A NOTE ON SEIBERG-WITTEN MONOPOLE EQUATIONS ON R⁸

N. ÖZDEMİR AND N.DEĞİRMENCİ

Department of Mathematics, Faculty of Science, Anadolu University, Eskişehir, TURKEY

(Received Sep. 03, 2004; Accepted Nov. 26, 2004)

ABSTRACT

Salamon's generalizations of the Seiberg-Witten equations are meaningful on any even-dimensional manifolds. In this work we show that there are no nontrivial solutions of these equations for any \mathbf{gpin}^c -structures on \mathbf{R}^8 .

1. INTRODUCTION

The Seiberg-Witten monopole equations are stated for 4-dimensional manifolds and these equations have great importance for the topology of smooth four-manifolds (see [7], [5]). There are also some analogous to these equations in 8-dimension (see [2], [7], [3]). In [1] it is shown that the one given by Salamon [7] have no nontrivial solutions for the standart spin^c-structures on \mathbf{R}^8 . In this work we show that Salamon's generalization of the Seiberg-Witten equations have no nontrivial solutions for any spin^c-structures on \mathbf{R}^8 .

2. PRELIMINARIES

In this section we give some basic definitions and facts about Seiberg-Witten monopole equations. For more details one can look in [7].

Definition 2.1. A spin^c-structure on a 2n-dimensional oriented real Hilbert space V is a pair (W,Γ) where W is a 2^n -dimensional complex Hermitian vector space and $\Gamma:V\to End(W)$ is a linear map which satisfies

$$\Gamma(v)^* + \Gamma(v) = 0, \qquad \Gamma(v)^* \Gamma(v) = ||v||^2$$

for every $v \in V$.

It is pointed out in [7] that such a map can be extended to an algebra isomorphism $Cl(V) \to End(W)$ which satisfies $\Gamma(\widetilde{x}) = \Gamma(x)^*$, where

 $Cl(V) \cong Cl(V) \otimes C$ is complex Clifford algebra over V, \widetilde{x} is conjugate of x in Cl(V) and $\Gamma(x)^*$ denotes hermitian-conjugate of $\Gamma(x)$.

Let (W_1,Γ_1) and (W_2,Γ_2) be two spin°-structures on V. If there exists a unitary isomorphism $U:W_1\to W_2$ such that

$$U\Gamma_1(v)U^* = \Gamma_2(v)$$

for all $v \in V$, then the spin^c-structures (W_1, Γ_1) and (W_2, Γ_2) are said to be equivalent. It is known that such a unitary isomorphism always exists as a result of the following proposition (see [7]).

Proposition 2.2. Let (W_1, Γ_1) and (W_2, Γ_2) be two spin^c-structures on V. Then there exists a unitary isomorphism $U: W_1 \to W_2$ such that

$$U\Gamma_1(v)U^* = \Gamma_2(v)$$

for all $v \in V$.

Let (W,Γ) be a spin^c-structure on V . There is a natural splitting of W . Fix an orientation of V and denote by

$$\varepsilon = e_{2n} \cdots e_2 e_1 \in Cl(V)$$

the unique element of Cl(V) which has degree 2n and is generated by a positively oriented orthonormal basis e_1, \dots, e_{2n} . Then $\varepsilon^2 = (-1)^n$ and hence

$$W = W^+ \oplus W^-$$

where the W^{\pm} are the eigen spaces of $\Gamma(\varepsilon)$

$$W^{\pm} = \{ w \in W : \Gamma(\varepsilon) w = \pm i^{n} w \}.$$

Note that $\Gamma(v)W^+ \subset W^-$ and $\Gamma(v)W^- \subset W^+$ for every $v \in V$. So the restriction of $\Gamma(v)$ to W^+ for $v \in V$ determines a linear map $\gamma: V \to Hom(W^-,W^+)$ which satisfies

$$\gamma(v)^* \gamma(v) = |v|^2 1$$

for every $v \in V$.

