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Compact Hardware Implementations of ChaCha,
BLAKE, Threefish, and Skein on FPGA

Nuray At, Jean-Luc Beuchat, Eiji Okamoto, İsmail San, and Teppei Yamazaki

Abstract—The cryptographic hash functions BLAKE and Skein
are built from the ChaCha stream cipher and the tweakable Three-
fish block cipher, respectively. Interestingly enough, they are based
on the same arithmetic operations, and the same design philosophy
allows one to design lightweight coprocessors for hashing and en-
cryption. The key element of our approach is to take advantage of
the parallelism of the algorithms considered in this work to deeply
pipeline our Arithmetic and Logic Units, and to avoid data depen-
dencies by interleaving independent tasks. We show for instance
that a fully autonomous implementation of BLAKE and ChaCha
on a Xilinx Virtex-6 device occupies 144 slices and three memory
blocks, and achieves competitive throughputs. In order to offer the
same features, a coprocessor implementing Skein and Threefish re-
quires a substantial higher slice count.

Index Terms—Ciphers , cryptography, coprocessors, field pro-
grammable gate arrays.

I. INTRODUCTION

T HE cryptographic hash functions BLAKE [1] and
Skein [2] are built from the ChaCha stream cipher [3]

and the tweakable Threefish block cipher [2], respectively.
It is therefore tempting to design compact unified hardware
architectures able to hash and encrypt a message. We extend
here the work presented in [4], [5], and propose novel hardware
architectures for Threefish decryption, ChaCha, and BLAKE.
The key element of our approach is to:

• take advantage of the parallelism of the algorithms to
deeply pipeline our Arithmetic and Logic Units (ALUs);

• show that a careful scheduling allows us to interleave in-
dependent tasks and avoid pipeline bubbles.

The rest of the article is organized as follows: after a
brief overview of Threefish (Section II), Skein (Section III),
ChaCha (Section IV), and BLAKE (Section V), we describe
our design philosophy and compact hardware implementa-
tions (Section VI). We discuss our implementation results on
Xilinx Virtex-6 Field-Programmable Gate Arrays (FPGAs) in
Section VII and conclude in Section VIII.
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TABLE I
NUMBER OF ROUNDS OF THREEFISH FOR DIFFERENT KEY SIZES

Throughout this article, all operands are -bit unsigned inte-
gers and the following notation is adopted:

• and : addition and subtraction modulo ;
• and : bitwise OR and bitwise AND;
• : bitwise exclusive OR;
• : rotation by bits to the right;
• : rotation by bits to the left.

II. THE THREEFISH BLOCK CIPHER

The design philosophy of Threefish is that “a larger number of
simple rounds is more secure than fewer complex rounds” [2].
Threefish operates entirely on unsigned 64-bit integers and in-
volves only three operations: rotation of bits to the left, bitwise
exclusive OR, and addition modulo . Therefore, the plaintext

and the cipher key are converted to 64-bit words. Note
that the number of words and the number of rounds de-
pend on the key size (Table I). The size of a plaintext block is
given by bytes.

The key schedule generates the subkeys from a block ci-
pher key and a 128-bit tweak

. and are extended with one parity word (Algo-
rithm 1, steps 1 and 2). Each subkey is a combination of
words of the extended key, two words of the extended tweak,
and a counter (Algorithm 1, steps 5 to 9). Note that the ex-
tended key and the extended tweak are rotated by one word po-
sition between two consecutive subkeys.

Algorithm 1 Key schedule of Threefish.

Input: A block cipher key ; a tweak
; the constant .

Output: subkeys , where
.

1. ;

2. ;

3. for to do

4. for to do
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Fig. 1. One of the 72 encryption rounds of Threefish-256.

