
Bol. Soc. Paran. Mat. (3s.) v. 29 1 (2011): 41–48.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/spm doi:10.5269/bspm.v29i1.9176

Continuity of selectorial maps

Serpil Altay

abstract: In this paper the selectorial map notion is introduced and the conti-

nuity property of selectorial map is studied. The necessary and sufficient conditions

for continuity of selectorial maps are obtained.
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1. Introduction

The existence of the continuous selectors of a set valued map has been studied in
many papers (see, e.g. [2]- [9] and references therein). The most famous continuous
selection theorem is due to Michael where it is proved that a lower semicontinuous
and convex closed valued map has a continuous selector (see, [9]).

In [1], the space of non-empty compact convex subsets of Rn is extended and
in the extended space the algebraic structure and norm are defined (Section 2).

In Section 3, using this extension, the continuity of a map with values in the
extended space is defined (Definition 3.1) and the sufficient condition for continuity
of these maps is obtained (Theorem 3.1). Examples, illustrating continuity of the
maps with values in the extended space are given.

In Section 4 the notion of a selectorial map with values in the extended space
is introduced (Definition 4.1) and the proposition characterizing selectorial maps
is proved (Proposition 4.1). The necessary and sufficient conditions for continuity
of selectorial maps are proved (Theorem 4.1).

For a ∈ R
n and r > 0 we set

Bn(a, r) = {x ∈ R
n :‖ x− a ‖< r} , Bn = {x ∈ R

n :‖ x ‖< 1}

where ‖ · ‖ means the Euclidean norm.
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The family of all non-empty compact and convex subsets of R
n is denoted

by conv (Rn). The Hausdorff distance between by sets E ∈ conv (Rn) and G ∈
conv (Rn) is denoted by the symbol h(E,G) and is defined as

h(E,G) = max

{

max
x∈E

d(x,G), max
y∈G

d(y,E)

}

where d(x,G) = min
y∈G

‖ x − y ‖ . It is known that; (conv (Rn) , h (·, ·)) is a metric

space (see, e.g. [8]).
Now let us define continuity of a set valued map F (·) : D → conv (Rn) at point

x0 where x0 ∈ D ⊂ R
m.

Definition 1.1 Let D ⊂ R
m, F (·) : D → conv (Rn) be a set valued map and

x0 ∈ D. The set valued map F (·) is said to be continuous at x0 if for every ε > 0
there exists δ(ε, x0) > 0 such that for each x ∈ Bm (x0, δ (ε, x0))

⋂

D the inequality
h (F (x), F (x0)) < ε holds.

2. Normed Space (Conv(Rn))2

For given A ⊂ R
n and B ⊂ R

n and λ ∈ R we denote

A+B = {a+ b : a ∈ A, b ∈ B}

and
λA = {λa : a ∈ A}.

Note that these addition and scalar multiplication operations do not specify an
algebraic structure in (conv (Rn) , h (·, ·)) . Unfortunately it is not possible to define
an effective algebraic structure in the metric space (conv (Rn) , h (·, ·)) and to turn
it into the linear space. In [1] the space (conv (Rn) , h (·, ·)) is extended and in the
extended space an algebraic structure is defined. Thus, the extended space turns
out a linear space. Now let us introduce this construction.

Let
(Conv(Rn))2 = conv(Rn)× conv(Rn).

On (Conv(Rn))2 the equivalence relation ∼ is defined as follows:

Definition 2.1 [1] Let (A,E) ∈ (Conv(Rn))2 and (C,D) ∈ (Conv(Rn))2.We put

(A,E) ∼ (C,D) ⇔ A+D = E + C.

The equivalence class containing (A,B) is denoted by (A,B)eq. The space
B(conv(Rn)) is taken to be quotient space (Conv(Rn))2/ ∼ where addition and
scalar multiplication operations in B(conv(Rn)) are defined by the following way:

(A,B)eq + (C,D)eq = (A+ C,B +D)eq,

α (A,B)eq =

{

(αA,αB)eq , if α ≥ 0,

(|α|B, |α|A)eq , if α < 0.
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Thus, with the addition and scalar multiplication operations defined above,
B(conv(Rn)) becomes a real linear space (see, [1]).

