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In this study, we propose a novel hybrid multiobjective evolutionary algorithm for solving multiobjective qua-
dratic assignment problems. During the last decade, the researchers gave increasing attention to the multiobjective
structure of quadratic assignment problems and developed and/or used several multi objective metaheuristics.
The nondominated sorting genetic algorithm (NSGA-II) has been shown to solve various multiobjective problems
much better than other recently-proposed constraint handling approaches. Besides, the effectiveness of conic sca-
larization method was also proven for solution of multiobjective problems, that have non-linear structure. Here,
a hybrid multiobjective evolutionary algorithm (cNSGA-II) featured with NSGA-II and conic scalarization’s Pareto
solutions is developed to obtain as much Pareto points, as possible. To test the performance of the algorithm we
have selected the test problems from the literature and compared the performances by well-known diameter metric.
It has been shown that cNSGA-II is effective in solving multiobjective quadratic assignment problems.
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1. Introduction

Quadratic assignment problems (QAP) were firstly de-
fined by Koopmans and Beckmann [1]. QAP have a num-
ber n of locations and facilities. There is a flow between
these locations and facilities. Each facility is assigned
to a location and also each location is assigned to a fa-
cility. For this problem, the objective is minimization
of total assignment costs. In real life, these problems
are encountered in hospital layouts, in design of keybo-
ards and in circuit analysis. Combinatorial data analy-
sis problems can also be modeled as a QAP. While the
constraints of QAP are 0–1 assignment constraints, the
objective function is nonlinear, because of the quadratic
structure. Based on these two reasons, QAP is classified
as NP-Hard, and it is almost impossible to find optimal
solutions if the number of instances is greater than 20 [2].
Thus, besides the exact solution methods to solve this
kind of problems, metaheuristic algorithms like genetic
algorithms, tabu search and neural networks [3, 4] have
been proposed.

Based on the multi objective structure of real life pro-
blems [5–7], multiobjective quadratic assignment pro-
blems (mQAP) were suggested by Knowles and Corne [2].
The difference of mQAP from the QAP is that it has mul-
tiple flow matrices (m > 2). mQAP is also a NP-Hard
problem like QAP. In addition, more than one nonlinear
objective functions have to be considered. The objective
of mQAP is [2]:

minC (π) =
{
C1 (π) , C2 (π) , . . . , Ck (π)

}
, (1)

where Ck (π) =
∑n
i=1

∑n
j=1 aijb

k
πiπj

, k ∈ 1,m, n is
the number of facilities/locations, m is the number of
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different flow matrices, aij is the distance between loca-
tions i and j, bkij is the kth flow from facility i to facility j,
πi is the location of ith facility in permutation π ∈ P (n),
and P (n) is the set of all permutations.

Knowles and Corne have again studied mQAP in
2003 [8]. After this, different researchers have studied
this subject, using various solution approaches. These
studies were about heuristic and metaheuristic algo-
rithms. Garrett and Dasgupta [9, 10] provided a com-
parison of a number of strategies for the construction of
multiobjective memetic algorithms with some local se-
arch strategies for the mQAP. Paquete and Stützle [11]
also tried to find Pareto solutions with some local se-
arch algorithms. Their proposed local search algorithms
gave good quality solutions in reasonable times. Li and
Silva [12] proposed a GRASP algorithm for mQAP. Öz-
kale and Fığlalı [13] presented another study considering
a metaheuristic approach (ant colonies optimization) for
mQAP. Almeida et al. [14] have published one of the la-
test studies that proposed a hybrid algorithm of transge-
netic algorithm and NSGA-II. Aside from the main stu-
dies in the literature, Zhao et al. [15] presented a fuzzy
solution approach for mQAP, called fuzzy particle swarm
algorithm. Ammar [16] also considered portfolio optimi-
zation problem as a fuzy mQAP. Ammar [17] continued
the fuzzy mQAP studies with relative scalar quadratic
multiobjective programming with fuzzy coefficients.

