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ABSTRACT

Paillier cryptosystem is extensively utilized as a homomorphic encryption scheme to ensure privacy requirements in
many privacy-preserving data mining schemes. However, overall performance of the applications employing Paillier
cryptosystem intrinsically degrades because of modular multiplications and exponentiation operations performed by the
cryptosystem. In this study, we investigate how to tackle with such performance degradation because of Paillier cryptosys-
tem. We first exploit parallelism among the operations in the cryptosystem and interleaving among independent operations.
Then, we develop hardware realization of our scheme using field-programmable gate arrays. As a case study, we evaluate
our cryptoprocessor for a well-known privacy-preserving set intersection protocol. We demonstrate how the proposed cryp-
toprocessor responds promising performance for hard real-time privacy-preserving data mining applications. Copyright ©

2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Privacy-preserving data mining (PPDM) algorithms have
been proposed to respond increasing privacy awareness. In
many cases, privacy of either individuals’ or corporate data
should be ensured to benefit from data mining methods.
Without any protection, users might be subjected to pro-
filing and faced with price discrimination. Moreover, they
can receive disturbing amount of spam mails, messages,
phone calls, or emails for unsolicited marketing. Because
collected users’ personal data are regarded as confidential
and valuable assets, data collectors are obliged to protect
such data [1].

In typical PPDM applications, privacy is a twofold
problem: preserving privacy in user-to-data holder and
data holder-to-data holder cases, as depicted in Figure 1.
While the bottom part of the Figure 1 exhibits the
framework for considering user-to-data holder, that is,
individuals’ privacy concerns, the top part shows data
holder-to-data holder scenario considering corporate pri-
vacy in case of distributed data among data holders. The
studies focusing on individual privacy framework concen-
trate on how user profiles can be collected and processed
while ensuring privacy [2]. Corporate privacy is an issue,
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where two or more parties want to collaborate for input
data to drive higher quality mining services. Collaboration
is desirable for many parties to benefit from each other’s
data without divulging their privacy [3,4]. Either user-to-
data holder or data holder-to-data holder case, the most
important thing is to protect privacy.

To solve individual and corporate privacy protection
problems, cryptographic techniques with homomorphic
encryption property are widely used. In this sense, there
are a quite number of PPDM algorithms exploiting Pail-
lier homomorphic cryptosystem (PHC) to achieve privacy.
Paillier [S] proposes an additive homomorphic encryp-
tion method with self-blinding property. By means of the
specified method, ciphertexts can be processed to achieve
encrypted version of their sums. From this addition prop-
erty, multiplication operations can be performed between
a ciphertext and a plaintext. Moreover, self-blinding prop-
erty allows mapping a plaintext into possibly many differ-
ent ciphertexts. By the way, the same plaintexts cannot be
recognized from their ciphertexts.

While PHC provides verifiable correctness and trust-
worthiness without revealing information about the con-
fidential data, its foremost shortcoming is computational
cost because of the clumsy nature of cryptographic
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Figure 1. Privacy frameworks for privacy-preserving data mining applications.

mechanisms [3,6]. This work is triggered with the need
for the requirement of efficient PHC implementations
for privacy protection [3,7]. Therefore, we develop a
hardware-based solution to overcome the performance
degradations because of Paillier encryption and propose
a high-speed Paillier cryptoprocessor (PCP). We first
take advantage of parallelism among the operations in
Paillier cryptosystem to fully pipeline our datapath of
the cryptoprocessor. Furthermore, we utilize interleaving
among independent operations to enhance computations
by avoiding data dependencies. We then exploit field-
programmable gate arrays (FPGAs) for necessary hard-
ware realization of our proposed high-speed cryptopro-
cessor. To validate the improved performance promised
by our architecture, we conduct different sets of experi-
ments. Empirical outcomes show that the proposed system
is able to improve performance. As a case study, we also
show how efficient the proposed cryptoprocessor is for
a PPDM scheme called private matching proposed by
Freedman et al. [8].

The remainder of the paper is organized as follows. In
Section 2, we extensively study related works and high-
light the significance of our topic with respect to the state
of the art. We briefly present key preliminaries for the
proposed cryptoprocessor in Section 3. After deeply dis-
cussing and illustrating our design philosophy and imple-
mentation details in Section 4, we explain our experiments
and provide empirical outcomes together with a case study
in Section 5. We finally conclude the study and give future
directions in Section 6.

2. RELATED WORK

One way to achieve reasonable time for cryptographic
algorithms is to apply an application-specific hardware
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design. Bhattacharjee et al. [9] describe a collaborative
data mining and analysis solution for enterprisers having
confidential data. Security of their scheme is based on IBM
PCIXCC secure coprocessors (Armonk, NY, USA) as main
processing units on encrypted data belong to a number of
parties. Li [10] similarly proposes solutions to join various
autonomous databases in a privacy-preserving manner via
secure coprocessors. The proposed scheme allows a trusted
third party to access secure coprocessor operations, and
the trust notion is consolidated through a secure hardware
usage. Smith and Safford [11] discuss the feasibility of
privacy protection with secure coprocessors and describe
a model consisting of a single server with encrypted
records and a number of coprocessors enabling private
database queries.

