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Abstract

This paper presents an application of the common vector approach (CVA), an approach mainly used for speech rec-
ognition problems when the number of data items exceeds the dimension of the feature vectors. The calculation of a unique
common vector for each class involves the use of principal component analysis. CVA and other subspace methods are
compared both theoretically and experimentally. TI-digit database is used in the experimental study to show the practical
use of CVA for the isolated word recognition problems. It can be concluded that CVA results are higher in terms of rec-
ognition rates when compared with those of other subspace methods in training and test sets. It is also seen that the con-
sideration of only within-class scatter in CVA gives better performance than considering both within- and between-class
scatters in Fisher’s linear discriminant analysis. The recognition rates obtained for CVA are also better than those obtained
with the HMM method.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical and probabilistic approaches are commonly used in classification problems (Bishop, 1995; Deller
et al., 1993; Fukunaga, 1990; Rabiner and Juang, 1993). One of the statistical methods is based on subspace
methods. The most well-known subspace method is Fisher’s linear discriminant analysis (FLDA). FLDA is an
important method for linear dimensionality reduction in statistical pattern classification with small and large
sample size (Bishop, 1995; Fukunaga, 1990; Haeb-Umbach and Ney, 1992; Schukat-Talamazzini et al., 1995;
Saon et al., 2000). Although FLDA is the linear transformation that maximizes the mean squared distance
between the classes in lower-dimensional feature space, it is not optimal in respect to minimizing classification
error rate in that space (Loog and Haeb-Umbach, 2000). Loog and Haeb-Umbach (2000) proposed a generalized
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version of FLDA that allows deemphasizing of the contributions of classes far apart from each other. In this
criterion, the differences among class means are also considered. This is an extension of FLDA towards het-
eroscedastic data. A weighting function is used to define a generalized between-class scatter matrix (Loog and
Haeb-Umbach, 2000; Loog et al., 2001). Saon et al. (2000) showed that under diagonal covariance gaussian
modelling constraints, heteroscedastic discriminant analysis (HDA) alone actually degrades recognition
performance.

Yang et al. (2002) emphasized that the Fisher criterion is not an absolute criterion and it should be asso-
ciated with statistical correlation to assess the discrimination of a set of discriminant vectors. They stated that,
in order to obtain a set of the most discriminatory discriminant vectors, Fisher criterion should be associated
with orthogonal constraints so that the resulting features are uncorrelated.

The common vector approach (CVA) is a subspace method that eliminates unwanted information, such as
environmental effects, personal and phase differences, and temporal variations from a spoken word. In the
CVA method, a common vector that represents the common properties or invariant features of the word-class
is calculated. CVA, which is a feature extraction method, is applied to each class separately considering the
within-class scatter of the data only. A special application of CVA in speaker-independent isolated word rec-
ognition has also been recently introduced (Barkana et al., 1995; Giilmezoglu et al., 1999; Giilmezoglu et al.,
2001; Keskin et al., 1995a; Keskin et al., 1995b). CVA has also been used in speaker recognition applications
(Giilmezoglu and Barkana, 1998).

CVA is particularly very practical when the number of feature vectors' () in the training set is less than or
equal to the dimension () of each feature vector, that is, when m < n (Giilmezoglu et al., 1999; Giilmezoglu
et al., 2001). We can say that the number of data items, i.e., the number of feature vectors (m), in each class is
insufficient when m < n. This case is usually true for many pattern classification problems.

Let the vectors ay,a,, .. .,a,, € R" be the feature vectors for a certain word-class C in the training set. Eigen-
vector decomposition is then applied to the within-class scatter matrix of the set of training data. The n-dimen-
sional feature space spanned by all eigenvectors can be divided into (m — 1) dimensional difference subspace B
and (n — m + 1) dimensional orthogonal indifference subspace B*, with the result that the direct sum of these
two subspaces would cover the whole feature space. In the insufficient case (n — m + 1) eigenvalues will be
zero. The indifference subspace B is spanned by the eigenvectors corresponding to the zero eigenvalues
and its compliment is the difference subspace.

In this paper, we suggest a method to find a unique common vector for each class, especially when the
number of feature vectors in the training set exceeds the dimension of each feature vector (m > n). This is
the case when the number of data items in the training set is sufficient to calculate the inverse of the within-
class scatter matrix. This inverse does not exist for the insufficient data case. The common vector will be the
zero vector in the sufficient data case because indifference subspace disappears, or the same thing can hap-
pen since none of the eigenvalues of the within-class scatter matrix is going to be zero in the sufficient case.
Thus, the main objective in the sufficient case is to show that indifference subspaces would not disappear as
long as some of the eigenvalues are very small when compared with others in the within-class scatter matrix.
In the sufficient case, the common vector is obtained from the projection of the class-mean vector onto the
indifference subspace.

