International Journal of Pure and Applied Mathematics

Volume 83 No. 4 2013, 613-621 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v83i4.10

AMPLY WEAK SEMISIMPLE-SUPPLEMENTED MODULES

Figen Takil Mutlu Department of Mathematics Anadolu University Eskisehir, 26470, TURKEY

Abstract: Let R be a ring and M be a right R-module. In this paper we will study various properties of amply weak semisimple-supplemented module. It is shown that: (1) every projective weakly semisimple-supplemented module is amply weak semisimple-supplemented; (2) if M is an amply weak semisimplesupplemented module and satisfies DCC on weak semisimple-supplement submodules and on small submodules, then M is Artinian; (3) an amply weak semisimple-supplemented module behaves well with respect to supplements and to homomorphic images.

AMS Subject Classification: 16D10, 16D60, 16D70, 16D99

Key Words: supplement submodule, weak semisimple-supplement submodule, amply weak semisimple-supplemented module

1. Introduction

Throughout this article, all rings are associative with unity and R denotes such a ring. All modules are unital right R-modules unless indicated otherwise. Let M be an R-module. $N \leq M$ will mean N is a submodule of M. Soc(M), End(M) and Rad(M) will denote the Socle of M, the ring of endomorphisms of M and the Jacobson radical of M, respectively. The notions which are not explained here will be found in [7].

Received: January 7, 2013

© 2013 Academic Publications, Ltd. url: www.acadpubl.eu

Recall that a module M is called *semisimple* if it is a direct sum of simple submodules. A submodule K is called *small* in M (notation $K \ll M$) if for every submodule L in M, the equality K + L = M implies L = M. A module M is called *hollow* if every proper submodule of H is small (see, [7]). Let Nand L be submodules of M. N is called a *supplement* of L in M if N is a minimal element in the set of submodules $K \subset M$ with M = K + L (see,[3]). In ([4], Definition 4.4, p.56) M is called *supplemented* if any submodule of Mhas a supplement in M.

In early years, supplemented modules and the other generalization, amply supplemented modules appeared in Helmut Zöschinger's works ([9], [10], [11], [12]). After Zöschinger, many authors (see for example [2], [5], [6] and [8]) studied on variations of supplemented modules. This paper is based on another variation of supplemented modules. We say that a submodule N of M has ample weak semisimple-supplements in M if, for every $L \subseteq M$ with N + L =M, there exists a weak semisimple-supplement S of N with $S \subseteq L$. We say that M is amply weak semisimple-supplemented module if every submodule of M has ample weak semisimple-supplemented module is amply weak semisimplesupplemented. It is shown that if M is an amply weak semisimplesupplemented. It is Artinian. Moreover, it is proven that an amply weak semisimple-supplemented module submodules and on small submodules, then M is Artinian. Moreover, it is proven that an amply weak semisimple-supplemented module behaves well with respect to supplements and to homomorphic images.

In this section, we discuss the concept of semisimple-supplement submodules and we give some properties of such type submodules.

Definition 1. Let M be an R-module, N and S be two submodules of M. S is called *semisimple-supplement* of N in M if N + S = M, $N \cap S \ll S$ and Soc(S) = S.

Since S is semisimple, every submodule of S is a direct summand. If $S \cap N \ll S$, then $S \cap N = 0$. Hence, S being a semisimple-supplement of N, we have $M = N \oplus S$, S is semisimple and S is the minimal element in the set of submodules $K \subset M$ with M = K + N.

Definition 2. Let M be an R-module. We say that M is semisimple-supplemented if all submodules of M has a semisimple-supplement in M.

Definition 3. Let M be an R-module and $N \subseteq M$. If, for every $L \subseteq M$ with N + L = M, there exists a semisimple-supplement S of N with $S \subseteq L$, then we say that N has *ample semisimple-supplements* in M.

Definition 4. Let M be an R-module. If every submodule of M has

ample semisimple-supplements in M, then M is called amply semisimple-supplemented module.

