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Compact Hardware | mplementations of ChaCha,
BLAKE, Threefish, and Skein on FPGA

Nuray At, Jean-Luc Beuchat, Eiji Okamoto, Ismail San, and Teppei Yamazaki

Abstract—The cryptographic hash functions BLAKE and Skein
arebuilt from the ChaCha stream cipher and thetweakable Three-
fish block cipher, respectively. I nterestingly enough, they arebased
on thesamearithmetic operations, and the same design philosophy
allows one to design lightweight coprocessor s for hashing and en-
cryption. Thekey element of our approach isto take advantage of
the parallelism of the algorithms considered in thiswork to deeply
pipeline our Arithmetic and L ogic Units, and to avoid data depen-
dencies by interleaving independent tasks. We show for instance
that a fully autonomous implementation of BLAKE and ChaCha
on a Xilinx Virtex-6 device occupies 144 dlices and three memory
blocks, and achieves competitivethroughputs. In order to offer the
samefeatures, a coprocessor implementing Skein and Threefishre-
quires a substantial higher slice count.

Index Terms—Ciphers, cryptography, coprocessors, field pro-
grammable gate arrays.

|. INTRODUCTION

HE cryptographic hash functions BLAKE [1] and

Skein [2] are built from the ChaCha stream cipher [3]

and the tweakable Threefish block cipher [2], respectively.

It is therefore tempting to design compact unified hardware

architectures able to hash and encrypt a message. We extend

here the work presented in [4], [5], and propose novel hardware

architectures for Threefish decryption, ChaCha, and BLAKE.
The key element of our approach is to:

« take advantage of the paralelism of the algorithms to

deeply pipeline our Arithmetic and Logic Units (ALUS);

« show that a careful scheduling alows us to interleave in-

dependent tasks and avoid pipeline bubbles.

The rest of the article is organized as follows. after a
brief overview of Threefish (Section 11), Skein (Section I11),
ChaCha (Section 1V), and BLAKE (Section V), we describe
our design philosophy and compact hardware implementa-
tions (Section V). We discuss our implementation results on
Xilinx Virtex-6 Field-Programmable Gate Arrays (FPGAS) in
Section V11 and conclude in Section VII1.
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TABLE |
NUMBER OF ROUNDS OF THREEFISH FOR DIFFERENT KEY SIZES
Key size  # 64-bit words # rounds  Block size
[bits] Ny N, N [bytes]
256 4 72 32
512 8 72 64
1024 16 80 128

Throughout this article, all operands are w-bit unsigned inte-
gers and the following notation is adopted:

» H and H: addition and subtraction modulo 2*;

e Vv and A: bitwise OR and bitwise AND;

o @: bitwise exclusive OR;

e >» «:rotation by « bitsto the right;

e & «: rotation by « bitsto the left.

Il. THE THREEFISH BLOCK CIPHER

The design philosophy of Threefishisthat “alarger number of
simple rounds is more secure than fewer complex rounds’ [2].
Threefish operates entirely on unsigned 64-bit integers and in-
volvesonly three operations: rotation of % bitsto theleft, bitwise
exclusive OR, and addition modulo 2%*. Therefore, the plaintext
P andthecipher key K are converted to V,,, 64-bit words. Note
that the number of words N,, and the number of rounds »,. de-
pend on the key size (Table I). The size of a plaintext block is
givenby N, = & - N, bytes.

The key schedule generates the subkeys from a block ci-
pher key K = (ko.k1,...,kny,—1) and a 128-bit tweak T' =
(tg,t1). K and T are extended with one parity word (Algo-
rithm 1, steps 1 and 2). Each subkey is a combination of N,
words of the extended key, two words of the extended tweak,
and a counter s (Algorithm 1, steps 5 to 9). Note that the ex-
tended key and the extended tweak are rotated by one word po-
sition between two consecutive subkeys.

Algorithm 1 Key schedule of Threefish.

Input: A block cipher key K = (ko, k1, ..., kn, —1); atweak
T = (¢, t1); the constant C'o49 = 1BD11BDAA9FC1422.

Output: N,./4 + 1 subkeysk, o, ks 1,- ., ks n,—1, Where
0<s <N,/ 4.

Likn, < Coso® @;&671 ki;
2.ty — TP ty;

3.for s — 0toN,/4do

4. fori—0toN,, —4do

1549-8328 © 2013 |EEE. Personal use is permitted, but republication/redistribution requires |IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



486 IEEE TRANSACTIONS ON CIRCUITSAND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 2, FEBRUARY 2014

Vg0 V4,1 Uy

E‘ 551.:%"#3

€42 €43

Mix,,

Permute

Us0 Us1

Fig. 1. One of the 72 encryption rounds of Threefish-256.

5 ksi +— Fsgiymod(Nu+1)s

6. end for

7. ks N, -3 < K(s4+N, -3)mod(Nu+1) B Lsmod3;

8. ken,-2 “ KGsiN, -2)mod(N,+1) Blst1)mod3;
9. kyn,-1 k(s-{—Nw71)1110d(N,,,+1) B s;

10. end for

1. return ko, ks 1,- ... ks v, —1, Where0 < s < N,./4;

A seriesof N,. rounds (Fig. 1 and Algorithm 2, steps 4 to 19)
and afinal subkey addition (Algorithm 2, step 21) are applied to
produce the ciphertext. The core of around is the simple non-
linear mixing function Mix, ; (Algorithm 2, steps 13 and 14).
It consists of an addition, arotation by a constant /2g,,04s,; (re-
peated every eight rounds and defined in [2, Table 4]), and a bit-
wise exclusive OR. A word permutation 7 (i) (see[2, Table 3])
is then applied to obtain the output of the round (Algorithm 2,
step 17). Furthermore, a subkey is injected every four rounds
(Algorithm 2, step 7).

Algorithm 2 Encryption with the Threefish block cipher.

Input: A plaintext block P = (po,p1,...,pn,—1); Ne/4+ 1
subkeys kg o, ks 1. .., ko n, -1, Where0 < s < N, /4; 4N,
rotation constants R; ;, where0 < ¢ < 7and0 < j < N,,/2.