5. ;

6. end for

7. ;

8. ;

9. ;

10. end for

11. return , where ;

A series of rounds (Fig. 1 and Algorithm 2, steps 4 to 19)
and a final subkey addition (Algorithm 2, step 21) are applied to
produce the ciphertext. The core of a round is the simple non-
linear mixing function (Algorithm 2, steps 13 and 14).
It consists of an addition, a rotation by a constant (re-
peated every eight rounds and defined in [2, Table 4]), and a bit-
wise exclusive OR. A word permutation (see [2, Table 3])
is then applied to obtain the output of the round (Algorithm 2,
step 17). Furthermore, a subkey is injected every four rounds
(Algorithm 2, step 7).

Algorithm 2 Encryption with the Threefish block cipher.

Input: A plaintext block ;
subkeys , where ;
rotation constants , where and .

Output: A ciphertext block .

1. for to do

2. ;

3. end for

4. for to do

5. for to do

6. if then

7. ; (Key injection)

8. else

Fig. 2. One of the 72 decryption rounds of Threefish-256.

9. ; (Rename)

10. end if

11. end for

12. for to do

13. ;

14. ;

15. end for

16. for to do

17. ; (Permute)

18. end for

19. end for

20. for to do

21. ; (Key injection)

22. end for

23. return ;

Fig. 2 describes a decryption round of Threefish-256. It con-
sists of the inverse word permutation followed by the inverse
MIX functions. Note that subkeys are injected in reverse order.

III. THE SKEIN FAMILY OF HASH FUNCTIONS

The Unique Block Iteration (UBI) chaining mode allows one
to build a compression function out of a tweakable encryption
function . Let be a message of arbitrary length
up to . If the number of bits in is not a multiple
of 8, we append a bit 1 followed by a (possibly empty) string
of 0’s. This step guarantees that contains bytes. Then,
we pad with zero bytes so that is a multiple of
the block size . We can now split into -byte blocks

, where . Each block is
processed with a unique tweak value encoding how many
bytes have been processed so far, a type field (see [2] for details),
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and two bits specifying whether it is the first and/or last block.
The UBI chaining mode is computed as:

where is a starting value of bytes. In this work, we con-
sider the normal hashing mode and refer the reader to [2] for a
description of Skein-MAC and tree hashing with Skein. Skein
is built on three invocations of UBI:

• Define a 32-byte configuration string that contains the
length of the digest size (in bits), a schema identifier, and
a version number [2, Table 7]. Compute the -byte block

as . Note that only de-
pends on the digest size and can easily be precomputed.

• The message is then processed as follows:
.

• A third call to UBI is required to achieve hashing-
appropriate randomness: .
This transform allows one to produce arbitrary digest sizes
(up to bits). If a single output block is not enough,
one can use Threefish in counter mode to produce the
digest.

IV. THE ChaCha STREAM CIPHER

The ChaCha family of stream ciphers was designed by Bern-
stein [3] to improve the diffusion per round of Salsa20 [6],
while preserving the encryption rate. ChaCha operates on 32-bit
words, and expands a 256-bit key and a 64-bit
nonce into a -byte stream. A -byte message is
then encrypted (or decrypted) by XORing it with the first bytes
of the stream.

ChaCha generates the stream by blocks of 64 bytes. In order
to process the th block, ChaCha acts on a matrix of
32-bit integers defined as follows:

where
• , , , and

are predefined constants;
• is a 64-bit counter encoding the index (i.e.

).
ChaCha transforms the matrix through a series of rounds
(Algorithm 3). The algorithm is based on a nonlinear operation
called quarter-round function and described by Algorithm
4. Matrix is copied into matrix . Then, the even- and
odd-numbered rounds of ChaCha apply the quarter-round
function to each row and northwest-to-southeast diagonal of ,
respectively. Eventually, a new block of the stream is generated
by adding to the original matrix (Algorithm 3, step 15),
and the block counter is incremented (Algorithm 3, steps 17
to 20).

Algorithm 3 Computation of a 64-byte block of the stream
of ChaCha.

Input: A key, a nonce, and a block counter stored in a matrix
.

Output: A 64-byte block of the stream.

