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Abstract: This paper presents a new feature set for the problem of recognizing pulse repetition interval (PRI) modulation
patterns. The recognition is based upon the features extracted from the multiresolution decomposition of different types
of PRI modulated sequences. Special emphasis is placed on the recognition of jittered and stagger type PRI sequences
due to the fact that these types of PRI sequences appear predominantly in modern electronic warfare environments
for some specific mission requirements and recognition of them is heavily based on histogram features. We test our
method with a broad range of PRI modulation parameters. Simulation results show that the proposed feature set is
highly robust and separates jittered, stagger, and other modulation patterns very well. Especially for the stagger type of
PRI sequences, wavelet-based features outperform conventional histogram-based features. Advantages of the proposed
feature set along with its robustness criteria are analyzed in detail.
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1. Introduction
In dense signal environments where a large number of (many) emitters can be active simultaneously, a radar
intercept system receives an interleaved stream of pulses in the natural time of arrival order. It is then the task
of the intercept system to deinterleave this mixed pulse sequence and thus to identify the source emissions. For
this identification task, various parameters such as pulse frequency (PF), pulse width (PW), pulse amplitude
(PA), angle of arrival (AOA), and time of arrival (TOA) are measured and emission sources are classified
accordingly. Among these pulse parameters, TOA is of considerable interest since it leads to a key derived
parameter called pulse repetition interval (PRI), which represents the difference of sequential TOAs of received
pulses. Any emission source either intentionally or unintentionally varies (or modulates) this parameter for
a specific mission requirement. Thus, it is important to recognize PRI modulations for identification of the
emission source and its mission for possible countermeasures. Additionally, some emitters may vary even PRI
modulation type according to its mission. This makes estimation of PRI modulations more critical from an
operational point of view. As the subject is sensitive and may require mostly classified data, it is not possible
to see so many works toward resolving this problem.

In the literature, deinterleaving pulse trains have been in the focus of many studies in the past years

[1-10]. Several studies were performed on estimation of PRI to construct better deinterleaving algorithms.
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Cumulative differences (C-DIF) and sequential differences (S-DIF) histogram techniques, techniques based on
TOA matrix characteristics, and a transformation called PRI transform, leading to a kind of PRI spectrum,
were some of these algorithms that enabled new methodologies to estimate pulse repetition intervals of pulse
sequences and thus to deinterleave them [7-10]. However, as signal environments become more complex in
electronic warfare due to the evolution of technology, the need for not only estimating pulse repetition intervals
of radar pulses but also recognizing the modulation patterns hidden inside them has become an inevitable task.
In recent years, studies have been focused on this area and several methods have been proposed to recognize PRI
modulation types [11-18]. In the work of Noone [11], an N-dimensional feature vector was deduced by using the
second differences of the TOAs of a pulse train and PRI modulation types are classified via a neural network.
In the work of Rong et al. [12], a two-dimensional feature vector was formed by extracting frequency and shape
features from this N dimensional vector, which reduced the computation time greatly. In the work of Ryoo et
al. [13], PRI modulation types were recognized based on the features extracted from the autocorrelation of the
PRI sequences for each PRI modulation type. In this method, due to the sensitivity of the features against
signal imperfections, compensation of missing pulses and the removal of spurious pulses must be performed as
a preprocessing step. In the work of Kauppi et al. [14], PRI modulation patterns were classified hierarchically.
First, six modulation patterns were first grouped into three subpatterns by using a neural network classifier, and
then they were binary classified by using one-dimensional classifiers. Some proposed features in this method
were based on sequential difference (SDIF) histograms [8] and they need to be calculated for several orders due
to unknown signal parameters.

In this study, we present new features based on the wavelet analysis of PRI modulation patterns to
classify PRI modulation types. Features are extracted from multiresolution decomposition [19] of the second
difference of the TOA signals by utilizing a discrete Haar wavelet. Experimental results show that the extracted
features separate jitter, stagger, and other modulation types very well and they are highly robust to real-world
imperfections such as missing pulses, spurious pulses, and TOA noise.

The rest of the paper is organized as follows: in Section 2, the basic PRI modulation types and their
parameters are given. In Section 3, the proposed feature set and the method are described. Section 4 shows

simulation results and discusses these results. Finally, Section 5 concludes this paper.

2. PRI modulation
Let F' be a function describing the PRI modulation type:

fn:yn+1*yn:F(n) TL:1,2,,N*1, (1)

where vy, is the TOA of the nth pulse received in a pulse sequence of length N and x, is the difference of TOAs
of two consecutive pulses.