It is clear that every amply semisimple-supplemented module is amply supplemented.

Proposition 5. Let M be an R-module. Then the following statements are equivalent.

- (a) M is semisimple.
- (b) M is semisimple-supplemented.

(c) M is amply semisimple-supplemented.

Proof. (a) \implies (b). It is clear.

(b) \Longrightarrow (c). Let M = N + L. Since M is semisimple-supplemented, there exists a semisimple supplement S of N in M. Then $M = N \oplus S$. Hence $M = (N + L) \cap (N \oplus S) = N \oplus (L \cap S)$. By the minimality of $S, L \cap S = S$, and hence $S \subseteq L$. Thus N has ample semisimple supplement S with $S \subseteq L$.

(c) \Longrightarrow (a). Let $N \leq M$. Since M is amply semisimple-supplemented module, there exists a semisimple supplement S of N in M. Then S + N = M and $S \cap N \ll S$. Since S is semisimple, every submodule of S is a direct summand. So $S \cap N = 0$ and hence $S \oplus N = M$. Thus M is semisimple. \Box

Definition 6. Let M be an R-module, N S be two submodules of M. S is called *weak semisimple-supplement* of N in M if N + S = M, $N \cap S \ll M$ and Soc(S) = S.

Definition 7. Let M be an R-module. We say that a submodule $S \subset M$ is a *weak semisimple-supplement* if it is a weak semisimple-supplement for some submodule $N \subset M$.

Definition 8. Let M be an R-module. If every nonzero submodule of M has a weak semisimple-supplements in M, then M is called a weakly semisimple-supplemented module or briefly a WSS-module.

It is clear that every semisimple-supplemented module is weakly semisimple supplemented.

Proposition 9. Let M be an R-module, N be a submodule of M where S be a weak semisimple-supplement of N in M. Then the following statements are hold.

(1) If K + S = M for some $K \subset N$, then S is also a weak semisimple-supplement of K in M.

- (2) If M is finitely generated, then S is also finitely generated.
- (3) If $K \ll M$, then S is a weak semisimple-supplement of N + K in M.
- (4) For $K \subset N$, (S + K)/K is a weak semisimple-supplement of N/K in M/K.
 - Proof. (1) By the definition of weak semisimple-supplement, N + S = M, $N \cap S \ll M$ and S is semisimple. If K + S = M for some $K \subset N$, then $K \cap S \subseteq N \cap S \ll M$. Therefore S is a weak semisimple-supplement of K in M.
- (2) From ([7], 41.1(2)).
- (3) Let $X \leq S$ and N + K + X = M. Since $K \ll M$, N + X = M and $N \cap X \subseteq N \cap S \ll M$. By the minimality of S, X = S. Then S is a weak semisimple-supplement of N + K in M.
- (4) By the definition of weak semisimple-supplement, M = S + N, $S \cap N \ll M$ and S is semisimple. Hence M = S + N + K. Therefore M/K = N/K + [(S+K)/K]. Now, we show that $(N/K) \cap [(S+K)/K] \ll M/K$. Let $[(N/K) \cap [(S+K)/K]] + T/K = M/K$ and $K \subset T$. Then $[N \cap (S + K)] + T = M$ and by modular law $K + (N \cap S) + T = M$. Since $N \cap S \ll M$ and $K \subset T$, T = T + K = M. Hence $(N/K) \cap [(S+K)/K] \ll M/K$. Thus (S+K)/K is a supplement of N/K. Finally, since S is semisimple, (S+K)/K is semisimple submodule of M/K.

Lemma 10. Let M be an R-module and M_1, M_2, \ldots, M_n be submodules of M. Then $M_1 \oplus M_2 \oplus \cdots \oplus M_n$ is WSS-module if and only if every M_i $(1 \le i \le n)$ is WSS-module.

Proof. Let $M = M_1 \oplus M_2 \oplus \cdots \oplus M_n$. To prove WSS-module it is sufficient by induction on n to prove this when n = 2. Thus suppose n = 2.