(A, 0)eq is the equivalence class

{(A+D,D) : D ∈ conv(Rn)}.

The zero element of B(conv(Rn)) is the equivalence class

{(D,D) : D ∈ conv(Rn)}

which will be denoted by (0, 0)eq.
Let us define a metric DH on B(conv(Rn)) is defined by

DH((A,B)eq, (C,D)eq) = h(A+D,B + C)

where h(A+D,B+C) is the Hausdorff distance between the sets A+D and B+C.
The relation

‖(A,B)eq‖conv = DH((A,B)eq, (0, 0)eq) = h(A,B)

defines a norm on B(conv(Rn)).
It is not difficult to verify that

DH((A,B)eq, (C,D)eq) = ‖(A,B)eq − (C,D)eq‖conv.

So, the space (B(conv(Rn)), ‖·‖conv) is a normed space.

3. The Map F (·) : A → B(conv(Rn)

Let A ⊂ R
m, F (·) : A → B(conv(Rn)). Then there exist set valued maps

F1(·) : A → conv(Rn) and F2(·) : A → conv(Rn) such that F (x) = (F1(x), F2(x))eq
for all x ∈ A.

Since B(Conv(Rn)) is a normed linear space then it is possible to define the
continuity notion for the map F (·) : A → B(conv(Rn)).

Definition 3.1 Let A ⊂ R
m, F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)), x0 ∈ A.

The map F (·) is said to be continuous at x0 if for every ε > 0 there exists δ =
δ(ε, x0) > 0 such that for each x ∈ Bn(x0, δ) ∩A the inequality

‖F (x)− F (x0)‖conv < ε

holds.
Note that the map F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)) is said to be

continuous on the set A iff it is continuous at every x ∈ A.

The following proposition characterizes the continuity of the map F (·) : A →
B(conv(Rn)).
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Proposition 3.1 Let A ⊂ R
m, x0 ∈ A, F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)).

The map F (·) is continuous at x0 if and only if for every ε > 0 there exists
δ = δ(ε, x0) > 0 such that for each x ∈ Bn(x0, δ) ∩A the inequality

h(F1(x) + F2(x0), F2(x) + F1(x0)) < ε

holds.

Proof: In the consequence of definitions of addition, multiplication and norm at
B(conv(Rn)), it follows

‖ F (x)− F (x0) ‖conv = ‖ (F1(x), F2(x))eq − (F1(x0), F2(x0))eq ‖conv

= ‖ (F1(x), F2(x))eq + (F2(x0), F1(x0))eq ‖conv

= ‖ (F1(x) + F2(x0), F2(x) + F1(x0))eq ‖conv

= h(F1(x) + F2(x0), F2(x) + F1(x0)) (3.1)

The proof follows from (3.1) and the definition of continuity. 2

The following theorem gives us a sufficient condition for continuity of the map
F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)).

Theorem 3.1 Let A ⊂ R
m, x0 ∈ A, F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)),

the set valued maps F1(·) : A → conv(Rn), F2(·) : A → conv(Rn) are continuous
at x0 ∈ A. Then the map F (·) is continuous at x0 ∈ A.

Proof: Since set valued maps F1(·) : A → conv(Rn), F2(·) : A → conv(Rn)
are continuous at x0 ∈ A, then for every ε > 0 there exist δ1 = δ1(ε, x0) and
δ2 = δ2(ε, x0) such that for every x ∈ Bm(x0, δ1) ∩ A and x ∈ Bm(x0, δ2) ∩ A the
inequalities

h(F1(x), F1(x0)) <
ε

2
, h(F2(x), F2(x0)) <

ε

2
(3.2)

hold respectively. Let δ∗ = min{δ1, δ2}. It follows from definition of Hausdorff
distance and (3.2) that for every x ∈ Bm(x0, δ∗) ∩A the inclusions

F1(x) ⊂ F1(x0) +
ε

2
Bn , F1(x0) ⊂ F1(x) +

ε

2
Bn (3.3)

F2(x) ⊂ F2(x0) +
ε

2
Bn , F2(x0) ⊂ F2(x) +

ε

2
Bn (3.4)

are satisfied. We get from (3.3) and (3.4) that for every x ∈ Bm(x0, δ∗) ∩ A the
inclusions