In general, there are six common PRI modulation types: stable, jittered, stagger, dwell & switch, sliding,
and periodic. Each modulation type serves for a specific purpose; thus, they represent some characteristics
of emitters. Constant PRI means the peak variations in PRI values are less than about 1% of the mean PRI,
whereas jittered PRI has large intentional PRI variations up to about 30% of the mean PRI. Staggered PRI uses
two or more PRIs selected in a fixed sequence. The sequence may contain more than one of the several intervals
before it repeats. In dwell & switch PRI, the radar has bursts of pulses with several stable PRIs switched from
one burst to the next. Sliding PRI is characterized by monotonically increasing or decreasing PRI followed by

a rapid jump from one extreme value to the other. Finally, periodic PRI means that modulation is a nearly
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sinusoidal variation over a more limited range than in sliding PRI. Common PRI modulation types and their

parameterizations are presented in Table 1.

Table 1. Common PRI modulation types and their parameterizations.

Constant Fn)=c¢n=2,.,N-1 ¢ : a constant real number.
Stagger Fli+kM)=F@G) i=12,...M M: the number of positions in one period
k=1,2,..,T T: the number of periods in the pulse se-
quence
Total number of pulses in the pulse sequence
is
N=MT
Dwell and switch | First stage: F'(i) = F(1) i=2,...,Ng | M : the number of stages in the pulse se-
Other stages: F (i) = F(1+ N;) quence
7j=0,1,... M —1 N;: the number of pulses in the i¢th stage
1= N;+2,...,Nj The total number of pulses in the pulse se-
quence is
M—1
N= > N
k=0
Jittered F(n) =T+ ecauss T: the mean PRI

€causs: a random variable that has a
Gaussian distribution with zero mean and
ostandard deviation

Sliding F(n)=a(n—1mod M)+ M: the number of pulses in one slide period
B : the minimum PRI (Min_ pri) value

o = (Max_ pri — Min_ pri) / (M-1), the slope
of the modulation

Periodic F(n) =T+ Asin(wn + ¢) T : the mean PRI

A :the modulation amplitude (generally up
to 5% of mean PRI), w :the modulation fre-
quency (generally between 20 and 50 pulses
per period)

@ : the phase

3. Methodology

It has been shown that the multiresolution signal decomposition scheme proposed in [19] can be applied to
PRI estimation in intercept receivers. In doing this, variations of wavelet coefficients are closely related to
PRI modulation patterns obtained from the time sequences of interleaved pulses. Classical multiresolution
concept-based multichannel filter banks are adopted to PRI estimation in this work.

After detailed analysis of PRI modulation types via their wavelet decompositions, it was observed that
local extrema of the wavelet coefficients of jittered type modulation patterns tend to have lower magnitudes
compared to stagger type modulation patterns. This is due to the fact that in staggered sequences, PRI variation
is done from pulse to pulse. The radar emitter staggers from one position to another abruptly. These abrupt
changes are more likely to be reflected in magnitude to their detail coefficients in contrast to jittered sequences
where PRI variation is within a predefined limited range. The medians of the wavelet coefficients of other PRI
modulation patterns (stable, dwell & switch, sliding, and periodic) also tend to have lower values compared to
jittered and stagger type modulation patterns. Smooth variations of those type patterns cause most of their
detail coefficients to tend to zero or to very low numbers in magnitude as compared to jittered and stagger type
patterns. These observations gave us a chance to extract new features to distinguish among jittered, stagger,
and other PRI modulation types.

3080



GENCOL et al./Turk J Elec Eng & Comp Sci

Radar intercept systems may encounter a continuous stream of pulses accompanied by many imperfec-
tions, and they are required to work on a real-time basis. Since the Haar wavelet is computationally efficient
and can be implemented in a transformation matrix form, it has been preferred in our study.

Feature analysis is performed on the second difference of TOAs by utilizing discrete

Haar wavelets.
The Haar wavelet is defined as [20]:

1, o0<t<i
0, elsewhere

and the whole set of basis functions is obtained by dilation and translation:
Uy (t) = 272027 —n),m,n € Z. (3)

We call m the scale factor, since ¥, ,(t) is of length 2™, while n is called the shift factor, and the shift is
scale-dependent (1, ,(t) is shifted by 2mn). The normalization factor 2 ~™/2 makes t,, ,(¢) of unit norm.