Hardware-based solutions like application-specific inte-
grated circuits (ASICs) or FPGAs can be applied to effi-
ciently implement computationally intensive algorithms.
While ASICs have predetermined functionality to per-
form a particular task, FPGAs are able to perform
an arbitrary task by combining logic gates, flip-flops,
and memory units [12]. The ASIC implementation is
faster and more secure than the software implementa-
tion [13]. However, the ASIC implementation is not
flexible enough, and its longer design cycle and higher
development cost make it less attractive and not prefer-
able choice to build a cryptosystem in low volume
designs [14]. The software-oriented implementation is
flexible; however, its computational complexity is higher
compared with its hardware equivalent. Moreover, storing
the private key in the computer memory may endanger
security. FPGAs offer more flexibility in highly paral-
lel data processing, low latencies, and high-throughput
rates [15]. Teubner et al. [15] show that FPGAs con-
sume significantly lower power than conventional Personal
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Computer (PC). The use of hard blocks available in FPGAs
such as multipliers, block memories, and Input/Output
(I/0) features allows to significantly reduce the area gap
between ASIC and FPGA [16]. FPGAs having such promi-
nent features can be solutions to fulfill performance impli-
cations of PHC.

There are various studies on efficient implementa-
tions of modular multiplication, inversion, and exponen-
tiation [17-19]. Montgomery multiplication is one of
the most popular algorithms [19]. It still constitutes a
base for newly proposed schemes and operates with long
integers to be represented by a radix (generally power
of two) [20]. Moreover, high-radix Montgomery reduc-
tion method is well suited to the FPGA-based hardware
environments because of the embedded building multi-
plier modules available in Xilinx (San Jose, CA, USA)
FPGAs [17]. Various high-radix Montgomery modular
exponentiation implementations have been proposed for
improving performance [17,21]. However, as the radix
increases, design complexity and length of clock cycle
also increase dramatically because of the use of larger
digit multipliers. These high-radix designs generally con-
sume huge amounts of hardware area. Thus, low-radix
designs are more attractive for hardware implementa-
tions. However, implementing larger than 17-bit pipelined
multipliers is also possible. Analysis of the design trade-
offs for high-radix modular multipliers can be found
in [22].

Unlike the previous solutions utilizing commercially
available secure coprocessors [9—11], we design a high-
speed coprocessor architecture to perform computation-
ally intensive homomorphic operations. We also employ
high-radix Montgomery algorithm incorporating the
pipelined 32-bit multiplier modules to use hard blocks in
FPGAs. Moreover, our scheme’s privacy is based on the
security achieved by Homomorphic Cryptosystem (HCs)
rather than secure coprocessors. We also propose a new
hardware architecture to increase efficiency of PPDM
methods. There are two different studies [23,24] on
FPGA implementation of multiplier and modular reduc-
tion tasks for Gentry’s fully homomorphic encryption
[25]. These are not fully homomorphic encryption proces-
sors, because they only implement primitives necessary
for Gentry’s scheme. Unlike this scheme, we focus on
additive homomorphic method applied by many PPDM
schemes. Our proposed hardware architectures are able
to perform Paillier encryption and decryption, which pro-
vides additive homomorphism for PPDM. Similar to the
schemes in [15,26], we focus on improving the perfor-
mance of source exploiting tasks; however, our scheme
additionally concentrates on how efficient solutions can
be provided with privacy as in [27]. It also differs from
the work [27] because we focus on cryptographic mecha-
nisms rather than anonymity-based approaches. Our goal
is to achieve a high-speed and high-throughput design
of modular multiplication and exponentiation required
by PHC.

Security Comm. Networks 2016; 9:1535-1546 © 2016 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Paillier cryptoprocessor

3. PRELIMINARIES
3.1. Paillier homomorphic cryptosystem

Paillier [5] proposes a public key encryption scheme on
composite residuosity classes. The scheme is based on the
problem of deciding if the number is an nth residue modulo
n?. The degree of classes is set to a hard-to-factor number
n = pq, where p and g are two large prime numbers. The
system consists of key generation, encryption, and decryp-
tion steps, which utilize public and private keys and some
precomputed values. Encryption and decryption operations
consist of modular exponentiations, multiplication, and
some specific operations.

Paillier encryption uses an encryption key n = pq,
where n? is precomputed for encryption and decryption.
Carmichael’s function A(n) is denoted by A. Moreover,
a random value r is computed from the range [1,n — 1]
such that gcd(r,n) = 1. Then, a base g € B is selected
and checked by ged (L (g/1 mod n2) n) = 1. Finally,
(n, g) pairs represent public keys, and the pair (p, q) is kept
private. Encryption (£) of PHC requires a modular expo-
nentiation of base g and r. The computation is significantly
enhanced by an acceptable choice of g [5].

The value g™ mod n? is precomputed, and the result is
multiplied with " mod n?. The same computation time
can be achieved using two modular exponentiation mod-
ules. However, precomputation does not affect the security
of the system, provided that the chosen value g fulfills
the requirement g € B imposed by the setting of Paillier
scheme. A plaintext m can be encrypted, and the ciphertext
¢ can be obtained as follows, where m, r < n:

c=g""" mod n? (1)

Decryption (D) of PHC requires a modular exponentia-
tion of base ¢ and g. The computation can be significantly
improved by means of precalculating the modular inverse
of L(g’l mod nz) because g and A are unique values for
one key. A ciphertext ¢ can be decrypted, and m can be
obtained as follows, where ¢ < n?:

Lic* mod n?)
m=——= modn 2)
L(g)L mod n2)

in which

u—1
L(u) = — Yue S, (3
n

The set S, = {u <nflu=1 mod n} is a multiplicative

subgroup of integers modulo n2 [5].

