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Abstract: This paper presents a Python QGIS (PyQGIS) plugin, which has been developed for
the purpose of producing Land Surface Temperature (LST) maps from Landsat 5 TM, Landsat
7 ETM+ and Landsat 8 TIRS, Thermal Infrared (TIR) imagery. The plugin has been developed
purposely to ease the process of LST extraction from Landsat Visible, Near Infrared (VNIR) and
TIR imagery. It has the ability to estimate Land Surface Emissivity (LSE), calculating at-sensor
radiance, calculating brightness temperature and performing correction of brightness temperature
against atmospheric interference though the Plank function, Mono Window Algorithm (MWA), Single
Channel Algorithm (SCA) and the Radiative Transfer Equation (RTE). Using the plugin, LST maps
of Moncton, New Brunswick, Canada have been produced for Landsat 5 TM, Landsat 7 ETM+ and
Landsat 8 TIRS. The study put much more emphasis on the examination of LST derived from the
different algorithms of LST extraction from VNIR and TIR satellite imagery. In this study, the best
LST values derived from Landsat 5 TM were obtained from the RTE and the Planck function with
RMSE of 2.64 ˝C and 1.58 ˝C, respectively. While the RTE and the Planck function produced the best
results for Landsat 7 ETM+ with RMSE of 3.75 ˝C and 3.58 ˝C respectively and for Landsat 8 TIRS
LST retrieval, the best results were obtained from the Planck function and the SCA with RMSE of
2.07 ˝C and 3.06 ˝C, respectively.

Keywords: Landsat Surface Temperature (LST); Land Surface Emissivity (LSE); Thermal Infrared
(TIR); Landsat TM; Landsat ETM+; Landsat TIRS; Mono Window Algorithm (MWA); Single Channel
Algorithm (SCA); Radiative Transfer Equation (RTE); Planck Equation

1. Introduction

Land Surface Temperature (LST) is the temperature of the surface of the ground [1]. It is one
of the most vital data recorded by satellites in the recent decades. It is widely used in a variety of
fields including but not limited to evapotranspiration, climate change, hydrological cycle, vegetation
monitoring, urban climate and environmental studies [2]. LST is an important component of the Earth’s
heat budget and is commonly required in applications of hydrology, meteorology and climatology [3].

As a result of the complexities of surface temperature over land, ground measurements cannot
practically provide temperature values over wide areas. With the development of satellite technologies
and the availability of satellite imagery with a high spatial resolution, satellite data remains to be the
only way that can be used to measure LST over the entire globe with sufficiently high spatial resolution
and with complete spatially averaged rather than point values [2].

Modern Landsat space crafts have been mounted with thermal infrared sensors which have the
ability to acquire thermal images and as a result providing users with large volumes of temperature
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data. These sensors work basing on the physics principle that everybody on Earth radiates infrared
radiation and the radiation is proportional to the temperature of the body.

Many algorithms have been developed for the purpose of extracting LST from satellite imagery,
some of them include the Split Window Algorithm (SWA) [4], Single Channel Algorithm (SCA) [5],
Mono-Window Algorithm (MWA) [6], and the Radiative Transfer Equation (RTE) [2]. As a result of
difficulties arising from the complexities of implementing these algorithms, many users have failed to
benefit enough from these data. Not only that but also due to the unavailability of these algorithms in
the commonly used Remote Sensing (RS) and Geographic Information Systems (GIS) software. Most of
the RS and GIS software available in the market are also very expensive to acquire and do not provide
researchers with their source codes which can also play a great role in algorithm improvement and
research arguments.

In this study, the Mono-Window Algorithm (MWA), Single Channel Algorithm (SCA),
the Radiative Transfer Equation (RTE), the Plank Equation have been implemented to work as a
plugin in QGIS. In addition to the algorithms, the plugin has an ability to estimate Land Surface
Emissivity (LSE), calculating the Normalized Difference Vegetation Index (NDVI), calculating Top of
Atmosphere (TOA) radiance and brightness temperature.

A total of six scenes; two for each sensor have been used in the study. These scenes cover
Moncton, New Brunswick, Canada. The scenes used in the study cover different seasons in order
to enable the examination of how the algorithms behave in different seasons of the year. The RTE,
MWA, Planck function and the SCA have been used to derive the LST of the study area. To perform
accuracy assessment of the LST obtained from the algorithms and meteorological data obtained from
the Canadian weather and meteorology website which was measured in hourly basis have been used.

The developed plugin is free to download from the official QGIS repository [7] in order for
the users of the Landsat sensors to make use of it. As a result of the code being available to be
viewed, modified and distributed freely, it is expected that it will further promote debates, discussions,
application and improvement of the algorithms.

2. Materials and Methods

2.1. Data

2.1.1. Landsat

Landsat is the longest series of Earth Observation Satellites (EOS) in use today. These sensors
have been monitoring the Earth for more than four decades providing a continuity of data though out
their lifetime. The first series of these satellites was launched in 1972 and it was named as the Earth
Resources Technology Satellite; it was later on renamed to Landsat 1. Since then, there has been a
total of 8 Landsat satellites. Out of the eight, Landsat 6 failed to attain orbit and fell down to Earth in
1993. The remaining satellites have proven to be successful and have been providing researchers with
massive volumes of data which have been used in many studies. Landsat sensors are equipped with
instruments which allow them to detect electromagnetic radiation ranging from the visible to thermal
infrared region of the electromagnetic spectrum. Landsat data is freely available to download from the
United States Geological Survey (USGS) website [8]. Table 1 shows the Landsat scenes used in the study.

Table 1. Landsat scenes used in this study.

Sensor Date Time (UTC) Path Row

Landsat 5 TM 13 November 2010 14:57 009 028
Landsat 5 TM 31 December 2010 14:57 009 028

Landsat 7 ETM+ 21 November 2010 15:00 009 028
Landsat 7 ETM+ 23 February 2016 15:09 009 028

Landsat 8 TIRS/OLI 29 May 2013 15:09 009 028
Landsat 8 TIRS/OLI 4 June 2015 15:06 009 028
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2.1.2. Meteorological Data

Historical data were used to model the differences between the LST obtained from the MWA,
SCA, RTE and the Planck equation. The meteorological data were obtained from the Canadian weather
and meteorology website [9] in hourly basis. As a result of the effects of day light saving, one hour
was added to the local time whenever daylight saving was observed (according to environment
Canada, one hour should be added whenever day light saving is observed). Day light saving was
observed in the scenes belonging to the months of November, December and February, and as a result,
the meteorological data for 12:00 p.m. was used. The meteorological data for the scenes belonging to
the months of June and May were compared to meteorological data measured at 11:00 a.m., as daylight
saving was not observed in these months.