Let (W,Γ) be a spin^c structure on V. Such a structure gives an action of the space of 2-forms $\Lambda^2 V$ on W. This action is defined by the following:

Firstly, identify $\Lambda^2 V$ with the space of second order elements of Clifford algebra $C_2(V)$ via the map

$$\Lambda^2 V \to C_2(V), \eta = \sum_{i < j} \eta_{ij} e_i \wedge e_j \mapsto \sum_{i < j} \eta_{ij} e_i e_j \; .$$

Compose this map with Γ to obtain a map $\rho: \Lambda^2V \to End(W)$ given by

$$\rho \left(\sum_{i < j} \eta_{ij} e_i \wedge e_j \right) = \sum_{i < j} \eta_{ij} \Gamma(e_i) \Gamma(e_j)$$

for any orthonormal basis e_1, \cdots, e_{2n} of V. This map is independent of the choice of the orthonormal basis e_1, \cdots, e_{2n} . The spaces W^\pm are invariant under $\rho(\eta)$ for every 2-form $\eta \in \Lambda^2 V$. So we can define

$$\rho^{\pm}(\eta) = \rho(\eta)|_{W^{\pm}}$$

for $\eta \in \Lambda^2 V$. In 4-dimensions $\rho^+(\eta) = \rho^+(\eta^+)$ for every 2-form $\eta \in \Lambda^2 V$, where η^+ is the self-dual part of η . The map ρ extends to a map

$$\rho: \Lambda^2 V \otimes \mathbf{C} \to End(W)$$

on the space of complex valued 2-forms. If η is a real valued 2-form, then $\rho(\eta)$ is skew-Hermitian and if η is imaginary valued then $\rho(\eta)$ is Hermitian.

Globalizing above Γ to 2n-dimensional oriented manifold X defines a spin structure $\Gamma: TX \to End(W)$, W being a 2^n -dimensional complex Hermitian vector bundle on X. Such a structure exists iff $w_2(X)$ has an integral lift (see [4]). Γ extends to an isomorphism between the complex Clifford algebra bundle Cl(TX) and End(W). There is a natural splitting $W=W^+\oplus W^-$ into the $\pm i^n$ eigenspaces of $\Gamma(e_{2n}e_{2n-1}\cdots e_1)$ where $e_1,e_2,\cdots e_{2n}$ is any positively oriented local orthonormal frame of TX.

A Hermitian connection ∇ on W is called a spin connection (compatible with the Levi-Civita connection) if

$$\nabla_{v} (\Gamma(w) \Psi) = \Gamma(w) \nabla_{v} \Psi + \Gamma(\nabla_{v} w) \Psi$$

where Ψ is a spinor (section of W), v and w are vector fields on X and $\nabla_v w$ is the Levi-Civita connection on X. ∇ preserves the subbundles W^{\pm} .

There is a principal ${\rm Spin^c}(2n)$ -bundle P on X such that the bundle W of spinors, the tangent bundle TX, and the line bundle L_Γ can be recovered as the associated bundles

$$W = P \times_{Spin^{c}(2n)} \mathbf{C}^{2n}, \qquad TX = P \times_{Ad} \mathbf{R}^{2n}$$

where Ad is the adjoint action of

$$Spin^{c}(2n) = \{e^{i\theta}x : \theta \in \mathbb{R}, x \in Spin(2n)\} \subset \mathbb{C}l_{2n}$$

on R^{2n} . Then one can obtain a complex line bundle $L_{\Gamma}=P\times_{\delta}{\bf C}$ where

$$\delta: Spin^{c}(2n) \to S^{1}$$
 by $\delta(e^{i\theta}x) = e^{2i\theta}$.