Assume that M is WSS-module. Let $N_1 \oplus N_2 \leq M = M_1 \oplus M_2$. By assumption N_1 has a weak semisimple-supplement S_1 in M_1 and N_2 has a weak semisimple-supplement S_2 in M_2 . Then $N_1 + S_1 = M_1$, $N_1 \cap S_1 \ll M_1$, $N_2 + S_2 = M_2$ and $N_2 \cap S_2 \ll M_2$. Hence

$$M = M_1 \oplus M_2 = (N_1 + S_1) \oplus (N_2 + S_2) = (N_1 \oplus N_2) + (S_1 \oplus S_2),$$

and

$$(N_1 \oplus N_2) \cap (S_1 \oplus S_2) \subseteq (S_1 \cap (N_1 \oplus M_2)) + (S_2 \cap (N_1 \oplus M_2)) << M_1 \oplus M_2$$

Since S_1 and S_2 are semisimple, $S_1 \oplus S_2$ is semisimple. Hence $S_1 \oplus S_2$ is weak semisimple-supplement of $N_1 \oplus N_2$. Thus $M = M_1 \oplus M_2$ is WSS-module.

Conversely, assume that M_1 and M_2 are WSS-module. Let $L \leq M_1$. By assumption $L \oplus M_2$ has a weak semisimple-supplement S in M. Then $(L \oplus M_2) + S = M$ and $(L \oplus M_2) \cap S \ll M$. Hence

$$M_1 = M_1 \cap ((L \oplus M_2) + S) = L + (M_1 \cap S),$$

and

$$L \cap S = L \cap (M_1 \cap S) \subseteq (L \oplus M_2) \cap S \ll M.$$

Hence $L \cap (M_1 \cap S) \ll M_1$. Note that $M_1 \cap S$ is semisimple since it is a submodule of semisimple submodule S. Thus $M_1 \cap S$ is a weak semisimple-supplement of L in M_1 .

2. Amply Weak Semisimple-Supplemented Modules

In this section, we discuss the concept of amply weak semisimple-supplemented modules and we give some properties of such type modules.

Definition 11. Let M be an R-module and $N \subseteq M$. If, for every $L \subseteq M$ with N + L = M, there exists a weak semisimple-supplement S of N with $S \subseteq L$, then we say that N has ample weak semisimple-supplements in M.

Definition 12. Let M be an R-module. If every submodule of M has ample weak semisimple-supplements in M, then M is called an amply weak semisimple-supplemented module or briefly an AWSS-module.

Proposition 13. Every AWSS-module is WSS-module.

Proof. Let M be an AWSS-module and N be a submodule of M. Then N + M = M. Since M is AWSS-module, M contains a weak semisimple-supplement of N. Hence M is WSS-module.

Proposition 14. Let M be an R-module. If every submodule of M is a WSS-module, then M is AWSS-module.

Proof. Let $L, N \leq M$ and M = N + L. By assumption, there is a weak semisimple-supplement submodule S of $L \cap N$ in L. Then $(L \cap N) + S = L$ and $(L \cap N) \cap S = N \cap S \ll L$. Thus $N \cap S \ll M$ and $S + N \geq S + (L \cap N) = L$ and hence $S + N \geq N + L = M$. Therefore M = S + N, as required.

Proposition 15. Every factor module of an AWSS-module is AWSS-module.

Proof. Let M be an AWSS-module and M/K be any factor module of M. Let $N/K \subseteq M/K$. For $L/K \subseteq M/K$, let N/K + L/K = M/K. Then N + L = M. Since M is AWSS-module, there exists a weak semisimple-supplement S of N with $S \subseteq L$. By Proposition 9(4), (S + K)/K is a weak semisimple-supplement of N/K in M/K. Since $(S + K)/K \subseteq L/K$, N/K has ample weak semisimple-supplements in M/K. Thus M/K is AWSS-module.