F1(x) + F2(x0) ⊂ F2(x) + F1(x0) + εBn (3.5)

F2(x) + F1(x0) ⊂ F1(x) + F2(x0) + εBn (3.6)

hold. From (3.5) and (3.6) we obtain

h(F1(x) + F2(x0), F1(x0) + F2(x)) ≤ ε (3.7)
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for every x ∈ Bm(x0, δ∗) ∩ A. Consequently, from Proposition 3.1 and (3.7) we
have that the map F (·) = (F1(·), F2(·))eq is continuous at x0 ∈ A. 2

The inverse of this theorem is not valid. That is, the continuity of the map
F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)) at x0 ∈ A, does not imply the continuity
of the set valued maps F1(·) : A → conv(Rn) and F2(·) : A → conv(Rn) at x0 ∈ A.

Example 3.1 Let F (·) = (F1(·), F2(·))eq : R → B(conv(R)) where

F1(x) = F2(x) =

{

[−1, 1], if x is rational,

[−2, 2], if x is irratinal.
(3.8)

It is obvious that the set valued maps F1(·) : R → conv(R) and F2(·) : R → conv(R)
are not continuous at any x0 ∈ R. Now let us choose an arbitrary x0 ∈ R. Then

‖ F (x)− F (x0) ‖conv = ‖ (F1(x), F2(x))eq − (F1(x0), F2(x0))eq ‖conv

= ‖ (F1(x), F1(x))eq − (F1(x0), F1(x0))eq ‖conv

= ‖ (F1(x) + F1(x0), F1(x) + F1(x0))eq ‖conv

= h(F1(x) + F1(x0), F1(x) + F1(x0)) = 0

and hence, the map F (·) = (F1(·), F2(·))eq : R → B(conv(R)) defined by (3.8) is
continuous at x0 ∈ R.

Now, let us give an example where the map F (·) = (F1(·), F2(·))eq : Rm →
B(conv(Rn)) is not continuous at given x0.

Example 3.2 Let F (·) = (F1(·), F2(·))eq : R → B(conv(R)) where

F1(x) = [−2, 2], F2(x) =

{

[−1, 1], if x is rational,

[−2, 2], if x is irrational.
(3.9)

We will show that the map F (·) = (F1(·), F2(·))eq is not continuous anywhere.
Let us choose an arbitrary x0 ∈ R. Assume that x0 is rational and ε∗ = 1

2
. Then

for every irrational x∗ ∈ R we get

‖ F (x∗)− F (x0) ‖conv = ‖ (F1(x∗), F2(x∗))eq − (F1(x0), F2(x0))eq ‖conv

= ‖ (F1(x∗), F2(x∗))eq + (F2(x0), F1(x0))eq ‖conv

= ‖ (F1(x∗) + F2(x0), F2(x∗) + F1(x0))eq ‖conv

= h(F1(x∗) + F2(x0), F2(x∗) + F1(x0))

= h([−2, 2] + [−1, 1], [−2, 2] + [−2, 2])

= h([−3, 3], [−4, 4]) = 1 >
1

2
= ε∗

and consequently, the map F (·) = (F1(·), F2(·))eq defined by (3.9) is not continuous
at rational x0 ∈ R.
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Now let x0 be irrational and ε∗ = 1

2
. Then for every rational x∗ we have

‖ F (x∗)− F (x0) ‖conv = ‖ (F1(x∗), F2(x∗))eq − (F1(x0), F2(x0))eq ‖conv

= ‖ (F1(x∗), F2(x∗))eq + (F2(x0), F1(x0))eq ‖conv

= ‖ (F1(x∗) + F2(x0), F2(x∗) + F1(x0))eq ‖conv

= h(F1(x∗) + F2(x0), F2(x∗) + F1(x0))

= h([−2, 2] + [−2, 2], [−1, 1] + [−2, 2])

= h([−4, 4], [−3, 3]) = 1 >
1

2
= ε∗

and hence the map F (·) = (F1(·), F2(·))eq defined by (3.9) is not continuous at
irrational x0 ∈ R.

Thus we obtain that the map F (·) = (F1(·), F2(·))eq defined by (3.9) is not
continuous anywhere.