Output: A ciphertext block C = (¢g, 1, ..., en, —1)-
l.fori—~ 0toN, —1do

2. vo; — pi

3. end for

4. ford — 0toN, —1do

5 fori«— 0toN, —1do

6. if d mod 4 = 0 then

7. eqi — vaiBhayg; (Key injection)
8. else

2
=
| E
:i{)
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€40
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Fig. 2. One of the 72 decryption rounds of Threefish-256.
9. €di < Vdi, (Rename)
10. end if
11. end for
12. for j « 0OtoN,/2—1do
13, fapj < eazj BHeanjitr; (Mixg, ;)

14. Ja i1 — fa25 ® (ea2jt1 &K Rimoas,j);
15. end for
16. for¢«<— 0toN, —1do

17. Vd+1,i < fd.n.(7), (Permute)
18. end for
19. end for

20.for i <~ 0toN, —1do
21. ¢ — UN, i H kNT/él,i; (Key |njeCt|0n)
22. end for

23. return C = ((30,(31, .. .,CNw_l);

Fig. 2 describes a decryption round of Threefish-256. It con-
sists of the inverse word permutation followed by the inverse
MIX functions. Note that subkeys areinjected in reverse order.

[11. THE SKEIN FAMILY OF HASH FUNCTIONS

The Unique Block Iteration (UBI) chaining mode allows one
to build a compression function out of a tweakable encryption
function E(T, K, P). Let M be a message of arbitrary length
up to 2% — 8 bits. If the number of bitsin M is not amultiple
of 8, we append a hit 1 followed by a (possibly empty) string
of 0's. This step guarantees that M contains N, bytes. Then,
we pad M with p zero bytes so that N; + p is a multiple of
the block size N,. We can now split M into N;-byte blocks
My, ..., Mg_1,where 5 = (Nas + p)/N,. Each block M, is
processed with a unique tweak value 7; encoding how many
bytes have been processed so far, atypefield (see[2] for details),
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and two bits specifying whether it is the first and/or last block.
The UBI chaining mode is computed as:

Hg — G,
Hi+1 — M, D E(HZ', szj\’-/[z)

3

where (G is a starting value of N, bytes. In this work, we con-
sider the normal hashing mode and refer the reader to [2] for a
description of Skein-MAC and tree hashing with Skein. Skein
is built on three invocations of UBI:

« Define a 32-byte configuration string C' that contains the
length of the digest size (in bits), a schema identifier, and
aversion number [2, Table 7]. Compute the N, -byte block
Gy as Gy — UBI(0, C, T, 2'2Y). Note that G only de-
pends on the digest size and can easily be precomputed.

e The message is then processed as follows: G;
UBL(Gy, M, T 2120).

e A third call to UBI is required to achieve hashing-
appropriate randomness: H +« UBI(G1,0, T,,2'2").
Thistransform allows one to produce arbitrary digest sizes
(up to 254 bits). If asingle output block H is not enough,
one can use Threefish in counter mode to produce the
digest.

IV. THE ChaCha STREAM CIPHER

The ChaChafamily of stream cipherswas designed by Bern-
stein [3] to improve the diffusion per round of Salsa20 [6],
while preserving the encryption rate. ChaCha operates on 32-hit
words, and expands a 256-bit key (ko, ..., k7) and a 64-bit
nonce (IVg,IV) into a27°-byte stream. A b-byte message is
then encrypted (or decrypted) by XORing it with thefirst b bytes
of the stream.

ChaCha generates the stream by blocks of 64 bytes. In order
to process the sth block, ChaCha actson a4 x 4 matrix M of
32-bit integers defined as follows:

mo ma mo ms co €1 Ca C3
M4 mry Mg mq _ A‘?o ]Cl /{72 kig
- A . s ’
ms Mg mi1o 111 A,4 A5 /{76 k,7
mi2 Mz Mia M3 o 1 IVgp IV,
where

e ¢y = 61707865, ¢; = 3320646E, ¢s = 79622D32, and
c3 = 6B206574 are predefined constants,
o t = (to,%1) is a64-bit counter encoding the index i (i.e.
i = 292¢; + o).
ChaChatransformsthe matrix M through a series of V,. rounds
(Algorithm 3). The algorithm is based on a nonlinear operation
called quarter-round function and described by Algorithm
4. Matrix M is copied into matrix V. Then, the even- and
odd-numbered rounds of ChaCha apply the quarter-round
function to each row and northwest-to-southeast diagonal of V,
respectively. Eventually, anew block of the stream is generated
by adding V' to the original matrix M (Algorithm 3, step 15),
and the block counter is incremented (Algorithm 3, steps 17
to 20).

Algorithm 3 Computation of a 64-byte block of the stream
of ChaCha.

Input: A key, anonce, and ablock counter stored in a matrix
M.

Output: A 64-byte block of the stream.
1.for i — 0 to15do

2. ofi] — mli;

3. end for

4.fori —0toN,./2—-1do

5. QUARTERROUND(vg, v4, vg, v12);
6. QUARTERROUND (01, vs, v, v13):
7. QUARTERROUND(vs, ve, v10, ¥14);
8. QUARTERROUND (v, o7, 011, 015):
9. QUARTERROUND(vg, v5, 010, v15);
10. QUARTERROUND(wy, v, v11, V12);
11. QUARTERROUND(wq, vy, vs, v13);
12. QUARTERROUND(u3,vs, v, 114);
13. end for

14. for i — O to15do

15. oi] « v[i] Bm[i];

16. end for

17. m1s «— mia B 1;

18. if 12 = 0 then

19. mq3 «— my3 HI;

20. end if

21. Return M and V,

Algorithm 4 The ChaCha quarter-round function.

Input: Four 32-bit integersa, b, ¢, and d.
Output: QUARTERROUND (g, b, ¢, d).
la«— oBb;

2.d — (d@a) « 16;
3.¢c+« cHd;

4b— (o) x 12;
5 a0+ aBb;

6.d — (dda) K §;
7.c — cHd;

8bhb— (bde) w T,
9. Returna, b, ¢, and d;




488 IEEE TRANSACTIONS ON CIRCUITSAND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 2, FEBRUARY 2014

TABLEII
PROPERTIES OF THE BLAKE HASH FUNCTIONS

Algorith Word size  Message Block size  Digest size  Salt  # rounds Rotation distances

gorithm ), Ibits] [bits] b [bits] [bits] [bits] N, do 81 82 J3
BLAKE-224 32 < ‘2‘%"’ 512 224 128 14 16 12 8 7
BLAKE-256 32 < 264 512 256 128 14 16 12 8 T
BLAKE-384 G4 < 212}_{ 1024 384 2566 16 32 25 16 11
BLAKE-512 64 < 2128 1024 512 256 16 32 25 16 11

Bernstein proposed 8-, 12-, and 20-round variants of ChaCha.
Aumasson et al. introduced a novel method for differential
cryptanalysis of ChaCha and broke the 7-round variant [7].
Ishiguro et al. [8], [9] improved the attack and concluded that
Salsa20 and ChaCha “are not presently under threat”.

