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Content-Based Microscopic Image Retrieval System
for Multi-Image Queries

Hatice Cinar Akakin and Metin N. Gurcan, Senior Member, IEEE

Abstract—In this paper, we describe the design and development
of a multitiered content-based image retrieval (CBIR) system for
microscopic images utilizing a reference database that contains
images of more than one disease. The proposed CBIR system uses
a multitiered approach to classify and retrieve microscopic im-
ages involving their specific subtypes, which are mostly difficult
to discriminate and classify. This system enables both multi-image
query and slide-level image retrieval in order to protect the se-
mantic consistency among the retrieved images. New weighting
terms, inspired from information retrieval theory, are defined for
multiple-image query and retrieval. The performance of the sys-
tem was tested on a dataset including 1666 imaged high power
fields extracted from 57 follicular lymphoma (FL) tissue slides
with three subtypes and 44 neuroblastoma (NB) tissue slides with
four subtypes. Each slide is semantically annotated according to
their subtypes by expert pathologists. By using leave-one-slide out
testing scheme, the multi-image query algorithm with the pro-
posed weighting strategy achieves about 93% and 86% of average
classification accuracy at the first rank retrieval, outperforming
the image-level retrieval accuracy by about 38 and 26 percentage
points, for FL and NB diseases, respectively.

Index Terms—Content-based image retrieval (CBIR), informa-
tion retrieval (IR), microscopy multi-image queries, weighting
scores.

I. INTRODUCTION

THANKS to the technical advances in diverse modalities
such as X-ray, computed tomography (CT), and MRI, and

their common use in clinical practice, the number of medical
images is increasing every day. These medical images provide
essential anatomical and functional information about differ-
ent body parts for detection, diagnosis, treatment planning, and
monitoring, as well as medical research and education. Ex-
ploration and consolidation of the immense image collections
require tools to access structurally different data for research,
diagnostics, and teaching. Picture archival and communication
systems provide the hardware and software for the storage, re-
trieval, and management of radiological images [1]. However,
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such systems use the patient information, and/or modality to
index and search the images; the content of the image is not
utilized. Content-based image retrieval (CBIR) systems [2]–[7]
for medical images are important to deliver a stable platform to
catalog, search, and retrieve images based on their content.

Although several CBIR projects exist for radiology [8]–[10]
and several other projects are underway, there is an acute need
for a comprehensive and flexible CBIR system for microscopic
images with direct implications for the field of pathology and
cancer research. Microscopic images present novel challenges
because they 1) are large in size 2) demonstrate high degree of vi-
sual variation due to large variation in preparation (e.g., staining,
thickness), and 3) show huge biological variation. Therefore, a
well-designed CBIR system for microscopic images can be ex-
tremely useful resource for cancer research, diagnosis, progno-
sis, treatment, and teaching. In other words, such a system can
1) assist pathologists in their diagnosis and prognosis, 2) poten-
tially help to reduce inter- and intrareader variability in clinical
practice for the diseases, especially those with complicated clas-
sification, 3) help cancer researchers in better understanding of
cancer development, treatment monitoring, and clinical trials,
and 4) train future generation of researchers by providing con-
sistent, relevant and always available support and assistance. In
this paper, we describe the design and the development of a mul-
titiered CBIR system for microscopic images from a reference
database that contains more than one disease.

To provide a motivating example and to test the ideas de-
veloped in this paper, images in our reference database include
sample regions cropped from digitized hematoxylin and eosin
(H&E) stained whole slides. Neuroblastoma (NB) and follicu-
lar lymphoma (FL) tissue images have been collected as part
of our ongoing projects for both diseases. The input images to
our system are digitized using a Scope XT digitizer (Aperio,
San Diego, CA) at 40× magnification. FL tissue slides were
collected from the Department of Pathology, The Ohio State
University, in accordance with an Institutional Review Board
(IRB) approved protocol. NB whole-slide tissue samples were
collected from the Children’s Oncology Group slides with an
IRB-approved protocol. According to the recent medical statis-
tics, FL accounts for 20%–25% of non-Hodgkin lymphomas in
the US [11], [12] and affects predominantly adults, particularly
the middle aged and elderly. FL cases are stratified to three histo-
logical grades from low- to high-risk category as follows: Grade
I, Grade II, and Grade III. NB is the most common extracranial
solid cancer in childhood and in infancy. According to the Inter-
national Neuroblastoma Classification System, NB tissues are
mainly divided into two subtypes such as stroma rich (SR) or
stroma poor (SP) based on the degree of Schwannian stroma
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Fig. 1. General flowchart for the CBIR system for a given query image or images.

development [13]. Additionally, SP tissue has three subtypes
such as undifferentiated (UD), poorly differentiated (PD), and
differentiating (D). These subcategories as well as the mitosis
karyorrhexis index are used for prognostication.