1. for to 15 do

2. ;

3. end for

4. for to do

5. ;

6. ;

7. ;

8. ;

9. ;

10. ;

11. ;

12. ;

13. end for

14. for to 15 do

15. ;

16. end for

17. ;

18. if then

19. ;

20. end if

21. Return and ;

Algorithm 4 The ChaCha quarter-round function.

Input: Four 32-bit integers , , , and .

Output: .

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

7. ;

8. ;

9. Return , , , and ;
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TABLE II
PROPERTIES OF THE BLAKE HASH FUNCTIONS

Bernstein proposed 8-, 12-, and 20-round variants of ChaCha.
Aumasson et al. introduced a novel method for differential
cryptanalysis of ChaCha and broke the 7-round variant [7].
Ishiguro et al. [8], [9] improved the attack and concluded that
Salsa20 and ChaCha “are not presently under threat”.

V. THE BLAKE FAMILY OF HASH FUNCTIONS

The BLAKE family combines three previously studied com-
ponents, chosen by Aumasson et al. for their complementarity
[1]: the iteration mode HAIFA, the internal structure of the hash
function LAKE, and a modified version of Bernstein’s stream
cipher ChaCha as compression function. BLAKE is a family
of four hash functions, namely BLAKE-224, BLAKE-256,
BLAKE-384, and BLAKE-512 (Table II). The main differences
lie in the length of words , the number of rounds , and in
some constants involved in the algorithm. In the following, we
denote by BLAKE- the algorithm with an -bit digest.

BLAKE- involves only two arithmetic operations: the ad-
dition modulo of two -bit unsigned integers and the bit-
wise exclusive OR of two -bit words. The latter is sometimes
followed by a rotation of bits to the right. The four pos-
sible rotation distances depend on the digest size and are de-
fined in Table II. The compression function of BLAKE- pro-
duces a new chain value from a message
block , a chain value , a salt

, a counter , and 16 constants defined
in [1, p. 8]. This process consists of three steps. First, a 16-word
internal state is initialized as follows:

Then, a series of rounds is performed. Each of them consists
of a transformation of the internal state based on the func-
tion described by Algorithm 5, where denotes a permutation
of parametrized by the round index (see [1,
Table 2.1]). A column step updates the four columns of ma-
trix as follows: , ,

, and . Note that
each call to updates a distinct column of matrix .
Since we focus on compact implementations of BLAKE
in this work, we interleave the computation of , , ,
and . This approach allows us to design an ALU with
four pipeline stages and to achieve high clock frequen-
cies. Then, a diagonal step updates the four diagonals of :

, , ,
and . Here again, each call to modifies

a distinct diagonal of the matrix, allowing us to interleave the
computation of , , , and .

Algorithm 5 The function.

Input: A function index and four -bit integers , , , and .

Output: .

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

7. ;

8. ;

9. ;

10. ;

At the end of the last round, a new chain value
is computed from the internal state and the pre-

vious chain value (finalization step):

In order to guarantee that the length of a message is a mul-
tiple of the block size , Aumasson et al. define the following
padding scheme [1]:

• append a bit 1 followed by a sufficient number of 0 bits
such that the length is congruent to modulo ;

• a padding bit followed by the -bit unsigned big-en-
dian representation of is then added; in the case of
BLAKE-256 and BLAKE-512, the padding bit is equal to
1; otherwise, it is set to 0.

The hash can now be computed iteratively: the padded mes-
sage is divided into 16-word blocks
and the chain value is set to the same initial value as
SHA- . The counter denotes the number of message bits
in . If the last block contains only padding bits,
then is set to zero. The message digest consists of the
least significant bits of the output .
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Fig. 3. General architecture of our coprocessors.

Fig. 4. Computation of and (Threefish-256). Reprinted
from [4].