V. THE BLAKE FAMILY OF HASH FUNCTIONS

The BLAKE family combines three previously studied com-
ponents, chosen by Aumasson et al. for their complementarity
[1]: theiteration mode HAIFA, theinternal structure of the hash
function LAKE, and a modified version of Bernstein's stream
cipher ChaCha as compression function. BLAKE is a family
of four hash functions, namely BLAKE-224, BLAKE-256,
BLAKE-384, and BLAKE-512 (Tablell). The main differences
lie in the length of words w, the number of rounds N,., and in
some constants involved in the agorithm. In the following, we
denote by BLAKE-n the algorithm with an n-bit digest.

BLAKE-n involves only two arithmetic operations: the ad-
dition modulo 2% of two w-bit unsigned integers and the bit-
wise exclusive OR of two w-bit words. The latter is sometimes
followed by a rotation of 6; bits to the right. The four pos-
sible rotation distances depend on the digest size and are de-
fined in Table I1. The compression function of BLAKE-n pro-
duces a new chain value »’ = hj,....h% from a message
block m = myg,...,my5, achanvalueh = hg, ..., hy, asat
s = 8p,...,83,acountert = ty, 41, and 16 constants ¢; defined
in[1, p. 8]. Thisprocess consists of three steps. First, a 16-word
internal state v = vy, ..., v15 isinitiaized asfollows:

vy U1 V2 U3 hg h1 hs hs
Vg V3 Vg U7 h4 h5 hﬁ h7
- S0 ) Cpy S1 ® C1 89 @ C2 83 ) C3
tg@Deg toDes 6 Deg 11 Doy

Vg U9 Uip V11
V12 V13 V14 V15

Then, aseriesof .. roundsis performed. Each of them consists
of atransformation of theinternal state + based on the GG; func-
tion described by Algorithm 5, where o,. denotes a permutation
of {0,...,15} parametrized by the round index r (see [1,
Table 2.1]). A column step updates the four columns of ma-
trix v as follows. Go(uvg,vs,vs,v12), G1(v1,vs5,v9,v13),
Gz(’Ug,UG,’Ulo,’Ul_/;), and G3(’U3,’U7,’U11,’Ul5). Note that
each call to G; updates a distinct column of matrix v.
Since we focus on compact implementations of BLAKE
in this work, we interleave the computation of G, G1, Go,
and (3. This approach alows us to design an ALU with
four pipeline stages and to achieve high clock freguen-
cies. Then, a diagonal step updates the four diagonals of v:
Ga(vg,vs,v10,v15), Gs(v1,v6,v11,v12), Ge(va, v7,Us,v13),
and G7(1}3,’U4,?)9,U14). Here agajn, each cal to G; modifies

adistinct diagonal of the matrix, allowing us to interleave the
computation of G4, G5, Gg, and G5.

Algorithm 5 The G; function.

Input: A function index 7 and four w-bit integersa, b, ¢, and d.
Output: G,(a,b,c,d).

l.a — aHb;

2.0 — a8 (Mg, (20) D Co,(2i41));

3.d— (d&a) > b

4, ¢ «— cHd,

56— (&) > 61

6.0 — o HD;

7.0 «— aB (Mg i41) S €200
8.d — (d®a) 3> b;

9. ¢+ cHd,

10.6 + (b c) 3» 8s;

At the end of the last round, a new chain value A’ =
hy, ..., h% is computed from the internal state + and the pre-
vious chain value # (finalization step):

hiy < ho & so vy S us, bl
hll — h1 @ s1 D v D g, h/5
hl — ho @ s2 @ ve D wvrg, hy
hY — hy @ s3 @ vy Dug, AL

— ]’L4 b S0 &> V4 b V12,
— hs & 51 @ vs Doz,
— ]’L6 b 89 &> Vg b V14,
— h7 @ 83 ® vy D vis.

In order to guarantee that the length / of amessageisamul-
tiple of the block size b, Aumasson et al. define the following
padding scheme [1]:

» append a bit 1 followed by a sufficient number of 0 bits

such that the length is congruent to b — 2w — 1 modulo b;
* a padding bit followed by the 2w-bit unsigned big-en-
dian representation of ¢ is then added; in the case of
BLAKE-256 and BLAKE-512, the padding bit is equal to
1; otherwise, it isset to 0.
The hash can now be computed iteratively: the padded mes-
sage is divided into 3 16-word blocks m(?, ... m@-D
and the chain value h{®) is set to the same initial value as
SHA-n. The counter () denotes the number of message bits
inm©, ... m . If the last block contains only padding bits,
then t(?~1) js set to zero. The message digest consists of the n
least significant bits of the output 2(?).
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Fig. 4. Computation of Mix, o and Mixs ; (Threefish-256). Reprinted
from [4].

V1. HARDWARE IMPLEMENTATION

All of our architectures consist of aregister file organized into
w-bit words and implemented by means of dual-ported memory,
an ALU, and a control unit (Fig. 3). The user loads messages,
plaintext blocks or ciphertext blocks into port A. A few control
bits allows her to select the algorithm and the desired level of
security. When the coprocessors are hashing or encrypting a
message, the intermediates results are always written to port B.
Theresultisstored theregister file and can beread word by word
onport A. Inthefollowing, we assume that our coprocessorsare
provided with padded messages. A hardware wrapper interface
for BLAKE, Skein, and several other hash functions comprising
communication and padding is described in [10].