2.1.3. Plugin Development Tools

The plugin has been developed using the Python programming language. It has been chosen
because it is a language which is supported by the QGIS Application Programming Interface (API),
it is independent of platform and it is supported by a variety of open source geospatial libraries.
To further enable raster processing, the Geospatial Data Abstraction Library (GDAL) and the PyQt4
framework have been used to create the open source graphical based QGIS plugin.

2.2. Methodology

2.2.1. Conversion of Digital Numbers to at-Sensor Radiance

The thermal data in satellite imagery of Landsat sensors are stored in Digital Numbers (DN). DNs
are used as a way of representing pixels which have not yet been calibrated into meaningful units.
They are a representation of different levels of radiance in a raster image. After the satellite images
have been obtained, the first process is to convert the Digital Numbers (DN) to radiance. Equation (1)
shows the equation used to convert DN to spectral radiance [10] in the Landsat 8 TIRS sensor.

Lλ = MLQcal + AL ´ Oi (1)

where Lλ is the Top-of-Atmosphere (TOA) spectral radiance in W/(m2¨ sr¨µm), ML is the band specific
multiplicative rescaling factor from the metadata, AL is the band-specific additive rescaling factor from
the metadata, Qcal is the quantized and calibrated standard product pixel values (DN), and Oi is the
offsets issued by USGS for the calibration of the TIRS bands. The Oi offset calibration has been obtained
from the USGS. A value of ´0.29 has been used as a calibration factor for Landsat 8 TIRS band 10 [11].
This value is subtracted from the radiances in order to calibrate the radiances recorded in Landsat 8’s
band 10. Although Landsat 8 TIRS has two Thermal Infrared (TIR) bands, only data from band 10 are
suitable for use in LST retrieval at the moment due to uncertainty in the band 11 values [11,12].

For Landsat 5 TM and Landsat 7 ETM+, to convert DNs to radiance, two equations are available,
which are the “gain and bias” method and the spectral radiance scaling method. However, the spectral
radiance equation is just another way of representing the gain and bias equation. The “gain and
bias equation” and the spectral radiance rescaling equations are shown in Equations (2) and (3),
respectively [13].

Lλ = gain ˆ Qcal + bias (2)

Lλ = ((LMAXλ ´ LMINλ)/(QCALMAX ´ QCALMIN)) * (QCAL ´ QCALMIN) + LMINλ (3)

where Lλ is the spectral radiance at the sensor’s aperture in W/(m2¨ sr¨µm), gain is the rescaled
gain (the data product “gain” contained in the Level 1 product header or ancillary data record) in
W/(m2¨ sr¨µm), bias is the rescaled bias in W/(m2¨ sr¨µm), QCAL is the quantized calibrated pixel
value in DN. It corresponds to the thermal bands of the sensors i.e., Landsat TM/ETM+ band 6. LMINλ

is the spectral radiance that is scaled to QCALMIN in W/(m2¨ sr¨µm), LMAXλ is the spectral radiance
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that is scaled to QCALMAX in W/(m2¨ sr¨µm), QCALMIN is the minimum quantized calibrated pixel
value and QCALMAX is the maximum quantized calibrated pixel value (corresponding to LMAXλ)
in DN = 255. With an exception of QCAL, the rest of the variables are provided in the metadata file
of a scene.

The gain and bias rescaling factors of Landsat 7 ETM+ scenes must come from the header file
since they change for every scene, however, for Landsat 5 TM scenes, the gain and bias rescaling
factors are constant [14]. Figure 1 shows the interface of converting DN values to radiance. The screen
is accessible through the “Radiance” tab of the plugin. The interface allows the user to browse for the
metadata file, the thermal infrared band and specify the output location of the calculated radiance.
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2.2.2. Computation of Brightness Temperature

Brightness temperature is the temperature that is needed by a blackbody in order for it to be able
to emit the same amount of radiation per unit of surface area as the body being observed [15]. When
the radiance of an object equals to that of a blackbody, the physical temperature of this blackbody is
known as the brightness temperature of the object. Brightness temperature has the ability to represent
temperature measurements but lacks the physical meaning of temperature [16]. After the DNs have
been converted to radiance, the next step is to convert the radiance to brightness temperature.

In order to convert the radiance to brightness temperature, Equation (4) has been used in the
study [10].

Tsen “
K2

ln
´

K1
Lλ
` 1

¯ (4)

In Equation (4), Tsen stands for the at-sensor brightness temperature (K), Lλ is the TOA spectral
radiance, K1 is the band specific thermal conversion constant from the metadata and K2 band specific
thermal conversion constant from the metadata. The same equation is used for all sensors. The K1 and
K2 values may vary depending on the sensor and the wavelengths by which the thermal bands operate.
The values of K1 and K2 can be obtained from the metadata file of a scene. Figure 2 shows the interface of
computing the brightness temperature. The screen is accessible through the “Brightness Temperature”
tab of the plugin.
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2.2.3. Determination of Land Surface Emissivity (LSE)

Emissivity ε is the ratio of the emitted radiance ελ at wavelength λ and the blackbody emission
Bλ(T) at wavelength λ and temperature T [17]. It is the ratio which compares the radiating capacity
of a surface to that of a blackbody [15]. In the real world, a material which satisfies the properties of
a perfect blackbody does not exist. As a result of this, there is a need of doing LSE correction when
deriving LST from space. In order to be able to associate the temperature of thermal infrared energy
radiated by a given object, it is necessary to know the emissivity of that object.

The emissivity of a substance is determined by its thermo-physical properties [18].
The composition of a surface is the determinant of the surface’s emissivity. The emissivity of surfaces is
as well variable with wavelength. Through the use of Normalized Difference Vegetation Index (NDVI)
it is possible to estimate LSE of different terrestrial materials in the 10–12 µm wavelength range [18].
The composition of the land surface changes over time, it is therefore important to estimate the LSE
of an area during the satellite overpass time. To calculate the NDVI of the surface, Equation (5) has
been used in the study [19]. Atmospheric parameters of scattering and absorption may also affect
the estimation of land surface emissivity from NDVI [20]. In this study, the effects of scattering and
absorption to NDVI were not taken into consideration.

NDVI “
NIR´ R
NIR` R

(5)

In Equation (5), NIR stands for the Near Infrared band and R is the Red band. To estimate the LSE
using the Landsat sensors, two NDVI based algorithms have been implemented in the application.