VI. HARDWARE IMPLEMENTATION

All of our architectures consist of a register file organized into
-bit words and implemented by means of dual-ported memory,

an ALU, and a control unit (Fig. 3). The user loads messages,
plaintext blocks or ciphertext blocks into port A. A few control
bits allows her to select the algorithm and the desired level of
security. When the coprocessors are hashing or encrypting a
message, the intermediates results are always written to port B.
The result is stored the register file and can be read word by word
on port A. In the following, we assume that our coprocessors are
provided with padded messages. A hardware wrapper interface
for BLAKE, Skein, and several other hash functions comprising
communication and padding is described in [10].

A. Arithmetic and Logic Units for Threefish and Skein

Our first ALU, originally described in [4], implements Three-
fish encryption and Skein. In the following, denotes a 64-bit
register. Fig. 4 illustrates our scheduling of the two mixing func-
tions and of the fifth round of Threefish-256:

• The operand is loaded in register R1; at the same time,
we start the computation of ; this opera-

Fig. 5. Arithmetic and logic unit for Threefish encryption. Reprinted from [4].

tion requires three clock cycles and intermediate results are
stored in R4, R5, and R6.

• Then, is loaded in register R2; the content of R1 is not
modified (i.e. R1 must be controlled by an enable signal).

• We execute the instruction and obtain .
• R3 and R6 contain and , respectively.

The instruction allows us to compute .
We schedule as soon as has been read, and

manage to keep the pipeline continuously busy. In summary,
our ALU must be able to carry out any rotation of a 64-bit word
and to perform the following operation (Fig. 5):

when ,
otherwise,

(1)

where denotes a control bit. Let us define two 64-bit
operands and such that:

when ,
otherwise.

It is well-known that and
[11]. Thus, (1) can be rewritten as follows:

(2)

Fig. 6 describes the implementation of (2) on a Virtex-6 device.
Since there is a single control signal to choose the arithmetic
operation and to select and , (2) involves only five variables,
and is advantageously implemented by 64 LUT6_2 primitives
and dedicated carry logic.

In order to reduce the number of operands stored in the reg-
ister file, we interleave the key schedule (Algorithm 1) and the
encryption process (Algorithm 2). This approach allows us to
generate the subkeys on-the-fly. It is however necessary to com-
pute and before the first key injection. The easiest way
to compute would be to load and in registers R1 and R2,
respectively, and to execute the instruction .
Unfortunately, this solution requires one more control bit to
select the inputs of the arithmetic operator, and it is not pos-
sible to implement the multiplexers and the adder on the same
LUT6_2 primitive anymore. Since the critical path of our co-
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Fig. 6. Computation of or on a Virtex-6
device. Reprinted from [4].

processor is located in the 64-bit adder, an extra level of LUTs
would decrease the clock frequency. However, we are able to
compute using only the functionalities defined by (1). Since

, it suffices to execute the following
instructions:

This approach assumes that we can read simultaneously two
values from the register file. Thanks to the multiplexer con-
trolled by , we can load data from port A or port B into reg-
ister (Fig. 5). A similar strategy allows us to compute .

The implementation of the key injection is more straightfor-
ward. Note that the multiplexers controlled by and
allow us to bypass the register file and to use the content of R3
as an input to the ALU. Let us consider for instance the first
key injection of Threefish-256: is defined as

and is computed as follows:

Fig. 7 describes how we schedule the instructions of Three-
fish-256 decryption.

The UBI chaining mode can be combined with the final key
injection of Threefish encryption. It suffices to modify step 21
of Algorithm 2 as follows:

The only difference between this operation and the mixing func-
tion is that no permutation is applied to the second
operand of the bitwise exclusive OR.

The inverse of the MIX function is purely sequential. There-
fore, Threefish decryption has less parallelism than encryption,
and it is not possible to compute an addition modulo and a
rotation in parallel. We suggest to modify our ALU as follows
to fully support both encryption and decryption (Fig. 8):

• The inverse of the Mix function and the inverse of the key
injection require a subtraction modulo . Our modified
ALU is able to perform a new operation: .
An additional control bit allows us to add R2 or its
two’s complement to R1. It is therefore not possible to im-
plement our arithmetic operator by means of 64 LUT6_2
anymore, and the slice count and the critical path are ex-
pected to increase.

