32-40. https://doi.org/10.1109/TEC.2014.2334633. 

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., and Penn, G. (2012), ‘Applying 

convolutional neural networks concepts to hybrid nn-hmm model for speech 

recognition,’ in 2012 IEEE international conference on Acoustics, speech and 

signal processing (ICASSP). IEEE, pp. 4277–4280. 

APEC, (2008) Electric Motors—Alignment of Standards and Best Practice Programmes 

within APEC, Final Report  

Albelwi, S., Mahmood, A., (2017) ‘A Framework for Designing the Architectures of 

Deep Convolutional Neural Networks’, Computer Science and Engineering 

Department, University of Bridgeport, 5 

Altenberger, F., and Claus L., (2018) “A Non-Technical Survey on Deep Convolutional 

Neural Network Architectures”. ArXiv:1803.02129 [Cs], 

http://arxiv.org/abs/1803.02129. 

Almeida, A., Fong, J., Falkner, H., Bertoldi, P., (2017), “Policy options to promote energy 

efficient electric motors and drives in the EU”, Renewable and Sustainable Energy 

Reviews, Elsevier, Vol.74, 1275-1286, t.y. 

Bayot, R., Khristopher O. “A Survey on Object Classification Using Convolutional 

Neural Networks” 

Benbouzid, M. (1999), ‘Bibliography on induction motors faults detection and diagnosis,’ 

IEEE Transactions On Energy Conversion, 14(4), 1065-1074 

Bengio, I.G.Y., Courville, A.,(2016) Deep learning, book in preparation for MIT Press 

[Online] 

Bindu, S. and Tomas, V. V., (2014)‘Diagnoses of internal faults of three phase squirrel 

cage induction motors—A review,’ in Proc. ICAECT, pp. 48–54. 

Brownlee, J., (2016), ‘Supervised and Unsupervised Machine Learning Algorithms’, 

(URL: https://machinelearningmastery.com/supervised-and-unsupervised-

machine-learning-algorithms/) 

Boureau, Y.L., Ponce, J., LeCun, Y., (2010), A theoretical analysis of feature pooling in 

visual recognition, in: Proceedings of the 27th International Conference on Machine 

Learning (ICML-10), pp. 111–118. 

 

https://doi.org/10.1109/TEC.2014.2334633
http://arxiv.org/abs/1803.02129


83 
 

Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M. and Schmidhuber, J., (2011), 

‘High-performance neural networks for visual object classification,’ Istituto Dalle 

Molle di Studi sull’Intelligenza Artificiale (IDSIA), Tech. Rep. IDSIA-01- 11 

Chollet, F., (2018), Deep Learning with Python. Shelter Island, New York: Manning 

Publications Co 

Collobert , R. and  Weston, J. ,(2008)‘A unified architecture for natural language 

processing: Deep neural networks with multitask learning,’ in Proceedings of the 

25th international conference on Machine learning. ACM, pp. 160–167. 

Collobert,R.,  Weston, J., Bottou, L., Karlen, M., Kavukcuglu, K.,  Kuksa., P., (2011), 

Natural Language Processing (Almost) from Scratch. Journal of Machine Learning 

Research 12:2493–2537. 

Deng, L., (2014), “A Tutorial Survey of Architectures, Algorithms, and Applications for 

Deep Learning”. APSIPA Transactions on Signal and Information Processing 3, 

https://doi.org/10.1017/atsip.2013.9. 

Kingma, D. P., Ba, J., (2015), ‘Adam: A Method for Stochastic Optimization’, in ICLR  

Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop, (1), 

2013–2016 

Eschmann, P., Hasbargen, L., Weigand, K., (1958) Ball and roller bearings: their theory, 

design and application. K. G. Heyden, London 

Finley, W. R., Hodowanec, M. M. and Holter, W. G. (1999), ‘An analytical approach to 

solving motor vibration problems,’ Proceedings of the Petroleum and Chemical 

Industry Conference, 1999. Industry Applications Society 46th Annual, IEEE, 217-

232. 

 

Fukushima,K.. Miyake, S., (1982) Neocognitron: A self-organizing neural network 

model for a mechanism of visual pattern recognition, in: Competition and 

cooperation in neural nets, pp. 267–285 

Funahashi, K.-I.  and Nakamura, Y. (1993), ‘Approximation of dynamical systems by 

continuous time recurrent neural networks,’ Neural networks, vol. 6, no. 6, pp. 801–

806 

 

Gao, Zhiwei et al. (2015), ‘A Survey of Fault Diagnosis and Fault-Tolerant Techniques—

Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches.’ IEEE 

Transactions on Industrial Electronics 62,3757-3767. 