‚ Algorithm based on the NDVI image

According to Zhang, Wang et al. [21], when the NDVI of an area is known, the LSE can be
estimated. The LSE of a pixel is estimated by classifying the pixels according to the class that they fall
into. When a pixel has an NDVI value that is below ´0.185, then the LSE value of 0.995 is assigned to
the pixel, when the NDVI value is greater than or equal to ´0.185 and less than 0.157, a LSE value of
0.985 is assigned to the pixel, when the NDVI value is greater than or equal to 0.157 and less than or
equal to 0.727, a logarithmic relationship between NDVI and LSE is used [19], and finally, when the
NDVI is greater than 0.727, the pixel is assigned a value of 0.990 as shown in Table 2.
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Table 2. Algorithm based on the NDVI image.

NDVI LSE

NDVI < ´0.185 0.995
´0.185 ď NDVI < 0.157 0.985
0.157 ď NDVI ď 0.727 1.009 + 0.047 ˆ ln(NDVI)

NDVI > 0.727 0.990

‚ NDVI threshold LSE estimation algorithm

The NDVI threshold emissivity estimation algorithm uses certain NDVI values to distinguish
between soil pixels (NDVI < NDVIs) and pixels containing vegetation cover (NDVI > NDVIs).
when estimating LSE from NDVI, authors have proposed the use of 0.2 and 0.5 as NDVI of soil and
NDVI of vegetation in global scales [22]. According to the NDVI threshold algorithm, three possible
classes can be formed for LSE estimation.

a (NDVI < NDVIs) in this scenario, a pixel is considered to be composed of bare soil or rock,
therefore, the LSE of soil is assigned to the pixel.

b (NDVI > NDVIs) in this scenario, a pixel is considered to be composed of full vegetation cover,
therefore, the LSE of vegetation is assigned to the pixel.

c (NDVIs ď NDVI ď NDVIv) in this scenario, a pixel is considered to be composed of a mixture of
vegetation and rocks/soil; therefore, the authors in [22] introduced Equation (6) to represent the
relationship between NDVI and LSE.

ελ “ εvλPv ` εsλ p1´ Pvq ` Cλ (6)

where, εv stands for the emissivity of vegetation, εs is the emissivity of soil, Pv is the proportion of
vegetation (sometimes known as Fractional Vegetation Cover (FVC)) and C is a value which represents
the effect of the geometry of a surface; (C = 0 for flat surfaces). The value of C takes into consideration
the cavity effect due to surface roughness. The authors in [22] proposed the cavity term for a mixed
area and near-nadir view is given by Equation (7).

Cλ “ p1´ εsλq εvλF1 p1´ Pvq (7)

The value of F1 is a geometrical factor ranging from 0 to 1, depending on the geometrical
distribution of the surface. In the assumption of different geometric distributions of surface roughness,
a mean value of 0.55 is chosen [23].

To calculate the proportion of vegetation cover at a pixel level using NDVI, Equation (8) has been
used in the plugin [24,25]. The emissivity values shown in Table 3 have been used in the study [18].

Pv “

„

NDVI ´ NDVImin
NDVImax ´ NDVImin

2
(8)

Table 3. LSE values for various terrestrial materials [18].

Terrestrial Material Soil Built-Up Areas Vegetation Water

Emissivity 0.966 0.962 0.973 0.991

Figure 3 shows the application interface of LSE estimation in the plugin. The option is accessible
through the “Land Surface Emissivity tab”.
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2.2.4. Estimation of Atmospheric Transmittance, Upwelling and Down-Welling Radiance

In this study, the estimation of the atmospheric parameters (transmittance, upwelling and
down-welling radiance) of Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 TIRS has been done through
the use of the NASA’S atmospheric parameters calculator [26]. The tool uses the National Centers for
Environmental Prediction (NCEP) modeled atmospheric global profiles interpolated at a particular
date, time, and location as inputs [26]. Through this tool, the atmospheric profile of the study area has
been simulated to the conditions during the satellite overpass time. The tool supports the simulation
of atmospheric parameters as from January 2000. The obtained atmospheric transmittance, upwelling
and down welling radiance used in the study is as shown in Table 4.

Table 4. Simulated atmospheric parameters for the study.

Sensor Type Date Time
(UTC)

Atmospheric
Transmittance

Upwelling Radiance
(W/(m2¨ sr¨µm))

Down-Welling Radiance
(W/(m2¨ sr¨µm))

Landsat 5 TM 13 November 2010 14:57 0.89 0.72 1.20
Landsat 5 TM 31 December 2010 14:57 0.89 0.58 0.97

Landsat 7 ETM+ 21 November 2010 15:00 0.96 0.18 0.31
Landsat 7 ETM+ 23 February 2016 15:09 0.97 0.11 0.20
Landsat 8 TIRS 4 June 2015 15:06 0.87 0.91 1.52
Landsat 8 TIRS 29 May 2013 15:09 0.89 0.72 1.22

2.2.5. Determination of Near Surface Air Temperature

The near surface air temperatures used in the study have been obtained from the temperature
measurements from the meteorological stations. During the determination of the effective mean
atmospheric temperature, the mean of the near surface temperatures which have been obtained from
the Canadian meteorological stations were used. For Landsat 5 TM, a total of 10 and 9 meteorological
stations have been used for the imagery dated 31 December 2010 and 13 November 2010, respectively.
For Landsat 7 ETM+, a total of 9 and 8 meteorological stations have been used for the imagery
dated 21 November 2010 and 23 February 2016, respectively. For Landsat 8 TIRS, a total of 7 and
9 meteorological stations have been for the imagery dated 4 June 2015 and 29 May 2013, respectively.
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2.2.6. Determination of Atmospheric Water Vapor

In order to apply the SCA, the knowledge of the amount of the atmospheric water vapor
during the satellite overpass time is crucial. In this study, Equation (9) has been used in the
estimation of atmospheric water vapor [27–29]. The relative humidity has been obtained from the
meteorological data.

wi “ 0.0981 ˆ
"

10ˆ 0.6108ˆ exp
„

17.27ˆ pT0 ´ 273.15q
237.3` pT0 ´ 273.15q



ˆ RH
*

` 0.1679 (9)

In Equation (9), Wi stands for atmospheric water vapor, T0 stands for near surface air temperature
in Kelvin and RH stands for relative humidity.