• The output of the inverse Mix function is provided either
by the arithmetic operator (e.g. on Fig. 2) or the rota-
tion unit (e.g. on Fig. 2). The multiplexer controlled
by allows us to select the word we store in the reg-
ister file.

• Since the inverse of the Mix function is sequential, we have
to perform the rotation in a single clock cycle. We suggest
to take advantage of the SRL16E primitive available on
Xilinx devices to implement a FIFO whose depth is dy-
namically adjusted according to the algorithm selected by
the user: one and three stages for decryption and encryp-
tion, respectively.

B. Arithmetic and Logic Units for BLAKE and ChaCha

Let us consider the function of BLAKE- to define the
instruction set of our coprocessors. Since we focus on compact
coprocessors for the BLAKE family in this article, we perform
a single step of Algorithm 5 at each clock cycle. We will show
later that the input operand is already stored in an internal reg-
ister of our ALU when we start the computation of .
Therefore, each operation involves the result of the previous
one, and our ALU will include a feedback mechanism to by-
pass the register file of the coprocessor.

Assume that the -bit word computed by the ALU is stored in
register R5, and denote by and the operands provided
by the register file. From the data flow diagram of Algorithm 5,
we easily identify three operations (Fig. 9):

1) Save the content of R5 in the register file and compute
.

2) Compute .
3) Save the content of R5 in the register file and compute

.
Recall now that the four calls to in a column step or a diag-

onal step can be computed in parallel. In order to keep the crit-
ical path as short as possible, we suggest to design an ALU with
four pipeline stages and to interleave the computation of four
functions (Fig. 10). The heart of the ALU is the arithmetic op-
erator performing the addition or the bitwise XOR of two -bit
words described in Section VI-A. Our operator computes:

when ,
otherwise

where
• R1 stores the data provided by the register file. Since a

flip-flop is always associated with a LUT, we can perform
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Fig. 7. Scheduling of Threefish-256 decryption.

Fig. 8. Arithmetic and logic unit for Threefish encryption and decryption.

some simple pre-processing without increasing the number
of slices of the ALU: a control bit selects either
or . This allows us to compute

and for free (Algorithm 5,
steps 2 and 7).

• R2 almost always stores the result of a previous opera-
tion. However, we have to disable the feedback mech-
anism during the initialization step: the computation of

involves for instance only two words stored
in the register file. An array of AND gates controlled by

allows us to force the second operand to zero in such
cases.

If needed, the content of register R3 is then rotated to the left in
two steps. Our implementation is based on the following obser-
vation:

where . At first glance, this design choice may look
awkward. However, it will allow us to easily build a unified pro-
cessor for the BLAKE family. The key point is that the content
of R3 is copied into R5 when the three control bits are
equal to 0 (Fig. 10).

Note that the pipeline has three possible configurations, de-
noted by , , and in Fig. 10:

In order to minimize the area of our ALU, we can insert
a -bit register after the first stage of the rotation. Since the
latter involves LUTs, there is no hardware overhead on
a Virtex-6 device.

The addition modulo can be computed in two clock
cycles. Let and .
We store and in two -bit registers, and com-
pute a sum word and a carry bit such that

. A flip-flop and a -bit register store



492 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 2, FEBRUARY 2014

Fig. 9. Implementation of the function of BLAKE- by means of three instructions. R5 denotes an internal register of the ALU.

Fig. 10. Arithmetic and Logic Unit for BLAKE- .

and , respectively. The most significant bits of the
sum are then given by . This ap-
proach allows us to reduce the worst-case carry path at the
price of three -bit registers and a flip-flop.

Routing a signal from a memory block to a slice is
sometimes expensive in terms of wire delay. If the critical
path is located between the register file and register R1,
this pipeline configuration will help boosting the clock fre-
quency. The output data path of a Virtex-6 memory block
has an optional internal pipeline register. Therefore, the
only hardware overhead is the -bit register between R5
and the array of AND gates controlled by .