Germen, E., Başaran, M., and Fidan, M., (2014) “Sound Based Induction Motor Fault 

Diagnosis Using Kohonen Self-Organizing Map”. Mechanical Systems and Signal 

Processing 46, sy ,45-58. https://doi.org/10.1016/j.ymssp.2013.12.002. 

https://doi.org/10.1017/atsip.2013.9
https://doi.org/10.1016/j.ymssp.2013.12.002


84 
 

Giantomassi, A., (2015), ‘Electric motor fault detection and diagnosis by kernel density 

estimation and Kullback–Leibler divergence based on stator current 

measurements,’ IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1770– 1780 

Goncalves, M. J. M., Creppe, R.C., Marques, E.G., and Cruz, S.M.A., (2015),“Diagnosis 

of Bearing Faults in Induction Motors by Vibration Signals - Comparison of 

Multiple Signal Processing Approaches”, 488-93 IEEE, 

https://doi.org/10.1109/ISIE.2015.7281516. 

Goodfellow,I., Bengio,Y. and  Courville,A., (2016), online version (URL: 

http://www.deeplearningbook.org/ ) 

Gu, J., Zhenhua W., Kuen, J., Ma, L.,  Shahroudy, A., Shuai, B., Liu, T. vd. “Recent 

Advances in Convolutional Neural Networks”. Pattern Recognition 77 (Mayıs 

2018): 354-77. https://doi.org/10.1016/j.patcog.2017.10.013. 

Guoa, Yanming, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, ve Michael S. Lew. 

“Deep Learning for Visual Understanding: A Review”. Neurocomputing 187 

(Nisan 2016): 27-48. https://doi.org/10.1016/j.neucom.2015.09.116. 

Günal, S., Ece, D. G. and Gerek, Ö. N. (2009), ‘Induction motor fault diagnosis via 

current analysis on time domain,’ Proceedings of the Signal Processing and 

Communications Applications Conference, 2009. SIU 2009. IEEE 17th, IEEE, 488-

491.8 

 

Harley, A. W., Ufkes, A., (2015), Derpanis, K. G., ‘Evaluation of Deep Convolutional 

Nets for Document Image Classification and Retrieval,’ in ICDAR 

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. (2015). ‘Deep Residual 

Learning for Image Recognition.’ ArXiv:1512.03385 [Cs], December. 

http://arxiv.org/abs/1512.03385. 

Henao, Humberto, Gerard-Andre Capolino, Manes Fernandez-Cabanas, Fiorenzo 

Filippetti, Claudio Bruzzese, Elias Strangas, Remus Pusca, Jorge Estima, Martin 

Riera-Guasp, ve Shahin Hedayati-Kia. “Trends in Fault Diagnosis for Electrical 

Machines: A Review of Diagnostic Techniques”. IEEE Industrial Electronics 

Magazine 8, sy 2 (Haziran 2014): 31-42. 

https://doi.org/10.1109/MIE.2013.2287651. 

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). GANs 

Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. 

In Advances in Neural Information Processing Systems 30 (NIPS 2017). 

Hinton, G. E.,  Osindero, S. and Teh, Y.-W., (2006), ‘A fast learning algorithm for deep 

belief nets,’ Neural computation, vol. 18, no. 7, pp. 1527– 1554. 

Hinton,G.E.,  Salakhutdinov, R.R., “ Reducing the dimensionality of data with neural 

networks”, Science 313 (5786) (2006) 504–507. 

https://doi.org/10.1109/ISIE.2015.7281516
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1109/MIE.2013.2287651


85 
 

 

Hinton,G., Deng,L.,  Yu, D., Dahl, G. E. , Mohamed, A., Jaitly, N. , Senior, 

A.,  Vanhoucke, V.,  Nguyen, P., Sainath T. N. ,et al., (2012), ‘Deep neural 

networks for acoustic modeling in speech recognition: The shared views of four 

research groups,’ IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97. 

Hou,N., Dong, H., Wang,Z., Ren, W., Alsaadi, F.E., (2016), Non-fragile state estimation 

for discrete Markovian jumping neural networks, Neurocomputing 179, 238–245. 

Hubel,D. H., Wiesel, T. N, (1968), Receptive fields and functional architecture of monkey 

striate cortex, The Journal of physiology ,215–243. 