Annotation of microscopic images, e.g., H&E-stained pathol-
ogy slides, with subtypes of the main disease needs an expert
pathologist to select pathology-bearing regions or regions of
interests from the whole slide. Then each selected region is an-
notated semantically by giving a score according to its visual
qualitative characteristics. For example, the number of centrob-
lasts or mitotic–karyorrhectic cells can establish a score to inter-
pret the underlying subtype of that disease. The final decision
on the grade or subtype of the disease for the whole slide is
given after considering the annotations of all sample regions,
i.e., the average subtype-related score over all sample regions is
assigned as the final score of that whole slide. Considering the
extremely large sizes of microscopic images, it is obvious that
manual annotation of these images is a time-consuming pro-
cess and those annotated images may not be easily available for
clinical use. Therefore, one of the aims of this study is to orga-
nize the annotated microscopic images in a database and utilize
these images for the training of a CBIR system for microscopic
images with different disease types and with their subtypes.

The novel aspects of our multitiered approach are: 1) it re-
trieves the most similar disease types in the slide level rather
than in the image level by enabling multi-image queries in order
to ensure the consistency among the retrieved images, and 2)
slide-level scores are weighted in a sophisticated way by mod-
ifying the term frequency(tf)–inverse document frequency(idf)
weighting concepts of information retrieval (IR) theory [14] to
decrease the sensitivity of the proposed CBIR system to erro-
neously annotated sample images in the database. These aspects
were designed to mimic the evaluation methodology of patholo-
gists when they review a whole-slide microscopic image. Since
in real medical applications, especially for microscopic images
at high magnifications, the query object is more likely to be a
set of sample images extracted from a whole-slide image rather
than being a single image, the multi-image query model suits
perfectly for our case. It has been also proved that query by
multi-images leads to more scalable and satisfactory query per-
formances by overcoming the limitation on the specification of
image content of single-image queries [15], [16].

In CBIR systems, images are typically represented with fea-
ture vectors extracted using low-level image processing tech-
niques [8], [9], [17]. However, similarities in feature vector
level does not always guarantee the semantic similarity (i.e., in-
terpretations of images according to their predefined categories)

between query image and retrieved images. This is known as the
semantic gap problem [18], [19]. In this paper, we will explore
the effect of slide-level retrieval system with multiple query im-
ages in order to increase the semantic relevance of query image
set and retrieved images.

A general flowchart of the proposed CBIR system is illus-
trated in Fig. 1. It shows the main steps of the CBIR algorithm,
e.g., feature extraction, major disease-type classification (first
tier), image retrieval according to the subtypes of the diseases
(second tier).

The rest of the paper is organized as follows. Section II
presents related works on CBIR methods for medical images.
Section III explains the features extracted from the database
images. Two-tier retrieval approach is explained in Section IV.
Database description and results of the experiments are dis-
cussed in Section V. Conclusions are drawn in Section VI.

II. RELATED WORK

Most of the commercial search engines (e.g., Google, Yahoo!,
Bing Image Search) are built around a semantic search, i.e., the
user needs to type in a series of keywords and the images in
those databases are also annotated using keywords; the match
is accomplished primarily through these keywords. CBIR sys-
tems have been developed in the recent years to organize and
utilize the valuable image sources effectively and efficiently for
diverse collections of images. Most of the recent CBIR systems
in biomedicine [5], [8], [9], [20], [21] are designed to classify
and retrieve images according to the anatomical categories of
their content, i.e., head or chest X-ray images or abdominal CT
images. For example, the Automatic Search and Selection En-
gine with Retrieval Tools (ASSERT) system [5] was designed
for high-resolution CT images of the lung, where each set of
feature was extracted from the pathology-bearing regions. Sim-
ilarly, CBIR for CT images of three types of liver lesions was
investigated by incorporating semantic features observed by ra-
diologist as well as features computationally extracted from the
images [8]. Previously, a prefiltering approach [9] was proposed
to reduce the search space of query images by categorizing the
images using multiclass support vector machines (SVMs) and
fuzzy c-mean clustering. Twenty different modality-specific se-
mantic categories based on body region and orientation dif-
ferences, and the database for retrieval included microscopic
images of leukemia, Alzheimer’s disease, bacterial meningitis,
and skin lesions were used for retrieval. The retrieval after pre-
filtering was done according to main disease categories only,
which is similar to the first tier of our two-tiered approach.
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In another study [20], expectation-maximization algorithm was
used to generate clusters of block-based low-level features ex-
tracted from radiographic images. Then, the similarity between
two clusters was estimated as a function of the similarity of both
their structures and the measure components. Pourghassem and
Ghassemian [21] proposed a two-level hierarchical medical im-
age classification method. The first level was used to classify
the images into the merged and nonmerged classes. They tested
their algorithm on medical X-ray images of 40 classes. Although
this is a two-level hierarchical classification, it is different from
our approach because only the merged classes were evaluated
in the second level to be classified with multilayer perceptron
(MLP) classifiers into 1 of 40 classes.