In order to avoid pipeline bubbles between column and di-
agonal steps, it suffices to process the four calls to of the
diagonal step in the following order [5]: , , , and .
We check for instance that the ALU outputs the new value of
(last instruction of ) at time . If we load from the reg-
ister file, we can start the computation of at time . We
easily check that this scheduling also avoids pipeline bubbles

between a diagonal step and a column step (Fig. 11). Since each
call to involves ten instructions, we need 80 clock cycles to
perform a round of BLAKE- .

Our first architecture can be modified to support the four al-
gorithms of the BLAKE family (Fig. 12). The 64-bit datapath
is built out of two 32-bit datapaths, thus allowing us to perform
a single 64-bit operation or two 32-bit operations at each clock
cycle. The mode of operation is selected according to an addi-
tional control bit , the latter being provided by the user. The
ALU includes two 32-bit adders. Let , , , ,

, and denote unsigned 32-bit integers. When the user
chooses BLAKE-224 or BLAKE-256 , two mes-
sages are processed in parallel and the ALU performs two 32-bit
additions:

When the coprocessor executes BLAKE-384 or BLAKE-512
, the ALU carries out a 64-bit addition. The first
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Fig. 11. Avoiding pipeline bubbles between a diagonal step and a column step.

Fig. 12. Unified arithmetic and logic unit for the BLAKE family.

adder generates the least significant bits of the sum and a carry
bit such that:

The second adder computes the most significant bits of the sum:

We use the rotation unit of our first processor to deal with
BLAKE-224 and BLAKE-256. Note that the content of R3
is always copied into R6 when . Thus, we
share this datapath between all algorithms of the BLAKE
family, and need only 64 LUTs to implement the rotation
unit of BLAKE-384 and BLAKE-512. When is equal
to one, encodes the index of the rotation distance
(Table III). Consequently, we can use the same instruction flow
for all algorithms and select the width of the datapath according
to . Note that the three pipeline configurations defined for
our first coprocessor are also available here.

The QUARTERROUND function of ChaCha requires only
two of the instructions we defined for the function. Thus,
the design of a ChaCha coprocessor is rather straightforward
(Fig. 13). Since it is not necessary to compute
anymore, the ALU has a single 32-bit input. The only difficulty

TABLE III
ROTATION DISTANCES OF THE UNIFIED BLAKE COPROCESSOR

is to increment the 64-bit counter (Algorithm 3,
steps 17 to 20). Assume that the constant 1 is stored in the reg-
ister file. The control bit allows us to disable the feedback
mechanism and to load the constant 0 in register R2. Execute
the following instructions:

Registers R1 and R2 store and the constant 1, respectively.
Note that the output carry of the 32-bit adder can now be stored
in a flip-flop F. Furthermore, when is set to one, our ALU
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Fig. 13. Arithmetic and Logic Unit for ChaCha.

Fig. 14. Unified arithmetic and logic unit for the BLAKE and ChaCha families.

performs an “add with carry” instruction. We can now com-
pute , save the output carry in , and increment if
necessary:

Three pipeline configurations are again available. The second
one needs specific attention: since the adder is pipelined, the
computation of requires two clock cycles. It is there-
fore mandatory to introduce a NOP before loading into reg-
ister R1.

It is of course possible to build a unified coprocessor for
ChaCha and the BLAKE family (Fig. 14). A new control bit

allows the user to select the mode of operation of the ALU:
encryption or hashing. Since the coprocessor has a 64-bit data-
path to support BLAKE-384 and BLAKE-512, it is possible to
encrypt two messages in parallel with ChaCha.

C. Register Files and Control Units

We will consider our unified coprocessor for the BLAKE and
ChaCha algorithms to describe how we design our control units.
The same approach can easily be applied to the other coproces-
sors considered in this work. Virtex-6 FPGAs embed several
configurable memory blocks that can for instance store 1024
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Fig. 15. Register file of the unified coprocessor for the BLAKE and ChaCha families.