3.2. Modular exponentiation

Paillier homomorphic cryptosystem is heavily based on
modular exponentiation operations. It mainly involves

1537



Paillier cryptoprocessor

modular arithmetic operations and integer arithmetic
including multiplication and exponentiation modulo n?
for the encryption and decryption processes as seen from
Equations 1 and 2. Modular exponentiation and multiplica-
tion with a large exponent and modulus (generally longer
than 512 bits) are two of the most important arithmetic
operations in several modern cryptographic algorithms.
Efficient computation of modular exponentiation is very
important for PHC. Modular exponentiation can be real-
ized by performing a series of modular squaring and
multiplication operations. It is time-consuming in the case
of large operand sizes. Our high-throughput design’s goal
is to decrease execution time of each modular squaring and
multiplication operations.

One of the most efficient algorithms for performing
modular exponentiation in hardware is binary modular
exponentiation algorithm, which is known as square-
and-multiply algorithm. The algorithm requires 2n mod-
ular multiplication operations in the worst case. The
right-to-left binary modular exponentiation algorithm
(Algorithm 1) is adopted because there is no data depen-
dency between modular multiplication operations. Hence,
it is possible to exploit the parallelism between squaring
and multiplication operations by means of implementing
two parallel modular multiplier modules in the expo-
nentiation. Because of parallel execution of such opera-
tions, modular exponentiation is completed in the order of
O(ntym) time, where 1, 1s the time required to complete
one modular multiplication operation.

Algorithm 1 Right-to-left binary modular exponentiation

Input: Positive integers B,E,M,-M~"' R?
E =Y B2 B € {0,1}, R? = 2% mod M

Output: P = B mod M = ModExp(B, E, M)

1. Sp < ModMult(R?, 1, M); (Initial phase)
2. Zoy + ModMult(R?, B, M);

3. fori < Oton —1do

4 if £; = 1 then

5 S¢+1 — MOC"\/'UH(SZ7 ZZ‘, ]Vf); (Multiply)
6. else

7 Si+1 < 51,

8 end if

9 Zit1 + ModMult(Z;, Z;, M); (Square)
10. end for

11. Snt1 < ModMult(S,, 1, M); (Final phase)

2. return P < S, 41;

|. San et al.

cost because of the need for high-radix multipliers. The use
of high-radix values in Montgomery reduction allows one
to use hard-wired multiplier blocks in FPGAs.

Because modular exponentiation consists of series of
modular multiplications, performance of the exponentia-
tion modulo n2 operation relies on performance of the
multiplication operation modulo n2. Hence, we accommo-
date the high-speed pipelined coprocessors in [28], where
the authors take advantage of high-radix Montgomery
modular multiplication and Karatsuba algorithm because
of their suitability to Xilinx 7 series of FPGAs.

Algorithm 2 Montgomery multiplication on PCP (adapted
from [28] for 232 radix size)

Input: radix-2%?, d = [351.32-d>n+3,
X,Y,Mc,lsli 632{_0,1,.“,2"—1}, .
5\(4__27;1:912322‘)(“_ L __0, V=i 2T

=300 27" My, Mg =0,
Si = 32325 2" 8(i,3, Sa = 0,
~M™' X3, Y, M, Sii ) € {0,1,...,2% — 1},
do, 01,02 € {0,1,.. .,247 -1},
Oishigh = 04 (47:32), Ot low = 04,(31:0)

Output: S; + XY2 % mod M =
ModMult(X, Y, M),

1. So < 0;

2. fori < 0tod —1do

3. // On-the-fly q; computation

4. a+ Xo-Yi

5 B+ a+ Sio;

6. qi+ B-(—M"") mod 2%?%; (¢i computation)
7. // Pipelined computation of next value of S
8
9

(Initialization)

01 + [Xo - Yi](s1:0) + [@: - Mo](s1:0)3
02 < 01 + Si,0;

10, S(i41,0) ¢ 62,10w: (First word of S;+1)
11. C Jg,high;

12.  forj < 1toddo

13- S0 = [Xj—1 - Yil(ea:32) + [¢i - Mj—1](63:32);
14 61 = 0o + [X; - Yilsr0) + [4i - Mj] (3103

5. 02 < 01+ Si; +C;

16. Stig1,j—1) < 02,10w} (Remaining words)
17. C 62,high§

18.  end for

19. end for

20. if Sq > M then
21, Sgp1 + Sa— M;
22. end if

(Last reduction)

3.3. Exploring montgomery modular
multiplication’s high-radix architecture

One efficient algorithm for performing modular multipli-
cation in hardware is Montgomery algorithm [19]. The
radix-2 Montgomery modular multiplication requires less
area compared with high-radix versions. However, its com-
putational performance is worse. High-radix brings area

1538

Algorithm 2 presents the radix-232 version of high-
radix Montgomery modular multiplication on Virtex-7
FPGA. The architecture of modular multiplication com-
ponent has a great impact on performance of the crypto-
processor because the proposed PCP consists of a series
of modular multiplications. We adapted the high-speed
modular coprocessors from [28]. Interleaving ¢; compu-
tation (Algorithm 2, lines 3 and 6) and computation of
the next value of S;;1 (Algorithm 2, lines 12 and 18)
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described in [28] improves the PCP’s throughput. This
approach ensures to generate the g; values on the fly.
It is necessary to compute the first gy content before
the first computation of S; because S; depends on gg.
This operation is performed during loading the input data
to the input shift registers. After initial computing of
qo content, the ¢; computation is synchronized with the
Si+1 computation.

