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Ömer N. Gerek1 and A. Enis Çetin2
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The introduction of lifting implementations for image wavelet decomposition generated possibilities of several applications and
several adaptive decomposition variations. The prediction step of a lifting stage constitutes the interesting part of the decomposi-
tion since it aims to reduce the energy of one of the decomposition bands by making predictions using the other decomposition
band. In that aspect, more successful predictions yield better efficiency in terms of reduced energy in the lower band. In this work,
we present a prediction filter whose prediction domain pixels are selected adaptively according to the local edge characteristics of
the image. By judicuously selecting the prediction domain from pixels that are expected to have closer relation to the estimated
pixel, the prediction error signal energy is reduced. In order to keep the adaptation rule symmetric for the encoder and the decoder
sides, lossless compression applications are examined. Experimental results show that the proposed algorithm provides good com-
pression results. Furthermore, the edge calculation is computationally inexpensive and comparable to the famous Daubechies 5/3
lifting implementation.

Copyright © 2007 Ö. N. Gerek and A. E. Çetin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

In [1], it has been shown that any DWT filter bank can be de-
composed into series of lifting/dual-lifting steps. The work of
[2] extends the idea of linear filters in the lifting style to non-
linear filters. In [3–5], the lifting prediction filter was made
adaptive according to the local signal properties, and in [6],
the importance of coder-nonlinear transform strategy was
emphasized. The idea of lifting adaptation was also applied
to video processing [7, 8]. Finally, in [9–11], 2D extensions
of the lifting structures were examined, which fundamentally
resembles the idea of this work.

Many successful wavelets have efficient lifting implemen-
tations. However, the lifting implementation of Daubechies
5/3 wavelet has attracted a wide range of interest in various
applications due to its rational filter tap coefficients which are
particularly useful in real-time implementations. The lifting
implementation of this wavelet contains filters with coeffi-
cients that can be written as dyadic rationals of two leading to
a multiplication free realization of the filter bank [1, 12]. As
a result, this implementation was adopted by the JPEG2000
standard in its lossless mode [13, 14]. Although many lin-
ear, nonlinear, or adaptive decompositions are reported to

outperform this wavelet for certain cases, the simplicity and
intuitive lifting implementation causes the Daubechies 5/3
wavelet to keep its importance [2–4, 6, 9].

The subband filter coefficients of the 5/3 wavelet are h0 =
[−1/8, 1/4, 3/4, 1/4,−1/8] and h1 = [−1/2, 1,−1/2]. Its lift-
ing implementation is very efficient and can be realized using
binary shifting operations due to coefficients with dyadic ra-
tionals of 2 as follows:

y1[n] = x[2n]− 1
2

(
x[2n− 1] + x[2n + 1]

)
,

y0[n] = x[2n− 1] +
1
4

(
y1[n− 1] + y1[n]

)
= −1

8
x[2n− 3] +

1
4
x[2n− 2] +

3
4
x[2n− 1]

+
1
4
x[2n]− 1

8
x[2n + 1]

(1)

as illustrated in Figure 1. Notice that prediction filter is very
short, consisting of an averaging operation performed over
the left and right neighboring samples in a row (or column)



2 EURASIP Journal on Image and Video Processing

z

2
x[2n− 1]

+ y0[n]

P(z)
U(z)

2
x[2n]

+
−

y1[n]

Figure 1: Lifting analysis stage.

in two-dimensional image processing. Since the left and right
neighbors of a pixel are naturally closely related to the cen-
ter pixel, the average of these neighbors constitutes a good
estimation for the estimated pixel.

Although this implementation is mostly used for image
decomposition, it is purely one dimensional. In other words,
the image is processed line by line during implementation.
Therefore, a two-dimensional separable implementation is
performed where the image is first processed horizontally
(or vertically) and then processed vertically (or horizontally)
to obtain four subband decomposition images. Without any
loss of generality, we will consider horizontal processing of
the image around a pixel x[m, 2n]. Clearly, the vertical pro-
cess would consist in applying the same operation over the
transpose of the first pass. Since the right and left neighbor
pixel values are naturally related with the pixel value between
them, x̂0[m, 2n] = (x[m, 2n− 1] + x[m, 2n + 1])/2 will be an
accurate estimate of x[m, 2n]. Hence, by subtracting this pre-
diction value from the true value of x[m, 2n], a small residue
is obtained. This residual signal automatically corresponds to
the detail signal obtained after the single-stage Daubechies
5/3 wavelet transformation. We will assume that x[m, 2n−k]
for odd k belongs to polyphase 1 which constitutes the do-
main pixels for the estimation, and x[m, 2n − l] for even l
belongs to polyphase 2 which constitutes the pixels to be es-
timated.