The discrete case of the wavelet can be expressed as:
gin(n) =279/2g2 0 —k) ke Z,jeN. (4)

Here, the wavelet filter g(n) plays the role of ¥(t).
The second difference of TOAs is defined by differentiating the modulation function F according to Noone
[11]:
Zn =Tpt1 — Ty N =1,2,... N —2 (5)
where z,is the second difference of the time of arrival of the nth pulse. Then the detail coefficients of the

wavelet decomposition of z, at scale 27 can be expressed as:

ca(j, k) = zngin(n). (6)

n

3.1. Analysis of jittered and stagger PRI modulation types

Two features are extracted from the wavelet decomposition of the vector of second differences z,,of length M as
follows:
Let E; be the square summable energy in the ith level or the ith subband of wavelet decomposition of

zn (d2TOA), i.e.
B ::jiz e G =S (@ )% = 1,2,..., M/, 1)

J
where ¢'{j} denotes the jth detail coefficient of the ith level decomposition.

The first feature is defined as a vector of the energies in L levels:
fi=[FE1 Es..Er], (8)

where L is the effective number of decomposition levels, which is analyzed in the next section.
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The second feature is the magnitude of the median of wavelet coefficients in the first subband:
fo = abs(median{c{j}}) j=1,2,...,M/2. 9)

M is assumed to be a multiple of 2, which allows fast wavelet decomposition of the signal.
For classification tasks, we employ a cascaded form of a one-dimensional binary classifier and a support

vector machine (SVM) classifier. SVMs are from a class of supervised learning algorithms that can be applied

to classification or regression.

The SVM algorithm is based on the statistical learning theory developed by Vapnik [21]. It was originally
designed to solve two-class problems (binary classification), but it can be easily extended to solve multiclass
problems with combinations of binary classifiers. The goal of the algorithm is to determine the optimum
hyperplane that separates two classes. More treatment of SVM theory is beyond the scope of this paper and
can be found in [22]. For now, it should be pointed out that major advantages of SVM are that different learning
machines can be constructed by utilizing different kernels and nonlinear classification problems can be solved
by linear classifiers via mapping to higher dimensional spaces without explicitly modifying the kernels [23].

We first separate the jittered and stagger modulated patterns from others by using a binary classifier.
Then a SVM classifier is used to separate the jittered and stagger types. We use a linear kernel for evaluating
the performance of our SVM classifier.

3.2. Analysis of other PRI modulation types

The sample kurtosis of wavelet coefficients in the ith subband is given by:

) M/2b ,
‘ M/7 21 (e} — pe)*
Kurt(c') = =

M/2¢ 4 ’
(X (€} = )22

Jj=

where ¢! is the wavelet coefficients and u’ is the sample mean of the wavelet coefficients in the ith subband,

respectively.

Also, let the number of local extrema of wavelet coefficients in the first subband be symbolized as local
extrema (c'). Then the hybrid feature:

f3 = [Kurt(c') Kurt(c®) Kurt(c®) localextrema(c')], (11)

is very efficient in separating dwell & switch, sliding, and sinusoidal PRI modulation types. For the sake of
illustration of the separating capability of the proposed feature, three kurtosis components of this feature are
depicted in the next section.

A generalized block diagram of the proposed method is presented in Figure 1.
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Figure 1. A generalized block diagram of the proposed method.
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The data generation model proposed by Kauppi et al. [14] has a very high flexibility in modulation parameters

and is quite adequate for the generation of different PRI modulation sequences. The parameter limits used for

data generation are given in Table 2. We train our SVM classifier for a scenario of average missing and spurious

pulses of 5%, TOA noise of 0.3%, and a very broad range of training data, where limits are presented in Table 2.

Table 2. The parameter limits for synthetic data generation.

PRI modulation types Parameters Range
Jittered Jitter type Gaussian, uniform
Standard deviation | 5%-50%
Stagger Number of positions | 2-64
Dwell & switch Number of bursts 2-64
Length of one burst | 8-100
Sliding Max-min ratio 2-20
Number of periods 1-20
Periodic Amplitude deviation | 4%-50%
Number of periods 8-100
Imperfections
Missing pulses 0%—-15%
Spurious pulses 0%—-15%
TOA uncertainty 0%-0.4%
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We have created the test sequence from a broad range of PRI modulation parameters to test the separating
capability of the feature set. The test sequence consists of six different types of PRI sequences and their
subsequences. Table 3 shows parameters of each PRI sequence. For each PRI sequence, subsequences are formed
in such a way that they fully cover the limits of modulation parameters to ensure as unbiased of a sample space
as possible and to see the robustness of the features against large variations of modulation parameters of PRI
types.