4. Selectorial Maps

In this section, we will introduce selectorial maps notion and investigate their
continuity properties.

Definition 4.1 Let A ⊂ R
m, F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)). If there

exist functions f1(·) : A → R
n and f2(·) : A → R

n such that

(F1(x), F2(x)) ∼ (f1(x), f2(x)) for all x ∈ A

then the map F (·) = (F1(·), F2(·))eq is said to be a selectorial map.

The following proposition characterizes the selectorial maps.

Proposition 4.1 Let A ⊂ R
m and F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)).

The map F (·) is a selectorial map if and only if there exists a function ϕ(·) : A →
R

n such that the equality

F2(x) = F1(x) + ϕ(x) for all x ∈ A

holds.

Proof: Let F (·) = (F1(·), F2(·))eq : A → B(conv(Rn)) be a selectorial map. Then
according to Definition 4.1, there exist functions f1(·) : A → conv(Rn) and f2(·) :
A → conv(Rn) such that for all x ∈ A the relation

(F1(x), F2(x)) ∼ (f1(x), f2(x))

holds.
By virtue of Definition 2.1 we get

F1(x) + f2(x) = F2(x) + f1(x)
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for every x ∈ A and hence,

F2(x) = F1(x) + ϕ(x) for every x ∈ A

where ϕ(x) = f2(x)− f1(x).
Now, let

F2(x) = F1(x) + ϕ(x)

for all x ∈ A. Then

(F1(x), F2(x)) ∼ (F1(x), F1(x) + ϕ(x))

∼ (0, ϕ(x)) + (F1(x), F1(x))

∼ (0, ϕ(x))

and consequently

(F1(x), F2(x)) ∼ (f1(x), f2(x))

for every x ∈ A where f1(x) = 0, f2(x) = ϕ(x) 2

The following theorem is a continuity criterion for selectorial maps.

Theorem 4.1 Let A ⊂ R
m, f1(·) : A → R

n, f2(·) : A → R
n be given functions.

The selectorial map F (·) = (f1(·), f2(·))eq : A → B(conv(Rn)) is continuous at
x0 ∈ A if and only if the function ϕ(·) = f1(·) − f2(·) : A → R

n is continuous at
x0 ∈ A.

Proof: Let F (·) = (f1(·), f2(·))eq : A → B(conv(Rn)) be a continuous selectorial
map at x0 ∈ A. Then for every ε > 0 there exists δ = δ(ε, x0) > 0 such that for
each x ∈ Bn(x0, δ) ∩A the inequality

‖ F (x)− F (x0) ‖conv< ε (4.1)

holds. Since F (·) = (f1(·), f2(·))eq then we get

‖ F (x)− F (x0) ‖conv = ‖ (f1(x), f2(x))eq − (f1(x0), f2(x0))eq ‖conv

= ‖ (f1(x) + f2(x0), f2(x) + f1(x0))eq ‖conv

= h(f1(x) + f2(x0), f2(x) + f1(x0))

= ‖f1(x) + f2(x0)− f2(x)− f1(x0)‖

= ‖[f1(x)− f2(x)]− [f1(x0)− f2(x0)]‖.̄ (4.2)

It follows from (4.1) and (4.2) that for every ε > 0 there exists δ(ε, x0) > 0 such
that for each x ∈ Bn(x0, δ) ∩A the inequality

‖[f1(x)− f2(x)]− [f1(x0)− f2(x0)]‖ < ε

holds and hence, the function ϕ(·) = f1(·)− f2(·) is continuous at x0 ∈ A.
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Now, let the function ϕ(·) = f1(·) − f2(·) be continuous at x0 ∈ A. Then for
every ε > 0 there exists δ(ε, x0) > 0 such that for each x ∈ Bn(x0, δ) ∩ A the
inequality

‖[f1(x)− f2(x)]− [f1(x0)− f2(x0)]‖ < ε (4.3)

holds.
From (4.2) and (4.3) we obtain that for every ε > 0 there exists δ(ε, x0) > 0

such that for each x ∈ Bn(x0, δ) ∩A the inequality

‖ F (x)− F (x0) ‖conv< ε

holds and consequently, the selectorial map F (·) = (f1(·), f2(·))eq is continuous at
x0 ∈ A. 2
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