It is obvious that the scatter of the classes in any database will affect the performance of classifiers. In Fig. 1,
all the feature vectors are correctly classified with the CVA method even though they are not with FLDA.
Meanwhile, FLDA can give better results than CVA for different class scatters, as shown in Fig. 2.

Our purpose is to see which one of the subspace methods will work better in the TI-digit database. Since
isolated digits would have very high dimensions after feature selections, one would not be able to see the scat-
ters of the classes in these feature spaces. Therefore, it is impossible to tell which one of the methods would
work better without actual realization. Since one may wonder about the efficiency of subspace methods in
comparison with the well-known HMM, we have also provided the recognition rates of the HMM method
and compare it with our proposed subspace method.

! The vector made by concatenating the acoustic parameters (i.e., the frames) associated with an observation of a spoken word is called
the feature vector throughout this paper. Thus, one utterance of a word generates a single feature vector for that word.
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Fig. 1. Scatters of two classes in two-dimensional subspace in which FLDA fails at one of the points and CVA works at all the points.
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Fig. 2. Scatters of two classes in two-dimensional subspace in which FLDA works and CVA fails at four points.

The relation between the CVA and principal component analysis (PCA) has been shown in our pre-
vious work (Giilmezoglu et al., 2001). Obtaining the eigenvalues and the eigenvectors of the within-class
scatter matrices for normal distributions is known as PCA or Karhunen-Loeve transforms (KLT)
(Bishop, 1995; Marrison, 1967; Parsons, 1986; Tou and Gonzales, 1974; Kuhn et al., 2000; Lee and
Landgrebe, 1993; Landgrebe, 2002). PCA suggests the elimination of the feature components along the
direction of the eigenvectors of the smallest eigenvalues and keeping those components along the direc-
tion of eigenvectors of the largest eigenvalues in order to reduce the number of dimensions in the feature
space.

PCA is also used in many of subspace methods. Since PCA produces lower-dimensional subspaces, some
subspace methods (Kohonen et al., 1979; Kohonen et al., 1980; Kohonen et al., 1984) are given in this paper:
SELFIC (self-featuring information comparison) (Watanabe et al., 1967); CLAFIC (CLA may implement the
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class) (Oja, 1983; Watanabe et al., 1967); and SIMCA (soft independent modelling of class analogy) (Oja,
1983; Wold, 1976) are compared with CVA both theoretically and experimentally in this paper. CVA seems
to yield better results in the speech recognition rates compared with the aforementioned subspace methods.
This indicates that the least varying directions are more important in the pattern classifiers than the signifi-
cantly varying directions (Landgrebe, 2002).

In Section 2, short reviews of the computation of other subspace methods such as FLDA, HDA, CLAFIC,
SELFIC, SIMCA and CVA in the insufficient data case are given. In Section 3, the derivation of the common
vector for a certain class in the sufficient data case is presented. In Section 4, CVA for sufficient data case is
compared with the insufficient data case. Section 5 includes the theoretical comparison of CVA and other
subspace methods. Finally, the results of the experimental study on isolated word recognition are given in
Section 6.

2. Review of the previous subspace methods
2.1. FLDA and HDA

In Fisher’s criterion, LDA is used to solve two-class problems by maximizing the ratio of the between-class
scatter matrix Sg to within-class scatter matrix Sy in the lower-dimensional space (Bishop, 1995; Saon et al.,
2000; Loog and Haeb-Umbach, 2000; Loog et al., 2001). The maximization criterion is expressed as:

JW) = te{(W'Sww) (WTSpw)}. (1)

Maximization is achieved by an eigenvector decomposition of S\},l Sg and by taking eigenvectors correspond-
ing to nonzero eigenvalues. For a multi-class problem, the Fisher criterion is clearly suboptimal (Loog et al.,
2001). The decomposition, however, adds weight to the contribution of individual class pairs to the overall
criterion, in order to improve LDA. The weighting scheme is called the approximate pairwise accuracy crite-
rion (aPAC) (Loog et al., 2001). In order to find a subspace in which a projection of the class means preserves
the class distances in such a way that class separability is maintained as well as is possible, Loog et al. (2001)
defined the between-class scatter matrix Sy as:

C—1 C
Ss = > pp(m—m)(m—m,)", (2)
=1 j=itl
where m; and m; are the mean vectors of classes i and j, respectively, while p; and p; are their priori probabil-
ities. The term (m; — m;) (m; — mj)T in Eq. (2) is actually the between-class scatter matrix for the classes i and j
in a two-class model. Using this decomposition in Fisher criterion, it can be seen that C-class Fisher criterion
can be decomposed in (1/2)(C(C — 1)) two-class Fisher criteria. This criterion is referred to as pairwise Fisher
criterion (Loog et al., 2001). Loog et al. (2001) generalized Fisher criterion by introducing a weighting func-
tion depending on the Mahanalobis distance.
The function of the Mahanalobis distance matrix is to approximate pairwise accuracy when used in the het-
eroscedastic discriminant analysis (HDA) (Loog and Haeb-Umbach, 2000). Saon et al. (2000) pointed out that
HDA alone actually degrades the recognition performance.