4. PAILLIER CRYPTOPROCESSOR
DESIGN

There are several design approaches that can be
applied to cryptographic algorithms for efficient hard-
ware implementations such as a low-area coproces-
sor design approach [29], a compact coprocessor
design approach [30], a high-speed architecture design
approach [31], and so on. In fact, high speed and high
throughput are the most important optimization goals in
designing PCP. In this study, we exploit the parallelism
in the operations and utilize pipelining as a digital design
strategy to improve overall throughput.

4.1. Design philosophy

We scrutinize how to design a high-speed architecture
so that the coprocessor meets the requirements of PPDM
schemes. To achieve such task, we utilize a design phi-
losophy, which consists of the following four fundamental
design methods.

(1) Pipelining: To maximize the clock frequency and
the throughput, pipelining is employed in the data-
path. To compute the main operations of PCP, a set
of arithmetic operation modules connected in series
executes in parallel by inserting buffers between ele-
ments. It allows us to break up long strings of data
and shorten critical paths. Necessary computations
are separated into a set of equal stages. We balance
each stage by utilizing DSP48E1 blocks for high
frequency values.

(2) Parallel Execution: Each stage in the overall datap-
ath performs one part of the algorithm. Our pipelined
datapath allows parallel execution of independent
tasks of the algorithm at the same time. Hence, the
stages of our pipelined datapath operate simultane-
ously using different resources, which increases the
system’s throughput.

Paillier cryptoprocessor

(3) Interleaving: We interleave independent operations
performing modular multiplication and exponentia-
tion utilized in this study. This allows us to obtain
a tight scheduling, which substantially increases the
throughput.

Resource Sharing: We reuse a modular multiplica-
tion (ModMult) component for a series of modular
multiplication operations, which cannot be paral-
lelized, in PCP to enhance resource utilization.

“

This design philosophy that we follow in this study
allows us to develop a scalable and high-speed proces-
sor for encryption and decryption procedures of PHC.
All these design methods can significantly improve the
PHC’s performance.

We display the required sizes for PHC and its inner
components in Table I. As seen from Algorithm 2, there
are two loops, which are controlled by i and j indices.
Moreover, one can see how these indices change com-
pared to size of the key, as shown in Table I. Note that
the modular multiplication size is two times greater than
the Paillier size. PHC involves 2n-bit modular multiplica-
tion, n-bit modular exponentiation, and L(u) operation. We
apply the following design strategies to efficiently compute
these operations to build the high-speed PCP.

(1) Modular Multiplication: We employ high-radix
Montgomery modular multiplication algorithm
(Algorithm 2) for modular multiplication operations.
Specifically, we adapt the modular multiplication
coprocessor presented in [28]. We select radix 232
version to efficiently utilize the DSP48E1 blocks
because these blocks are able to add three 48-bit
operands in just one clock cycle. The 232 radix
Montgomery multiplication consists of 32-bit mul-
tiplication operations. However, the DSP48E1
blocks are not able to perform 32-bit multiplication.
Hence, we first implement 32-bit 6 cycle pipelined
multiplication module utilizing 4 DSP48E1 blocks.

(2) Modular Exponentiation: We use right-to-left binary

modular exponentiation algorithm (Algorithm 1),

which has repeated modular multiplication opera-

tions depending on the exponent value. It is in fact
simply square and multiply algorithm according to
the exponent. We mainly adapt the modular exponen-

tiation coprocessor presented in [28].

L(u) Operation: There are two different ways to

implement this operation. One of them is realized by

means of a multiplication with a precomputed value.

3

Table I. Fundamental sizes of Pailliern and its inner components.

Key sizen  ModMult size 2 # of rounds  # of pipeline step i
[bits] [bits] J for each round j
512 1024 64 65
1024 2048 128 129
2048 4096 256 257
Security Comm. Networks 2016; 9:15635-1546 © 2016 John Wiley & Sons, Ltd. 1539
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It is possible to decrement u# by one with one of
the DSP48E1 blocks. Then, (m! mod 2 or (7!
mod n + 1) is multiplied with the computed u — 1 in
order to perform L(u) = “T’] The other way mainly
consists of a integer division of very long numbers.
There is no need to apply a decrement by one opera-
tion required by the L(u) operation because quotient
of the division by n always conveys the correct result
of ”%1 operation. The division takes varying numbers
of clock cycles to complete the process of division
depending on the values of the inputs. We accommo-
date this method in our architecture. A long integer
division is computed with a specific pipelined divi-
sion accelerator. In this approach, a precomputation
of the multiplication input is needed.