Traditional indexing and search strategies used in radiologi-
cal systems are not directly applicable in the context of digital
microscopy since it is not obvious how to define a primary key
or major anatomical structure for such images. To complicate
things further, most known structures (e.g., cells, its compo-
nents, tissue, etc.) are much more complex and require more
detailed analysis than that would be needed at the higher reso-
lutions and scale of radiological images. The feature extraction
from microscopic images is also challenging because these im-
ages are composed of varying textures, overlapping structures,
and different cell constituents even for the same disease types.

In the last decade, a few CBIR systems for the microscopic
images have been developed for clinical use [6], [7], [17], [22],
[23]. Mehta et al. designed a region-specific retrieval system
based on subimage query search on whole-slide images by ex-
tracting scale invariant features on the detected points of inter-
ests and 80% of match was achieved with the manual search
for prostate H&E images [23] in the top five searches. In an-
other study, image-level retrieval of four special types of skin
cancer [22] was performed by constructing a visual word dic-
tionary using a bag-of-features approach in order to represent
a relationship between visual patterns and semantic concepts.
Zheng et al. [6] proposed a CBIR system based on the weighted
similarities of four feature types such as color histogram, im-
age texture, Fourier coefficients, and wavelet coefficients. The
retrieval performance of their system was tested using agglom-
erative cluster analysis for different pathology image categories
and the best retrieval performance was observed for prostate
query images.

Recently, Yang et al. [7] developed a Web-based system called
PathMiner, which includes automatic segmentation, CBIR, and
classification modules to assist diagnostics in pathology. They
evaluated the classification performance of their system on five
different blood cells such as chronic lymphocytic leukemia,
mantle cell lymphoma, follicular center cell lymphoma, and
acute lymphocytic leukemia and acute myelogenous leukemia
by using SVM classifiers with texton histogram features and
87.27% of classification accuracy was achieved on an open set
with large variations in staining characters.

Most of the CBIR approaches designed for microscopic im-
ages have their own specific application area, specific feature
extraction technique, or a specific similarity measure for the
evaluation. For example, disease-specific CBIR systems [17],
[22], [23] have been developed for clinical decision support

of specific diseases, while some of the CBIR systems were
designed for the classification of different types of pathology
images, i.e., liver tissue, prostate tissue, breast tissue, lymph
node, and so on [6].

Although many promising CBIR approaches were developed
for medical applications, there are still gaps in terms of image
content, retrieval methodology, performance evaluations, and
their application areas [18], [19], which make this research area
an open problem for further studies. Particularly, the majority
of the retrieval methodology of the published CBIR techniques
focused on image-level retrieval either by choosing or defining
an appropriate distance metric to compare the feature vectors
from the query and database images [8], [17], [24]. However,
multi-image query based retrieval is more suitable for challeng-
ing medical CBIR applications. Especially, microscopic images
at high magnifications require multi-image queries in order to
specify the query images more efficiently. Therefore, our CBIR
method will focus on defining a retrieval methodology for multi-
image queries, which can be also applicable for any type of
multi-image query and retrieval application.

In summary, our approach focuses on one modality, which is
the digital brightfield microscopic images of tissue slides. It does
not aim to provide a way to search and index generic medical
image collections. It differs from the existing microscopic CBIR
methods mainly in two aspects. First, two different diseases (FL
and NB) are processed within a CBIR system with their high-
level semantic annotations. The framework can also be extended
to several other diseases. Second, our approach enables multi-
image queries instead of one image query and provide a slide-
level retrieval by keeping the slide-level consistency among
retrieved images by using weighting scores depending on the
image-level rank order and distributions of the subtypes over
the reference dataset.

III. FEATURE EXTRACTION

In this section, we will explain the feature extraction tech-
niques that we employed to the images in our database.

A. Low-Level Feature Extraction

There are many factors affecting the performance and accu-
racy of CBIR systems, such as choosing more discriminative
features, similarity measurement criteria, query formulation,
and so on. In order to design an effective CBIR system, the
initial step in our study is to extract discriminative features from
the images in the reference database. These features will also
be calculated for query images.

One of the most discriminating characteristics of microscopic
images is color, especially when compared to most common ra-
diological images, which are mostly gray level. Due to the high
resolution of microscopic images, subtle changes in character-
istics of cells, combinations of cells, structures, and tissues can
also be differentiated from each other by texture characteris-
tics. Therefore, for our CBIR design, we heavily make use of
color and texture characteristics and extract these features using
low-level image feature extraction techniques.
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1) Color features: H&E images have considerably limited
color spectrum, i.e., there are few dominant colors (hues
of blue and pink), as shown on the sample images in Figs.
4 and 5. Therefore, in order to better represent the lim-
ited color information in more detail, we used two more
color spaces in addition to red–green–blue (RGB) color
space. These additional color spaces are CIELab (Lab)
and hue–saturation–value (HSV) color spaces. In the Lab
color space, L corresponds to illumination, and a and b
channels correspond to color opponents. Thus, features
extracted from the Lab space characterize the intensity
and color information of images separately [25]. On the
other hand, the HSV color space is known with similarity
to the human conceptual understanding of colors. Besides
this, HSV space can separate the chromatic and achromatic
components, i.e., hue (H) channel distinguishes colors,
saturation channel (S) represents the percentage of white
light added to a pure color space, and value (V) refers to in-
tensity of perceived light [25]. For each channel of a given
color space, mean value and standard deviation are com-
puted as first- and second-order statistics features. In total,
18 (2 features × 3 channels × 3 color spaces) color fea-
tures are extracted from each image. Additionally, mean
value, standard deviation, skewness, kurtosis, maximum
and minimum values, energy, and entropy values are com-
puted for gray-level intensity image. In summary, 26 color
and gray-scale features are extracted using three different
color spaces for a given image.