A. Arithmetic and Logic Units for Threefish and Skein

Our first ALU, originally described in[4], implements Three-
fish encryption and Skein. In the following, R denotes a 64-bit
register. Fig. 4 illustrates our scheduling of the two mixing func-
tions Mix, ¢ and Mix, ; of the fifth round of Threefish-256:

» Theoperand ey ; isloaded in register R1; at the sametime,

we start the computation of e4; <& 124 ¢; this opera-

489

< (0,1,20r3
< (), 16, 32 or 48

[ <«<0.4,80r12

s
J bE

To port B

el

—

From port A From port B
=/ \e -

\
N|
1

[@ [c.'n'_g] [(.‘H‘i'g]-[(‘.'ﬂm]

Fig. 5. Arithmetic and logic unit for Threefish encryption. Reprinted from [4].

tion requiresthree clock cyclesand intermediate resultsare
stored in R4, R5, and R6.
* Then, e4 o isloaded in register R2; the content of R1 isnot
modified (i.e. R1 must be controlled by an enable signal).
* Weexecutetheinstruction R3 « R1ER2 and obtain fs4 .
* R3 and R6 contain fy o and ey <& Ry, respectively.
TheinstructionR3 « R3 @ R6 alowsusto compute f4 ;.
We schedule Mix,; as soon as ey has been read, and
manage to keep the pipeline continuously busy. In summary,
our ALU must be ableto carry out any rotation of a 64-bit word
and to perform the following operation (Fig. 5):

R3 — { RIEHR2 whenctriig =0,

R34 R6  otherwise, @

where ctrliy denotes a control bit. Let us define two 64-bit
operands « and b such that:

_ [(RLR2)
(a,0) = { (R3,R6)

when (Zt?"llo =10,
otherwise.

Itiswell-knownthat « Bb = (¢« Vb)) B (aAb)anda d b =
(¢ Vv b)B (a Ab)[11]. Thus, (1) can be rewritten as follows:

@

Fig. 6 describes the implementation of (2) on aVirtex-6 device.
Since there is a single control signal to choose the arithmetic
operation and to select ¢ and b, (2) involves only five variables,
and is advantageously implemented by 64 LUT6_2 primitives
and dedicated carry logic.

In order to reduce the number of operands stored in the reg-
ister file, we interleave the key schedule (Algorithm 1) and the
encryption process (Algorithm 2). This approach alows us to
generate the subkeyson-the-fly. It ishowever necessary to com-
putet, and &, before the first key injection. The easiest way
to compute ¢, would beto load ¢, and¢; inregistersR1 and R2,
respectively, and to execute the instruction R3 «+— R1 @ R2.
Unfortunately, this solution requires one more control bit to
select the inputs of the arithmetic operator, and it is not pos-
sible to implement the multiplexers and the adder on the same
LUT6_2 primitive anymore. Since the critical path of our co-

R3«— (aVvbh)HB((aAb)® cirlip) B ctrlyg.
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Fig. 6. Computation of R3 — R1HER2 or R3 — RR3 = R6 on a Virtex-6
device. Reprinted from [4].

processor is located in the 64-bit adder, an extralevel of LUTs
would decrease the clock frequency. However, we are able to
compute 5 using only the functionalities defined by (1). Since
ta = (g B0) & (1; < 0), it suffices to execute the following
instructions:

R4 —1t; « 0,

R1—1%,;, R2+<0,  Rb—R4xO,
R3+— R1IHBER2, R6—R5 0,

R3 — R3 & R6.

This approach assumes that we can read simultaneously two
values from the register file. Thanks to the multiplexer con-
trolled by c¢trl7, we can load datafrom port A or port B into reg-
ister Ry (Fig. 5). A similar strategy allows usto compute &y, .

The implementation of the key injection is more straightfor-
ward. Note that the multiplexers controlled by ctrls and ctrig
allow usto bypass the register file and to use the content of R3
as an input to the ALU. Let us consider for instance the first
key injection of Threefish-256: eq » is defined asps B ko2 =
p2 B ko B¢, and is computed as follows:

R1 « ks, R2 « #4,
R3 — R1HR2

R1 — R3,
R3 — R1HER2.

R2 « po,

Fig. 7 describes how we schedule the instructions of Three-
fish-256 decryption.

The UBI chaining mode can be combined with the final key
injection of Threefish encryption. It suffices to modify step 21
of Algorithm 2 asfollows:

EN,i T UN,. i H k:;\_77
x
Ci — en, i D pi.

The only difference between this operation and the mixing func-
tion MIX, ; is that no permutation is applied to the second
operand of the bitwise exclusive OR.
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Theinverse of the MIX functionis purely sequential. There-
fore, Threefish decryption has less parallelism than encryption,
and it is not possible to compute an addition modulo 24 and a
rotation in parallel. We suggest to modify our ALU as follows
to fully support both encryption and decryption (Fig. 8):

» Theinverse of the Mix function and the inverse of the key
injection require a subtraction modulo 254, Our modified
ALU isableto perform anew operation: 3 — R1HR2.
An additional control bit c¢trl;g alows usto add R2 or its
two’s complement to R1. It istherefore not possible to im-
plement our arithmetic operator by means of 64 LUT6_2
anymore, and the slice count and the critical path are ex-
pected to increase.

» The output of the inverse Mix function is provided either
by the arithmetic operator (e.g. e4 ¢ on Fig. 2) or the rota-
tion unit (e.g. e4; on Fig. 2). The multiplexer controlled
by ctrly7 alows usto select the word we store in the reg-
ister file.

» Sincetheinverseof theMix functionissequential, we have
to perform the rotation in asingle clock cycle. We suggest
to take advantage of the SRL16E primitive available on
Xilinx devices to implement a FIFO whose depth is dy-
namically adjusted according to the algorithm selected by
the user: one and three stages for decryption and encryp-
tion, respectively.

B. Arithmetic and Logic Units for BLAKE and ChaCha

Let us consider the GG; function of BLAKE-n to define the
instruction set of our coprocessors. Since we focus on compact
coprocessors for the BLAKE family in this article, we perform
asingle step of Algorithm 5 at each clock cycle. We will show
later that the input operand b is already stored in an internal reg-
ister of our ALU when we start the computation of G;(a, b, ¢, d).
Therefore, each operation involves the result of the previous
one, and our ALU will include a feedback mechanism to by-
pass the register file of the coprocessor.

Assumethat the w-bit word computed by the ALU isstoredin
register R5, and denoteby RF 4 and RF 5 the operands provided
by the register file. From the data flow diagram of Algorithm 5,
we easily identify three operations (Fig. 9):

1) Save the content of R5 in the register file and compute
R5 «— REBHRF 4.