Table 3. Test sequence.

PRI sequence | Subsequences

Constant 10 subsequences

Jittered 46 subsequences of standard deviations 5% to 50% and
each subsequence has Gaussian and uniform distributions

Stagger 63 subsequences of stagger positions 2 to 64

Sliding 19 subsequences of max:min ratios 2 to 20 and each sub-

sequence with periods 1, 5, 10, 20

Dwell-switch | 15 subsequences of number of bursts 2 to 16 and each
subsequence with burst lengths 8, 20, 50, 100

Periodic 47 subsequences of amplitude deviations 4% to 50% and
each subsequence with periods 8, 20, 50, 100

For the sake of illustration of separating capability of the feature set, we simulated our training data where
parameter limits are presented in Table 2. The separating capabilities of the proposed features are illustrated
in Figure 2, Figure 3, and Figure 4, respectively.
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Figure 2. Demonstrating separating capability of the energy feature.
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Figure 3. Demonstrating separating capability of the median feature.
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Figure 4. Demonstrating separating capability of three kurtosis components of the 3rd feature.

Tests are performed for four distinct circumstances: in the case of no imperfections, missing pulses case,
spurious pulses case, and in the case of TOA noise. For missing and spurious pulses cases, tests are performed
ten times and in the case of TOA noise, the trials are increased to 100 to reflect the statistics of noise as much
as possible by varying the pulse repetition interval of PRI modulation types and the average recognition rate
is calculated. Computation results are obtained on a standard Pentium Dual Core 2 GHz PC with MATLAB

R2013a version.
The selection of L (the number of decomposition levels in the first feature) is crucial for the separating

capability of the feature for jittered and stagger modulated types. A comparison of the results of Haar and
Daubechies wavelets [24] for a typical scenario of average missing and spurious pulses of 5% and TOA noise of
0.3% is given in Table 4. It is observed that average recognition rates of jittered and stagger sequences are very

similar for both wavelets and the performance is greatly improved at two and three levels.
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Table 4. A comparison of the results of Haar and Daubechies wavelets (M = 128).

Average recognition rate of PRI modulation patterns
PRI modulation patterns | Haar wavelet Daubechies wavelet ‘db2’

L=1|L=2|L=3|L=1|L=2|L=3
Jittered 72 83 85 70 82 84
Stagger 99 98 98 97 98 99
Computation time (ms) 1.904 | 2.563 | 2.959 | 2.075 | 2.686 | 3.206

The average recognition rates of PRI modulation patterns are given in Table 5. It can be inferred from
the results that jittered and stagger PRI modulation types have high recognition rates, usually around 95%,
except that the recognition performance of jittered type sequences decreases rapidly as the percentage of missing
pulses increases. They are not robust to missing pulses. This can be considered the only major shortcoming
of the proposed method. Also, other modulation types have average recognition rates of 85%, except in the
presence of TOA noise of 0.3% and 0.4%, when they are then 81% and 70%, respectively. Even if they decrease
gradually, they still show good performance at tolerable TOA noise rates. One of the major advantages of
the proposed features is that they are able to separate stagger type modulation sequences with an accuracy of
around 99%. Features show great robustness to real-world imperfections such as missing pulses, spurious pulses,
and TOA noise. This property is further analyzed in the next subsections.

Table 5. Classification results (L = 3).

PRI Average recognition rates of PRI modulation patterns (%)

modulation | No imperfections | Missing pulses (%) Spurious pulses (%) | TOA noise (%
patterns imperfections ) 10 15 ) 10 15 0.2 0.3 0.4
Jittered 99.35 86.85 | 72.39 | 60.43 | 96.30 | 91.96 | 85.20 | 99.11 | 99.08 | 99.00
Stagger 99.21 99.52 | 99.37 | 99.21 | 99.53 | 99.50 | 99.36 | 98.95 | 98.90 | 98.22
Others 100 93 86 82 95 91 80 92 80 70

4.1. Comparison with histogram-based methods

In [14], jittered and stagger type PRI sequences are recognized by using histogram-based features. The feature
is extracted from higher order SDIF histograms and is defined as the relative strength of a stable sum in the
dth order SDIF-histogram.

The average recognition rates of jittered and stagger PRI modulation type sequences against missing and
spurious pulses are given in Figure 5 and Figure 6, respectively. It is observed from Figure 4 that for jittered
type sequences, histogram-based features perform better than wavelet-based features. The average recognition
rate of jittered sequences based on histograms is above 80%, while this rate decreases to 60% for the extreme
case of 15% missing pulses when wavelet features are employed. For stagger type sequences, wavelet-based
features outperform histogram-based features.