According to the literature review it is obvious that to
solve mQAP, efficient metaheuristic and/or hybrid meta-
heuristic algorithms are needed. In this study, in order
to propose an efficient solution approach to mQAP, fir-
stly the conic scalarization method and multiobjective
evolutionary algorithm of NSGA-II were used to find Pa-
reto solutions. Then, by considering the strengths of
both methods we propose a hybrid solution approach.
The novel hybrid approach and the numerical results are
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presented in Section 2 and the conclusions are given in in
Section 3. Test problems from the literature were used to
compare the efficiency of the proposed solution approach.

2. A hybrid NSGA-II algorithm
for multiobjective QAP

Based on the multiobjective structure of mQAP, we
should concentrate on the Pareto solutions. There are
some scalarization methods to find Pareto solutions. Ef-
fectiveness of conic scalarization method (CS) (ability to
find Pareto solutions) is proven for solution of multiob-
jective problems, especially the ones that have non-linear
structure [18]. Besides the scalarization methods, multi-
objective evolutionary algorithms (MOEA) are also used
to find Pareto solutions.

Non-dominated sorting genetic algorithm-II
(NSGA-II) is one of these MOEA, and its ability to find
Pareto solutions is also proven to be efficient [19, 20].

In their study, Kasimbeyli et al. [18] presented main fe-
atures of the conic scalarization method (CS) in multiob-
jective optimization problems. It is proven that CS met-
hod is guaranteed to generate proper efficient solutions
and does not require any kind of convexity or boundness
conditions. The idea of the CS method is very simple:
choose preference parameters which consist of a weight
vector w ∈ Ca# and a reference point a ∈ Rn, deter-
mine an augmentation parameter α ∈ R+, such that
(wα) ∈ Ca∗ (or (wα) ∈ Ca◦ or (wα) ∈ Ca#), where for
a convenience the l1-norm is used, and solve the scalar
optimization problem CS (w,α, a) in Eq. (2).

The set of optimal solutions of this scalar problem
will be denoted by Sol (CS (w,α, a)). Reference point
a = (a1, . . . , an) may be identified by a decision ma-
ker in cases when she/he desires to calculate minimal
elements that are close to some point. The CS method
does not impose any restrictions on the ways for determi-
ning reference points. The reference point can be chosen
arbitrarily.

min
x∈X

n∑
i=1

wi (fi (x)− ai)

+α

n∑
i=1

|fi (x)− ai|CS (w,α, a) . (2)

In the first step of the NSGA-II algorithm, random
population Pt with size N is generated based on the
problem’s range and constraints. Then, all objective
function values are evaluated. Nondominated and cro-
wding distances are used to sort these solutions. After
that, with the selection, crossover and mutation opera-
tors, the offspring population Qt with size N is created.
The solutions of offspring population are then evaluated.
Then, the population Rt is formed by the populations Pt
and Qt. The population size of Rt is 2N .

The solutions of Rt are sorted in different nondomina-
ted front. In the new population Pt+1, the best solutions
are added to fulfill the new generation, if the number
of these solutions is less than the population size. These

best solutions are the solutions in the best front and with
the best value of the crowding distance.

To compare solutions of these two methods, the in-
stances which were presented by Knowles and Corne [8]
were used in this study. These instances have 10 loca-
tions and 2 objectives, 20 locations and 2 objectives, 30
locations and 2 objectives, 30 locations and 3 objectives.
The instances were solved with CS via GAMS software
(Version 23.3), and with NSGA-II via VBA. Unlike in
single-objective optimization, we need to use some me-
trics to measure the performance of multiobjective solu-
tion algorithm.

In a multiobjective optimization there are two go-
als [20]: 1) convergence to the Pareto optimal set and
2) maintenance of diversity in solutions of the Pareto op-
timal set. In this study, the diameter metric, which is
given in Eq. (3) is used. Let dist (π, µ) is the distance
between solution π and µ,

dmm (P ) =
∑
π∈P

∑
µ∈P

dist(π, µ) |P |2 . (3)

The diameter values obtained for CS method and
NSGA-II are given in Table I. For some instances CS
gave better diameter values, and for the other, NSGA-II.
In Fig. 1, the Pareto solutions obtained by CS and
NSGA-II are given for the instances KC10-2fl-1rl and
KC10-2fl-1uni. It is clear that more Pareto solutions
were obtained by CS. However, for the large scale in-
stances CS gave better diameter values and gave almost
all Pareto solutions. The solution time is not reasonable,
because solution time of nonlinear constrained optimi-
zation problems depends on the number of constraints,
decision variables and conditioning of decision variables
space [22].