2.2. CLAFIC, SELFIC and SIMCA

We will now provide an explanation of other subspace methods used for pattern recognition purposes
in this section. These subspace methods were introduced by Watanabe (Watanabe et al., 1967) and have
been widely used by Kohonen (Kohonen et al., 1979, 1980, 1984) with all work summarized by Oja
(1983). SELFIC and CLAFIC methods are basically the same methods since the feature vectors are first
normalized in both methods, the only difference being that the average feature vector of the class is sub-
tracted from each feature vector in SELFIC, whereas this average vector is not subtracted at all in CLA-
FIC. Furthermore, derivation of the CLAFIC method is followed by the metric (Watanabe et al., 1967;
Oja, 1983)
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claﬁc = Z a V/’ 2 Z ZV aa Vi, (3)

=1 j=1

where m is the total number of feature vectors within one class and a, € R" is the feature vector® for
i=1,...,m. The same metric can be written as:

Foaric = % z”]: viQv;, (4)
=
where v/’s are the orthonormal basis vectors of the whole space, and Q is the class correlation matrix, that is
Q= i aa’. (5)
=1
The necessary condition for the extremum of the metric F,5. yields
Qu, =/u,  j=12,...;k—1k ... n (6)

where A; _’s are the eigenvalues and u;_’s are the eigenvectors of the correlation matrix Q, that is, v/'s turn out
to be the eigenvectors u; of Q.
The value of the metric F.5. will be (Oja, 1983)

1 D)
FC]aﬁC =5 (Alcor + )'2cor +oeee /L’kflcor + Akcor -+ i”cm) (7)

where A;_’s are the eigenvalues of Q and all 4; ’s are in descending order.
Another method developed by Wold (1976) “also called the SIMCA method, yields the following metric
when minimized

1 m 1 m
Fsimcamm = 5 Z Hai — Agye — Pai”2 = E Z ||PLai - aaveHza (8)
i=1 i=1

where P and P* are the projection matrices of the difference (B) and indifference subspaces (B*), respectively,
and they are obtained from the orthogonal eigenvectors of the within-class scatter matrix @ as given in Section
3 in Egs. (15) and (16).

2.3. CVA in the insufficient data case

The feature vectors aj,a,, .. .,a,, of a certain word-class C in the training set, which are assumed to be lin-
early independent, can be written as:

a =g +aom+€ for i=12... m, 9)

where the vector a, q;r indicates inter- and intra-speaker differences as well as acoustical environmental effects
and phase or temporal differences, and the vector a ., is the common vector of the word-class C, and ¢; rep-
resents the error vector (Giilmezoglu et al., 2001).

The following metric can be defined to minimize the sum of the squares of norms of the error vectors in
order to obtain a solution for the common vector (Giilmezoglu et al., 2001), that is,

2 Z”ezH 2 ZHaz azdlf aComH (10>

where ||€]| = (e, €,)/? denotes the Euclidean norm of the vector ;. The minimization of the metric F with re-
spect to a.., yields a unique solution for a..,, (Giilmezoglu et al., 2001):

Acom = A; — A dif VI:17275m (11>

2 For the sake of clarity in the notation, the vectors will be shown in boldface characters.
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In Eq. (11), a; 4ir is written as:
a;gir = (a;,u)uy + (2, W) + - - + (a;, U, ),y (12)

where (a,z) denotes the scalar product of a € R” and z € R", and u;’s are the eigenvectors of the within-class
scatter matrix. These span the difference subspace.

The common vector represents the common properties or invariant features of the word-class. The common
vector does not depend on the choice of the orthonormal basis vector set of difference subspace B (Giilmezoglu
et al., 2001). Therefore, the common vector is unique for each class and all error vectors ¢; are zero. Since all of
the feature vectors within one class yield the same common vector, the recognition rate for this class will
always be 100% in the training set under the condition m < n. When m approaches n, the common vector
approaches zero. If m equals to n, the common vector will be very close to the zero vector. Therefore the insuf-
ficient data case can only be applied when m is smaller than n.

3. Derivation of the common vector for the sufficient data case

In this section, it is suggested that a unique common vector can be found for each class mainly when the
number of feature vectors m in the training set of one class is larger than the dimension #n of the feature vec-
tors, that is, when m > n. This is called the sufficient data case.

Let the difference subspace B be spanned by the orthonormal basis vectors v, R” for j=1,2,.. .k — 1
(k —1<n), and let the indifference subspace B be spanned by the orthonormal basis vectors v; € R" for
j=k,k+1,...,n. We can choose k so that the sum of the smallest eigenvalues is less than some fixed percent-
age L of the sum of the entire set (Oja, 1983). Thus, we let k fulfill

(e () <

If L = 5%, a good performance is obtained while retaining a small proportion of the variance present in the
original space (Swets and Weng, 1996). L = 5% for indifference subspace was attained at a different number of
eigenvalues for each class. The average number of these eigenvalues was equal to 360.