In the spurious pulses case (Figure 6), for both jittered and stagger type sequences wavelet-based features
perform better than histogram-based features. For jittered sequences, the average recognition rates of both
methods are above 85%, while for stagger sequences the average recognition rates based on histograms decrease
very quickly. This is due to the dynamic range of the histogram-based feature proposed in [14] for stagger type
sequences rapidly increasing when the number of missing or spurious pulses increases.

Histogram-based features also have some bottlenecks. First, since the number of positions of a stagger

type sequence is generally unknown due to the unknown signal parameters, the feature needs be calculated up
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to several orders [14]. Second, the relative tolerance defining the constant time interval in the histogram stabi-

lization algorithm is a choice parameter that should be updated for dynamically varying signal environments.
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Figure 5. Average recognition rate of histogram and wavelet-based features against missing pulses.
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A comparison of the runtimes of the proposed and histogram method is presented in Table 6. With this

comparison, a superior side of the proposed method has been observed. Since the number of positions in stagger

PRI is generally unknown, histogram-based features are calculated according to the highest expected number

of positions in stagger PRI [14]. A general staggered PRI sequence can contain up to 64 positions as presented

in Table 2. On the other hand, wavelet-based features do not depend on the number of positions in stagger

PRI, yielding much better run-time performances as seen from Table 6.

Table 6. A comparison of the runtime performance of proposed and histogram methods.

Runtime performance for proposed and histogram methods (ms) (M = 128)
Number of stagger positions | 2 4 8 16 32 64
Histogram 8.686 | 9.250 | 9.544 | 10.535 | 11.764 | 12.970
Proposed 2.886 (does not depend on stagger positions)
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4.2. Robustness criteria

One of the most important contributions of this work is that the wavelet features proposed are very robust for
stagger type sequences and distinguish them very well as shown in Table 5. Figure 7, Figure 8, and Figure 9
show the dynamic range of the energy feature for stagger sequences with number of positions 2 to 64 against
increasing number of missing pulses, spurious pulses, and TOA noise percentages, respectively. It is observed
that the dynamic range of the energy feature against signal imperfections does not change significantly and the
calculated energy feature values vary between 10 and 25. It should be emphasized that energy feature values
calculated for jittered sequences are low and this explains the high recognition performance of stagger type

sequences in the circumstances of missing and spurious pulses.
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Figure 7. Robustness of energy feature against increasing ~ Figure 8. Robustness of energy feature against increasing

missing pulses. spurious pulses.
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Figure 9. Robustness of energy feature against increasing TOA noise.

It is observed from Table 5 that both jittered and stagger type PRI sequences are highly robust to TOA

noise and have average recognition rates of about 98% even in the extreme case of 0.4% noise. This is due to
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the fact that the wavelet features are invariant to noise. This property is depicted in Figure 10 and Figure 11
for jittered and stagger sequences, respectively. For the jittered sequence, jittered sequence with jitter deviation

of 20% is modeled. For the stagger sequence, a stagger sequence of 4 positions is modeled.

0.268 v v v v v v v 10.66 v v v v v v v
v 0.267L _ v 10.65 | i
=1 =
s g
> 0.266 > 10.64
I &
E} 2
% 0.265 S 10.63
< <
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"§ 0.263 ¢ 10.61
= =
£ 0262 106
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O 0.261 “ 1059
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0.259 c c . r c : 10.57 . c c r c c L
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TOA Noise (%) TOA Noise (%)

Figure 10. Variation of the energy feature calculated Figure 11. Variation of the energy feature calculated
against increasing TOA noise for a jittered type PRI se- against increasing TOA noise for a stagger type PRI se-
quence. quence.

It can be inferred from Figures 10 and 11 that for both jittered and stagger sequences the dynamic range

of the feature is nearly constant against increasing TOA uncertainty.

5. Conclusion

In this study, we developed a wavelet-based feature set to recognize PRI modulation patterns. Three wavelet
features that span the full domain of common PRI modulation types were found to be distinctive to discriminate
between jittered, stagger, and other PRI modulation type sequences. The proposed features and the classification
method are very effective, especially for emitters that vary PRI patterns continuously. Simulation results show
that the separating capability of the proposed features is pretty good and the method is encouraging for the
problem of recognizing different PRI modulation patterns.
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