2) Texture features: Microscopic images with different dis-
ease types and subtypes can be distinguished via their
homogeneity or texture characteristics. To capture the
discriminative texture information, we investigated sev-
eral texture feature extraction methods in the literature
[26]–[28]. Co-occurrence histograms are the most fre-
quently used method for texture feature extraction [4],
[28]–[30]. They can be defined as a sample of a joint
probability density of intensity levels of two pixels sep-
arated by a given displacement. The distribution in the
histograms depends on the rotation angle and distance
relationship between pixels. Once the co-occurrence his-
togram is computed, various features can be extracted
related to texture characteristics, lower and higher or-
der statistics, information-theory-related features, and cor-
relation measure. As a consequence, we extracted the
following features: mean, standard deviation, contrast,
correlation, energy, entropy, and homogeneity from the
normalized co-occurrence histograms for each RGB and
Lab color channels and gray-level images. In addition,
mean value, homogeneity, and entropy values are ex-
tracted from the difference histograms [31] of the normal-
ized co-occurrence matrix. For a given image, a total of
80 texture-based features are extracted using RGB, HSV
color spaces, and gray-level intensities. It should be noted
that average of the co-occurrence histograms for eight
different directions, i.e., 0◦,±45◦,±90◦,±135◦, 180◦, are
calculated in order to obtain rotation invariant features. It
should be noted that the images are at the same mag-

nification level; therefore, no scaling of the features is
needed.

Once all color and texture features are extracted, they are
concatenated to form a 106-dimensional feature vector. After
feature extraction, a Z-score normalization is applied to each
extracted feature in the feature vector by subtracting the mean of
that feature followed by dividing to the standard deviation of that
feature computed over the reference dataset. This normalization
step converts all extracted features to a common scale with an
average of zero and standard deviation of one. Then normalized
feature vectors (NF ) are stored for further CBIR processes. For
each query image set, the system will employ the same feature
extraction and normalization procedure to the query images.

Instead of analyzing the contribution of extracted features
based on selected color spaces or texture features by using fea-
ture selection algorithms, we preferred to use subspace pro-
jection method in order to represent the feature vectors more
sparsely by decreasing the correlation among the features. In
the literature, subspace projection methods have been widely
used for dimensionality reduction and feature extraction. They
are popular to analyze structures where large amount of corre-
lated numerical data is available. Nonnegative matrix factoriza-
tion (NMF) [32] is one of the data-driven subspace projection
method, which aims to factorize a data matrix into basis vec-
tors and their combiner coefficients. They perform better for
features extracted from partially represented data [33]. In our
case, features from different color spaces and texture features
can be assumed to be features of a partially represented data.
Using a training dataset, FDS with size lxT , the m basis vectors,
columns of W , are obtained as follows:

FDS ≈ WH (1)

where l is the length of the feature vector, T is the number of
samples in the dataset, and m (m < l) is the size of NMF fea-
tures. In the factorization in (1), the columns of the lxm matrix
W stand for the basis vectors and the columns of the mxT
matrix H determine how the basis vectors are activated to re-
construct the feature matrix FDS . The columns of H represent
the NMF-based feature vectors of the corresponding data. The
classification of a test feature vector FQ is based on its NMF
features given by h = W+FQ . The number of columns m in
the (basis) matrix W was determined for each disease type em-
pirically during training stage. In this study, the implementation
of NMF code was based on the projected gradient method [34].

IV. TWO-TIER RETRIEVAL APPROACH

FOR MULTI-IMAGE QUERIES

Our CBIR system operates at two tiers. In the first tier, the
designed classifier categorizes the query image/images into one
of the major disease types such as FL and NB. Once the disease
category of the image is determined, the search for the query
image can be carried out among the category relevant subtypes
in the subsequent tier. For example, when the query image be-
longs to NB disease, database images in the first tier will be
filtered according to the NB disease category. Then the subse-
quent search will be only performed on the NB category subset
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to retrieve the images from the correct category of the query
images.

In the second tier, we will use our proposed multi-image
query and retrieval methodology to retrieve the images from
the reference database in the order of their image-level visual
similarities by preserving the slide-level semantic similarity.