The idea of this paper comes from the fact that, the center
pixel, x[m, 2n], is not only related with the left and right pix-
els, that is, x[m, 2n− 1] and x[m, 2n+ 1], but also with many
other near-by pixels within the domain of the polyphase 1.
Clearly, the closest such pixels are x[m, 2n− 1], x[m, 2n+ 1],
x[m − 1, 2n − 1], x[m − 1, 2n + 1], x[m + 1, 2n − 1], and
x[m+ 1, 2n+ 1], which are within the 8-connected neighbor-
hood of x[m, 2n]. Consequently, there are other predictions
than x̂0[m, 2n] which may utilize the many other direction-
ally related pixels including the above list of neighbors. Sev-
eral orientation adaptive decomposition systems were pro-
posed in the literature [15–22]. Among them, some were
assuming knowledge of the quantization noise at the en-
coder [2], some were obtaining rather limited adaptation
gain [3, 10], and more frequently, some were signaling a side
information related to the orientation of the decomposition
wavelet to the decoder side selected for a group of encoded
pixels [16–18, 21, 22]. The later method of selecting the de-
composition direction for a cluster of pixels enables safe lossy
compression at the compromise of sending side information,

and not being able to select the decomposition direction for
each pixel, separately. In this paper, we will describe a method
to efficiently select prediction domain pixels from polyphase
1 that does not necessarily correspond to 1D processing. The
method is based on the decomposition described in [20],
however, by applying the decomposition in a lossless coder,
the safety of codec asymmetry and possible divergence at
coarser quantization levels are avoided. In other words, the
decomposition in [3] is utilized in a more appropriate coder
application. It is illustrated that the proposed edge-adapted
decomposition method yields better estimation results with
reduced prediction error energy, yielding to better lossless
compression.

2. AN EDGE-SENSING ADAPTIVE PREDICTOR

The edge-adapted predictor constitutes the core of the con-
tribution, and the main reason of obtaining better compres-
sion results. Consider a portion of an image which will be
decomposed horizontally as in Figure 2. In this figure, the
pixel to be estimated is the center pixel, denoted by x[m, 2n].
The dashed pixels along the columns to the right and to the
left of x[m, 2n] belong to polyphase 1. From the analysis in
Section 1, for horizontal decomposition, the prediction do-
main must only include pixels from polyphase 1.

To proceed with the selection of prediction domain pix-
els, we first define four gradient approximations around
x[m, 2n] along angles of 135, 0, 45, and 90 degrees with the
horizontal axis as follows:

(i) Δ135 = |x[m− 1, 2n− 1]− x[m + 1, 2n + 1]|;
(ii) Δ0 = |x[m, 2n− 1]− x[m, 2n + 1]|;

(iii) Δ45 = |x[m + 1, 2n− 1]− x[m− 1, 2n + 1]|;
(iv) Δ90 = |x[m− 1, 2n]− x[m + 1, 2n]|.

It is possible to extend the gradient approximations using
pixels beyond the eight neighbors, however that spoils the
low computational complexity property and the prediction
filter structure without yielding any visible compression gain.
In the next step, we define four possible prediction values for
x[m, 2n] using its eight neighbors:

(i) x̂135[m, 2n] = (x[m− 1, 2n− 1] + x[m + 1, 2n + 1])/2,
(ii) x̂0[m, 2n] = (x[m, 2n− 1] + x[m, 2n + 1])/2,

(iii) x̂45[m, 2n] = (x[m + 1, 2n− 1] + x[m− 1, 2n + 1])/2,
(iv) x̂90[m, 2n] = (x[m + 1, 2n] + x[m− 1, 2n])/2.

Obviously, Δ90 and x̂90 cannot be used for prediction in hor-
izontal decomposition since they do not belong to polyphase
1. Conversely, Δ0 and x̂0 cannot be used for prediction in ver-
tical decomposition due to the same reason. In either decom-
position direction, only three gradient directions are possi-
ble. As a notation, we will use h0 as the lowpass analysis filter
and h1 as the highpass analysis filter in a subband decom-
position structure. Consequently, for a 1D input signal x[n],
y0[n] and y1[n] correspond to the approximation and detail
signals generated at the output of the decomposition. In or-
der to distinguish between the directional delay elements in
2D processing, we will use z−1

h and z−1
v as the horizontal and

vertical delay elements.
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Figure 2: A sample image segment.