2) ComputeR5 — REH (RF4 ¢ RFp).

3) Save the content of R5 in the register file and compute
R5 (RS &) RFA) = 57

Recall now that thefour callsto G; inacolumn step or adiag-
onal step can be computed in parallel. In order to keep the crit-
ical path as short as possible, we suggest to design an ALU with
four pipeline stages and to interleave the computation of four GG;
functions (Fig. 10). The heart of the ALU is the arithmetic op-
erator performing the addition or the bitwise XOR of two w-bit
words described in Section VI-A. Our operator computes:

. R1IEBR2 whenctrls =0,
RS — { R1 & R2 otherwise
=(R1VR2)H((R1 AR2) & ctrly) B ctris,

where
» R1 stores the data provided by the register file. Since a
flip-flop is always associated with a LUT, we can perform
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Computation of ¢, and ky, and first key injection

Address A - [ @k |[ @k || @k |
Address B
InputB
Output A ¢
Output B

Register File

Port A}
PortB !

ALU

Inverse |
Permute *
Rename

R3«— RI&R2 Ri«— RI&R3
Second key injection

Address A !
Address B

Input B

Register File

Output A
Output B :

Port A |
PortB |

ALU
=

Fourth round

Fig. 7. Scheduling of Threefish-256 decryption.

[C."f.’s

S

1
0
L~

To port B

Hor8Borég

»ne
0

’1 et r
| ctri; | [c.'rl u]] [c.'rl lg] [c.'rl l;;] [crr.’ 16: ]_~,]

Fig. 8. Arithmetic and logic unit for Threefish encryption and decryption.

N\

From port A From port B
3 i T

[c.'rl | 7]

some simpl e pre-processing without increasing the number
of dlices of the ALU: acontrol bit ctrl, selectseither RE 4
or RF4 © RFp. This alows us to compute 1, 25y ©
Co,(2i+1) A My (2i11) © cq, (24) for free (Algorithm 5,
steps 2 and 7).

* R2 amost always stores the result of a previous opera-
tion. However, we have to disable the feedback mech-
anism during the initialization step: the computation of

Fifth round Sixth round Seventh round

vg +— $g D ¢g involvesfor instance only two words stored
in the register file. An array of AND gates controlled by
ctrly allowsusto force the second operand to zero in such
cases.
If needed, the content of register R3 isthen rotated to the left in
two steps. Our implementation is based on the following obser-
vation:

R3 3> 6, = (R3 3> (6; — 63)) 3> &3,

where 0 < ¢ < 3. At first glance, this design choice may look
awkward. However, it will allow usto easily build aunified pro-
cessor for the BLAKE family. The key point is that the content
of R3is copied into R5 when the three control bits ctris.5 are
equal to 0 (Fig. 10).
Note that the pipeline has three possible configurations, de-

noted by @, @, and &) in Fig. 10:

(D Inorder to minimizethe areaof our ALU, we caninsert

aw-bit register after thefirst stage of therotation. Sincethe

latter involves w LUTS, there is no hardware overhead on

a Virtex-6 device.

(@ Theaddition modulo 2% can be computed in two clock

Cycles Leta = aiow +2w/20h gh andb = b10w+2w/2l)hlgh

Westore anigh and bnign intwow/2-bit registers, and com-

pute a sum word s, and a carry hit such that w/2e 4

Slow = Qlow T blow - A flip-flop and aw/2-bit register store
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oo
b @W b
fD_.e®3_.[:>>>o i o

From R5 = To port B
From port }\ZT{) R35 @

Fig. 9. Implementation of the ; function of BLAKE-n. by means of three instructions. R5 denotes an internal register of the ALU.

From port A

From port B

Fig. 10. Arithmetic and Logic Unit for BLAKE-n.

¢ and s, respectively. The most significant bits of the
sum are then given by Shigh = Qhigh 1 bhigh + ¢. Thisap-
proach allows us to reduce the worst-case carry path at the
price of three w /2-bit registers and aflip-flop.

(3 Routing a signal from a memory block to a dlice is
sometimes expensive in terms of wire delay. If the critical
path is located between the register file and register R1,
this pipeline configuration will help boosting the clock fre-
quency. The output data path of a Virtex-6 memory block
has an optional internal pipeline register. Therefore, the
only hardware overhead is the w-bit register between R5
and the array of AND gates controlled by ctri; .

In order to avoid pipeline bubbles between column and di-
agonal steps, it suffices to process the four cals to G; of the
diagonal step in the following order [5]: G7, G4, G5, and Gg.
We check for instance that the ALU outputs the new value of v,
(lastinstruction of G) at time 7+ 3. If weload v from the reg-
ister file, we can start the computation of G7 at timer + 4. We
easily check that this scheduling also avoids pipeline bubbles

,f_;;.]l EXOEN

(8,

>

7 (

To port B

X

between adiagonal step and acolumn step (Fig. 11). Since each
cal to G; involves ten instructions, we need 80 clock cyclesto
perform around of BLAKE-n.

Our first architecture can be modified to support the four al-
gorithms of the BLAKE family (Fig. 12). The 64-bit datapath
is built out of two 32-bit datapaths, thus allowing us to perform
asingle 64-bit operation or two 32-hit operations at each clock
cycle. The mode of operation is selected according to an addi-
tional control hit ctrlg, thelatter being provided by the user. The
ALU includes two 32-bit adders. Let a1, Chigh blow » bhighy
Slow, aNd syie1 denote unsigned 32-bit integers. When the user
chooses BLAKE-224 or BLAKE-256 (ctrlg = 0), two mes-
sagesare processed in parallel and the ALU performstwo 32-bit
additions:

Slow < Qlow + blow + CtTZQa
Shigh < Chigh T Ohigh + ctrla.