2.2.7. Brightness Temperature Emissivity/Atmospheric Correction

It is important to correct brightness temperature against LSE and atmospheric parameters.
There are many algorithms which have been designed for the purpose of estimating LST from thermal
infrared satellite imagery. These algorithms vary from one sensor to another and each one of them has
its strength, limitations and difference in level of accuracies. In this study, four algorithms have been
implemented in the plugin.

Inversion of Planck’s Function

After the land surface emissivity is estimated, the next step is to perform LSE correction. To do so,
the Plank function has been programmed in the plugin. Equation (10) shows the Planck function [30,31].
The Planck function corrects the emission of a substance in comparison to a blackbody.

Ts “
BT

!

1`
”

λ¨ BT
ρ

ı

¨ lnε
) (10)

where Ts is the land surface temperature (K); BT is the at-sensor brightness temperature (K), λ is the
wavelength of the emitted radiance; ρ is the (h * c/σ) = 1.438 ¨ 10´2 mK; and ε is the spectral emissivity.
Figure 4 shows the application’s interface for the Plank equation.
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has its strength, limitations and difference in level of accuracies. In this study, four algorithms have 
been implemented in the plugin.  

Inversion of Planck’s Function 

After the land surface emissivity is estimated, the next step is to perform LSE correction. To do so, 
the Plank function has been programmed in the plugin. Equation (10) shows the Planck function [30,31]. 
The Planck function corrects the emission of a substance in comparison to a blackbody. 

௦ܶ = ൜1ܶܤ + ቂߣ · ߩܶܤ ቃ ·  ൠ (10)ߝ݈݊

where Ts is the land surface temperature (K); BT is the at-sensor brightness temperature (K), λ is the 
wavelength of the emitted radiance; ρ is the (h * c/σ) = 1.438 · 10−2 mK; and ε is the spectral emissivity. 
Figure 4 shows the application’s interface for the Plank equation. 
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Mono-Window Algorithm (MWA)

The brightness temperature obtained from Equation (4) is supposed to be corrected against LSE as
well as atmospheric parameters which may affect the data obtained by the sensors in space as a result
of absorption and scattering of electromagnetic radiation. To obtain a reasonably high quality LST,
Liu and Zhang [29] used the MWA [6]. The algorithm requires the knowledge of LSE, atmospheric
transmittance and effective mean atmospheric temperature. Sensitivity analysis on the MWA revealed
that the possible error of the ground emissivity which is difficult to estimate has relatively insignificant
effect to the probable LST estimation error which is more sensitive to the possible error of transmittance
and mean atmospheric temperature [6]. Validation of the simulated data for various situations of
seven typical atmospheres points out that the algorithm is able to provide accurate LST retrieval from
Landsat 5 TM and Landsat 7 ETM+ data. The difference between the retrieved and simulated ones is
less than 0.4 ˝C for most situations [6]. The MWA is shown by Equation (11) [6].

Ts “
ai p1´ Ci ´Diq ` rbi p1´ Ci ´Diq ` Ci `Dis Ti ´DiTa

Ci
(11)

where TS is the Land Surface Temperature (LST), Ti is the brightness temperature from Equation (4),
Ta is the effective mean atmospheric temperature, ai = ´67.355351 and bi = 0.458606. The values of Ci

and Di can be calculated using the Equations (12) and (13), respectively [6].

Ci “ εiτi (12)

Di “ p1´ τiq r1` p1´ εiq τis (13)

where εi is the ground surface emissivity and τi is the atmospheric transmittance. Ta, εi and τi are
the three parameters needed to convert the brightness temperature to LST. In order to acquire the
effective mean atmospheric temperature of an area, Qin et al. [6] introduced linear relations for the
approximation depending on the location of the atmosphere of an area of study. These are as shown
in Table 5. In this study, the mid-latitude winter was considered to be the most suitable atmospheric
profile in accordance to the time and location when the Landsat 5 TM imagery dated 31 December
2010, Landsat 5 TM imagery dated 13 November 2010, Landsat 7 ETM+ imagery dated 21 November
2010 and for Landsat 7 ETM+ imagery dated 23 February 2016. For Landsat 8 TIRS, the mid-latitude
summer was considered to be the suitable atmospheric profile for the imagery dated 4 June 2015 and
29 May 2013.

Table 5. Linear relations for the approximation of effective mean atmospheric temperature Ta from the
near surface air temperature [6].

Atmospheres Linear Relations Equations

For USA 1976 Ta = 25.9396 + 0.88045T0
Tropical model Ta = 17.9769 + 0.91715T0

Mid-latitude Summer Ta = 16.0110 + 0.92621T0
Mid-latitude winter Ta = 19.2704 + 0.91118T0

The temperatures Ta and T0 in the equations are both measured in Kelvin. These formulas mean
that, in standard atmospheric conditions with a clear sky and absence of turbulence, the effective mean
atmospheric temperature Ta is a linear relation of near surface air temperature T0. This is due to the
fact that the water vapor distribution and atmospheric temperature distribution on Ta are assumed to
be constant for the standard distributions. With the introduction of National Aeronautics and Space
Administration (NASA)’s atmospheric parameters calculator [26], it is now possible to calculate the
atmospheric transmittance, the up-welling and down-welling radiances. Figure 5 shows the interface
of the MWA in the developed application.
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Radiative Transfer Equation (RTE)

To obtain LST data from the TIR bands of Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 TIRS
sensor, the radiative transfer equation has been implemented in the plugin. The equation uses one
thermal infrared channel to extract land surface temperature. The Landsat TM and Landsat ETM+
sensors are fitted out with only one TIR channel. This makes the application of split window algorithms
impossible, however, the high spatial resolution of these sensors makes them usable for local and
regional studies [32]. Single channel algorithms have been successfully used in several studies for LST
retrieval [33–36]. The RTE is shown in Equation (14).

Lλ “ rελLλ pTsq ` p1´ ελq Ldowns τ` Lλup (14)

where Lλ is the thermal infrared radiance received by satellite a sensor which is mainly comprised
of surface radiance, down-welling radiance from the atmosphere and up-welling radiance to the
atmosphere [37]; τ is the atmospheric transmittance; ε is the land surface emissivity; Lλ(Ts) is the
radiance of a blackbody target of kinetic temperature Ts; Lλup is the upwelling or atmospheric path
radiance; and Lλdown is the down-welling or sky radiance.

Due to the reason that in most of the conditions, the meteorological data of study areas
during the satellite overpass time is usually missing, the NASA’s Atmospheric Correction Parameter
Calculator [26] has been used simulate the atmospheric conditions. With the required variables in our
hands, the land surface radiance, Lλ(Ts) of kinetic temperature Ts can be calculated by Equation (15).