A. First Tier: Classification of Disease Type With SVM

An SVM-type classifier was employed to categorize the query
image into one of the major disease type such as NB or FL us-
ing the extracted features, which are explained in Section III-A.
SVM classifiers are well founded in statistical learning the-
ory and have been successfully used for various classification
tasks in computer vision. Their purpose is to find a decision
hyperplane for a binary classification problem by maximizing
the margin, which is the distance between the hyperplane and
the closest data points of each class in the training set that are
called support vectors. The hyperplane is chosen among all the
possible hyperplanes through a complex combinatorial problem
optimization so that it maximizes the distance (called the mar-
gin) between each class and the hyperplane itself. As SVMs are
restricted to binary classification, several strategies are devel-
oped to adapt them for multiclass classification problems [35]
such as one-against-all classification and pairwise classification.

In our SVM classifier, we selected the radial basis function,
which is one of the most frequently used kernels and it gives
better results than other kernels for the categorization of our
data. LibSVM MATLAB code [36] was used in the experiments
of this study.

B. Second Tier: Slide-Level Image Retrieval

In this part of the CBIR algorithm, we proposed a two-level
retrieval system; in the first level, the search is performed similar
to traditional CBIR systems such that the images are retrieved
based on their image-level similarities. In the second level, the
images will be retrieved according to their similarities in the
slide level. Once the category of the query image is detected
in the first tier, further search is performed on the prefiltered
database, which includes only the sample images of the detected
disease category. As we described in Section V-A, each disease
has higher level semantic annotations based on their histological
grades such as Grade-I, Grade-II, and Grade-III in FL disease or
D levels such asSR, UD, PD, and D in NB disease. Therefore,
it is necessary to retrieve images related to their higher level
semantic characteristics in order to provide more accurate results
to the user of the CBIR system.

Algorithm 1 summarizes the image-level search and Fig. 2
illustrates a sample nearest-neighbor search scheme for a given
query image set in image level. Here we used the term of image
set in order to represent multiple images in one query. Note that
image set may include only one image or several images cropped
from one tissue slide. The distance between each image of query
Q and the individual images in the dataset are computed using

Fig. 2. Sample image-level nearest neighbor search scheme for a given query
image set.

the correlation distance measure, as shown in the following:

Dist(FQn , FDS t ) = 1 − {Correlation{FQn , FDS t }}

= 1 −
{
〈(FQn ), (FDS t )〉
‖FQn ‖‖FDS t ‖

}
,

t = 1, . . . , T, T = |FDS | and n = 1, . . . , N, N = |Q| (2)

where N is the number of individual query entities in the given
query image set Q, T is the number of images in the reference
dataset DS, and FQn represents the feature vector of the nth
query image, FDS t represents the feature vector of the tth image
of the given dataset, 〈·, ·〉 is the inner product, ‖ · ‖ is the L2
norm, and | · | is the cardinality.

Algorithm 1 provides us the frequency of similar images per
image in the dataset to a given query image set or a slide in
terms of scores. Scores are computed by summing the number
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of occurrences of each image in the dataset for a k-nearest
neighbor (KNN) search of that query image set. The output of
this algorithm is the traditional image-level-based retrieving of
most similar images from the given dataset and their image-level
scores.

In our alternative approach to image-level retrieval, we pro-
pose to retrieve similar images from the database by keeping
the slide-level semantic grade among the retrieved images. For
this purpose, we introduced a slide-level retrieval methodology,
which is summarized in Algorithm 2. The conventional way of
ranking the similarity of slides to a given query image set is by
sorting the similarity scores of the reference slides independent
from their subtypes and retrieving the highest scored slides from
the database, which means that subtypes of the slides are con-
sidered equally important. In our proposed approach, the first
step is to scale the score of each slide by assigning different
weight parameters based on subtype frequencies over the refer-
ence database. For example, in our dataset, the number of slides
per subtype is not equal, i.e., FL Grade-I has 15 slides while FL
Grade-III has 22 slides. Therefore, our algorithm assigns higher
weights to the slides of FL Grade-I since its frequency is lower
than FL Grade III. Similarly, the number of images per slide is
varying among the slides. In order to make a comprehensive and
intelligent relevance ranking system, it is necessary to take into
account those statistical variations among slides and subtypes.
The computational model illustrating all intermediate levels of
the proposed slide-level CBIR system is given in Fig. 3 for a
sample query image set.

Assigning weights to each slide and to each subtype based
on the distribution (or frequency) of images per slide and distri-
bution of slides per subtype is motivated by similar approaches

Fig. 3. Computational model representing the transition from image-level
scores to slide-level retrieval, where i = image number, c = subtype num-
ber, and s = slide number. Here, the query Q is an image set with 20 im-
ages belonging to subtype 1. Image-level scores, slide-level scores, Score itf ,
Rank weight, relevancy rank of slides with weighted scores are computed,
respectively, for the given sample query.

in IR theory [37]. In information theory, “tf” refers to the fre-
quency of an index term in a reference document and “idf” is
inversely proportional to the number of documents containing
that index term [38]–[41] and they are used to assign weights
for each term of the documents before computing similarity.
However, in our case, we do not have definite terms (i.e. words
in documents), but we have scores representing the unweighted
similarities between the query image set and the reference slides.
Therefore, we adapted these concepts to assign weights to nor-
malize the similarity scores of each slide and each subtype
depending on the slide- and image-level statistics of the dataset
(e.g., the number of images per slide or the number of slides per
subtype).

