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Abstract

In this article the existence of the convex extension of convex set valued map is considered. Con-
ditions are obtained, based on the notion of the derivative of set valued maps, which guarantee the
existence of convex extension. The conditions are given, when the convex set valued map has no
convex extension. The convex set valued map is specified, which is the maximal convex extension of
the given convex set valued map and includes all other convex extensions. The connection between
Lipschitz continuity and existence of convex extension of the given convex set valued map is studied.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The family of all nonempty, compact subsetsi¥fis denoted by com®”).
We denote by symboh(E, D) the Hausdorff distance between the sétsD e
comp(R"). Itis defined as

h(E, D) = max{supd(x, D), supd(y, E)},
xeE yeD
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whered(x, D) =inf,cp || x — y || and]| - || means the Euclidean norm. It is known that,
(comp(R™), h(-,-)) is a metric space (see, e.g., [2,4]).

Let V(-) : [to, 0] — compR") be a set valued map the graph of which is denoted by
grV(-) and defined as

grv () ={(t x) elto,0] x R": x e V(1) }.

Now, we give the definitions of the locally Lipschitz and Lipschitz continuity of the set
valued map.

Definition 1.1. If for every ¢, € (70, 0) there exisb, = o (t,) > 0, Ly, = L(¢4, o) > 0 such
that for everyry € (¢, — 0%, tx +0%), 12 € (t, — 0%, tx + 0%) the inequalityh (V (t1), V (2)) <
L. |t1 — t2] holds, then the set valued m&fx-) : (z0, ) — comp(R") is said to be locally
Lipschitz continuous on the open interva, 6).

If there existsK > 0 such thath(V(r1), V(2)) < K|t1 — 12| for everyr € [1g, 0],
t2 € [fo, 0] then, the set valued may(-) : [r, #] — comp(R") is said to be Lipschitz
continuous on the closed intenjad, 6] with Lipschitz constank .

For A C R", we denote the convex hull of as cqA), the interior ofA as intA. (-,-)
denotes the inner product.

Now let us give the definitions of the derivative sets of the given set valued map. For
(t,x) € [t0, 0] x R" and the set valued map(-) : [to, 6] — comp(R"), we define

1
DYV, x)= {v € R™: Iism iorlf gd(x +8v, V(t +9)) :O},

n. I; H 1
D V(t,x)= {v e R™ I!;T)quf Sd(x Sv, V(1 —9)) _0}.
The setDTV(t,x) (D~ V (¢, x)) is said to be an upper right-hand side (left-hand side)
derivative set of the set valued map> V (¢) calculated at the point, x). Note that the
upper right-hand side (left-hand side) derivative set is closed and it has a close connection
with upper Bouligand contingent cone, used in the study of many problems of the set
valued and nonsmooth analysis (see, e.g., [2,4,5,9]).

A set valued magy (-) : [tp, 6] — comp(R") is said to be convex (compact) if §i(-) is
convex (compact) set. It is obvious that the set valued mapis convex iff

AVt + A=)V () C V(A4 (1— i)
for all 11, 12 € [tg, 8] andA € [0, 1].
Let us give the definition of the convex extension of the convex set valued map.

Definition 1.2. Let V() : [t9, 6] — comp(R") be a convex set valued map awd- 0 be a
fixed number. If there exists a convex set valued map

W():[to—a, 6] — comp(R") (W():[to, 0 +a] — compR™))

such thatW () = V(¢) for all ¢ € [0, 6], then the set valued may (-) is said to be a
left-hand (right-hand) convex-extension of the set valued majx-).
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If there exists a convex set valued mB{1(-) : (o — «, 0 + o] — comp(R") such that
W(t) = V() for all ¢ € [tg, 0], then the set valued ma@y () is said to be a convex
a-extension of the set valued mafy-).

The existence of the convex extension of the convex set valued map arises in the so-
lutions of some inverse problems of the differential inclusion theory, where it is required
to construct a differential inclusion with prescribed attainable sets or integral funnel (see
[3,6-9]). For a special case, the existence of the convex extension of convex set valued
map was studied in [3,8]. Some maximality properties of the convex extension is consid-
eredin [7].

In this article, in Section 2, conditions, based on the notion of the derivative of set
valued maps, are obtained, which guarantee the existence of left-hand and right-hand
convex extensions of the convex set valued i@y : [fo, 6] — comp(R") (Theorems 2.3—

2.5). In Section 3 we give conditions, which guarantee nonexistence of the left-hand and
right-hand convex extensions of the convex set valued méap: [f9, 0] — compR™)
(Theorems 3.3 and 3.5) and formulate a necessary and sufficient condition for the ex-
istence of left-hand and right-hand convex extensions (Theorem 3.6). In Section 4 the
maximality property of the convex extension is studied. The convex set valued maps are de-
fined, which are convex left-hand and right-hand extensions of the convex set valued map
V() : [to, 0] — compR") and includes all their other convex left-hand and right-hand
extensions respectively (Theorems 4.4 and 4.5). At the end, in Section 5, the connection
between the existence of the convex extension and Lipschitz continuity of the convex set
valued mapV () : [fg, 0] — comp(R") is studied. It is shown that if the convex set val-
ued mapV (-) : [tg, 6] — comp(R"™) has a convex extension, then it is Lipschitz continuous
(Theorem 5.2) and vice versa, if the convex set valued map: [tg, 0] — comp(R") is
Lipschitz continuous and it (zg) # ¥ and intV (9) # @, then it has a convex extension
(Theorem 5.3).