The algorithm proposed in [32] is adapted for the
long integer division in this study. The main feature
of the algorithm depends on the quotient selection
with the difference of the most-significant non-zero
bit positions of the divisor and dividend. Hence,
it dramatically reduces the total number of long
subtractions required in the division. This helps us
improve the computational performance of the divi-
sion operation. The result of the division operation
is calculated in varying number of steps according
to the the most-significant non-zero bit positions of
the divisor and dividend. In this study, we use this
algorithm and implement it in digit-serial fashion.

|. San et al.

4.2. Hardware implementation

Our architecture consists of shift registers, an Arithmetic
Logic Unit (ALU), and a control unit. Shift registers are
needed to store the input and the output operands. Our
pipelined ALU utilizes the DSP48E1 blocks to perform the
required 232 radix multiplication operations. Our control
unit is responsible for providing necessary control signals
for the datapath to compute the Paillier autonomously. We
assume that our PCP is provided with the required input
values including input operands, modulo number, and its
32-bit inverse value (-M1).

4.2.1. Shift registers.

Our proposed high-speed PCP operates on 32-bit blocks
of data in a sequential manner. We take advantage of this to
keep the data in shift registers, which can be implemented
in SRL32 blocks existing in 7-family of Xilinx FPGAs.
Using SRL32 blocks consumes less resources than storing
the data in the slice registers of FPGA. Shift registers are
organized into 32-bit words to store necessary operands.

4.2.2. Arithmetic and logic unit.

Paillier homomorphic cryptosystem mainly consists of
encryption and decryption. We describe the computa-
tion flow of encryption £ and decryption D of PHC,
which includes modular multiplication and exponentiation

n
m—> =z = =
E E 3 3 3
i 3 5] : o | 2 n’
g = = = |iyg mod n
p ——— — o
ModExp oL ks
g =]
2 4 = > =
n i o e
l > = =
.................................................. 1
hs}
P ModMult
n—-—-> 5 5 5 r™ mod n?
HEITE I
. o o . o
r-—b > = =
ModExp y

Figure 2. Architecture of Paillier encryption procedure of Paillier homomorphic cryptosystem.
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i ¢ mod n?

Paillier cryptoprocessor

ModMult
ModMult
ModMult

ModExp

) mod n

4

ModMult
A

L(g* mod n?)~" mod n

L(L)\ mod n?
L('gA mod n2)

ModMult

Figure 3. Architecture of Paillier decryption procedure of Paillier homomorphic cryptosystem.

operations, in Figures 2 and 3, respectively. Encryp-
tion function requires two ModExp components. Each
ModExp component mainly consists of two ModMult
components. These ModMult modules can perform a
series of modular multiplications required in Algorithm
1 in parallel because they operate using different input
resources. Finally, to obtain the final result of the encryp-
tion, outputs of two modular exponentiations are multi-
plied by one of the existing ModMult modules. One of
the ModMult modules is reused for the last modular mul-
tiplication operation required in the £. Furthermore, one
of the modular exponentiation g” mod n? components
can be precomputed once for all, which is given in [5].
When this optimization is applied, there is no need to
have the second ModExp; thus, this optimization brings
resource saving.

Figure 3 illustrates the computation flow of decryp-
tion, which includes modular multiplication, exponentia-
tion, and L(u) operation. Decryption needs a ModExp
component. The operation of the ModExp component is
the same as in €. The result of the modular] exponenti-

u—

ation is fed into L(x) module to perform == operation.

The precomputed value of L(g)L mod n2)"! mod n and
the result of the L(u) operation are multiplied with the
existing ModMult module to obtain the final outcome of
the decryption.

Our architecture is built around 32- and 48-bit datap-
ath. The main datapath performs all operations required by
PHC. The datapath allows us to realize the encryption and
the decryption of PHC with high performance because it
has very high operating frequency and the number of clock
cycles needed for the Paillier £ and D are small because of
our design rationale. For modular multiplication operation
ModMult, we select 232 radix size version of modular
multiplier coprocessor proposed in [28].

The high-radix modular multiplication operation is
regarded as the most critical part of our proposed

Security Comm. Networks 2016; 9:1535-1546 © 2016 John Wiley & Sons, Ltd.
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PCP. It requires to design high-radix multipliers in the
datapath. On FPGAs, the best design strategy con-
sists of implementing this multiplier by means of
DSP48E1 blocks. The control signals allow us to effi-
ciently perform the operations defined in Algorithm 2.
The datapath has several pipeline units to improve the
performance of the computation of modular multiplica-
tion operation. We manage to keep these pipeline units
continuously busy without any pipeline stall. There-
fore, we substantially improve the performance of the
Paillier computation.

4.2.3. Control unit.

The control unit consists of a counter mechanism and
shift registers. The counter mechanism simply counts
the number of iterations required for the size of Paillier
scheme. It has three counters. Two of them are counting the
inner and the outer loop of Algorithm 2 while the last one
is required to count the exponent size. Shift registers in the
control unit are responsible for managing the control sig-
nals for the datapath to cope with the pipeline delays. The
user starts the Paillier encryption or decryption by loading
the input operands into input shift registers and applying a
pulse for start control signal. Then, fully autonomous PCP
computes the required output value and asserts a ready
signal to indicate that the output of Paillier encryption or
decryption is ready.