In our slide-level retrieval system, we redefined scores in
terms of image term frequency (itf ), which corresponds to nor-
malized number of image count of a particular slide for a given
query set.

Additionally, inverse slide frequency (isf ) is inversely pro-
portional to the number of slides per subtype, and it gives lower
weights to the slides occurring in a larger set of subtype. The
following equation represents the calculation of isf per subtype:

Subtype isfc = log
∑C

c=1 Sc

Sc
(3)

where c = 1, . . . , C, and Sc is the number of total slides for the
cth disease subtype.
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TABLE I
DISTRIBUTION OF MAIN DISEASES AND THEIR SUBTYPES IN THE DATABASE

Fig. 4. Sample H&E-stained FL images associated with the three grades. (a) Grade I. (b) Grade II. (c) Grade III.

Algorithm 2 summarizes the proposed weighting score ap-
proach. In order to take into account the rank of the slides in
terms of their itf scores (Score itf ), we assigned a weighting
term, called Rank weight, to each subtype. First, Score itf
values were sorted in descending order and top K2 of the sorted
scores are summed according to their subtypes. These summed
scores represent the Rank weight term for each subtype. Ba-
sically, Rank weight term corresponds to the proportion of
summed itf scores within the top K2 itf scores per subtype.
The purpose of Rank weight is to increase the likelihood of
retrieving the subtype of the highest scored slides by assign-
ing higher weights to the slide scores of that subtype. Notice
that, unlike Score itf and Rank weight, Subtype isf term
depends only on the statistics of the dataset and hence it can be
computed off-line independent from the query image set.

V. DATASET AND EXPERIMENTAL RESULTS

A. Annotated Microscopic Image Dataset

Table I lists the details of the database that we used in this
study and Fig. 4 shows randomly selected sample images be-
longing to different histological grades of FL cases. The number
of cropped images per slide is between 11 and 30 for FL cases
and between 7 and 35 for NB cases. For FL slides, a team of
experienced hematopathologists selected about 10 random mi-
croscopic high power fields (HPF) to interpret the disease grade
in terms of the average number of centroblasts per HPF. Note
that, for both FL and NB, we use internationally accepted and
clinically practiced standards. For FL, our collaborating pathol-
ogists use the World Health Organization grading system. For
NB, the International Neuroblastoma Classification System, in-
vented by our collaborator Dr. H. Shimada, is used. In our
database each HPF corresponds to one image and each slide be-

longs to one patient. Note that, in order to simplify the terminol-
ogy of this paper, we used “image set” and “slide/patient” pairs
interchangeably. The consensus of pathologists is used to strat-
ify cases into their histological grades. The sizes of the cropped
images are 1353 × 2168 pixels for FL cases and 1024 × 1024
and 1712 × 952 pixels and for NB cases.

For NB slides, pathologists pick the representative regions
(images) from the whole slide and examine those regions at
higher magnifications. The final decision for the differentiation
grade of the entire slide is based on the grades of the sample im-
ages selected from that slide. Due to this differentiation grades,
NB disease is differentiated to two subcategories such as SR and
SP. SP subtype has three more subtypes such as D, PD, and UD.
In total, NB disease has four subtypes. Fig. 5 illustrates sample
images cropped from different slides with different differentia-
tion grades of NB to give an idea about their visual appearances.

Because of the heterogeneous characteristic of these tumors,
all image-level annotations may not match with the annotation
of the entire slide, which causes intraslide variations. Addition-
ally, there may be variations among inter-and intrareadings of
pathologists because of which FL Grade-I and FL Grade-II sub-
types [42] and NB-PD and NB-UD subtypes [26], [43] are the
most confused subtypes of the FL and NB diseases, respectively.

B. Results of the First Tier

The organization of the test set and training set is performed
in patient (slide) independent manner. In other words, none of
the images of a test slide is included in the training set in order
to obtain more realistic results both in the first -and second-tier
experiments.

In the experiments of the first-tier evaluation, we randomly
selected five FL and five NB slides for each test set and the
remaining slides were used for the training of the SVM classifier.
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Fig. 5. Sample NB images associated with the four grades. (a) SR. (b) D. (c) PD. (d) UD.

TABLE II
AVERAGE CLASSIFICATION RESULTS (%) FOR THE FIRST TIER

OVER 50 TEST REPETITIONS

In total, 10 slides were randomly chosen for the test set and 91
slides were used for training. In order to comprehensively test
and train all NB and FL sample slides with different test sets,
we repeated the testing scheme until all the slides were used as
a test slide, an approach similar to the leave-one-out testing.