Fig. 16. From 26-to 20-bit instructions. Shaded cells denote control bits provided by the user. (a) Address and control bits of our unified coprocessor for BLAKE
and ChaCha; (b) Address and control bits provided by the control unit.

TABLE IV
NUMBER OF INSTRUCTIONS OF THE ALGORITHMS OF THE BLAKE AND

CHACHA FAMILIES

36-bit words or 2048 18-bit words. Our control unit mainly con-
sists of a program counter that addresses an instruction memory
implemented by means of a memory block.

A straightforward way to deal with the permutations involved
in the BLAKE family is to unroll the round loop. Table IV
summarizes the number of instructions required by the algo-
rithms supported by our coprocessor if we follow this approach.
Note that it suffices to store the code of BLAKE-384/512 and
20-round ChaCha (2039 instructions): a simple finite-state
machine allows us to jump to the finalization step when the
desired number of rounds has been performed. The main
challenge is therefore to define control words of at most 18
bits in order to implement our instruction memory by means
of a single memory block. A clever organization of the register
file (Fig. 15) and a simple compression algorithm allows us to
achieve this goal: it suffices to list all the possible values taken

by the 7-bit word for each pipeline
configuration. Since the number of choices is always smaller
then 32, it is possible to label each pattern with a 5-bit string.
Two blocks of dual-ported memory configured as 256 entries of
32 bits store the message, the chaining value, the constants, and
all the intermediate variables of BLAKE and ChaCha. Thus,
our coprocessor requires 26 control bits (Fig. 16(a)):

• 8 address bits and a write enable signal for port A of the
register file;

• 8 address bits and a write enable signal for port B of the
register file;

• 8 control bits for the ALU.
Two control bits are provided by the user: allows her

to select between BLAKE and ChaCha, and specifies the
configuration of the datapath (2 32 bits or 64 bits). Our or-
ganization of the data in the register file enables us to define a
20-bit instruction:

• The most significant address bit depends on the algorithm
being executed, and is therefore provided by the user.

• We use ports A and B to load new data (message, salt,
and counter) and save the intermediate variables computed
by the ALU, respectively. Consequently, the write enable
signal of port A is also given by the user.

• Let us denote by the eight address bits of ports A. Note
that is equal to one only when we read an initial vector
and assume that the digest size is selected according to an
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Fig. 17. Generation of the compressed instruction memory.

TABLE V
PLACE-AND-ROUTE RESULTS FOR OUR THREEFISH AND SKEIN COPROCESSORS ON A VIRTEX-6 FPGA (XC6VLX75T-2). ALL DESIGNS REQUIRE THREE MEMORY

BLOCKS

additional control bit . The address bit is computed
as follows:

when ,
otherwise.

Thanks to this simple mechanism, the instruction flow does
not depend on the digest size. Initial vectors are always
read from port A.

• Since the initial vectors are neither modified nor read from
port B, the second most significant address bit is always
equal to zero.

Consequently, we can store 20-bit words in the instruction
memory (Fig. 16(b)). We designed a simple compression
algorithm to encode the write enable signal of port B and the
six control bits by means of five bits. A C program
generates the content of the instruction memory and the VHDL
description of the decompression circuit. The latter involves
only seven 5-input LUTs, and stores the control bits of the ALU
and the write enable signal of port B in a register. Because of
this pipeline stage, it is necessary to generate the write enable
signal one clock cycle in advance when we have to store a
word in the register file. Our C program takes this parameter
into account and organizes the control bits in the instruction
memory according to the pipeline configuration. Then, it gen-
erates the compressed instruction memory. Fig. 17 describes
the instruction flow for the first pipeline configuration of our
coprocessor:

• As explained above, the write enable signal is generated
one clock cycle in advance to take the internal pipeline
stage of the decompression unit into account.

• All inputs of the register file are registered, and the two
control bits and must therefore be generated
one clock cycle after the addresses. We take advantage of
the latency of our decompression unit to synchronize the
control signals.