The value of k is also determined from the point, where the eigenvalues of the training data start to vary
slowly upon plotting of the eigenvalues in descending order. In Fig. 3, this point approximately corresponds to
k =48 (=407 — 360 + 1). The orthogonal projection matrix P on the difference subspace B will be

k=1
P= Z vjv/T7 (14)
=
and the orthogonal projection matrix P* onto the indifference subspace B will be
Pt :vaV/T' (15)
=

P and P are symmetrical, idempotent 7 x n matrices, that is, P + P~ = I, where I is the identity matrix. The
purpose of the decomposition of whole feature space into two subspaces is to eliminate some part of the whole
space having large variations from the mean (Landgrebe, 2002).

One assumption for the difference vectors a; 4ir may be:

k-1
a,qr = Pa;, = Z(a[,vj)vj for i=1,2,...,k, (16)

J=1

that is, PLal‘ﬂdif =0. The difference vector a, 4;r is the projection of the feature vector a; onto the difference sub-
space B (Giilmezoglu et al., 2001). This is similar to the case obtained for the insufficient data. The other
assumption is on acom, that is, acom has the components only in the indifference subspace B*, Pacom = 0, a
feature which is similar to the insufficient data case. From this assumption, the following can be written as:
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Fig. 3. The variations of the square roots of the eigenvalues of the within-class scatter matrices obtained for all digits.

n

Acom = PLacom = Z<acomzvj>vj- (17)

J=k

Under the above assumptions, the metric F given in (10) can be transformed into
1 m 1 m
F=3 ;‘ la; — Pa; — P acon|* = 5 ;‘ 1P (a; — aom)||”- (18)
The minimization of F with respect to a.,, then gives
1 m
acom:PLaave:PL Z;ai . (19)
Using the above relation for the common vector a..n,, the metric F can also be written as:
1 n
F=> > v, (20)
=%
From the minimization of F with respect to v; under the constraints ||v,|| = 1 for j =k, ..., n, the basis vectors

(v;) of the difference and indifference subspaces will turn out to be the eigenvectors (u;) of the within-class scat-
ter matrix @:

D= i(ai — Ayye)(a; — aavc)T. (21)

After minimization, the metric F will become

1 & 1,
Fmin = 5 Zku}-d;u/ = 5 (/Lk + )vk+l +---+ j'Vl)7 (22>
j=
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where Ay, Ax+1,- - -, 4, are the smallest eigenvalues of the within-class scatter matrix @ and uy, ;. ,. . ., u, are the
corresponding eigenvectors. These are also the orthonormal basis vector set of the indifference subspace B™.

The projection of any feature vector a; onto the difference subspace B (Eq. (16)) yields a; 4ir, which has com-
ponents only in the significantly varying directions of the class C. The basis vectors of B are the eigenvectors
u;,...,u,_; corresponding to the largest eigenvalues of @.

The common vector a.,,, (Eq. (19)) is obtained for each class separately using the projection of the average
vector a,y. of the class C onto the indifference subspace B, where the variation of the feature vectors is the
smallest.

The idea proposed in this section is explained with a sample class in a two-dimensional feature space by the
following example.

Example. Let the feature vectors of the class C be:
=00 3]" aa=[0 1]" a;=[3 2]"

Then the average vector and the within-class scatter matrix of this class are given below with the eigenvalues
and eigenvectors,

[ e

=6 A=2
ll1:[1 O}T UZ:[O I]T
The class C is shown with its typical constant probability density contours in Fig. 4. For class C, the difference

in the u; direction will be discarded, and only the components in the direction u, will be retained for the com-
mon vector.

The common vector a.,, from (19), the difference vectors a; qir, a2 qir, 23 qir from (16) and the error vectors
€1, €, €3 from (9) can be written as:

acomz(aaveuz)m—%o 1" =[0 2]".

31d1ffll1(ll a1 = (1 0][0 3]T>:[0 O}T
ayar = w (ufay) = T( 0][0 I]T):[O 0]".
33dif=lll(llT33 = T(l 0][3 2]T>:[3 O}T

€ =2 — a5 —aom=0 3]'=[0 0]'—[0 2]"=[0 1]".
€2 =2 — g —aem =0 1]'=[0 0]"=[0 2]"=[0 —1]".
€3 =23 —A39r —Aeom = |3 2] —[3 0]"=[0 2]"=[0 o]

X3

Fig. 4. One class with its equal probability density contours (ellipses) and common vector.
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Then the minimum value of the CVA metric F,;, will be equal to 1, = 2. The common vector is shown in
Fig. 4. It should be noted that the common vector is in the direction of the eigenvector u,, which belongs
to the smallest eigenvalue. The common vector is the projection of the center of the ellipses in Fig. 4 onto
the eigenvector u,.