2. Theexistence of convex extension
For givena > 0, x, € R" and the set valued map(-) : 7, #] — comp(R"), we define
the set valued maps
VE() | ()i lto —a, 0 + o] — comaR"),
VER(x,) | () :[to — a, 0 + a] — comp(R"™)
setting

Vof(xm(r>=(1—t‘f{”)x*ﬁ_ﬁ”wm), (2.1)

LV, 2.2)

VaR(x*)|(l‘)= <1— 9+a_t>x*+9+a—

It is obvious thatV.l (x,) | (1) = V(to) and V.R(x,) | (8) = V(0). If the set valued
mapV (-) : [to, 6] — comp(R") is convex, therV.t (x,) | (-) and VR (x,) | (-) are convex
compact and Lipschitz continuous set valued maps.
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The following proposition characterizes the existence of the left-hand convex extension
of the given convex set valued map.

Proposition 2.1. Leta > 0, V, () : [to—a, 8] — comp(R™) and V () : [fg, #] — comp(R"™)
be convex set valued maps. Suppose thdtg) = V(10) and V(¢) C V,(¢) for all ¢ €
(t0, 0]. Then the set valued mag(-) : [ro — «, 6] — comp(R") defined as

_ VDt(t)a te[to_avto)v
W@ = { V), el 0],

is a left-hand convex-extension of the set valued m#g-).
Proposition 2.2. Leta > 0, xg € R" andV (+) : [f0, 8] — comp(R") be a convex set valued
map. Suppose that

D1V (tg,v) € DTVE(x0) | (fo,v) forall ve Vr).
ThenV (t) C VE(xo) | (t) for everyr € (o, 01, where the seV.(xo) | (1), t € [to, 6], is
defined by(2.1).

Proof. Assume the contrary. Let there existe (79, 0] and x, € V(¢,) such thatx, ¢
VE(x0) | (t,). SinceVE(xo) | () is a convex compact set, then there existse V.1 (xo) |
(t+) such that

1xe = well = d (x4, VF (x0) | (1)) > O.
According to the Theorem 2.3 from [1], we have
(Xs — Wy, ws —w) =0 forallw e VE(xo) | (4). (2.3)

Sincew, € VaL (x0) | (#+), then we get that there existage V (1) such that

te — I te — I
w*=:<1——jl——gjlz>xo+—jl——9j;gvo. (2.4)
o o
Letv € V(1p) be an arbitrary chosen element. Then
te — ¢ te — ¢
w = <1 _ ﬂ)xo—i— ETRY vl | (). (2.5)
o o
From (2.3)—(2.5) it can be obtained that
(x4 — w4, v9 —v) =0 foreveryv € V(1p). (2.6)
Now let us set
t—t t—t
x(t) = (1— 0>v0+ Ox*, t € [to, ts], (2.7)
t« — 1o ty — 10
t—t t—1
w(t) = <1— 0 )vo+ O w,, teliotl. (2.8)
ty — 10 t« — 10

It follows from (2.1), (2.4) and(2.8) that
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vo, € [to, 1], (2.9)

t — I t — I
w(t) = (1_ ﬂ)xﬁﬂ

o o

and

w(t) € VE(xo) | () for everyr € 10, 1.]. (2.10)

Letr € (1o, t,] be fixed. Now let us take an arbitrany e VaL (x0) | (t). Then there exists
v € V(1p) such that

t — 1 t — 1
w:(l— 0+a>x0+ O+av.
o o

By virtue of (2.6)—(2.9), we get

(x(®) —w), wt) —w) >0 forallwe VE(xo) | (). (2.11)
Since|lx(t) — w(@)| = t:’% xs« — ws| > 0, according to [1, Theorem 2.3], it follows
from (2.10) and(2.11) that
d(x(1), Vi (x0) | (1) = ||x(@) = w®) | = (¢ — 1), (2.12)
wherer, = ”ﬁ%@‘;*” >0, 1 € (g, t+].