Lλ pTsq “
Lλ ´ Lλup

τελ
´

1´ ελ
ελ

Lλdown (15)

With the radiance calculated, the radiances are converted to LST using the relationship which
is similar to the Plank equation with two prelaunch calibration constants of K1 and K2. To do this,
Equation (16) has been used in the study [31,32].

Ts “
K2

ln
´

K1
LλpTsq

` 1
¯ (16)
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where Ts is the LST in Kelvin which is changed to degree Celsius (˝C) by subtracting 273.15; and K1

and K2 are thermal constants whose values are obtained from the metadata file [32]. Figure 6 shows
the application’s interface for the RTE.
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Single Channel Algorithm (SCA)

The generalized SCA [38] was developed was developed for the purpose of extracting LST
from a single thermal infrared band. According to the algorithm, the LST is expressed as shown in
Equations (17)–(19).

Ts “ γ
”

ε´1 pψ1Lsensor `ψ2q `ψ3

ı

` δ (17)

γ “

#

C2Lsensor

T2
sensor

«

λ4

C1
Lsensor ` λ

´1

ff+´1

(18)

δ “ ´γLsensor ` Tsensor (19)

From the equations, Ts stands for LST, Tsensor is the at sensor brightness temperature in Kelvin,
λ is the effective wavelength of a thermal infrared band in use, C1 = 1.19104 ˆ 108 W¨m´2¨ sr´1¨µm4

and C2 = 14387.7 µm¨K. The ψ1, ψ2, and ψ3 atmospheric parameters can be estimated from
Equations (20)–(22), respectively. Figure 7 shows the application’s interface for the SCA.

ψ1 “ 0.14714w2 ´ 0.15583w` 1.1234 (20)

ψ2 “ ´1.1836w2 ´ 0.3760w´ 0.52894 (21)

ψ3 “ ´0.04554w2 ` 1.8719w´ 0.39071 (22)
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3. Results

In this study, LST maps for New Brunswick, Canada have been produced using Landsat 5 TM,
Landsat 7 ETM+ and Landsat 8 TIRS sensors. The LST has been derived by using the MWA, RTE, Plank
function and the SCA. In the study, Zhang, Wang et al.’s LSE [21] algorithm was considered to be the
most suitable in the estimation of LSE as it produced the best results in LST extraction. Meteorological
data were used to model the accuracy assessment of the LST values derived from the sensors.

Figure 8 shows the LST maps produced by Landsat 5 TM the imagery dated 13 November 2010
from the study area through the use of the SCA, RTE, MWA and the Planck function. The meteorological
stations used in the modeling of the accuracy of the derived LST have also been shown on the maps.
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Figure 9 shows the LST maps produced by the imagery acquired from Landsat 5 TM on 31 
December 2010 from the study area through the use of the SCA, RTE, MWA and the Planck function. 
The meteorological stations used in the modeling of the accuracy of the derived LST have also been 
shown on the maps. 
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Figure 8. LST maps derived from Landsat 5 TM: (a) LST extracted using the SCA; (b) LST extracted
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation.

Figure 9 shows the LST maps produced by the imagery acquired from Landsat 5 TM on
31 December 2010 from the study area through the use of the SCA, RTE, MWA and the Planck
function. The meteorological stations used in the modeling of the accuracy of the derived LST have
also been shown on the maps.
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Figure 9. LST maps derived from Landsat 7 ETM+: (a) LST extracted using the SCA; (b) LST extracted 
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation. 

Figure 9. LST maps derived from Landsat 7 ETM+: (a) LST extracted using the SCA; (b) LST extracted
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation.
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Figure 10 shows the LST maps produced by the imagery acquired from Landsat 7 ETM+ on
21 November 2010 from the study area through the use of the SCA, RTE, MWA and the Planck function.
The meteorological stations used in the modeling of the accuracy of the derived LST have also been
shown on the maps.
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Figure 10. LST maps derived from Landsat 7 ETM+: (a) LST extracted using the SCA; (b) LST extracted 
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Figure 11 shows the LST maps produced by the imagery acquired from Landsat 7 ETM+ on 23 
February 2016 from the study area through the use of the SCA, RTE, MWA and the Planck function. 
The meteorological stations used in the modeling of the accuracy of the derived LST have also been 
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Figure 10. LST maps derived from Landsat 7 ETM+: (a) LST extracted using the SCA; (b) LST extracted
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation.

Figure 11 shows the LST maps produced by the imagery acquired from Landsat 7 ETM+ on
23 February 2016 from the study area through the use of the SCA, RTE, MWA and the Planck function.
The meteorological stations used in the modeling of the accuracy of the derived LST have also been
shown on the maps.
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Figure 11. LST maps derived from Landsat 7 ETM+: (a) LST extracted using the SCA; (b) LST extracted 
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation. 

Figure 12 shows the LST maps produced by the imagery acquired from Landsat 8 TIRS on 4 June 
2015 from the study area through the use of the SCA, RTE, MWA and the Planck function. The 
meteorological stations used in the modeling of the accuracy of the derived LST have also been shown 
on the maps. 

Figure 11. LST maps derived from Landsat 7 ETM+: (a) LST extracted using the SCA; (b) LST extracted
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation.

Figure 12 shows the LST maps produced by the imagery acquired from Landsat 8 TIRS on
4 June 2015 from the study area through the use of the SCA, RTE, MWA and the Planck function.
The meteorological stations used in the modeling of the accuracy of the derived LST have also been
shown on the maps.
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Figure 12. LST maps derived from Landsat 8 TIRS: (a) LST extracted using the SCA; (b) LST extracted 
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation. 

Figure 13 shows the LST maps produced by the imagery acquired from Landsat 8 TIRS on 29 
May 2013 from the study area through the use of the SCA, RTE, MWA and the Planck function. The 
meteorological stations used in the modeling of the accuracy of the derived LST have also been shown 
on the maps. 

The accuracy analysis of the values obtained from the sensors has been done at pixel level by 
observing the differences between the near surface temperatures obtained from the meteorological 

Figure 12. LST maps derived from Landsat 8 TIRS: (a) LST extracted using the SCA; (b) LST extracted
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation.