5. EMPIRICAL OUTCOMES AND
DISCUSSION

In this section, we present our empirical results. We
first explain our methodology for performance evalua-
tion. After the metrics used to evaluate the performance
of our design are defined, empirical results are displayed
and discussed.

1541
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Table Il. Number of clock cycles required for Paillier cryptoprocessor with varying n sizes.

Paillier Modulo Modulo #ofwords # of ModMult # of ModMult # of L(u) Total # of
size n size n? [d] for n? with n? with n cycles cycles

Encryp‘[l‘on 512 1024 32 516 0 0 . 569 148

Decryption 514 2 ~ 15800 583338

Encryption 1028 0 0 4357692
: 1024 2048 64

Decryption 1026 2 ~ 63000 * 4414420

Encryption 2052 0 0 34176 060
) 2048 4096 128

Decryption 2050 2 ~ 245000 * 34396228

*The number of cycles required to perform L(u) operation depends on the values of u and n.
Average numbers of cycles among several experiments are considered for L(u).

5.1. Methodology

Our proposed high-speed PCP’s implementations and the
presented design strategies target Xilinx FPGAs. There-
fore, the results of this study are valuable, where FPGA
technology comes into play. We mainly used Virtex-7
family of FPGAs to prototype our architecture. The Vir-
tex 7-family of FPGAs provides architectural elements
designed for maximum performance and higher integration
making a good choice for the high-speed architectures. We
captured our PCP in the VHDL language and evaluated
the performance of a fully autonomous implementation of
our architecture on 7vx330t-3 FPGA. We synthesized our
hardware architecture with Xilinx ISE 14. We also simu-
lated our design with Xilinx ISim simulator to verify the
correctness of the proposed architecture. PHC was imple-
mented by using Java language in general purpose Central
Processing Unit (CPU) to confirm that the proposed PCP
works properly. We compared the performances of soft-
ware implementation with our hardware-based design. We
provided the performance evaluation results with detailed
discussions and compared our performance results with the
figures of Java implementation.

5.2. Evaluation metrics

We used three performance metrics to evaluate our pro-
posed hardware design as follows:

(1) Circuit Size: Required hardware area is very impor-
tant in efficient hardware designs, especially for the
applications in which area also matters. We measured
the size of the architecture implemented in FPGA
with respect to the slices and embedded building
blocks.

Latency: Latency measures the time (we considered
the worst-case scenario) to complete the encryption
and decryption of PCP in terms of clock cycles.
Our high-performance design achieves significant
reduction in the latency.

Throughput: The throughput represents the amount
of data encrypted or decrypted per second. Because
our proposed high-speed PCP allows concurrent pro-
cessing of multiple blocks of data, throughput signif-
icantly improves.

(@3]

(3)
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5.3. Empirical results

We first performed a set of experiments to show how
our proposed PCP’s latency changes with varying n sizes.
Recall that we used Xilinx ISE 14 development tools to
perform our place-and-route and timing analysis. Also note
that the datapath width of the PCP is 32 bit. We considered
the least favorable case for PCP in which the exponent has
all 1 s, which means that the maximum number of mod-
ular multiplication operations is performed for each size.
After calculating the related latencies in terms of number
of cycles for varying n sizes from 512 to 2048, we dis-
played the outcomes in Table II. Notice that the values
listed in the fourth and the fifth columns (d and number
of ModMult) were obtained, as defined in Algorithm 3.
The number of L(u) cycles depends on the values of u and
n. Hence, the number of cycles required to perform L(u)
operation changes with the values of u and n, and average
numbers of cycles among several experiments are provided
for L(u) in Table II.

The number of cycles required to perform ModMult
operation depends on d and the number of pipeline stages
of the multiplier. In other words, Latency of ModMult =
(d+1)-(d+1)+1,, where t;, denotes the necessary cycles
required to compute the output of ModMult and equals
to 9 for d = 16 and 14 for bigger d values. For d = 16,
tm = 9, and the number of pipeline stages of the multi-
plier should be small to compute g; values (Algorithm 2)
before next S; computation. This causes to increase the
critical path of the design. However, this is valid only for
Paillier decryption when n = 512. For other cases, when
d is equal to 32, 64, or 128, t,, = 14, and multiplier has
enough pipeline stages to reduce the critical path of the
design. Latency of £ depends on the number of Mod-
Mult operations. It can be computed as Latency of £ =
(n+4) - (Latency of ModMult). Latency of D depends on
the number of ModMult operations and can be estimated
as follows:

Latency of D =(n +2) - (Latency of ModMult with n2)

+ 2 - (Latency of ModMult with n)
+ Latency of L(u)

As expected and seen from Table II, latency improves
with decreasing n sizes. However, security becomes worse

Security Comm. Networks 2016; 9:1535-1546 © 2016 John Wiley & Sons, Ltd.
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Table lll. Place-and-route results for Paillier cryptoprocessor on Virtex-7 (7vx330t-3)
field-programmable gate array.

Paillier n Area DSP48E1 Frequency Throughput
[slices] blocks [MHz] [Kbits/s]
512 3178 45 386 347
Encryption 1024 3690 45 386 90
2048 4497 45 325 19
512 2830 27 232 203
Decryption 1024 3254 27 323 74
2048 3868 27 312 18

The throughput of Paillier cryptoprocessor is computed using the clock cycles given in Table II.

with decreasing n sizes. Although a number of cycles spent
for decryption are slightly more than the ones spent for
encryption, they are very close to each other.