When the coprocessor executes BLAKE-384 or BLAKE-512
(ctrlg = 1), the ALU carries out a 64-bit addition. The first
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Time [clock eycles]

. T . T+1 L T+2 N T+3 . T4 N T+5 L T+6 o
s T T T T T T -
10th step of G+ 10th step of G Lst step of G 1st step of y: Ist step of Gy
vy = (0B wg) T vy (y@uy) 37 wy — vy By v v B v = v By
h—-'\"—’ . X X
Rl « oy Rl & v Rl « u Rl « v; Rl Rl « 1y Rl &« v
& @ | ReRi=uw R2 < R5 = wy R2 « R = vy, R2 ¢ R3 =y R2 « Ri = v, R2 Ri =3 R2 RS = v
% @ | R3<RIER2 R} « R1@ R2 R3 « R1@ R2 R3 « R1&R2 R3 « RI@®R2 R3 « RIMR2 R3+« RIBR2 |
% @ | RI=R3=>0 I Re=R3z=0 R4+ R3 =0 R4+ Ri =10 R4+ R3 =10 Ri—Ri=0 || Ri:<Riz0 |
=
@ RS & v =R4 )| RG+ v, =Ri RS & oy =Rd ]| R5 « v;=Rid 3> T)|RS & uy =Rd 3> T)| R5 v = Rd 3> 7| RS & 15 = Ri 3> 7);
9th step of ¢y: th step of G5 Oth step of Gy 10th step of Gy: 10th step of Gy
vyo — vy Bang vy = vy By v +— vg B vy 54— (v @ vyg) 32 T v (@) 32 T

Fig. 11. Avoiding pipeline bubbles between a diagonal step and a column step.

From port A

From port B

—= 1 bit —= 32 bits — i34 bits

Fig. 12. Unified arithmetic and logic unit for the BLAKE family.

adder generates the least significant bits of the sum and a carry
bit ¢ such that:

232 - C+ Slow = Qlow T blow + Ctrl?
The second adder computes the most significant bits of the sum:
Shigh — Ghigh + bhigh + .

We use the rotation unit of our first processor to deal with
BLAKE-224 and BLAKE-256. Note that the content of R3
is always copied into R6 when ctris.;3 = (000)s. Thus, we
share this datapath between all algorithms of the BLAKE
family, and need only 64 LUTs to implement the rotation
unit of BLAKE-384 and BLAKE-512. When ctrls5 is equal
to one, ctrly.3 encodes the index 7 of the rotation distance §;
(Table 111). Consequently, we can use the same instruction flow
for all agorithms and select the width of the datapath according
to cirlg. Note that the three pipeline configurations defined for
our first coprocessor are also available here.

The QUARTERROUND function of ChaCha requires only
two of the instructions we defined for the G; function. Thus,
the design of a ChaCha coprocessor is rather straightforward
(Fig. 13). Since it is not necessary to compute RF 4 & RFg
anymore, the ALU has asingle 32-bit input. The only difficulty

TABLE Il
ROTATION DISTANCES OF THE UNIFIED BLAKE COPROCESSOR

ctrls.3 Rot. dist. BLAKE-224/256 BLAKE-384/512
(000)2 0 Re + Rz (common datapath)
(100)2 do Rg +— Rz = T Rg +— Rs = 11
(101)2 o1 Re +— R3 > 8 Rg « Rz => 16
(110)2 do Rg + R3 = 12 Rg «+ Rz = 25
(lll]z d3 Rg + R3 = 16 Rg + Rg = 32

isto increment the 64-bit counter 232y, 5 + my» (Algorithm 3,
steps 17 to 20). Assume that the constant 1 is stored in the reg-
ister file. The control bit ctriy allows us to disable the feedback
mechanism and to load the constant O in register R2. Execute
the following instructions:

R1+<1 R2+0,

R3 — R1& R2,

R4 «— R3,

R5 — R4,

R1 <« mjs R2 « R5.

Registers R1 and R2 store 12 and the constant 1, respectively.
Note that the output carry of the 32-bit adder can now be stored
in aflip-flop F. Furthermore, when ctrls is set to one, our ALU
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Qutput
carry

Fig. 13. Arithmetic and Logic Unit for ChaCha.

From port A

From port B

== i bits

Fig. 14. Unified arithmetic and logic unit for the BLAKE and ChaCha families.

performs an “add with carry” instruction. We can now com-
pute i + 1, save the output carry in F’, and increment 71 3 if
necessary:
(F,R3) — RIHR2 R1+« mi3 R2<0,
R3— RIBR2BF R4« R3,
Register file «— R4(mi12) R4 — R3,
Register file «— R4(mq3).

Three pipeline configurations are again available. The second
one needs specific attention: since the adder is pipelined, the
computation of 712 B 1 requires two clock cycles. It is there-
foremandatory to introduce aNOP beforeloading 77113 intoreg-
ister R1.

To pont B

Y,

LUT:

It is of course possible to build a unified coprocessor for
ChaCha and the BLAKE family (Fig. 14). A new control bit
ctrl; alowsthe user to select the mode of operation of the AL U:
encryption or hashing. Since the coprocessor has a 64-bit data-
path to support BLAKE-384 and BLAKE-512, it is possible to
encrypt two messages in parallel with ChaCha.

C. Register Files and Control Units

We will consider our unified coprocessor for the BLAKE and
ChaChaal gorithmsto describe how we design our control units.
The same approach can easily be applied to the other coproces-
sors considered in this work. Virtex-6 FPGAs embed several
configurable memory blocks that can for instance store 1024
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. 32 bits 32 bits - G4 bits
0 _ _ _ 128
My - .-y M5 Mgy oouy M (117 T mys
15 143
16 144
” hou ooy s l By <oy he I |','_| [T I
2 152
Uy -+ -5 U Uiy + ey U u » 1
39 167
40 168
Ty -0y Oy [T [8 Cipy =« + 5 C15
L) 183
a6 184
-.J[ S0s v ves 83 l Slly aees ! S5 I | _| Slly ey ! s l
GO 188
[ ty and £, | ty and f, | | tyand ¢, |
61 189
G2 190
| 0and1(32-bitconstants) | 0and 1 (32-bit constants) | | | Unused |
63 a1
[TV, . IV, BLAKE2D) | IV, IV. BLAKEZD) | | Vi, ... IV, (BLAKE-331) |
7l 199
72 200
N Unused | ., Unused |
06 :’:’l
l I v, ..., I'V: (BLAKE-256) I IV, ..., I'V: (BLAKE-256) I 3 | Vi, ..., IV: (BLAKE-256) I
03 231

127

Unused

256

Unused

Fig. 15. Register file of the unified coprocessor for the BLAKE and ChaCha families.