Our edge adaptive predictor is obtained by relaxing
the condition that the predictor should be in the form
x̂0[m, 2n] = (x[m, 2n − 1] + x[m, 2n + 1])/2. The rules for
determining alternatives of the prediction are selected as fol-
lows:

(i) if Δ135 is the least among Δ135, Δ0, and Δ45, then the
prediction estimate is x̂135[m, 2n],

(ii) if Δ0 is the least among Δ135, Δ0, and Δ45, then the pre-
diction estimate is x̂0[m, 2n],

(iii) if Δ45 is the least among Δ135, Δ0, and Δ45, then the
prediction estimate is x̂45[m, 2n].

In the example shown in Figure 2, the largest gradient is
in the south-east direction. As a result, Δ45 is the minimum
difference. Therefore, the value of x[m, 2n] must be predicted
as x̂45[m, 2n]. It must be noted that such a tilted prediction
(P(z)) does not require transmission of any side informa-
tion, because the pixels used in prediction and the pixel to
be predicted belong to different polyphase components. The
overall scheme makes possible a symmetric decoding process
of Figure 1. In case of no quantization, these columns are au-
tomatically reconstructed and the decoder uses the same di-
rectional choice method that was used in encoder.

This rule gives a good approximation of a possibly miss-
ing color sensor output, so it improves both the variance of
the prediction error spaces which correspond to decompo-
sition images. The above rule was inspired from a work de-
scribing CCD imaging systems and missing the pixel value

interpolation in color filter arrays (CFAs) [23]. The CFA in-
terpolator in [23] estimates the missing pixel x[m, 2n] using
its immediate 4-neighbors according to the selection of min-
imum of Δ0 and Δ90. This algorithm gives the impression
that the intermediate pixels along smooth transition angles
are better related to the neighboring pixels along that direc-
tion.

The proposed analysis filterbank can be implemented
without any multiplication due to having scales of dyadic ra-
tionals of 2. Furthermore, the lifting filter structure solely de-
pends on the domain pixels so transmission of side informa-
tion is not necessary in case of lossless transmission. Due to
its locally adaptive nature, this work may be categorized in a
class of works reported in [5, 7, 8, 10, 11, 15–22]. It was also
reported in [10] that such multiline lifting realizations can be
performed in a memory-efficient manner.

3. UPDATE AND STABILITY ISSUES

The edge sensitive prediction described above requires care-
ful adjustment of the update filter which is necessary for
multiple-level decomposition with anti-aliased low-low sub-
images. To emphasize the unavailability of an update filter
which comes after the prediction stage in our case, we will
start by analyzing the regular lifting stage consisting of a pre-
diction followed by update stages. In one-dimensional sin-
gleline processing, the regular lifting implementation which
relates the subsignals y0[n] and y1[n] to the even xe[n] and
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odd xo[n] components of the signal x[n] can be expressed as
follows:[

Y0(z)
Y1(z)

]
=
[

1 −P(z)
0 1

][
1 0

U(z) 1

][
Xe(z)
Xo(z)

]

=
[

1− P(z)U(z) −P(z)
U(z) 1

][
Xe(z)
Xo(z)

]
.

(2)

In case of Daubechies 5/3 wavelet, the polyphase transform
matrix becomes⎡⎢⎢⎢⎣

1− 1
8

(1 + z)
(
1 + z−1

) −1
2

(1 + z)

1
4

(
1 + z−1

)
1

⎤⎥⎥⎥⎦ . (3)

This matrix provides the coefficient information to generate
the analysis filters in a filter bank structure⎡⎣H0,ev(z) H0,odd(z)

H1,ev(z) H1,odd(z)

⎤⎦ (4)

and Hi(z) = Hi,ev(z2) + z−1Hi,odd(z2), for i = 0, 1. Naturally,
the 2D processing is obtained by performing the 1D lifting
horizontally and vertically.

For the analysis of the edge-adapted prediction filter and
its polyphase transform, multiline processing is necessary
and the delay elements z−1

v and z−1
h must be used simulta-

neously. For example, for the 45◦ prediction direction, the
polyphase transform matrix becomes⎡⎢⎢⎢⎣
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)(
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The lowpass and highpass filters of the filter bank corre-
sponding to the matrix in (5) are directional 2D filters in the
spatial domain. When this matrix is multiplied by the, say,
horizontal update matrix, the prediction domain stays the
same: [ −P(z) 1 ], however, the update domain is completely
messed with horizontal and vertical samples. This can be in-
terpreted as a sample leakage from upper and lower rows.
As a result, it is apparent that an update following the edge-
adapted prediction is not possible for obtaining anti-aliased
approximation samples.