Taking the projection of the feature vectors a;, a, and a3 onto the indifference subspace eliminates the larger
variations of the equal probability density contours. That is, these projections will be closer to the projection
of the class average a.,,, when compared with the original whole space.

Since the number of data items exceeds the dimension of the feature vectors, zero eigenvalue cannot be
found if the feature vectors are linearly independent. Therefore, the common vector of the sufficient case can-
not be calculated using the mathematical derivation of the insufficient case.

4. Theoretical comparison with the insufficient data case

The CVA metric given in Eq. (10) is also valid for the insufficient data case. In this case, since m < n, the
number of zero eigenvalues obtained from the within-class scatter matrix is equal to n — m + 1. If the eigen-
values are in descending order, then the minimum value of the metric will be zero:

1
Fmin = 5 (ﬂvm + ;“mwtl +---+ ln) =0. (23)

This value of the metric guarantees a 100% recognition rate in the training set. In the sufficient case, the min-
imum value of the metric is not zero because the within-class scatter matrix has all nonzero eigenvalues. There-
fore the metric does not guarantee a 100% recognition rate in the training set. However, the experimental
study indicates that a 100% recognition rate in the training set can be obtained when the value of k in (15)
is properly selected.

Further important difference is the fact that the common vector in the insufficient data case is obtained by
taking the projection of any feature vector onto the indifference subspace, whereas the common vector in
the sufficient data case is obtained by taking the projection of the average vector onto the indifference
subspace.

5. Theoretical comparison with the other subspace methods

The comparison of the above mentioned nonnegative within-class metrics should be conducted under cer-
tain reasonable assumptions. Maximization of the metrics may have a value which is too large and not mean-
ingful for recognition purposes. Since all of the aforementioned metrics will yield a number which is greater
than or equal to zero after minimization, one can assume that the metric yielding a smaller number must be
better than the other metrics for recognition purposes. In fact, in our previous work, we demonstrated that the
metric producing a zero under minimization will yield a 100% recognition rate for the training set (Giilm-
ezoglu et al., 2001).

5.1. Comparison with the CLAFIC

In this case, the first (k — 1) eigenvalues of ® constitute the largest part of the metric Fj,5.. This will be
called Fafic,,, :

(Ao F A2 00 F At 1y)5 (24)

N =

1 m
T
Fclaﬁcmax = E § a; Pcorai =
i=1

where P, is the projection matrix of the subspace B and is obtained from the eigenvectors corresponding to
the largest eigenvalues of the correlation matrix Q. The choice of & is given in Oja (1983).

Although the within-class distributions will effect the magnitudes of these metrics, a sight can be gained by
just comparing the summation of the related eigenvalues for the CLAFIC and CVA metrics.
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The minimum of the CLAFIC metric can be defined as:

—_—

1 < ,
Fclaﬁcmin - 5 E , u};orQujcm. = 5 (/“kcor +oF )"ﬂcor)‘ (25)
=

The minimum of the CVA metric was given in (22). Since the correlation and within-class scatter matrices are
related by

Q = ® + Qave7 (26)

T
ave’

rQ = tr(® + Q,..). (27)

From here, one can write the following:

where Q,,. = Z;”:laavea}ve = may.a,,., and the following can be written as:

/’Llcor + e + A‘”cor = il + e + i” + m”aave”z’ (28)
Therefore,
Mee F o F gy = A4+ Ay (29)

It must then be expected that after minimization, the metric Fpi, of CVA is smaller than the metric Foage,,, in
general.

5.2. Comparison with the SELFIC

The SELFIC method starts with the subtraction of the average vector from each feature vector at the initial
step. The correlation matrix Q of the CLAFIC method will be substituted with the within-class scatter matrix
@ in the SELFIC method. The following two mathematical operations should not have been conducted in the
SELFIC method, one is the normalization of the feature vectors (radially aligned classes will overlap on the
hypersphere of the feature space in this case), and the other is the initial subtraction of the average vector
which makes the common vector for any class a zero vector.

Another difference between SELFIC and CVA is that SELFIC maximizes its metric (Watanabe et al., 1967)
whereas CVA minimizes it (Giilmezoglu et al., 2001). The maximization of the metrics does not give us any
hint to recognition rates whereas minimization of the metrics gives us a certain hint as it is stated in Giilm-
ezoglu et al. (1999).

5.3. Comparison with the SIMCA

Comparison between the minimums of SIMCA and CVA can also be made from (8):

1 m
Fincay, =5 > aPra; — 2ma) Play. + maj, e (30)
i=1
and from (18)
1 m
Fuin = 5 > aPa; — 2ma) Play. + may Plag.. (31)
i=1

Obviously, only the third terms differ and the third term of the metric F,;, of CVA is smaller than the third
term of the metric Fgmc, . Therefore, Fuiy, < Fimea,;, -

5.4. Comparison with the FLDA

Theoretical comparison of CVA with previous subspace methods was possible since in all of these subspace
methods the metrics contain only the within-class scatter. None of these previous subspace methods contains
the between- or total-class scatters. Since FLDA employs the between-class scatter in its metric, it cannot be
compared with the CVA method theoretically. If the comparison between FLDA and CVA is desired, one has
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to make priori assumptions about the between- or total-class scatters. No such priori assumptions have been
encountered in the literature by the authors.