Figure 13 shows the LST maps produced by the imagery acquired from Landsat 8 TIRS on
29 May 2013 from the study area through the use of the SCA, RTE, MWA and the Planck function.
The meteorological stations used in the modeling of the accuracy of the derived LST have also been
shown on the maps.
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The accuracy analysis of the values obtained from the sensors has been done at pixel level by
observing the differences between the near surface temperatures obtained from the meteorological
data and the LST stored in a pixel after the use of a land surface temperature extraction algorithm.
Tables 6 and 7 show the values obtained from the algorithms and the near surface temperatures for
Landsat 5 TM. Tables 8 and 9 show the values obtained from the algorithms and the near surface
temperatures for Landsat 7 ETM+. Tables 10 and 11 show the values obtained from the algorithms and
the near surface temperatures for Landsat 8 TIRS. All temperatures are in degrees Celsius.
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Figure 13. LST maps derived from Landsat 8 TIRS: (a) LST extracted using the SCA; (b) LST extracted
using the RTE; (c) LST extracted using the MWA; and (d) LST extracted using the Planck equation.

The coordinates of the meteorological stations were converted to shape files and thereafter the
land surface temperature existing in the pixel that the meteorological station was located was compared
to the value of the near surface temperature which was measured by the meteorological station. In this
way, the possible errors were reduced as temperature varies from one place to another due to changes
in topography and land cover. The locations of the meteorological stations have been shown on the
maps (Figures 8–13).
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Table 6. Comparison between LST values obtained from Landsat 5 TM using the MWA, Planck equation, RTE, SCA and meteorological data obtained on
31 December 2010.

Station Name Latitude Longitude Elevation
(Meters)

NST (˝C)
at 12:00

RH
(%)

MWA
(˝C)

PLANCK
(˝C)

RTE
(˝C)

SCA
(˝C)

Mechanic Settlement 45˝41137.040”N 65˝09154.040”W 403 ´3.1 99 ´4.75 ´4.70 ´4.55 ´5.56
Fundy Park (Alma) Cs 45˝36100.000”N 64˝57100.000”W 42.7 3.6 62 ´0.91 ´1.29 ´0.73 ´2.17

Buctouche Cda Cs 46˝25149.006”N 64˝46105.009”W 35.9 ´0.9 78 ´8.06 ´7.64 ´7.85 ´8.48
Nappan Auto 45˝45134.400”N 64˝14129.200”W 19.8 ´7.9 73 ´3.46 ´3.55 ´3.26 ´4.42
Saint John A 45˝19105.000”N 65˝53108.050”W 108.8 ´0.2 69 ´0.29 ´0.73 ´0.11 ´1.62

Parrsboro 45˝24148.000”N 64˝20149.000”W 30.9 2.1 68 ´0.29 ´0.73 ´0.11 ´1.62
Gagetown A 45˝50100.000”N 66˝26100.000”W 50.6 ´2.2 79 ´0.91 ´1.29 ´0.73 ´2.17

Gagetown Awos A 45˝50120.000”N 66˝26159.000”W 50.6 ´1 77 ´0.29 ´0.73 ´0.11 ´1.62
Summerside 46˝26128.000”N 63˝50117.000”W 12.2 ´0.9 78 ´3.46 ´3.55 ´3.26 ´4.42

Mechanic Settlement 45˝41137.040”N 65˝09154.040”W 403 ´3.1 99 ´4.75 ´4.70 ´4.55 ´5.56
Root Mean Square Error (RMSE) 2.67 2.78 2.64 3.17
NST Near Surface Temperature (Day light saving was observed); PLANCK Planck Equation; RTE Radiative Transfer Equation; SCA Single Channel Algorithm; RH Relative Humidity.

Table 7. Comparison between LST values obtained from Landsat 5 TM using the MWA, Planck equation, RTE, SCA and meteorological data obtained on
13 November 2010.

Station Name Latitude Longitude Elevation
(Meters)

NST (˝C)
at 12:00

RH
(%)

MWA
(˝C)

PLANCK
(˝C)

RTE
(˝C)

SCA
(˝C)

Mechanic Settlement 45˝41137.040”N 65˝09154.040”W 403 15.4 40 15.15 14.97 15.32 13.28
Fundy Park (Alma) Cs 45˝36100.000”N 64˝57100.000”W 42.7 13.1 53 15.70 15.80 15.73 10.86

Buctouche Cda Cs 46˝25149.006”N 64˝46105.009”W 35.9 12.4 39 12.70 12.58 12.90 10.36
Nappan Auto 45˝45134.400”N 64˝14129.200”W 19.8 12.1 52 14.17 14.26 14.30 10.36
Saint John A 45˝19105.000”N 65˝53108.050”W 108.8 12.2 41 14.83 14.25 15.14 13.27

Parrsboro 45˝24148.000”N 64˝20149.000”W 30.9 13.2 48 14.56 14.57 14.70 10.85
Gagetown A 45˝50100.000”N 66˝26100.000”W 50.6 11.6 36 10.11 10.27 10.40 8.37

Gagetown Awos A 45˝50120.000”N 66˝26159.000”W 50.6 12.0 36 10.96 10.82 11.30 9.86
Summerside 46˝26128.000”N 63˝50117.000”W 12.2 13.6 40 12.63 12.55 12.88 10.36

Root Mean Square Error (RMSE) 1.64 1.58 1.68 2.33
NST Near Surface Temperature (Day light saving was observed); PLANCK Planck Equation; RTE Radiative Transfer Equation; SCA Single Channel Algorithm; RH Relative Humidity.



Remote Sens. 2016, 8, 413 25 of 31

Table 8. Comparison between LST values obtained from Landsat 7 ETM+ using the MWA, Planck equation, RTE, SCA and meteorological data obtained on
21 November 2010.