There is a one-to-one correspondence between spin^c connections on W and $spin^c(2n) = Lie(Spin^c(2n)) = spin(2n) \oplus i\mathbf{R}$ -valued connection 1-forms $\widehat{A} \in \mathbf{A}(P) \subset \Omega^1(P, spin^c(2n))$ on P. Hence every spin^c connection \widehat{A} decomposes as

$$\widehat{A} = \widehat{A}_0 + \frac{1}{2^n} trace(\widehat{A})$$

where \widehat{A}_0 is the traceless part of \widehat{A} . Let $A = \frac{1}{2^n} trace(\widehat{A})$. This is an imaginary valued 1-form in $\Omega^1(P, i\mathbf{R})$ which satisfies

$$A_{pq}(vg) = A_p(v),$$
 $A_p(p.\xi) = \frac{1}{2^n} trace(\xi)$

for $v \in T_p P$, $g \in Spin^c(2n)$, and $\xi \in spin^c(2n)$. Let

$$\mathbf{A}(\Gamma) = \left\{ A \in \Omega^1(P, i\mathbf{R}) : A \text{ satisfies (1)} \right\}$$

There is a one-to-one correspondence between these 1-forms and spin connections on W. Let ∇_A be the spin connection corresponding to A. $\mathbf{A}(\Gamma)$ is an affine space with parallel vector space $\Omega^1(X,i\mathbf{R})$. Let $F_A\in\Omega^2(P,i\mathbf{R})$ be the curvature of the 1-form A and D_A denote the Dirac operator corresponding to $A\in\mathbf{A}(\Gamma)$,

$$D_A: C^{\infty}(X,W^+) \to C^{\infty}(X,W^-)$$

defined by

$$D_{A}(\Psi) = \sum_{i=1}^{2n} \Gamma(e_{i}) \nabla_{A,e_{i}}(\Psi)$$

where $\Psi \in C^{\infty}(X,W^+)$ and e_1,e_2,\cdots,e_{2n} is any local orthonormal frame.

The Seiberg-Witten equations can now be expressed as follows:

Let $\Gamma: TX \to End(W)$ be a fixed spin^c structure on X and consider the pair $(A, \Psi) \in \mathbf{A}(\Gamma) \times C^{\infty}(X, W^{+})$. The Seiberg-Witten equations read

 $D_A\Psi=0, \qquad \rho^+\big(F_A\big)=\big(\Psi\Psi^*\big)_0$ where $\big(\Psi\Psi^*\big)_0\in C^\infty\big(X,End\big(W^+\big)\big) \qquad \text{is defined by}$ $\big(\Psi\Psi^*\big)(\tau)=\big\langle\Psi,\tau\big\rangle\Psi \quad \text{for } \tau\in C^\infty\big(X,W^+\big) \text{ and } \quad \big(\Psi\Psi^*\big)_0 \text{ is the traceless part of } \big(\Psi\Psi^*\big).$

3. MONOPOLE EQUATIONS ON \mathbb{R}^8 WITH DIFFERENT Spin STRUCTURES AND THEIR RELATIONS

One can find the explicit expressions of the Seiberg-Witten monopole equations on \mathbb{R}^4 in [6] and [7].

In our case $X = \mathbb{R}^8$, $W_1 = W_2 = \mathbb{C}^{16}$ and $L_{\Gamma} = \mathbb{R}^8 \times \mathbb{C}$, (W_1, Γ_1) and (W_2, Γ_2) spin^c-structures on \mathbb{R}^8 and we consider the unitary map U from W_1 to W_2 that satisfies

$$U \circ \Gamma_1(v) \circ U^* = \Gamma_2(v)$$
(2)

for all $v \in \mathbb{R}^8$.

In [1] they consider standard spin^c-structure which is obtained from the well-known isomorphism of the complex Clifford algebra $\mathbf{C}l_{2n}$ with $End(\Lambda^*\mathbf{C}^n)$ and they express following theorem:

Theorem 3.1. There are no nontrivial solutions of the Seiberg-Witten equations on \mathbf{R}^8 with constant standard spin^c-structure, i. e. $\rho^+(F_A) = (\Psi \Psi^*)_0$ (alone) implies $F_A = 0$ and $\Psi = 0$.