The classification results of the first tier, summarized as a con-
fusion matrix in Table II, were computed as the overall average
over 50 test repetitions. These results were obtained with SVM
classifiers trained with normalized features. The classification
accuracies were evaluated in two different ways. One way is to
evaluate the results at the image level such that each image is
classified independent from the other images of that test slide.
The other way is to interpret the results at the slide level by
combining the decisions on all images of a test slide using de-
cision fusion rules. Here, the majority rule is employed to the
assigned classes of the test images to determine the slide-level
classification of that image set. In other words, the majority of
the assigned classes for each test image is chosen as the repre-
sentative class for that given slide. It is observed that 0.6% of
FL test images (six images) were classified as NB at the image
level, and after majority voting, all FL slides were classified cor-
rectly. For NB case, 5.3% of NB test images (38 images) were
misclassified. After majority voting, all NB test slides, except
one with D grade, was correctly classified. It is noticed that all
images of that NB slide were also misclassified at the image
level. This misclassified NB slide was used with both NB and
FL slides in order to evaluate the retrieval accuracy in the second
tier of the algorithm in case of a misclassified slide.

C. Results of the Second Tier

After determining the classes of query slides in the first tier,
the next step is to retrieve the most relevant images from the
database according to the main disease type of the query image
set. Leave-one-slide-out cross-validation testing scheme was
employed for each disease type separately such that at each
round one tissue slide with all corresponding images was used
as a query image set and the images of the remaining slides were
used as the reference dataset for that query.

Fig. 6. Second-tier experimental scheme.

The organization of the performed experiments for the sec-
ond tier is shown in Fig. 6. For the slide-level retrieval, we
used the proposed weighted scores to rank the slides accord-
ing to their relevancy to a given query slide. In order to assess
the performance of Rank weight on the retrieval system, we
evaluated the experiments both with (slide-level II) and without
(slide-level I) using this weighting term.

We used both precision and Area Under Precision versus
Recall Curves (AUPRC) to measure the retrieval accuracy in
our experiments. For a query Q, let K be the number of retrieved
images and B be the number of relevant images among K
retrieved images for that query. Then precision (P ) and recall
(R) values are calculated as follows:

P =
B

K
and R =

B

M
(4)

where M represents the number of all relevant images in the
dataset to the query Q. PR curves can jointly represent the false
alarms and dismissals for different K values in one plot. In this
paper, the retrieved image or slide is considered to be correct if
its semantic annotation (subtype of the disease) is same as the
semantic annotation of the query image set.

When we analyzed the results given in Tables III–VI and
Fig. 8 for the retrieval of NB and FL slides, we had the following
observations.

Retrieval for FL disease:
1) In FL case, the proposed weighting scheme results in

a higher retrieval accuracy for all subtypes of the FL
disease when compared with image-level retrieval. The
retrieval performance improvement between image- and
slide-level retrieval schemes is shown in Table III. The
average retrieval performance for both NMF and NF fea-
tures increases gradually from image- to slide-level II,
e.g., 0.30, 0.45, and 0.54 AUPRC values were achieved for
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TABLE III
AUPRC STATISTICS (MEAN ± STANDARD DEVIATION) FOR FL CASES

TABLE IV
CONFUSION MATRIX FOR FL CASES WITH TOP RANK RETRIEVAL INDICES AND PRECISION VALUES

TABLE V
AUPRC STATISTICS (MEAN ± STANDARD DEVIATION) FOR NB CASES

TABLE VI
CONFUSION MATRIX FOR NB CASES WITH TOP RANK RETRIEVAL INDICES AND PRECISION VALUES

image-level, slide-level I, and slide-level II schemes with
NMF features, respectively.

2) Table IV presents the confusion matrix of NMF features in
terms of precision values with top rank retrieval indices.
Each row of the confusion matrix represents the preci-
sion values for the corresponding retrieval indices for the
actual disease type. For example, when the search image
belongs to “Grade I” and the retrieval rank is 3, as shown in
Table IV, the correct retrieval accuracy is 77.9% and
22.1%, which were retrieved from other grades, e.g.,
13.3% of the samples were retrieved from Grade II and
8.8% of them were retrieved from Grade-III diseases.
Grades I and II are the most confused subtypes of FL dis-
ease, which is also the case clinically. Grade III achieved
95.5% of precision for the first rank. An average classifi-
cation accuracy of 93% was achieved for FL diseases for
the first rank retrieval. It should be noted that even though
one NB slide was misclassified as an FL slide, it was con-
sistently retrieved at the last rank so that this misclassified
slide did not degrade the performance of the retrieval.

Retrieval for NB disease:
1) The retrieval performance for NB slides was improved

with the proposed weighting scheme as suggested
(Tables V–VI). Especially, for SR and PD subtypes of the
NB disease, higher precision values were achieved when
compared with D and UD cases. A possible explanation
for this observation is that PD and UD subtypes are the
most commonly confused subtypes because of their high
visual similarities [26].