Station Name Latitude Longitude Elevation
(Meters)

NST (˝C)
at 12:00

RH
(%)

MWA
(˝C)

PLANCK
(˝C)

RTE
(˝C)

SCA
(˝C)

Mechanic Settlement 45˝41137.040”N 65˝09154.040”W 403 ´6.8 78 ´11.75 ´11.52 ´11.43 ´12.34
Fundy Park (Alma) Cs 45˝36100.000”N 64˝57100.000”W 42.7 ´1.9 58 ´5.50 ´5.53 ´5.21 ´6.39

Buctouche Cda Cs 46˝25149.006”N 64˝46105.009”W 35.9 ´4.4 64 ´9.62 ´9.48 ´9.31 ´10.31
Nappan Auto 45˝45134.400”N 64˝14129.200”W 19.8 ´4.4 70 ´8.23 ´8.14 ´7.92 ´8.98
Saint John A 45˝19105.000”N 65˝53108.050”W 108.8 ´3.6 55 ´6.18 ´6.18 ´5.88 ´7.03

Parrsboro 45˝24148.000”N 64˝20149.000”W 30.9 ´2.6 60 N/A N/A N/A N/A
Gagetown Awos A 45˝50120.000”N 66˝26159.000”W 50.6 ´2.9 55 ´3.51 ´3.62 ´3.22 ´4.49

Summerside 46˝26128.000”N 63˝50117.000”W 12.2 ´3 68 ´8.23 ´8.14 ´7.92 ´8.98
Mechanic Settlement 45˝41137.040”N 65˝09154.040”W 403 ´6.8 78 ´11.75 ´11.52 ´11.43 ´12.34

Root Mean Square Error (RMSE) 4.03 3.94 3.75 4.73
NST Near Surface Temperature (Day light saving was observed); PLANCK Planck Equation; RTE Radiative Transfer Equation; SCA Single Channel Algorithm; RH Relative Humidity;
N/A—Data not available as a result of Scan Line Corrector (SLC).

Table 9. Comparison between LST values obtained from Landsat 7 ETM+ using the MWA, Planck equation, RTE, SCA and meteorological data obtained on
23 February 2016.

Station Name Latitude Longitude Elevation
(Meters)

NST (˝C)
at 12:00

RH
(%)

MWA
(˝C)

PLANCK
(˝C)

RTE
(˝C)

SCA
(˝C)

Mechanic Settlement 45˝41137.040”N 65˝09154.040”W 403 ´8.1 35 ´14.46 ´14.31 ´14.04 ´15.12
Fundy Park (Alma) Cs 45˝36100.000”N 64˝57100.000”W 42.7 ´6.9 50 ´10.17 ´10.15 ´9.77 ´10.98

Buctouche Cda Cs 46˝25149.006”N 64˝46105.009”W 35.9 ´8.9 45 ´5.40 ´5.53 ´5.03 ´6.39
Nappan Auto 45˝45134.400”N 64˝14129.200”W 19.8 ´7.9 68 N/A N/A N/A N/A

Parrsboro 45˝24148.000”N 64˝20149.000”W 30.9 ´5.9 49 ´7.41 ´7.48 ´7.03 ´8.33
Moncton lnternational Airport 46˝06144.000”N 64˝40143.000”W 70.7 ´8 44 ´4.08 ´4.25 ´3.72 ´5.12

Gagetown A 45˝50100.000”N 66˝26100.000”W 50.6 ´8.4 47 N/A N/A N/A N/A
Summerside 46˝26128.000”N 63˝50117.000”W 12.2 ´7.3 55 N/A N/A N/A N/A

Root Mean Square Error (RMSE) 3.68 3.58 3.61 3.80
NST Near Surface Temperature (Day light saving was observed); PLANCK Planck Equation; RTE Radiative Transfer Equation; SCA Single Channel Algorithm; RH Relative Humidity;
N/A—Data not available as a result of Scan Line Corrector (SLC).
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Table 10. Comparison between LST values obtained from Landsat 8 TIRS using the MWA, Planck equation, RTE, SCA and meteorological data obtained on 4 June 2015.

Station Name Latitude Longitude Elevation (m)
NST (˝C)
at 11:00

am

RH
(%)

MWA
(˝C)

PLANCK
(˝C)

RTE
(˝C)

SCA
(˝C)

Mechanic Settlement 45˝41137.040”N 65˝09154.040”W 403 13.1 57 9.27 9.65 9.43 8.15
Fundy Park (Alma) Cs 45˝36100.000”N 64˝57100.000”W 42.7 12.4 56 13.42 13.36 13.51 11.33

Buctouche Cda Cs 46˝25149.006”N 64˝46105.009”W 35.9 15.1 58 16.66 16.14 16.73 14.20
Nappan Auto 45˝45134.400”N 64˝14129.200”W 19.8 15.4 63 14.84 14.40 15.01 13.18

Parrsboro 45˝24148.000”N 64˝20149.000”W 30.9 15.9 42 11.70 12.10 11.69 9.17
Summerside 46˝26128.000”N 63˝50117.000”W 12.2 13.9 62 13.44 13.55 13.45 10.82

Moncton International Airport 46˝06144.000”N 64˝40143.000”W 70.7 16.9 44 17.74 17.55 17.84 14.25
Root Mean Square Error (RMSE) 2.30 2.07 2.28 3.65

NST Near Surface Temperature; PLANCK Planck Equation; RTE Radiative Transfer Equation; SCA Single Channel Algorithm; RH Relative Humidity.

Table 11. Comparison between LST values obtained from Landsat 8 TIRS using the MWA, Planck equation, RTE, SCA and meteorological data obtained on
29 May 2013.

Station Name Latitude Longitude Elevation
(Meters)

NST (˝C)
at 11:00

am

RH
(%)

MWA
(˝C)

PLANCK
(˝C)

RTE
(˝C)

SCA
(˝C)

Mechanic Settlement 45˝41137.040”N 65˝09154.040”W 403 17 27 22.24 21.80 23.07 18.85
Fundy Park (Alma) Cs 45˝36100.000”N 64˝57100.000”W 42.7 18.1 38 18.41 18.41 19.31 15.53

Buctouche Cda Cs 46˝25149.006”N 64˝46105.009”W 35.9 20.1 35 23.07 22.28 23.98 20.62
Nappan Auto 45˝45134.400”N 64˝14129.200”W 19.8 19.3 35 21.66 21.06 22.59 19.29

Parrsboro 45˝24148.000”N 64˝20149.000”W 30.9 16.2 49 22.04 21.60 22.88 18.77
Moncton International Airport 46˝06144.000”N 64˝40143.000”W 70.7 20.2 41 29.74 28.78 30.24 23.70

Gagetown A 45˝50100.000”N 66˝26100.000”W 50.6 20 31 15.36 17.58 16.34 13.32
Gagetown Awos A 45˝50120.000”N 66˝26159.000”W 50.6 20 31 22.02 21.74 22.79 18.06

Summerside 46˝26128.000”N 63˝50117.000”W 12.2 16.1 50 20.26 19.67 21.26 18.65
Root Mean Square Error (RMSE) 4.83 4.33 5.35 3.06

NST Near Surface Temperature; PLANCK Planck Equation; RTE Radiative Transfer Equation; SCA Single Channel Algorithm; RH Relative Humidity.
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4. Discussion

One of the challenges of deriving land surface temperatures from space is doing the accuracy
assessment of the results using values which have been measured on the ground. This is because
satellite imagery covers a large area (the approximate scene size is 170 km north to south by 183 km east
to west for Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 TIRS) and the area varies with topography,
and land cover. Not only that but also due to the fact that the spatial resolution of satellite imagery is
usually different from the measurements which are made on the ground.