Corollary 16. Every homomorphic image of an AWSS-module is AWSS-module.

Proof. Let M be an AWSS-module. Since every homomorphic image of M is isomorphic to a factor module of M, every homomorphic image of M is AWSS-module by Proposition 15.

Proposition 17. Every supplement submodule of an AWSS-module is AWSS-module.

Proof. Let M be an AWSS-module and S be any supplement submodule of M. Then there exists a submodule N of M such that S is a supplement of N. Let $L \subseteq S$ and L + S' = S for $S' \subseteq S$. Then N + L + S' = M. Since M is AWSS-module, N+L has a weak semisimple-supplement S'' in M with $S'' \subseteq S'$. In this case (N + L) + S'' = M. Since $L + S'' \subseteq S$ and S is a supplement of Nin M, L + S'' = S. On the other hand, since $L \cap S'' \subseteq (N + L) \cap S'' << M$, $L \cap S'' << M$. Hence L has ample weak semisimple-supplements in S. Thus Sis AWSS-module.

Corollary 18. Every direct summand of an AWSS-module is AWSS-module.

Proof. Let M be an AWSS-module. Since every direct summand of M is supplement in M, then by Proposition 17, every direct summand of M is AWSS-module.

A module M is said to be π -projective if, for every two submodules N, L of M with L + N = M, there exists $f \in End(M)$ with $Imf \leq L$ and $Im(1-f) \leq N$, see [7].

Theorem 19. Let M be a WSS-module and π -projective module. Then M is AWSS-module.

Proof. Let $N \leq M$ and L + N = M for $L \leq M$. Since M is WSS-module, there exists a weak semisimple-supplement S of N in M. Then N + S = M, $N \cap S \ll M$ and S is semisimple. Since M is π -projective, there exists an endomorphism f such that $f(M) \leq L$ and $(1 - f)(M) \leq N$. Note that $f(N) \subseteq N$ and $(1 - f)(L) \subseteq L$. Then

$$M = f(M) + (1 - f)(M) \le f(N \oplus S) + N = N + f(S).$$

Let $n \in N \cap f(S)$. Then there exists $s \in S$ with n = f(s). In this case $s - n = s - f(s) = (1 - f)(s) \in N$ and then $s \in N$. Hence $s \in N \cap S$ and $N \cap f(S) \subseteq f(N \cap S)$. Since $N \cap S << M$, then by Lemma ([7], 19.3(4)) $f(N \cap S) << f(M)$. Then $N \cap f(S) \leq f(N \cap S) << M$. Since S is semisimple, f(S) is semisimple. Hence f(S) is a weak semisimple-supplement of N in M. Since $f(S) \leq L$, N has ample weak semisimple-supplements in M. Thus M is AWSS-module.

Corollary 20. Every projective and WSS-module is AWSS-module.

Proof. Since every projective module is π -projective, every projective and WSS-module is AWSS-module by theorem 19.

Corollary 21. Let M_1, M_2, \dots, M_n be projective modules. Then $\bigoplus_{i=1}^n M_i$ is AWSS-module if and only if for every $1 \le i \le n$, M_i is AWSS-module.

Proof. (\Longrightarrow) It is clear from Corollary 18.

 (\Leftarrow) Since, for every $1 \le i \le n$, M_i is AWSS-module, M_i is WSS-module. Then $\bigoplus_{i=1}^{n} M_i$ is also WSS-module by Lemma 10. Since, for every $1 \le i \le n$, M_i is projective, $\bigoplus_{i=1}^{n} M_i$ is also projective. Then $\bigoplus_{i=1}^{n} M_i$ is AWSS-module by Corollary 20.

Corollary 22. Let R be a ring. Then the following statements are equivalent.

- (a) R is weakly semisimple-supplemented.
- (b) R is amply weak semisimple-supplemented.
- (c) Every finitely generated *R*-module is AWSS-module.

Proof. (a) \iff (b). Clear from Corollary 20.