We followed the same approach to build our control units for
Threefish and Skein. The register file is organized into 64-bit
words, and stores a plaintext block, an internal state ( , where

), an extended block cipher key, an extended
tweak, the constant , and all possible values of involved
in the key schedule. Thanks to this approach, the word permu-
tation and the word rotation of the key schedule are conve-
niently implemented by addressing the register file accordingly.
Since the round constants repeat every eight rounds (Algorithm
2, step 14), we decided to unroll eight iterations of the main loop
of Threefish (Algorithm 2, steps 4 to 19). The rotation constants

are included in the microcode executed by the control unit.
Note that our register file is designed for Threefish-1024 (i.e.

and ). It is therefore straightforward to imple-
ment the two other variants of the algorithm on our architecture.

VII. RESULTS AND COMPARISONS

We captured our architecture in the VHDL language and pro-
totyped our coprocessors on a Xilinx Virtex-6 FPGA with av-
erage speedgrade. Tables V and VI summarize our place-and-
route results measured with ISE 14.2. Note that we considered
the least favorable case, where the message consists of a single
block, to compute the throughput of Skein.

Most of the architectures described in the open literature
focus on a single level of security (Table VII). We took advan-
tage of the intrinsic parallelism of BLAKE to interleave the
computation of four instances of the function. Thanks to
this approach, we designed an ALU with four pipeline stages
and achieved higher clock speeds than the coprocessors listed
in Table VII. A careful scheduling allowed us to totally avoid
pipeline bubbles and memory collisions. We also addressed
FPGA-specific issues and described how to share slices be-
tween addition and bitwise exclusive OR of two operands.
We followed the same strategy to design our coprocessors
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TABLE VI
PLACE-AND-ROUTE RESULTS FOR OUR CHACHA AND BLAKE COPROCESSORS ON A VIRTEX-6 FPGA (XC6VLX75T-2)

TABLE VII
COMPACT IMPLEMENTATIONS OF BLAKE AND SKEIN ON VIRTEX-5 AND VIRTEX-6 FPGAS. THE THROUGHPUT IS COMPUTED FOR A ONE-BLOCK MESSAGE

Fig. 18. Compact implementations of several cryptographic hash functions on
Virtex-6 FPGAs (512-bit digests).

for Threefish and Skein. As a consequence, our coprocessors
provide the end-user with hashing and encryption at all levels
of security, while offering a better area-time trade-off.

We report in Fig. 18 the latest lightweight implementation
results of several cryptographic hash functions. Besides our
coprocessors for BLAKE-512 and Skein-512-512, we selected

Grøstl [17], JH [16], SHA-2-512 [18], and SHA-3-512 (Keccak
[ , ]) [19]. In this context, BLAKE is ob-
viously the best choice for lightweight implementations on
FPGA. Since our unified architecture for the BLAKE family
(Fig. 12) requires less than 100 Virtex-6 slices, BLAKE is
also an excellent candidate for cryptographic coprocessors
supporting several levels of security. We already proposed
lightweight implementations of ECHO & AES [20] and Grøstl
& AES [17]. According to our results, the unified coprocessor
for BLAKE and ChaCha offers the best area-time trade-off.

VIII. CONCLUSION

The stream cipher ChaCha, the block cipher Threefish, and
the hash functions BLAKE and Skein are based on the same
arithmetic operations. In this work, we showed that the same de-
sign philosophy allows one to design lightweight coprocessors
for hashing and encryption. The key element of our approach is
to take advantage of the parallelism of the algorithms to deeply
pipeline the ALU to achieve a high clock frequency, and avoid
data dependencies by interleaving independent tasks. Further-
more, we described how to design compact control units thanks
to a careful organization of the register file, loop unrolling, and
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a simple compression algorithm. Our architectures are mainly
designed for embedded systems. Thus, it would be interesting to
conduct side-channel and fault injection attacks in future work.
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