We then used place-and-route PCP encryption and
decryption designs to determine the area utilization and
the throughput of PCP. We calculated throughput values
for varying n sizes and displayed them in Table III. The
throughput values listed in the table were computed for one
block message. We also presented area, DSP block num-
bers, and frequency values, which are the place-and-route
results of Xilinx ISE 14. We calculated the throughput of
PCP as follows:

Throughput = n—f
Latency of € or D

where n represents the Paillier size and f denotes the oper-
ating frequency. When the throughput of Paillier encryp-
tion was calculated, latency of £ was considered. For the
throughput of Paillier decryption, latency of D was used in
the equation of throughput calculation.

According to the outcomes presented in Table III,
with increasing n sizes, throughput decreases; however,
security enhances. As seen from Table III, our PCP for
PHC requires 3178 slices and 45 DSP48E1 blocks. And
it achieves competitive throughout of 347 Kbits/s for
encryption of 512-bit message blocks. The FPGA device
(7vx330t-3) selected for experiments has total 51000
slices and 1120 DSP48E1 blocks. It is possible to instan-
tiate more than once in such a reconfigurable platform to
achieve more throughput values. Existing parallelism in
PHC schemes allows one to employ multiple instantia-
tions to attain higher performance. Our empirical results
show that our PCP performs well especially for applica-
tions in which time and area constraints are important.
This phenomenon is observed because our design takes
advantage of pipelining, which allows us to use different
stage of the datapath at a time as well as to operate at
higher frequencies.

To compare our proposed cryptoprocessor with the
software-based implementation of PHC in terms of
throughput, we finally conducted another set of simu-
lations. We performed our experiments on an Intel i3
1.8 GHz machine (Santa Clara, CA, USA) to evaluate
the PHC’s software-based implementation. The presonal

Security Comm. Networks 2016; 9:1535-1546 © 2016 John Wiley & Sons, Ltd.
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computer has two cores, 1.8-GHz clock rate (which is
much more higher than the frequency of our architecture)
and 3-MB cache. The implementation was realized using
Java platform. Throughput values were computed for one-
block message. After measuring average throughput values
for varying security levels (different n sizes), we presented
them in Table IV.

The results presented in Table IV show that through-
put improves with decreasing n sizes as it is similar in
FPGA-based equivalents. If we compare our design’s out-
comes displayed in Table III with the results representing
the software implementation of PHC shown in Table IV,
one can figure out that the proposed architectures per-
form better than the software realizations with respect to
throughput. For Paillier encryption, the speed-up is about
three because it requires two modular exponentiation mod-
ulo n%. To improve the speed-up of Paillier decryption, it
can be instantiated multiple times thanks to its low-area
utilization. Our design improves encryption throughput
from 96 and 7.6 to about 347 and 19 for n being 512
and 2048, respectively. Hence, on average, speed-up due
to our design is three for one-block message. Moreover,
our design makes it possible to execute PHC in parallel.
However, software implementation always runs in sequen-
tial manner. The speed-up achieved by PCP might be
higher, where many Paillier encryptions are needed to be
computed in parallel. Such a scenario always exists in
many PPDM applications because they operate on high-
dimensional matrices of data with privacy. Thus, in such
applications, where parallel PHC computations are possi-
ble, our cryptoprocessor can perform more than one PHC
computation in single latency of PCP. To explain it con-
cretely, our PCP is instantiated more than 16 times in
an average seven family of FPGAs. This means that 16
Paillier encryptions can be computed in parallel.

Table IV. Performance of the software implementation of
Paillier homomorphic cryptosystem.

Throughput [Kbits/s]

Paillier n=512 n=1024 n =2048
Encryption 96 26 76
Decryption 196 54 136

The processor number of central processing unit is i3-3217U.
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Figure 4. Comparing Paillier cryptoprocessor (PCP) with software implementation for Protocol 1.

5.4. Case study: private matching protocol
with the Paillier cryptoprocessor

According to the empirical results, substantial performance
improvement is attained because of our design. Further-
more, we evaluated our PCP based on a PPDM scheme to
emphasize on the contribution of our proposed hardware
architecture. Secure set intersection problem can be faced
in many applications for online collaborating parties. The
protocol [8] given later allows to perform a set-intersection
operation between two sets of a given application
with privacy.

We consider this secure set intersection protocol pro-
posed by [8] using PCP as a case study. We selected the
ke =4 and kg = 8 for the set sizes of this protocol. Accord-
ingly, C needs to deal with five parallel Paillier encryptions
for providing privacy of the coefficients of the polynomial
P(y). The resulting set of Paillier encryptions of the coeffi-
cients is sent to S. S homomorphically multiplies and adds
each element of the set ¥ with the coefficients taken from C
with privacy. The computed Enc(P(y)) value is then multi-
plied with a random r value and added the element of the
set Y with exploiting homomorphic property of PHC. The
result of this operation is sent back to C to find whether it
is an intersection of the sets or not. C finally decrypts the
value and outputs the decrypted values for which there is a
match with the sets.