Huang, G.,  Liu, Z.,  Maaten, L., Weinberger, K.,‘Densely Connected Convolutional 

Networks’, CVPR 2017,  last revised 28 Jan 2018 (v5) 

https://arxiv.org/abs/1608.06993v5 

Janocha,K.  and Czarnecki,W. M.,(2017) ‘On loss functions for deep neural networks in 

classification,’ arXiv preprint arXiv:1702.05659. 

Jarrett, K. , Kavukcuoglu, K., Lecun Y. et al., (2009), ‘What is the best multi-stage 

architecture for object recognition?’ in 2009 IEEE 12th International Conference 

on Computer Vision. IEEE, pp. 2146– 2153. 

Kalchbrenner, N.,  Grefenstette, E.,  Blunsom.,P., (2014). A Convolutional Neural 

Network for Modelling Sentences. In Proceedings of ACL 

Karmakar, Subrata, Surajit Chattopadhyay, Madhuchhanda Mitra, ve Samarjit Sengupta, 

(2016), “Induction Motor and Faults”, Springer Singapore. 

https://doi.org/10.1007/978-981-10-0624-1_2. 

Kaya D, Yagmur EA, Yigit KS, Kilic FC, Eren AS, Celik C. Energy efficiency in pumps. 

Energy Conversion and Management 2008;49:1662–73. 

Kim, Yoon. “Convolutional Neural Networks for Sentence Classification”. 

ArXiv:1408.5882 [Cs], 25 Ağustos 2014. http://arxiv.org/abs/1408.5882. 

Krause, PC (1986) ,“Analysis of electric machinery”, Mc-Graw Hill, New York” 

Krizhevsky, Alex, Ilya Sutskever, ve Geoffrey E. Hinton. “ImageNet Classification with 

Deep Convolutional Neural Networks”. Communications of the ACM 60, sy 6 (24 

Mayıs 2017): 84-90. https://doi.org/10.1145/3065386. 

Kowalski, C. T. and Kowalska,T. O,( 2003), ‘Neural network application for induction 

motor faults diagnosis,’ Math. Comput. Simul., vol. 63, nos. 3–5, pp. 435–448. 

Kurzweil,R. , (2013)“ How to create a mind: The secret of human thought revealed’, 

Penguin. 

 

 

https://doi.org/10.1007/978-981-10-0624-1_2
http://arxiv.org/abs/1408.5882
https://doi.org/10.1145/3065386


86 
 

LeCun, B. B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. 

D. (1990), ‘Handwritten digit recognition with a backpropagation network,’ in 

Advances in neural information processing systems. Citeseer. 

Lecun, Y. (1992). A theoretical framework for back-propagation. In P. Mehra, & B. Wah 

(Eds.), Artificial neural networks: Concepts and theory Los Alamitos, CA: IEEE 

Computer Society Press. 

LeCun, Y.,  Bottou, L., Bengio, Y.,  Haffner, P., ‘Gradient-based learning applied to 

document recognition’ Proceedings of the IEEE, v. 86, pp. 2278 2324 

LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010), “Convolutional Networks and 

Applications in Vision”, 253-56. IEEE, 

https://doi.org/10.1109/ISCAS.2010.5537907. 

LeCun, Y., Bengio,  B., and Hinton, G., (2015), “Deep Learning”. Nature 521, sy 7553 : 

436-44. https://doi.org/10.1038/nature14539. 

Leung,M. K. ,  Xiong, H. Y., Lee, L. J. and Frey, B. J.‘Deep learning of the tissue-

regulated splicing code,’ Bioinformatics, vol. 30, no. 12, pp. i121–i129, 2014. 

Li, Fei-Fei, Justin Johnson, ve Serena Yeung. “Lecture 9: CNN Architectures”, t.y., 101. 

Li, X., Wu, Q, and Nandi, S., (2007) ‘Performance analysis of a three-phase induction 

machine with inclined static eccentricity,’ IEEE Trans. Ind. Appl., vol. 43, no. 2, 

pp. 531–541, Mar./Apr. 2007. 

Lin,M. , Chen,Q. ,Yan,  S., (2014), Network in network, in: Proceedings of the 

International Conference on Learning Representations (ICLR). 

Liu, Weibo, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, ve Fuad E. Alsaadi. 

(2017) “A Survey of Deep Neural Network Architectures and Their Applications”. 