Our goal is to state a similar theorem for any spin^c-structure on \mathbb{R}^8 . To do this we need some lemmas.

Lemma 3.2. If a unitary isomorphism U from W_1 to W_2 satisfies (2), then U maps W_1^{\pm} onto W_2^{\pm} .

Proof. Let
$$\Psi \in C^{\infty}(\mathbb{R}^{8}, W_{1}^{+})$$
. Then $\Gamma_{1}(\varepsilon)\Psi = \Psi$ where $\varepsilon = e_{2n} \cdots e_{1}$.

$$\Psi = \Gamma_{1}(e_{2n} \cdots e_{1})\Psi$$

$$= \Gamma_{1}(e_{2n}) \cdots \Gamma_{1}(e_{1})\Psi$$

$$= U^{*}\Gamma_{2}(e_{2n})U \cdots U^{*}\Gamma_{2}(e_{1})U\Psi$$

$$= U^{*}\Gamma_{2}(e_{2n} \cdots e_{1})U\Psi$$

From the last equality $\Gamma_2(e_{2n}\cdots e_1)U\Psi=U\Psi$ that is, $U\Psi\in C^\infty(\mathbb{R}^8,W_2^+)$. Thus U maps W_1^+ onto W_2^+ . It can be shown in a similar way that U maps W_1^- onto W_2^- .

Lemma 3.3. The maps $\rho_1: \Lambda^2(T^*\mathbf{R}^8) \otimes \mathbf{C} \to End(W_1)$ and $\rho_2: \Lambda^2(T^*\mathbf{R}^8) \otimes \mathbf{C} \to End(W_2)$ satisfy $\rho_1(\eta) = U\rho_2(\eta)U^*$ for any 2-form $\eta = \sum_{i < j} \eta_{ij} e_i \wedge e_j$ in $\Lambda^2(T^*\mathbf{R}^8) \otimes \mathbf{C}$.

Proof.

$$\rho_{2}(\eta) = \sum_{i < j} \eta_{ij} \Gamma_{2}(e_{i}) \Gamma_{2}(e_{j})$$

$$= \sum_{i < j} \eta_{ij} U \Gamma_{2}(e_{i}) U^{*} U \Gamma_{2}(e_{j}) U^{*} (Since U U^{*} = I)$$

$$= \sum_{i < j} U \eta_{ij} \Gamma_{2}(e_{i}) \Gamma_{2}(e_{j}) U^{*}$$

$$= U \left(\sum_{i < j} \eta_{ij} \Gamma_{2}(e_{i}) \Gamma_{2}(e_{j}) U^{*} \right)$$

$$= U \left(\rho_{1}(\eta) U^{*} \right)$$

Note that $\rho_2^+(\eta) = U(\rho_1^+(\eta))U^*$.

Lemma 3.4. If $\Psi \in C^{\infty}(\mathbb{R}^8, W_1^+)$, then the equality $((U\Psi)(U\Psi)^*)_0 = U(\Psi\Psi^*)_0 U^*$ holds for any unitary isomorphism $U: \mathbb{C}^{16} \to \mathbb{C}^{16}$.

Proof.

$$(U(\Psi\Psi^*)_0 U^*)\tau = (U(\Psi\Psi^*)_0)(U^*\tau)$$

$$= U(\Psi, U^*\tau)\Psi - trace(\Psi\Psi^*)U^*\tau$$

$$= (\Psi, U^*\tau)U\Psi - trace(\Psi\Psi^*)\tau$$

$$= (\Psi, U^*\tau)U\Psi - trace((U\Psi)(U\Psi)^*)$$

$$= ((U\Psi)(U\Psi)^*)_0 \tau$$

for all $\tau \in C^{\infty}(\mathbf{R}^8, W_1^+)$. Note that,

$$trace(\Psi\Psi^*) = \|\Psi\|^2 = \|U\Psi\|^2 = trace((U\Psi)(U\Psi)^*)$$
, since U is unitary.