This problem can be solved by changing the order of the
update U(z) and the prediction P(z) stages of Figure 1. With
the proper choice of the lowpass filter, the new U(z) can be
performed prior to the prediction, and its implementation
still requires no multiplications, so the computational effi-
ciency is retained. In this way, high-quality low-low images
can be obtained.

It was observed that a halfband lowpass filter can be
put into an isolated update lifting stage as in [3]. In or-
der to achieve a multiplierless structure, we consider the
simple length-3 Lagrangian halfband lowpass filter hl3 =
{1/4, 1/2, 1/4}. The z-transform of this filter is

Hl3 (z) = 1
2

(
1 + zU

(
z2)), (6)

H(z) = 1
2

[1 + zU(z2)] 2 z

2 + 0.5

2

U(z)

Figure 3: Lifting update implementation of a halfband filter.

where U(z) = (1/2)z−1 + 1/2. This lowpass filter followed
by downsampling can be implemented in a lifting structure
due to the relation known as noble identity. The resulting
structure is shown in Figure 3. Since U(z) is a very simple
update filter consisting of dyadic rationals of 2, it can be im-
plemented using bitwise shift operations. The overall pro-
posed lifting structure is illustrated in Figure 4. In this figure,
horizontal processing is assumed and P(z) contains an edge-
adapted prediction including a multidirectional delay vector
defined as z = [ zv zh ]T .

The overall structure including the lowpass filter is still
computationally comparable to the original implementation
of the Daubechies 5/3 wavelet in terms of calculations per
lifting operation.

4. EXPERIMENTAL RESULTS

The practical application for the proposed decomposition
scheme was selected as image compression. It can be noted
that symmetric reconstruction of the update part is possi-
ble with or without the quantization, however, synthesis of
the prediction part is problematic once the domain pixels
(approximation signal) get quantized. There is a possibility
that the prediction rules in the encoder and the decoder may
vary with quantized coefficients which may spoil the recon-
struction beyond the quantization level due to the nonlin-
earity. As a result, lossless compression is applied and the re-
sults are presented. In [20], it is reported that the algorithm
combined with zerotree-type coders are fairly robust to avoid
the described divergence at relatively high bitrates for lossy
compression. However, complete safety to avoid divergence
is only possible with lossless compression as indicated in this
paper.

Before presenting the direct experimental compression
results, it is beneficial to analyze the effect of the edge-
adapted prediction in the reduction of signal energy in
decomposition images. As an example, it was experimen-
tally observed that the possibility of the horizontal process
(x̂0[m, 2n] = 1/2(x[m, 2n − 1] + x[m, 2n + 1])) being the
best prediction of x[m, 2n] among x̂135[m, 2n], x̂0[m, 2n],
and x̂45[m, 2n] is 30.1%. This value is slightly less than about
one thirds of the possible predictions. As a result, persistently
using horizontal prediction loses chances of making better
prediction decisions. On the other hand, our directionally
sensitive prediction decision rule catches about 52% of the
best predictions as described above. This improvement also
reflects to practical compression results.

In Figures 5 and 6, (a) the original 5/3 wavelet decom-
position, and (b) directionally modified prediction lifting
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zh

2 + 0.5 y0[n]

U(zh)
P(z)

2 + y1[n]

Figure 4: Proposed implementation with an update and edge-
adapted prediction filter.

(a)

(b)

Figure 5: Wavelet trees of a test image obtained by (a) our method,
(b) regular 5/3 wavelet.

decomposition images of two test images are shown, respec-
tively. Visually, the detail images obtained by the directionally
adaptive 5/3 wavelet exhibit less signal energy at several de-
composition levels in general. For the example in Figure 6,
the highpass coefficients in part (a) have a variance = 94.06,
and a sample entropy = 3.4536, whereas the highpass coeffi-
cients in part (b) have variance = 30.57, and sample entropy
= 3.4412. Similar results are observed in other test images
as well. This energy reduction indicates that better compres-
sion results can be obtained using our method, as compared
to the 5/3 wavelet in high-band subimages.