Neurocomputing 234 (Nisan 2017): 11-26. 

https://doi.org/10.1016/j.neucom.2016.12.038. 

Maas, A. L., Hannun, A. Y., (2013), Rectifier nonlinearities improve neural network 

acoustic models, in: Proceedings of the International Conference on Machine 

Learning (ICML), Vol. 30,. 

Maturana, D. and Scherer, S. (2015), ‘VoxNet: A 3D Convolutional Neural Network for 

Real-Time Object Recognition’, IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS) 

Mehrjou, M. R. and Mariun, N. (2011), ‘Rotor fault condition monitoring techniques for 

squirrel-cage induction machine—A review,’ Mech. Syst. Signal Process., vol. 25, 

no. 8, pp. 2827–2848. 

https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neucom.2016.12.038


87 
 

Nair,V., Hinton, G. E., (2010), Rectified linear units improve restricted boltzmann 

machines, in: Proceedings of the International Conference on Machine Learning 

(ICML), pp. 807–814. 

Nesterov, Y. (1983). A method of solving a convex programming problem with 

convergencerate O(1/k2). Soviet Mathematics Doklady, 27, 372–376 

Nielsen, M. A., (2015) ‘Neural networks and deep learning’ 

Ince, T., Kiranyaz, S., Eren, L., Askar, M., and Gabbouj, M., (2016), “Real-Time Motor 

Fault Detection by 1-D Convolutional Neural Networks”. IEEE Transactions on 

Industrial Electronics 63, sy 11,7067-75. 

https://doi.org/10.1109/TIE.2016.2582729. 

Isermann, R. (2005), “Model-Based Fault-Detection and Diagnosis – Status and 

Applications”. Annual Reviews in Control 29, sy 1 (Ocak 2005): 71-85. 

https://doi.org/10.1016/j.arcontrol.2004.12.002. 

Ojaghi, M.  and Mohammadi, M. ‘Unified Modeling Technique for Axially Uniform and 

Nonuniform Eccentricity Faults in Three-Phase Squirrel Cage Induction Motors’ , 

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 65, NO. 7, 

JULY 2018 

Peng, M., Wang, C., Chen, T., Liu, G., (2016), NIRFaceNet: A Convolutional Neural 

Network for Near-Infrared Face Identification. Information, 7, 61. 

Platek,S.,  Keenan, J., and  Shackelford,T.," Evolutionary cognitive neuroscience", Mit 

Press, 2007. 

Polamuri, S. (2017) Difference Between Softmax Function And Sigmoid Function, 

Dataspirant Blog, 2017, 

        (URL:http://dataaspirant.com/2017/03/07/difference-between-function-

and- sigmoid-function/) (last achieved: 23.07.2018) 

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. 

USSR Computational Mathematics and Mathematical Physics, 4(5), 1–17. 292 

Pons-Llinares, J., Antonino-Daviu, J., Roger-Folch, J., Morinigo-Sotelo, D. and 

Duque- Perez, O., (2010), ‘Eccentricity Diagnosis in Inverter Fed Induction Motors 

via the Analytic Wavelet Transform of Transient Currents’, XIX International 

Conference on Electrical Machines (ICEM), pp.1-6. 

Razavian, A. S., Azizpour, H., Sullivan, J. , Carlsson, S., (2014 ),”CNN Features off-the-

shelf: an Astounding Baseline for Recognition”,  CVAP, KTH (Royal Institute of 

Technology) Stockholm, Sweden, arXiv:1403.6382v3 [cs.CV] 

Ren, S., He,K., Girshick, R. and Sun, J. (2015), ‘Faster r-cnn: Towards realtime object 

detection with region proposal networks,’ in Advances in neural information 

processing systems, pp. 91–99. 

https://doi.org/10.1109/TIE.2016.2582729
https://doi.org/10.1016/j.arcontrol.2004.12.002
http://dataaspirant.com/2017/03/07/difference-between-function-and- sigmoid-function/
http://dataaspirant.com/2017/03/07/difference-between-function-and- sigmoid-function/


88 
 

Ruder, S.. (2016), “An Overview of Gradient Descent Optimization Algorithms”. 

ArXiv:1609.04747 [Cs], 15 Eylül 2016. http://arxiv.org/abs/1609.04747. 

Saleh, A., Ausif, M. (2017), “A Framework for Designing the Architectures of Deep 

Convolutional Neural Networks”. Entropy 19, sy 6 (24 Mayıs 2017): 242. 

https://doi.org/10.3390/e19060242. 