Lemma 3.5. Let (Γ_1, W_1) and (Γ_2, W_2) be two spin^c-structures on \mathbb{R}^8 and $U: W_1 \to W_2$ be a unitary isomorphism such that $U \circ \Gamma_1(v) \circ U^* = \Gamma_2(v)$ for all $v \in \mathbb{R}^8$. If the pair (A, Ψ) is a solution of the monopole equations with respect to Γ_1 , then the pair $(A, U\Psi)$ is a solution of the monopole equations with respect to Γ_2 .

Proof. Let (A, Ψ) be a solution of the equations

$$D_A \Psi = \sum_{i=1}^8 \Gamma_1(e_i) \nabla_i(\Psi) = 0.$$

$$\rho_1^+(F_A) = \sum_{i \in I}^8 F_{ij} \Gamma_1(e_i) \Gamma_1(e_j) = (\Psi \Psi^*)_0$$

Then

the unitary map $\,U\,.$

$$D_{A}(U\Psi) = \sum_{i=1}^{8} \Gamma_{2}(e_{i}) \nabla_{i}(U\Psi)$$

$$= \sum_{i=1}^{8} U \Gamma_{1}(e_{i}) U^{*} \nabla_{i}(U\Psi)$$

$$= \sum_{i=1}^{8} U \Gamma_{1}(e_{i}) U^{*} U \nabla_{i}(\Psi) \text{ (since } \nabla_{i}(U\Psi) = U \nabla_{i}(\Psi))$$

$$= U \sum_{i=1}^{8} \Gamma_{1}(e_{i}) \nabla_{i}(\Psi) = U(D_{A}\Psi) = 0.$$

The equality $\nabla_i (U\Psi) = U\nabla_i (\Psi)$ holds for all $\Psi \in C^{\infty}(\mathbf{R}^8, W_1^+)$, $U\Psi = \left(\sum_{i=1}^{16} u_{1i} \psi_i, \cdots, \sum_{i=1}^{16} u_{(16)i} \psi_i\right) \quad \text{where } U = \left(u_{ij}\right) \quad \text{is the matrix notation of}$

$$\nabla_{i}(U\Psi) = \nabla_{i} \begin{bmatrix} u_{11}\psi_{1} + \cdots + u_{1(16)}\psi_{(16)} \\ u_{21}\psi_{1} + \cdots + u_{2(16)}\psi_{(16)} \\ \vdots \\ u_{(16)i}\psi_{1} + \cdots + u_{(16)(16)}\psi_{(16)} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial}{\partial x_{i}} (u_{11}\psi_{1} + \cdots + u_{1(16)}\psi_{(16)}) + A_{i}(u_{11}\psi_{1} + \cdots + u_{1(16)}\psi_{(16)}) \\ \frac{\partial}{\partial x_{i}} (u_{21}\psi_{1} + \cdots + u_{2(16)}\psi_{(16)}) + A_{i}(u_{21}\psi_{1} + \cdots + u_{2(16)}\psi_{(16)}) \\ \vdots \\ \frac{\partial}{\partial x_{i}} (u_{(16)i}\psi_{1} + \cdots + u_{1(16)(16)}\psi_{(16)}) + A_{i}(u_{(16)i}\psi_{1} + \cdots + u_{1(16)(16)}\psi_{(16)}) \end{bmatrix}$$