The proposed PCP gives more speed-up in such a
private matching set intersection protocol described in
Protocol 1. We evaluated the speed-up using both our
proposed PCP and the software-based platform with vary-
ing n sizes to show the improvements because of our
design. We utilized the same methodology and hardware
and software settings described previously. We consid-
ered necessary computations performed by client C in the
protocol. Multiple instantiations of encryption and decryp-
tion architectures in the reconfigurable platform were
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Protocol 1 PM-Semi-Honest Intersection Protocol

Input: C’sinputisaset X = {x1,...,zw.}, S’s input is
asetY = {y1,...,yrs }. The elements in the input sets
are taken from a domain of size N.

1. C performs the following:

(a) She chooses the secret-key parameters for
a semantically-secure homomorphic encryption
scheme, and publishes its public keys and
parameters. The plaintexts are in a field that
contains representations of the N elements of the
input domain, but is exponentially larger.

(b) She uses interpolation to compute the coefficients
of the polynomial P(y)=>_rc 0wy of
degree k¢ with roots {x1, ..., Zk. }.

(c) She encrypts each of the (k¢ + 1) coefficients by
the semantically-secure homomorphic encryp-
tion scheme and sends to S the resulting set of
ciphertexts, {Enc(a), ..., Enc(au,. )}

2. S performs the following for every y € Y,

(a) He use the homomorphic properties to evaluate
the encrypted polynomial at y. That is, he

computes Enc(P(y)) = Enc (ZEC:O auy“).
(b) He chooses a random value r and computes

Enc(rP(y) +y).

He randomly permutes this set of ks ciphertexts

and sends the result back to the client C.

3. C decrypts all ks ciphertexts received. She
locally outputs all values x € X for which there is a
corresponding decrypted value.

taken into account. After estimating the times (in mil-
liseconds) required to perform the operations of client C
in the protocol for the parameters set earlier, we showed

Security Comm. Networks 2016; 9:1535-1546 © 2016 John Wiley & Sons, Ltd.
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them for our hardware design and software implementation
in Figure 4.

As seen from Figure 4, our proposed hardware PCP sig-
nificantly performs better than the software implementa-
tion of PHC for all n. For instance, our proposed hardware
design performs 13 times better than the software imple-
mentation when n is 1024. Similar speed-ups are observed
for other n sizes. Hence, such speed-ups show linear behav-
ior with respect to n. However, for increasing n, the time
gap between software and PCP is getting more significant.
Even the total time for PCP when n = 2048 is closer that
for software when n = 512. These results show that PCP is
able to perform Paillier computations efficiently in PPDM
applications, where time constraints are stringent. The out-
comes also verify that our design definitely performs better
than software implementation.

6. CONCLUSIONS AND
FUTURE WORK

Because privacy and efficiency are two clashing goals,
there are some performance losses in data mining schemes
where privacy concerns are taken into account. In this
context, we looked solution of such performance prob-
lem through hardware-oriented solutions. We proposed a
high-speed Paillier cryptoprocessor. The proposal can be
utilized to overcome computational cumbersome brought
by PHC. Moreover, it may gain insights for solving
some computational challenges faced in such applications.
Also note that our study is the first attempt on design-
ing hardware architecture for Paillier-based homomorphic
cryptosystem.

The design philosophy we proposed in this study led
us to develop a high-performance cryptoprocessor at dif-
ferent levels of security for Paillier cryptosystem. Our
hardware architecture is built around mostly 48-bit data-
path, and it is able to compute the necessary operations
for implementing encryption and decryption processes of
PHC. Despite the various control signals required for
the different steps of pipelined computation, our control
unit remains compact. In other words, almost all con-
trol signals are generated by means of a counter, a start
signal, and its delayed versions. We manage to imple-
ment the Paillier cryptosystem (including encryption and
decryption) with only a few pipeline stall thanks to the
descriptions of 232 radix Montgomery modular multiplica-
tion and exponentiation coprocessors (adapted from [28])
and a careful organization of overall pipelined datap-
ath. The key element of our approach to achieve high-
throughput design is to take advantage of the parallelism
of Paillier to

(1) deeply pipeline the ALU to achieve a high clock
frequency;

(2) find parallelism between independent tasks;

(3) decrease the data dependencies and hazards to
achieve more parallelism and exploit this parallelism
for better design;

Security Comm. Networks 2016; 9:1535-1546 © 2016 John Wiley & Sons, Ltd.
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(4) reuse same resources for different executions of the
algorithm enhancing resource sharing; and

(5) design pipelined datapath for the independent tasks
so that each pipeline units can operate on different
set of inputs at the same time.

We performed experiments and simulations to evaluate
the proposed design with respect to latency, throughput,
and time to complete encryptions and decryptions. Our
empirical outcomes showed that the proposed architecture
performs much more better than software implementations
of the Paillier homomorphic cryptosystem.

Our results show that the PCP proposed in this study is
an excellent solution, which remedy the performance prob-
lems raised by PPDM applications. In addition to PPDM
applications, our design can also be considered for other
applications utilizing PHC such as e-voting and e-auctions.
We mainly design our architecture for PPDM mechanisms
in information systems. Hence, it would be interesting
to conduct side-channel and fault injection attacks in a
future work.
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