Schoen ,R.R., Habetler, T.G., Kamran F., Bartheld, R.G. (1995) Motor bearing damage 

detection using stator current monitoring. IEEE Trans Ind Appl 31(6):1274–1279 

Saidur, R. (2009), ‘A review on electrical motors energy use and energy savings’, 

Renewable and Sustainable Energy Reviews 14 , Elsevier, 877–898,  

Say, M.G. (2002) The performance and design of alternating current machines. M/S 

Pitman, London. ISBN 81-239-1027-4 

Schmidhuber, J., (2015) “Deep Learning in Neural Networks: An Overview”. Neural 

Networks 61 (Ocak 2015): 85-117. https://doi.org/10.1016/j.neunet.2014.09.003. 

Seif, G. “Data Science and Machine Learning Interview Questions” 

Sergey, I., Christian, S., (2015), “Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift”, 4-5”. ArXiv:1502.03167 [Cs], 10 

Şubat 2015. http://arxiv.org/abs/1502.03167. 

Sermanet, P., Chintala, S., and LeCun, Y. (2012), ‘Convolutional neural networks applied 

to house numbers digit classification,’ in Pattern Recognition (ICPR), 21st 

International Conference on. IEEE, 2012, pp. 3288–3291. 

Shen,Y., He, X., Gao, J., Deng, L., Mesnil. G., (2014), Learning Semantic 

Representations Using Convolutional Neural Networks for Web Search 

Simard, P.Y., D. Steinkraus, ve J.C. Platt. (2003), “Best Practices for Convolutional 

Neural Networks Applied to Visual Document Analysis”, 1:958-63. IEEE Comput. 

Soc, https://doi.org/10.1109/ICDAR.2003.1227801. 

Simonyan, K., Zisserman, A., (2015), ‘Very Deep Convolutional Networks for Large-

Scale Image Recognition’, Visual Geometry Group, Department of Engineering 

Science, University of Oxford 

Sonje, D. M., Munje ,R. K., (2011), ‘Rotor Cage Fault Detection in Induction Motors by 

Motor Current Signature Analysis’, International Conference in Computational 

Intelligence (ICCIA),  

Sun, Wenjun, Siyu Shao, Rui Zhao, Ruqiang Yan, Xingwu Zhang, ve Xuefeng Chen. 

(2016), “A Sparse Auto-Encoder-Based Deep Neural Network Approach for 

Induction Motor Faults Classification”. Measurement 89 (Temmuz 2016): 171-78. 

https://doi.org/10.1016/j.measurement.2016.04.007 

http://arxiv.org/abs/1609.04747
https://doi.org/10.3390/e19060242
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1502.03167
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1016/j.measurement.2016.04.007


89 
 

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance 

ofinitialization and momentum in deep learning. In ICML, 296,401,408 

Szegedy, C., Liu, W., Hill, C., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., 

Vanhoucke, V., Rabinovich, A., (2014), ‘Going deeper with convolutions’, 

arXiv:1409.4842v1 [cs.CV], 

Vedaldi, A., ve Karel L., (2014) “MatConvNet - Convolutional Neural Networks for 

MATLAB”. ArXiv:1412.4564 [Cs], 15 Aralık 2014. 

http://arxiv.org/abs/1412.4564. 

Vincent,P. ,  Larochelle, H., Bengio,Y. , and  Manzagol, P.-A., (2008),‘Extracting and 

composing robust features with denoising autoencoders,’ in Proceedings of the 25th 

international conference on Machine learning. ACM, pp. 1096–1103 

Theano Development Team, Deep Learning Tutorial Release 0.1, LISA lab, University of 

Montreal, 51 – 63 

Tygert, M., Joan B., Chintala, S., LeCun, Y., Piantino, S. and Szlam. A., (2016), “A 

Mathematical Motivation for Complex-Valued Convolutional Networks”. Neural 

Computation 28, sy 5 (Mayıs 2016): 815-25. 

https://doi.org/10.1162/NECO_a_00824. 

Trivedi, Shubhendu, ve Risi Kondor. “Lecture 6  Optimization for Deep Neural Networks 

- CMSC 35246: Deep Learning”, t.y., 179. 

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural 

Networks : The Official Journal of the International Neural Network Society, 12(1), 

145–151. 