6. Decision criterion and experimental results
6.1. Decision criterion for CVA

CVA developed for the sufficient data in this paper, CLAFIC and SELFIC are applied to the TI-digit data-
base for speech recognition purposes. The decision criteria for the CVA method is given below.
For an unknown feature vector a,, a vector, called the remaining vector (a’ can be defined as:

x,rem />
n

Bl rem = D (2w ) = (PH)'a,, (32)

=k
where [ denotes the index of the classes. The Euclidean distance between the common vectors and the remain-
ing vectors is employed as the decision criterion in CVA, and is given with the following formula:

! 1
x,rem Aom

C* = argmin ‘ a
I

| = argmin [|(P)'(a, —al,,)[, (33)
1

that is, if the feature vector a, belongs to the class C', the distance between a! _ and a/  should be a
minimum.

6.2. Experimental results

All of the previous methods have been applied to the TI-digit database consisting of 11 isolated digits. In
our TI-digit database, there are 112 speakers repeating each digit twice in the TI-training set and 111 speakers
repeating each digit twice in the TI-test set. Since we need to have m > n, our training set is constructed by
taking 224 repetitions from the TI-training set and 202 repetitions from the TI-test set. The remaining 20 rep-
etitions in the TI-test set are used in our test set for each digit. Therefore, the repetitions, i.e. the feature vec-
tors, in the test set and the feature vectors in the training set are completely disjoint in the experiments. An
equal number of male and female speakers is used in the training set (213 male and 213 female) and in the
test set (10 male and 10 female).

After end-point detection, the speech frames consisting of 256 samples are pre-emphasized and analyzed to
calculate 11 root-melcep parameters. These parameters are then stacked in order to construct the feature vec-
tor for each repetition of each digit. After this process, the dimension of the feature vector for each digit varied
from 110 to 407 (110 < n < 407). Therefore, when the dimension of each feature vector is less than 407, it is
extended to 407 by padding random values only at the end of the vector. The digits “four”, “three” and “ow”
require the most padding. The average numbers of padded values for these digits are 242.15, 239.74 and
229.28, respectively. The overall percentage of padding in the database is 50.7%. The within-class scatter
matrix @ with a size of 407 x 407, its eigenvalues and eigenvectors are calculated using m = 426 feature vectors
in each class. Since 20 feature vectors in the test set are too few to determine the recognition accuracy, the
leave-twenty-out method is applied instead of the leave-one-out method. Thus, the testing process is repeated
11 times to cover all the repetitions in the TI test set. The average recognition rates obtained from these iter-
ations are given for the training and test sets. Since all the eigenvalues of the within-class scatter matrix are
found to be nonzero, the eigenvectors corresponding to the different numbers of the smallest eigenvalues
(n — k+ 1) in the CVA and CLAFIC method are used in the recognition process. Whereas the eigenvectors
corresponding to the different numbers of the largest eigenvalues (k — 1) in the SELFIC method are taken in
the recognition stage.

As mentioned previously in Section 3, the choice of the number &, which determines the dimensions of the
indifference subspaces, can be conducted using Eq. (13) with L = 5%. The value of k can also be determined
approximately by specifying the point where the eigenvalues for all the digit classes start to vary slowly, as seen
in Fig. 3. For the TI-digit database, the value of k is determined as 48 (=407 — 360 + 1) when the above
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criteria are applied. The recognition rates of CVA and CLAFIC are given in Table 1 for this value of k. The
recognition rates of the SELFIC method in Table 1 are given for k£ = 360 (407 — 48 + 1) since the eigenvectors
corresponding to the largest eigenvalues are used in the SELFIC method. Since the digit “four” overlaps with
the digits “five’”” and “ow” in the SELFIC method, the digit “four” is recognized as “five”” or “ow”’. There-
fore, the recognition rate is zero for this digit as seen from Table 1. In order to see the effect of different selec-
tions of k for the CVA and CLAFIC methods, the value of k is changed between 8 (=407 — 400 + 1) and 58
(=407 — 350 + 1). The results are given in Figs. 5 and 6 for the training and test sets, respectively. As can be
seen from these figures, although the recognition rates for the training set decrease when k decreases, the rec-
ognition rate for the test set reaches a maximum value of 98.85% in CVA when k reduces to 28.

When CVA and CLAFIC are used in the classification of feature vectors in the training set, 100% recog-
nition rates are obtained for the first four smallest eigenvalues. On the other hand, SELFIC gives the maxi-
mum recognition rate of 92.38% with the 350 largest eigenvalues.