 $(a) \iff (c)$. Clear from Corollary 16 and Corollary 21.

Theorem 23. ([1], Theorem 5) Let R be any ring and M be a module. Then Rad(M) is Artinian if and only if M satisfies DCC on small submodules.

Proposition 24. Let M be an R-module. If M is an AWSS-module and satisfies DCC on weak semisimple-supplement submodules and on small submodules then M is Artinian.

Proof. Let M be an AWSS-module which satisfies DCC on weak semisimplesupplement submodules and on small submodules. Then Rad(M) is Artinian by Theorem 23. It suffices to show that M/Rad(M) is Artinian. Let N be any submodule of M containing Rad(M). Then there exists a weak semisimplesupplement S of N in M. Hence M = N + S, $N \cap S << M$. Since $N \cap S \le$ Rad(M), $M/Rad(M) = (N/Rad(M)) \oplus ((S + Rad(M))/Rad(M))$ and so every submodule of M/Rad(M) is a direct summand. Therefore M/Rad(M) is semisimple.

Now suppose that $Rad(M) \leq N_1 \leq N_2 \leq N_3 \leq \cdots$ is an ascending chain of submodules of M. Because M is AWSS-module, there exists a descending chain of submodules $S_1 \geq S_2 \geq S_3 \geq \cdots$ such that S_i is a weak semisimplesupplement of N_i in M for each $i \geq 1$. By hypothesis, there exists a positive integer t such that $S_t = S_{t+1} = S_{t+2} = \cdots$. Because $M/Rad(M) = N_i/Rad(M) \oplus$ $(S_i + Rad(M))/Rad(M)$ for all $i \geq t$, it follows that $N_t = N_{t+1} = \cdots$. Thus M/Rad(M) is Noetherian, and hence finitely generated. So M/Rad(M) is Artinian, as desired.

Corollary 25. Let M be a finitely generated AWSS-module. If M satisfies DCC on small submodules, then M is Artinian.

Proof. Since M/Rad(M) is semisimple and M is finitely generated, M/Rad(M) is Artinian. Now that M satisfies DCC on small submodules, Rad(M) is Artinian by Theorem 23. Thus M is Artinian.

References

- I. Al-Khazzi, P.F. Smith, Modules with chain conditions on superfluous submodules, *Comm. Algebra*, **19** (1991), 2331-2351.
- [2] G.F. Birkenmeier, F. Takıl Mutlu, C. Nebiyev, N. Sokmez, A. Tercan, Goldie*- supplemented Modules, *Glasgow Math. J.*, **52A** (2010), 41-52.
- [3] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, *Lifting Modules: Supplements and Projectivity in Module Theory*, Birkhäuser Verlag, Basel, Switzerland (2006).

- [4] S.H. Mohamed, B.J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge (1990).
- [5] Y. Talebi, A. Mahmoudi, On Rad-⊕-supplemented modules, *Thai Journal of Mathematics*, 9, No. 2 (2011), 373-381.
- [6] Y. Wang, N. Ding, Generalized supplemented modules, *Taiwanese Journal of Mathematics*, **10**, No. 6 (2006), 1589-1601.
- [7] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia (1991).
- [8] F. Yüzbaşı Eryılmaz, Ş. Eren, On (cofinitely) generalized amply weak supplemented modules, *International Journal of Pure and Applied Mathematics*, **76**, No. 3 (2012), 333-342.
- [9] H. Zöschinger, Komplementierte Moduln über Dedekindringen, Journal of Algebra, 29 (1974), 42-56.
- [10] H. Zöschinger, Komplemente als direkte Summanden, Arch. Math. (Basel), 25 (1974), 241-253.
- [11] H. Zöschinger, Komplemente als direkte Summanden II, Arch. Math. (Basel), 38, No. 4 (1982), 324-334.
- [12] H. Zöschinger, Komplemente als direkte Summanden III, Arch. Math. (Basel), 46, No. 2 (1986), 125-135.