The following compression results are based on the im-
age wavelet tree bitplane coding, similar to the one that is
used in JPEG2000 [13]. No particular interest was given to
the optimization of the encoder. Instead, the results are pre-
sented comparing the Daubechies 9/7 and Daubechies 5/3
wavelet performances with the method described here using

Table 1: Lossless bitrates for 512× 512 test images.

Daubechies 9/7 Daubechies 5/3 Our method

Boats 4.233 4.178 4.132

Airfield 5.677 5.666 5.354

Bridge 5.694 5.646 5.513

Harbor 4.890 4.793 4.592

Lena 4.287 4.267 4.096

Barbara 4.840 4.875 4.816

Houses 4.851 4.791 4.635

Garden 4.712 4.598 4.561

Peppers 4.593 4.590 4.171

(a)

(b)

Figure 6: Wavelet trees of a test image obtained by (a) our method,
(b) regular 5/3 wavelet.

the same lossless coder. The coder uses the integer-to-integer
versions of the classical filters to achieve lossless coding. Since
it was observed that transform entropy and variance are
lower for each of the test images, similar compression results
are expected with other lossless wavelet coders as well. A de-
composition level of 4 was selected for 8-bit gray-scale im-
ages with size 512×512. The bitrate values in terms of bits per
pixel (bpp) for a set of test images shown in Table 1 are gener-
ated using Daubechies 9/7 wavelet, Daubechies 5/3 wavelet,
and our directionally adaptive method using the halfband
anti-aliasing update filter. In general, smaller bitrates are ob-
tained.

In spite of the edge adaptation of the prediction, the over-
all proposed method gives only marginally better or similar
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compression values as compared to the 5/3 wavelet. The rea-
son for this situation is supposed to be due to the lowpass
filtering prior to the prediction. This update filter naturally
reduces some amount of signal information in the upper
polyphase component that should be useful in the predic-
tion. It was observed that a combination of the given low-
pass update filter followed by the 1D prediction filter (as used
in the 5/3 wavelet) gives worse compression results than the
original 5/3 wavelet. It can, therefore, be concluded that by
incorporating the 2D edge adaptations, the compression re-
sults improve to rates that are better than or comparable with
the 5/3 wavelet. It may be argued that the lowpass update
part could be completely eliminated. However, the use of that
update for the upper polyphase is essential to obtain anti-
aliased low-low subimages. Without the anti-aliased low-low
subimages, further decomposition of the images to levels
more than 1 becomes useless. As a result, the update-first
strategy is adopted.

As a final analysis, the computational complexity of the
proposed adaptive filterbank is investiaged. It can be seen
that the computational complexity is close to the Daubechies
5/3 lifting implementation, hence very low. Our directionally
adaptive lifting strategy contains an additional

(1) three difference operations to obtain Δ135, Δ0, and Δ45,
and

(2) three comparison operations to choose the minimum
of Δ135, Δ0, and Δ45

compared to Daubechies 5/3 wavelet decomposition.
The rest of the operations, including the anti-aliasing fil-

tering have identical complexity figures as the original 5/3
lifting implementation. The above operations can be sum-
marized as an additional complexity of 6 subtractions per
lifting (including prediction and update) operation. For an
N × N image, there are approximately N2 lifting opera-
tions, so the additional computational cost is 6N2 subtrac-
tions. There is neither any integer nor floating-point multi-
plications in the new structure. As a result, our directionally
adaptive algorithm keeps the low complexity property of the
5/3 Daubechies wavelet decomposition, and provides slightly
better image compression results in images containing sharp
edges and artificial characters and drawings.

5. CONCLUSIONS

In this paper, a novel prediction filter that directionally
adapts its domain according to the local edge characteris-
tics and its application to lossless image coding are pre-
sented. The proposed edge adaptive structure is inserted in-
side a lifting stage that resembles the lifting implementation
of Daubechies 5/3 wavelet. Unlike other orientation adaptive
systems that utilize the same gradient direction to a cluster
of pixels in an image, the proposed system applies individ-
ual gradient selection for each pixel in the image. In order
to avoid transmission of gradient information for each pixel,
the symmetry between the encoder and decoder is assured
by the application of a lossless coder. The proposed decom-
position algorithm is computationally efficient and it avoids

multiplications. It was observed that the prediction of the
lower polyphase branch in a lifting stage using edge adap-
tation produces lower energy highpass coefficients. The new
structure uses the same polyphase domains as used by classi-
cal lifting implementations therefore no side information is
needed for reconstruction. The reduced decomposition en-
ergy reflects to real life compression results using wavelet
tree-based coders in lossless mode.
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