If the pairwise Fisher criterion is used in the experimental study, 96.54% and 92.27% recognition rates are
obtained for the training and test sets, respectively. When Mahanalobis based aPAC (y = 0.5) is used in the
experimental study, recognition rates reduce to 91.72% for the training set and to 87.27% for the test set.

In this study, we have also compared the subspace method CVA and the whole space method HMM only
with respect to their classification performances and processing times. HMM with continuous densities
(CDHMM) is used to model each class in the TI-digit database. We have selected a left-to-right model without
skipping, and employed a diagonal within-class scatter matrix for multivariate Gaussian density functions.
HMMs were trained using twenty iterations of the Baum—Welch method. The same number of frames (37)
and, same training and test sets were used as in the CVA. No random values are padded to the end of the
utterances when applying the HMM method; that is, words with short duration remained short and words
with long duration remained long. HMM models are trained using a different number of states (Q) and mix-
tures (M). In order to find the best parameter setting, the development test set (devtest) is constructed by tak-
ing 20% of the training data. The highest recognition rates are obtained from the devtest for Q = 6 and M = 8.

The leave-twenty-out method is also applied to HMM. The average recognition rates obtained from 11 dif-
ferent training and test sets are given in Table 1. These rates are slightly lower than the rates obtained from the
CVA method. Therefore, CVA outperforms HMM slightly.

CVA requires much shorter processing time in the training and test phases. We have implemented CVA and
HMM in Matlab and measured the processing time of the training process for CVA and HMM in a personal
computer, Pentium IV with 3 GHz and 1 Gbyte RAM. The processing time of CVA and HMM in the training
phase per class is measured as 4.1 s and 224 s, respectively. The processing time in the test phase is measured as
0.015 s for CVA and 0.18 s for HMM.

For longer isolated words in the vocabulary, one should normally use the insufficient data case of CVA.
Another suggestion could be to use only a few initial phonemes of those words. In order to realize this case,
the experimental study is continued by taking, not all, but only the first 120 elements of the feature vectors

Table 1
Average recognition rates obtained by using the CVA, CLAFIC and SELFIC methods as percentages for n =407 and k = 48
Words Training set Test set

CVA CLAF SELF HMM CVA CLAF SELF HMM
One 100.00 99.89 90.63 99.60 98.18 97.73 77.27 98.64
Two 99.53 99.68 96.07 99.34 99.10 99.10 87.73 97.27
Three 99.74 100.00 99.10 99.72 98.18 96.82 88.18 99.55
Four 99.79 99.79 0.00 99.21 96.82 96.82 0.00 97.73
Five 99.36 99.89 96.86 98.91 96.82 96.82 90.00 93.64
Six 99.23 99.76 93.77 99.96 98.18 97.73 87.73 100.00
Seven 99.77 100.00 97.18 99.79 97.73 98.18 89.55 99.09
Eight 100.00 99.98 90.31 99.75 99.55 98.64 80.45 99.09
Nine 98.80 99.70 98.61 98.93 95.91 96.82 91.36 98.18
Ow 100.00 100.00 97.95 97.85 100.00 98.64 95.91 96.36
Zero 99.34 100.00 88.28 99.73 99.10 99.10 80.45 98.18

Average 99.60 99.87 86.25 99.34 98.14 97.85 78.97 97.97
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Fig. 5. Recognition rates for the CVA and CLAFIC methods for the training set.

100 T
—o—-CVA
— ¢ — CLAFIC

99.5F i
T 9r i
Py _B
‘(% - ~ ~
o - ~.
S 985} D I 1
= // NN
c s N
8’ P s AN > ~
3 O s N B~
c 98} a N T<g

\<% - _
T
975 i
97 Il Il Il Il Il
10 20 30 40 50 60
k

Fig. 6. Recognition rates for the CVA and CLAFIC methods for the test set.