Arithmetic and logic unit

| Wep I ctrl; I ctrl; | cirl;, | ctrl, | ctrly | ctrly | ctrly | ctrly I

Port A Port B

ctrly Addr , (8 bits) [Wealewrts: 0 | Addry (s bits)
(a)

Port A Port B

Arithmetic and logic unit

| i Addr, (7 bits) |

Addr g (6 bits)

| Weg | cirls | ctrly | ctrly | ctrls | ctrly | ctrly I

(b)

Fig. 16. From 26-to 20-bit instructions. Shaded cells denote control bits provided by the user. (a) Address and control bits of our unified coprocessor for BLAKE

and ChaCha; (b) Address and control bits provided by the control unit.

TABLE IV
NUMBER OF INSTRUCTIONS OF THE ALGORITHMS OF THE BLAKE AND
CHACHA FAMILIES

Algorithm # instructions
BLAKE-224/256 1184
BLAKE-384/512 1344
8-round ChaCha 311
12-round ChaCha 439

20-round ChaCha 695

36-bit words or 2048 18-bit words. Our control unit mainly con-
sists of aprogram counter that addresses an instruction memory
implemented by means of a memory block.

A straightforward way to deal with the permutationsinvolved
in the BLAKE family is to unroll the round loop. Table 1V
summarizes the number of instructions required by the algo-
rithms supported by our coprocessor if wefollow this approach.
Note that it suffices to store the code of BLAKE-384/512 and
20-round ChaCha (2039 instructions): a simple finite-state
machine allows us to jump to the finalization step when the
desired number of rounds has been performed. The main
challenge is therefore to define control words of at most 18
bits in order to implement our instruction memory by means
of asingle memory block. A clever organization of the register
file (Fig. 15) and a simple compression agorithm alows us to
achieve thisgoal: it sufficesto list al the possible values taken

by the 7-bit word Wegl||ctris|| .. .||ctrly for each pipeline
configuration. Since the number of choices is always smaller
then 32, it is possible to label each pattern with a 5-bit string.
Two blocks of dual-ported memory configured as 256 entries of
32 hits store the message, the chaining value, the constants, and
all the intermediate variables of BLAKE and ChaCha. Thus,
our coprocessor requires 26 control bits (Fig. 16(a)):

« 8 address hits and a write enable signal for port A of the

register file;

» 8 address bits and a write enable signal for port B of the

register file;

« 8 control bits for the ALU.

Two control bits are provided by the user: c¢tri; alows her
to select between BLAKE and ChaCha, and cirlg specifies the
configuration of the datapath (2 x 32 bits or 64 bits). Our or-
ganization of the data in the register file enables us to define a
20-bit instruction:

* The most significant address bit depends on the algorithm

being executed, and is therefore provided by the user.

¢ We use ports A and B to load new data (message, salt,

and counter) and save the intermediate variables computed
by the ALU, respectively. Consequently, the write enable
signal of port A is aso given by the user.

¢ Letusdenoteby ar.o theeight addressbits of portsA. Note

that ag isequal to one only when we read an initial vector
and assume that the digest size is selected according to an
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Port A Port B Arithmetic and logic unit

-------------------------------------------------------------------------------------------------------- W(’n R

Add:r_.l (7 bits) -4(1(1]'1]‘ (6 bit.‘%:) Wep ctrly | cirly

| Addr, (7bits) | Addrg (6 bits) ctrly | etrly | etrly

vvvvvvvvvv ctrly | ctrly | etrls

crrls | etrly | etrly

ctrl; ; H

Compression algorithm @
Compressed opcode
Fig. 17. Generation of the compressed instruction memory.
TABLE V
PLACE-AND-ROUTE RESULTS FOR OUR THREEFISH AND SKEIN COPROCESSORS ON A VIRTEX-6 FPGA (XC6VLX75T-2). ALL DESIGNS REQUIRE THREE MEMORY
BLOCKS
Throughput [Mbits/s]
Supported Area | Freq. Threefish-256 | Threefish-512 | Threefish-1024

Algorithms [Slices] | [MHz] | Skein-256-256 | Skein-512-512 Enc.[ Dec. Enc. | Dec. Enc.[ Dec.
[ Threefish encryption |[ 145 [ 294 | - | - | 153 | - [ 176 [ - | 160 | -
[ Threefish || 277 | 267 | - | - | 139 | 145 | 158 | 125 | 145 | 116

Skein and _ . - - r e .
Threefish encryption 150 205 75 85 154 - 175 - 161 -
[ Skein and Threefish [ 292 | 279 | 70 | 80 [ 145 | 152 [ 166 | 130 | 152 | 121

additional control bit ¢trls. The addressbit a5 iscomputed
as follows:
m(_{a;a when ag = 0,
° ctrly  otherwise.
Thanksto this simple mechanism, theinstruction flow does
not depend on the digest size. Initial vectors are aways
read from port A.

» Sincetheinitial vectors are neither modified nor read from
port B, the second most significant address bit is always
equal to zero.

Consequently, we can store 20-bit words in the instruction
memory (Fig. 16(b)). We designed a simple compression
algorithm to encode the write enable signal of port B and the
six control bits ctrls.g by means of five bits. A C program
generates the content of the instruction memory and the VHDL
description of the decompression circuit. The latter involves
only seven 5-input LUTSs, and storesthe control bits of the ALU
and the write enable signal of port B in a register. Because of
this pipeline stage, it is necessary to generate the write enable
signal one clock cycle in advance when we have to store a
word in the register file. Our C program takes this parameter
into account and organizes the control bits in the instruction
memory according to the pipeline configuration. Then, it gen-
erates the compressed instruction memory. Fig. 17 describes
the instruction flow for the first pipeline configuration of our
COprocessor:

» As explained above, the write enable signal is generated
one clock cycle in advance to take the interna pipeline
stage of the decompression unit into account.

» All inputs of the register file are registered, and the two
control bits ctrly and ctrl; must therefore be generated
one clock cycle after the addresses. We take advantage of
the latency of our decompression unit to synchronize the
control signals.