Wang, L., ‘Induction Motor Bearing Fault Detection Using a Sensorless Approach’, 

Ph.D. Dissertation, Graduate Studies of Texas A&M University” 

Yang, F.,  Dong,H.,  Wang, Z. , Ren, W., Alsaadi,F.E.,(2016), A new approach to non-

fragile state estimation for continuous neural networks with time-delays, 

Neurocomputing 197 (2016) 205–211. 

Yu, Y., Wenwu W., and Han, P., (2016), “Localization Based Stereo Speech Source 

Separation Using Probabilistic Time-Frequency Masking and Deep Neural 

Networks”. EURASIP Journal on Audio, Speech, and Music Processing 2016, sy 1 

(Aralık 2016). https://doi.org/10.1186/s13636-016-0085-x. 

Zeiler, Matthew D., and Fergus, R., (2013), “Visualizing and Understanding 

Convolutional Networks”. ArXiv:1311.2901 [Cs], 12 Kasım 2013. 

http://arxiv.org/abs/1311.2901. 

Zhang, P. J., Du, Y., Habetler, T. G. and Lu, B., (2011), ‘A survey of condition monitoring 

and protection methods for medium-voltage induction motors,’ IEEE Transactions 

on  Industry Applications, vol. 47, pp. 3446, Jan-Feb 2011 

http://arxiv.org/abs/1412.4564
https://doi.org/10.1162/NECO_a_00824
https://doi.org/10.1186/s13636-016-0085-x
http://arxiv.org/abs/1311.2901


90 
 

Zhao,R., Yan, R., Chen, Z., Mao, K., Wang, P., and Gao, R.X., (2015), “Deep Learning 

and Its Applications to Machine Health Monitoring: A Survey “, JOURNAL OF 

LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 

 

 

http-1:https://slideplayer.com/slide/5784318/ (last achieved: 25.07.2018) 

http-2:http://cs231n.github.io/convolutional-networks/#pool  

          (last achieved: 03.08.2018) 

http-3:https://www.elprocus.com/induction-motor-types-advantages/ 

           (last achieved: 25.07.2018) 

http-4:https://www.electricaleasy.com/2014/02/working-principle-and-types-of.html  

          (last achieved: 25.07.2018) 

http-5:https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-     

             learning 

          (last achieved: 25.07.2018) 

http-6:https://ww2.mathworks.cn/en/solutions/deep-learning/convolutional-neural-  

           network.html  

           (last achieved: 25.07.2018) 

http-7:https://github.com/shaoanlu/dogs-vs-catsredux/blob/master/opt_experiment. 

           ipynb (last achieved: 25.07.2018)         

http-8:https://stackoverflow.com/questions/47312219/what-does-non-trainable-     

params-mean 

           (last achieved: 25.07.2018)         

http-9: https://keras.io/ (last achieved: 25.07.2018) 

http-10:http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochastic   

GradientDescent/ 

           (last achieved: 03.08.2018) 

http-11:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 

             (last achieved: 25.07.2018) 

http-12:http://cs231n.github.io/convolutional-networks/  

             (last achieved: 25.07.2018) 

 

http://cs231n.github.io/convolutional-networks/#pool
https://stackoverflow.com/questions/47312219/what-does-non-trainable-%20%20%20%20%20params-
https://stackoverflow.com/questions/47312219/what-does-non-trainable-%20%20%20%20%20params-
http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochastic%20%20%20GradientDescent/
http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochastic%20%20%20GradientDescent/
http://cs231n.github.io/convolutional-networks/


 

RESUME 

 

Name-Surname:  Zehra ŞAHİN    

Language: English (advanced), German (beginner)  

Date of birth:   06.01.1988, Yenimahalle/ANK      

e-mail:  zerasahin@gmail.com 

 

Education                        

• Anadolu University, Eskişehir (2013- 2018)  

Electrical and Electronics Engineering, Post Graduate 

                

• Middle East Technical University, Ankara (2006 – 2012)  

Physics, Undergraduate 

  

Academical Interests 

  

• Artifical Neural Networks 

• Deep Learning 

• Image Processing 

• Machine Vision 

    

Seminar   

• Academic Informatics (2017)  

• Hacker 101 (2017) 

• SAVTEK (2010)      

• Nanotech Bilkent     

 

Communities 

• LÖSEV (2015- )    

• OSA (The Optical Society of America, 2012)     

   

Voluntary Participation 

• Design of a Wind Turbine, METU (2012-2013)    

• TEGV (2009)        

 

 