2) Even though visual similarities between PD and UD cases
are high, the proposed score weighting approach with
NMF features improved the retrieval accuracy for about
32 AUPRC points for PD subtype by using weighted
score with Rank weight (slide-level II) when compared
with image-level retrieval accuracy. On the other hand, al-
though UD case was the most difficult subtype to classify
among all subtypes, 12 and 20 AUPRC points improve-
ment was achieved via slide-level I and slide-level II ap-
proaches, respectively, when compared with image-level
retrieval.
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Fig. 7. Comparison of average precision values for slide-level II and image-
level retrieval algorithms for FL and NB diseases. (a) FL disease. (b) NB disease.

Fig. 8. Analysis of number of query images per slide with top rank retrieval
indices in terms of precision values. The precision values are represented as a
gray-level image.

3) The average AUPRC retrieval accuracies of NB slides for
image-level, slide-level I, and slide-level II methods are
39, 63, and 72, respectively.

NF versus NMF features:
1) We compare the retrieval performance of these two feature

types in Tables III and V. As suggested, NMF features
perform slightly better than NF features, such that, 4 and
8 average AUPRC points for improvement for NB slides
and 1 and 3 average AUPRC points improvement for FL
slides were achieved by using slide-level I and slide-level
II weighting approaches, respectively.

Comparison of precision values for slide-level II and image-
level retrieval with NMF features is shown in Fig. 7. The pro-
posed weighting strategy achieved about 93% and 86% average
classification accuracy at the first rank retrieval, outperforming
the traditional image-level retrieval accuracy by about 38 and
26 percentage points for FL and NB diseases, respectively.

In order to analyze the effect of the number of query images
on the retrieval accuracy, we conducted an extra experiment on
FL–NMF features with slide-level II weighting approach. The
number of query images was increased from one to maximum
number of available images for a given query slide. The num-
ber of images per FL slides varies between 11 and 30. Fig. 8
shows the precision values as a gray-level image, where bright
pixels represent higher precision values (i.e., pure white indi-
cates a precision of 1 and pure black indicates 0). It can be
observed from this figure that as the number of query images
was increased, the retrieval accuracy was also increased.

An important point for the efficiency of this proposed ap-
proach is the parameter selection, i.e., K and K2 parameters

used to compute weightings of the scores. K represents the num-
ber of searched images in image-level retrieval, which is used
further for computing both unweighted and weighted scores of
the slides and K2 is used to compute the Rank weight pa-
rameter. In order to find the best parameters, we conducted an
exhaustive search. We ran the proposed CBIR algorithm for
K = 1, . . . , T , and K2 = 1, . . . , 7, where T is the total num-
ber of images in the reference dataset. For NB disease, K = 21
and K2 = 5 give the best retrieval results, while for FL disease,
K = 40 and K2 = 5 give the best retrieval results. Different
number of NMF features, i.e., 10 to 100, were tested for both
FL and NB cases, and best performances were obtained with 40
NMF features for NB and FL cases. Therefore, it is necessary
to select these parameters separately for each main disease-type
during training.

VI. CONCLUSION

In this paper, we have presented a novel content-based micro-
scopic image/slide retrieval algorithm. We have demonstrated
that by using the proposed weighting scheme inspired by IR the-
ory, the slide-level retrieval performance of the CBIR system is
considerably better than the traditional image-level retrieval ac-
curacy for all seven subtypes of two challenging diseases, which
have inter- and intrareading semantic variations, intraslide se-
mantic variations, and intersubtype visual similarities. In the
first tier, only one slide among 44 NB slides is misclassified,
and in the second tier, about 26 percentage points of improve-
ment was achieved on the classification accuracy at the first rank
retrieval over all diseases by using the proposed score weighting
strategy. This CBIR system can enable the user, e.g., a patholo-
gist, to select multiple HPF regions from a suspected tissue and
submit those images as a query to the CBIR system and retrieve
the most relevant slides with their semantic annotations with
higher accuracies. The results, achieved under those challenging
conditions, are also promising for automatic and unsupervised
selected query images based on their HPF regions. Application
of the proposed weighting strategy, inspired by the IR theory, is
not limited to microscopic images only, and can be also useful
for any type of multiquery search and content-based retrieval
systems.

In our future work, we will 1) investigate more effective
texture and color feature extraction methods [44]–[46], 2) im-
prove the robustness of the system by increasing the number
of patients/slides in the database, 3) enhance the diversity of
the database by including microscopic images from different
disease types, 4) evaluate the performance of the system on au-
tomatically selected HPF regions for the query, and finally 5)
develop a multipurpose Web-based tool for training future gen-
erations of researchers by providing consistent, relevant, and
always available support and assistance for the challenging dis-
eases, and finally help cancer researchers in better understanding
of cancer development, treatment monitoring, and clinical trials.
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