We followed the same approach to build our control units for
Threefish and Skein. The register file is organized into 64-bit
words, and stores aplaintext block, aninternal state (¢4 ;, where
0 <1< N, — 1), an extended block cipher key, an extended
tweak, the constant C545, and all possible values of s involved
in the key schedule. Thanks to this approach, the word permu-
tation 7 (¢) and the word rotation of the key schedule are conve-
niently implemented by addressing the register file accordingly.
Since the round constants repeat every eight rounds (Algorithm
2, step 14), we decided to unroll eight iterations of the main loop
of Threefish (Algorithm 2, steps 4 to 19). Therotation constants
1?4,; areincluded in the microcode executed by the control unit.
Note that our register file is designed for Threefish-1024 (i.e.
N, = 16 and N, = 80). Itisthereforestraightforwardtoimple-
ment the two other variants of the algorithm on our architecture.

VII.

We captured our architecturein the VHDL language and pro-
totyped our coprocessors on a Xilinx Virtex-6 FPGA with av-
erage speedgrade. Tables V and VI summarize our place-and-
route results measured with ISE 14.2. Note that we considered
the least favorabl e case, where the message consists of asingle
block, to compute the throughput of Skein.

Most of the architectures described in the open literature
focus on asingle level of security (Table VII). We took advan-
tage of the intrinsic paralelism of BLAKE to interleave the
computation of four instances of the G; function. Thanks to
this approach, we designed an ALU with four pipeline stages
and achieved higher clock speeds than the coprocessors listed
in Table VII. A careful scheduling allowed us to totally avoid
pipeline bubbles and memory collisions. We aso addressed
FPGA-specific issues and described how to share slices be-
tween addition and bitwise exclusive OR of two operands.
We followed the same strategy to design our coprocessors

REsSULTS AND COMPARISONS
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Throughput [Mbits/s]
Supported Pipeline Area # block | Freq. BLAKE-224 | BLAKE-384
algorithms config. | [slices] | RAMs | [MHz] and and g'h“"(‘;‘]‘]ld 1&;""&":“' 2&“‘3‘&"
BLAKE-256 | BLAKE-512 atha atha a
@ 19 2 362 - - 595 422 266
ChaCha @ 77 2 316 - - 520 368 232
@ 77 2 345 - - 560 403 254
@ : : ; - - - -
BLAKE-224 and > jg j 'ﬁ? }j? — — — —
BLAKE-256 ® 50 2 349 150 = - - =
. @ 79 3 331 - 252 - - -
BLAKE-384 and @ 91 3 331 - 252 - - -
BLAKE-512 ® o1 3 320 - 250 - - =
@ 94 3 312 2 % 134 237 - - -
BLAKE @ 126 3 332 T X 143 252 - - =
(all levels of security) ® 129 3 313 7% 148 261 = = =
i @ 144 3 335 2 x 144 255 2x 551 | 2x390 2 % 246
BLAKE and ChaCha @ 156 3 280 X 124 220 X475 | 2x337 | 2Zx 212
(all levels of security) ) 168 3 304 2% 131 231 X500 | 2x354 | 2x223
TABLE VII
COMPACT IMPLEMENTATIONS OF BLAKE AND SKEIN ON VIRTEX-5 AND VIRTEX-6 FPGAS. THE THROUGHPUT IS COMPUTED FOR A ONE-BLOCK MESSAGE
i Area 36k memory | Frequency | Throughput
Supported algorithm(s) FPGA [slices] blocks [MHz] [Mbits/s]
Latif et al. [12] Skein-256-256 xc5vIx110-3 821 Not specified 119 1610
Jungk [13]7F Skein-512-256 XC3V 555 - 271 237
TJungk [14]7F Skein-512-256 xchv 406 - 318 277
Kaps et al. [15] Skein-512-256 xchvIx75t-1 207 1 166 17
Kaps et al. [15] Skein-512-256 XCOVIXTSL-1 193 - 103 21
Kerckhof er al. [16]7 Skein-512-512 XcovIx75t-1 240 - 160 179
Aumasson et al. [1] BLAKE-256 XcSVIXT10 390 - 91 412
Jungk [14] BLAKE-256 xcbv 235 - 231 518
Tungk [14] BLAKE-256 xc6v 404 - 185 823
Kaps et al. [15] BLAKE-256 XCOVIXTSt-1 163 197 327
Kaps ef al. [15] BLAKE-256 XCOVIXTSt-1 166 - 268 445
Aumasson et al. [1] BLAKE-512 xcSvIx110 939 - 59 468
Kerckhof er al. [16] BLAKE-512 xchvIxT75t-1 192 - 240 183
Throughput [Mbit/s] ) . . ) Grestl [17], JH [16], SHA-2-512[18], and SHA-3-512 (K eccak
s00] 5 5 A g g ] [» = 1024, ¢ = 576]) [19]. In this context, BLAKE is ob-
5 : SHAB-512 ' : viously the best choice for lightweight implementations on
1001 - FPGA. Since our unified architecture for the BLAKE family
: : : : : (Fig. 12) requires less than 100 Virtex-6 dlices, BLAKE is
2004 i also an excellent candidate for cryptographic coprocessors
e 1 1 1 supporting several levels of security. We aready proposed
2004 ;. BLAKES512 X lightweight implementations of ECHO & AES[20] and Grastl
N oz & AES [17]. According to our results, the unified coprocessor
wod o R S L i for BLAKE and ChaCha offers the best area-time trade-off.
SHA-2-512
Grostl-512 *
0 ; ; ; ; ; VIII. CONCLUSION
0 50 100 150 200 250 300

Area [Virtex-6 slices]

Fig. 18. Compact implementations of several cryptographic hash functions on
Virtex-6 FPGAs (512-bit digests).

for Threefish and Skein. As a consequence, our coprocessors
provide the end-user with hashing and encryption at all levels
of security, while offering a better area-time trade-off.

We report in Fig. 18 the latest lightweight implementation
results of several cryptographic hash functions. Besides our
coprocessors for BLAKE-512 and Skein-512-512, we selected

The stream cipher ChaCha, the block cipher Threefish, and
the hash functions BLAKE and Skein are based on the same
arithmetic operations. In thiswork, we showed that the same de-
sign philosophy alows one to design lightweight coprocessors
for hashing and encryption. The key element of our approachis
to take advantage of the parallelism of the algorithms to deeply
pipeline the ALU to achieve a high clock frequency, and avoid
data dependencies by interleaving independent tasks. Further-
more, we described how to design compact control unitsthanks
to acareful organization of the register file, loop unrolling, and
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a simple compression agorithm. Our architectures are mainly
designed for embedded systems. Thus, it would beinteresting to
conduct side-channel and fault injection attacks in future work.
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