Fig. 1. Pareto solutions obtained by CS and NSGA-II.

NSGA-II is also good at finding Pareto solutions and is
faster than NSGA-II for the large scale problems. Based
on these facts, a novel hybrid multiobjective evolutionary
algorithm, based on conic scalarization and NSGA-II is
proposed.

The main structure of our proposed hybrid NSGA-II
(cNSGA-II) algorithm is same as that of NSGA-II.
The novel difference is that 20% of the initial population
is taken from the Pareto solutions, obtained by conic sca-
larization. The procedure of cNSGA-II is given in Fig. 2.

All diameter metric values of NSGA-II, CS and the
cNSGA-II are given in Table I. The performance of the
hybrid algorithm is better in 9 of 17 instances.
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TABLE I
Diameter values obtained by NSGA-II, CS and cNSGA-II.

Problem NSGA-II CS cNSGA-II Problem NSGA-II CS cNSGA-II
KC10-2fl-1rl 370.318 432.882 449.990 KC20-2fl-1uni 10.465 30.590 58.935
KC10-2fl-1uni 4.416 6.378 6.451 KC20-2fl-2rl 776.318 760.189 764.382
KC10-2fl-2rl 325.855 155.762 312.896 KC20-2fl-2uni 9.295 5.233 80.814
KC10-2fl-2uni 4.458 782 20.980 KC20-2fl-3rl 718.149 1.176.523 890.217
KC10-2fl-3rl 367.312 401.294 417.904 KC20-2fl-3uni 23.176 54.994 63.379
KC10-2fl-3uni 4.842 16.860 16.013 KC20-2fl-4rl 4.134.239 2.551.831 4.664.329
KC10-2fl-4rl 389.446 380.342 354.249 KC20-2fl-5rl 4.652.019 5.551.017 4.450.468
KC10-2fl-5rl 1.610.559 515.146 1.672.450 KC30-2fl-1rl 1.183.783 1.973.953 1.337.680
KC20-2fl-1rl 956.204 1.639.296 1.374.347

TABLE II
Diameter values obtained by cNSGA-II, MOMGA-II, MOMGA-IIa and Knowles and Corne.

Problem
Knowles and Corne

results [8]
MOMGA-II [20] MOMGA-IIa [21] Conic scalarization cNSGA-II

KC10-2fl-1rl 7.000 - - 432.882 449.990
KC10-2fl-1uni 7.000 - - 6.378 6.451
KC10-2fl-3uni 8.000 - - 16.860 16.013
KC20-2fl-1uni 15.000 11.400 13.700 30.590 58.935
KC20-2fl-2uni 14.000 7.200 3.670 5.233 80.814
KC20-2fl-3uni 16.000 12.300 15.500 54.994 63.379

Fig. 2. Procedure of the novel cNSGA-II algorithm.

Obtained results were also compared with the results
of the other methods in the literature (Table II). It is also
clear that cNSGA-II gives better results than the results
published in literature.

3. Conclusions

In this study, mQAP which is a relatively new sub-
ject in the literature, is considered. The contribution
to the literature of this study is two fold. The exact
solution methodology to mQAP with conic scalarization

method is firstly studied. As the second contribution, ba-
sed on the strengths of CS and NSGA-II, a novel hybrid
NSGA-II (cNSGA-II) is proposed.

Instances presented by Knowles and Corne [8] were
used in this study and were first solved with CS and
NSGA-II. For different problems, we see that both of
these methods give better solutions in particular cases.
However neither of these methods dominates the ot-
her. Results obtained with proposed hybrid algorithm
(cNSGA-II) were compared with the ones obtained with
CS, NSGA-II and with other three methods from the li-
terature. It has been shown that hybrid algorithm gives
better solutions than the others.
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