(n = 120). If the dimension of the feature vectors is less than 120, some random values are padded at the end of
these feature vectors. Generally, the feature vectors with the dimension of 120 correspond to the first two or
three phonemes of the digits. The number of the feature vectors in each class in the training set was taken as
m = 224. As mentioned above, the value of k is determined approximately by specifying the point where the
eigenvalues for all the digit classes start to vary slowly. The recognition rates of the CVA and CLAFIC meth-
ods for k=16 (120 — 105 + 1) and the recognition rates of the SELFIC method for &k =105 (120 — 16 + 1)
are given in Table 2 for the training and test sets. Similar recognition rates are obtained for this case, with
the exception of a small decrease in the test set. The results are still satisfactory to build a CVA classifier.
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Table 2
Average recognition rates obtained by using the CVA, CLAFIC and SELFIC methods as percentages for n = 120 and k = 16
Words Training set Test set
CVA CLAF SELF CVA CLAF SELF
One 99.55 99.55 99.11 98.65 98.65 74.77
Two 98.66 98.66 79.46 99.10 97.30 49.55
Three 98.66 100.00 99.55 96.85 95.95 69.37
Four 99.55 100.00 7.14 96.40 96.85 2.70
Five 100.00 100.00 99.55 97.30 98.20 74.32
Six 94.20 93.30 68.30 83.33 79.28 33.33
Seven 97.77 98.66 96.88 94.14 89.64 51.35
Eight 100.00 100.00 90.18 98.20 97.30 59.91
Nine 98.21 98.21 94.20 97.75 96.85 66.22
Ow 100.00 99.55 66.07 98.20 97.30 31.98
Zero 99.11 99.55 97.32 98.20 96.85 67.57
Average 98.70 98.86 81.62 96.19 94.92 52.83
Table 3
The eigenvalues (1) of the digit “one” in the training set for the CVA and CLAFIC methods
A CVA CLAFIC
1 2.0263833 2.0968891
5 4.3241740 4.3251429
10 6.9388887 7.0029827
20 13.840821 14.211669
30 26.455506 26.970437
40 45.454204 48.171274
50 84.644623 88.054337
60 135.77382 137.72936
70 236.11065 236.17084
80 420.64866 421.14791
90 875.92080 897.92442
100 1872.4006 3107.7840
105 3451.5778 3481.2727
110 6364.2895 6547.9868
115 11954.141 15585.626
117 29801.539 32413.348
118 32795.068 38886.823
119 40678.009 109903.71
120 110541.02 676866.59

Thus, the experimental results verify the theoretical comparison of CVA with other subspace methods. The
eigenvalues of the digit “one” in CVA, given in Table 3, are smaller than those of the CLAFIC method.
Therefore, the summation of the eigenvalues in CVA always gives smaller numbers than the summation of
the eigenvalues in the CLAFIC method. This verifies that CVA is better than CLAFIC for recognition
purposes.

7. Conclusion and discussion

Both the theoretical development of CVA and its comparison with other subspace methods are given in this
paper for the sufficient number of data items in the training set. The common vector formulated in this paper
is in accordance with previous derivations for the insufficient data. Therefore, the common vector is in the
direction of the eigenvectors that belong to the smallest (including zero) eigenvalues of the within-class scatter
matrix of a class.
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Table 1 shows that a recognition rate of 99.6% is obtained for & = 48 in the training set. It is also obvious
from the table that CVA is able to achieve the recognition rate of 98.85% for k =28 in the test set. These
results are obtained when the digits are taken in full length, and when the short digits with less than 407 fea-
tures are padded with small random numbers.

The main advantages of CVA compared to HMM are that CVA is easy to implement and does not require
such complex operations as HMM. If one wants to avoid the burden of calculation of probability density
functions while building a classifier, CVA is a reasonable choice. But in the CVA method, a whole utterance
is treated as a single vector instead of a sequence of independent vectors. Therefore, the number of parameters
in CVA is larger than that in HMM. This is a disadvantage of CVA because the memory requirement of CVA
is higher than that of HMM. Since the state-of-the-art HMM requires feature vectors augmented with delta
and delta-squared parameters, we were not able to compare it with the sufficient case of CVA. If CVA uses
higher dimensional vectors then the sufficient case reverts to the insufficient case. The recognition rates of
CVA for the insufficient case are lower than the results given in this paper for HMM for the T1-digit database
(Giilmezoglu et al., 2001).

CVA does not encounter scatters in the other classes at all, in similar with HMM, besides its own class. The
CVA method uses an indifference subspace for each of the classes separately, whereas FLDA in general cal-
culates only one single subspace for all the classes in the training set. This may reduce recognition rates com-
pared to the CVA method. For the class scatters given in Fig. 1, considering only within-class scatter as in
CVA, gives better classification rates than that of considering both within- and between-class scatters as in
FLDA. It is obvious that the scatter of the classes in any database will affect the performance of classifiers,
that is, FLDA can give better results than CVA for different class scatters, as shown in Fig. 2.

The higher performance of CVA can be obtained for different selections of k. This suggestion can be ver-
ified from increasing recognition rates given in Figs. 5 and 6. One can see that increasing the dimension
improves the recognition rates up to k =28. When the number of dimensions of the indifference subspace
becomes closer to the number of dimensions of the whole feature space, recognition rates start to fall
appreciably.

Another important point is that normalization of the feature vectors in the SELFIC and CLAFIC methods
is not necessary, and in fact, should not be performed because the radially aligned classes will overlap on the
hypersphere upon normalization procedure. From the experimental work we have seen that the digit “four” is
radially aligned with the digits “five”” and “ow”, and this can be seen from Table 1, since recognition rates of
the digit “four” drop to zero in the SELFIC method after normalization. It is clear that CVA is also resistant
to damage caused by normalization for the case of the insufficient number of data items, if classes are radially
aligned (Giilmezoglu et al., 2001).

The authors are aware of the fact that CVA extracts temporal variations in the utterance, as well as all the
other differences. The least varying directions are more important in pattern classifiers than the largely varying
directions (Landgrebe, 2002) and a separate indifference subspace must be calculated for each class.
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