Atmospheric conditions of a study area can also seriously hamper the accuracy analysis of data,
especially the presence of cloud cover. For this reason, the Landsat imagery that has been used in this
study had a cloud cover of less than 10%. After LST obtained from Landsat 5 TM, Landsat 7 ETM+ and
Landsat 8 TIRS have been resampled, the spatial resolution of the LST values represents 30 meters on
the ground. This poses a challenge as a pixel value is an average of an area with 900 m2 on the ground
while the data used for the assessment is just a single point (location of a measurement made on the
ground) falling within the pixel being assessed. In this study, among the data used included the ones
obtained from the Landsat 7 ETM+ satellite sensor; this sensor has been affected by the presence of the
Scan Line Corrector (SLC) as from 31 May 2003. Striped imagery was used in the study as a result of
the absence of enough meteorological data of the study area before 2003. Some of the meteorological
stations used in the accuracy analysis of the Landsat 7 ETM+ image dated 23 February 2016 were
affected by stripes. These stations have been shown in Table 9.

The derived LST from the satellite imagery used in this study was compared to meteorological
data due to the absence of in situ data during the satellite overpass time. According to studies
done by previous researchers [29] there exists a relationship between land surface temperature and
near surface temperatures. Land surface temperature can even be used to estimate near surface air
temperature [39–41]. Authors in [29] used near surface temperatures in the validation of satellite
derived land surface temperatures. Due to these reasons, meteorological data was considered as a tool
to model the accuracy of the LST derived from the sensors involved in this study.

In this study, the LST values which were obtained from the algorithms produced results which
were very close. For Landsat 5 TM, the best results were obtained from the RTE and the Planck function
which produced RMSE of 2.64 ˝C and 1.58 ˝C, respectively. For Landsat 7 ETM+ LST retrieval, the
best results were obtained from the RTE and the Planck function with RMSE of 3.75 ˝C and 3.58 ˝C
respectively. For Landsat 8 TIRS LST retrieval, the best results were obtained from the Planck function
and the SCA with RMSE of 2.07 ˝C and 3.06 ˝C respectively. This implies that all the algorithms are
suitable for the retrieval of LST from the sensors used in the study. The differences in results may be
due to the errors which may arise from the simulation of atmospheric parameters, estimation of LSE as
well as errors which may arise from the estimation of atmospheric water vapor. It should also be noted
that the temperature values used in the accuracy assessment were near surface temperatures measured
from the meteorological stations and not actual temperatures of the ground. These temperatures are
measured at a height of up to two meters above the ground.

Generally, the LST derived from the algorithms had differences of less than 1 ˝C between each
other. The SCA produced LST which were generally lower in comparison to the other algorithms.
The SCA has been found to be less accurate in LST estimation by other authors as a result of being
highly dependent in atmospheric [24,42] parameters. The algorithm is also affected by errors that may
arise from the estimation of land surface emissivities, which can contribute to an error between 0.2 K
and 0.7 K [42].

The atmospheric water vapor used in the SCA was obtained from meteorological data. As a
result of the data being obtained from points and thereafter an average value being used for a wide
area, this may result to bigger discrepancies between the near surface temperatures and the LST
values from space. For future studies, it is important to use atmospheric water vapor values which
have been obtained from satellites for LST estimation. Atmospheric water vapor is the most variable
component of the atmosphere and varies both horizontally and vertically and it may affect the NDVI
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of an area [20]. The atmospheric effects arising from clouds, water vapor and aerosols may reduce
the contrast between the visible and near infrared reflections and as a result lead to smaller NDVI
values [20] hence affecting the LSE which is derived from NDVI.

5. Conclusions

The LST maps in this study have been produced using a QIS plugin which was written using the
Python programming language. This has demonstrated how powerful open source tools can be in
terms of remote sensing and geographic information systems data processing and analysis. As a result
of this study being done through the use of open source tools, it encourages the use of Landsat 5 TM,
Landsat 7 ETM+ and Landsat 8 TIRS data in the production of land surface temperature maps,
the improvement of algorithms and also provides a platform for debates concerning LST extraction
from satellite imagery. This plugin enables users from other disciplines such a hydrology, landscape
engineering, urban planning and other related fields to easily extract land surface temperature from
visible and near infrared satellite imagery. This plugin also enables users to make use of more than one
algorithm of land surface temperature estimation and as a result managing to benefit from possible
advantages of them while reducing the possible disadvantages which may arise from the use of a
single algorithm in land surface temperature estimation.

This study also revealed that the MWA, the SCA, the RTE and the Planck function can all be used
in the estimation of LST from Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 TIRS. The availability
of meteorological data during the satellite overpass time can, however, play a great role towards
determining the algorithm to be used in the estimation of LST. This therefore makes the Planck function
easier to use in comparison to the other algorithms as it does not require atmospheric variables during
the satellite overpass time.

In order to obtain better results in the future, researchers should do accuracy analysis of the
LST derived from satellite imagery with actual in situ data collected during the satellite overpass
time. It is also important to estimate the atmospheric water vapor from satellites instead of using
meteorological data as satellite derived atmospheric water vapor provide better average values over
spatially large areas than meteorological data. To perform atmospheric correction of NDVI and
emissivity, atmospheric correction algorithms such as 6S [43] and Moderate Resolution Atmospheric
Transmission (MODTRAN) [44] may be applied.
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Abbreviations

The following abbreviations are used in this manuscript:

NST Near Surface Temperature
RH Relative Humidity
VNIR Visible and Near Infrared
TIR Thermal Infrared
LST Land Surface Temperature
LSE Land Surface Emissivity
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SCA Single Channel Algorithm
MWA Mono Window Algorithm
RTE Radiative Transfer Equation
RS Remote Sensing
GIS Geographic Information Systems
NDVI Normalized Difference Vegetation Index
TOA Top of Atmosphere
EOS Earth Observation Satellites
USGS United States Geological Survey
UTC Coordinated Universal Time
GDAL Geospatial Data Abstraction Library
DN Digital Numbers
K Kelvin
OLI Operational Land Imager
TM Thematic Mapper
ETM+ Enhanced Thematic Mapper Plus
NASA National Aeronautics and Space Administration
NCEP National Centers for Environmental Prediction
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