$$= \begin{bmatrix} u_{11} \frac{\partial_{1}\psi_{1}}{\partial x_{i}} + \cdots + u_{1(16)} \frac{\partial_{1}\psi_{(16)}}{\partial x_{i}} + u_{11}A_{i}\psi_{1} + \cdots + u_{1(16)}A_{i}\psi_{(16)} \\ \vdots \\ u_{(16)i} \frac{\partial_{1}\psi_{1}}{\partial x_{i}} + \cdots + u_{1(16)(16)} \frac{\partial_{1}\psi_{(16)}}{\partial x_{i}} + u_{21}A_{i}\psi_{1} + \cdots + u_{2(16)}A_{i}\psi_{(16)} \end{bmatrix}$$

$$= \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1(16)} \\ u_{21} & u_{22} & \cdots & u_{2(16)} \\ \vdots & \vdots & \ddots & \vdots \\ u_{(16)i} & u_{(16)2} & \cdots & u_{(16)(16)} \end{bmatrix} \begin{bmatrix} \frac{\partial_{1}\psi_{1}}{\partial x_{i}} + A_{i}\psi_{1} \\ \frac{\partial_{1}\psi_{2}}{\partial x_{i}} + A_{i}\psi_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial_{1}\psi_{1}}{\partial x_{i}} + A_{i}\psi_{16} \end{bmatrix}$$

$$= U\nabla. (\Psi)$$

For the second equation:

$$\rho_2^+(F_A) = U(\rho_1^+(\eta))U^* \text{ (from Lemma)}$$

$$= U(\Psi\Psi^*)_0 U^* \text{ (since } \Psi \text{ is a solution)}$$

$$= ((U\Psi)(U\Psi)^*)_0 \text{ (from Lemma)}$$

To summarise, we can express the following theorem:

Theorem 3.6. Let (Γ, W) be any spin^c-structure on \mathbb{R}^8 . Then there are no nontrivial solutions of the Seiberg-Witten equations on \mathbb{R}^8 with arbitrary spin^c-structure, i. e. $\rho^+(F_A) = (\Psi \Psi^*)_0$ implies $F_A = 0$ and $\Psi = 0$.

Proof. Let (A, Ψ) be a solution to the Seiberg-Witten equations on \mathbb{R}^8 with respect to (Γ, W) . Since standard spin^c-structure is equivalent to the any spin^c-structure (Γ, W) , there exists a unitary isomorphism U which satisfies the equation (2). Then the pair $(A, U\Psi)$ is a solution for the Seiberg-Witten equations on \mathbb{R}^8 with respect to standard spin^c-structure and from Theorem 3.1., A = 0 and $U\Psi = 0$. Since U is a isomorphism we get $\Psi = 0$.

ÖZET

Salamon'un genelleştirdiği Seiberg-Witten denklemleri herhangi bir çift boyutta anlamlıdır. Bu çalışmada \mathbf{R}^8 üzerindeki herhangi bir spin yapısı için Salamon tarafından verilen Seiberg-Witten denklemlerinin nontrivial çözümünün olmadığı gösterilmiştir.

REFERENCES

- [1] BILGE, A. H., DERELI, T., KOÇAK, Ş., Seiberg-Witten equations on \mathbb{R}^8 , Proceedings of 5. Gökova Geometry-Topology Conference, (1996), 87-92.
- [2] BILGE, A. H., DERELI, T., KOÇAK, Ş., Monopole equations on 8-manifolds with spin(7) holonomy, Communications in Mathematical Physics 203(1), 1999.
- [3] GAO,Y. H., TIAN, G., Instantons and the monopole-like equations in eight dimensions, Journal of High Energy Physics, (5), 2000.
- [4] LAWSON, H. B. and MICHELSOHN, M-L, Spin Geometry, Princeton University Press, 1989.
- [5] MORGAN, J. W., Seiberg-Witten Equations and Topology of Smooth Four Manifolds, Princeton Univ. Press, 1996.
- [6] NABER, G. L., Topology, Geometry, and Gauge Fields (Interactions), Springer-Verlag, 2000.
- [7] SALAMON, D., Seiberg-Witten Invariants and Spin Geometry, Preprint.