Letu, = % Then (2.7) implies that
x(t) =vo+ (t —to)us, tE€l[tog,ts]. (2.13)

So, we get from (2.12) and (2.13) that
d(vo+ (t — to)us, V.E (x0) | (1)) _

lim re > 0,
11 t—1to
which means that
uy & DTV (x0) | (t0.v0). (2.14)

Sincex, € V(t), vo € V(t0) andV (-) is a convex set valued map, it follows from (2.7)
thatx(r) € V (¢) for everyr € [tg, t,.] and thereforel(x(¢), V (¢)) = O for everyt € 1o, t.].
Consequently we get from (2.13) that

d(vo+ (t —to)us, V(1) _

liminf 0,
115 r—1o
and therefore
Uy € D+V(to, Vo). (2.15)

It follows from (2.14) and (2.15) thad ™V (to, vo) € DT V.L (x0) | (to, vo), Which is a con-
tradiction of the condition of the theorem. So, this concludes the praof.

From Propositions 2.1 and 2.2 we obtain following theorems which specify sufficient
conditions for the existence of the left-hand and right-hand convex extensions of the given
convex set valued map in terms of derivative sets.
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Theorem 2.3. Leta > 0, xg € R" and V (-) : [t0, 6] — comp(R™) be a convex set valued
map. Assume that

DTV (to,v) € DTVE(x0) | (to,v) for everyv € V (10).
Then the set valued mag(-) : [tp — o, 8] — comp(R") defined as

VE(xo) | (1), te€lto—a,to),
V), t €1, 01,

is a left-hand convex-extension of the set valued m#épg-), where the seVaL (x0) | (1) is
defined by relatiorf2.1).

W) = {

Analogously, the following right-hand convex extension existence theorem is valid.

Theorem 2.4. Leta > 0, x1 € R" and V (-) : [t0, 0] — comp(R™) be a convex set valued
map. Assume that

D™V (6,v) Cc D"VE(x1)| @,v) foreveryve V(H).
Then the set valued mag(-) : [#g, 0 + ] — compR") defined as

V@), t € [to, 0],
W)= { VR | (1), 1€6.0+al,

is a right-hand convex-extension of the set valued m¥fg-), where the seVaR (x1) | ()
is defined by relatiorf2.2).

Now, let us formulate the convex extension existence theorem.

Theorem 2.5. Leta > 0, xg € R", x1 € R" andV (-) : [t0, 8] — comp(R") be a convex set
valued map. Assume that
D1V (tg,v) € DTVE(xo) | (10, v) for everyv € V (1), (2.16)
D V(@,v) C D*VQR(xl) | (8,v) foreveryve V(). (2.17)
Then the set valued mag(-) : [tp — «, 0 + o] — comp(R") defined as
VE(xo) | (1), 1€lto—a,t0),
W)= V@), t € [n,0], (2.18)
VR 1 (1), 1€(0,60+al,

is a convexa-extension of the set valued ma3f-), where the setsVaL(xo) | (t) and
VER(x1) | (r) are defined by relation2.1) and (2.2), respectively.

Proof. Since fore > 0 andx; € R" the inclusion (2.17) is satisfied, then it follows from
Theorem 2.4 that the set valued midg) : [7, 0 + «] — comp(R") defined as

V), t €[t,0],

U(”:{Va’?(xl) (1), t€®.0+al, (2.19)
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is a right-hand convex-extension of the set valued mafx-). From the definition of the
right-hand convext-extensionU (-) : [0, 6 + @] — comp(R") is convex set valued map,
U(t) = V() for all ¢ € [1g, 0], and consequently

DYU(tg,v) = DV (tp,v) forallve V(). (2.20)
Then from (2.16) and (2.20) we obtain that

DY U (19, v) C D+VaL (x0) | (tg, v) forall v e V(1g).

According to the Theorem 2.3, the set valued nigf-) : [0 — «, 6 + o] — comp(R")
defined as

_ Vi@, telio—a, ),
vy = { U, i € [10, 6 + o], (221)

is a left-hand convex extension bf(-) : [fg, 6 + o] — comp(R™). From (2.18), (2.19) and
(2.21) the proof of the theorem follows.o

3. Impossibility of convex extension

In this section, we will study the case where the convex set valued map has no convex
extension and will formulate a necessary and sufficient condition for the existence of the
convex extension of the given convex set valued map. At first let us give some auxiliary
propositions.

Proposition 3.1. Let W () : [tp — «, 8] — comp(R") be a left-hand convex-extension of
the convex set valued ma3-) : [fo, 6] — compR"). Then for every fixed, € (0, «] and
X« € W(to — o) the inclusion

V() C Vi () | (1)

holds for anyr € [#g, 6], where the seVaL* (x4) | (2), t € [to — s, 0], is defined by relation
(2.2).

Proof. Choose an arbitrar < (7o, 6] and define the set valued m&g-) : [fo — a4, 0] —
comp(R"™) where

t—t t—t
P(t) = (1— °+“*> 0y ).
t* — 1o+ oy t* — 1o+ oy
It is not difficult to show that
P(10) C V(10). (3.1)

Now, let us prove that
P(@)c V() foralltelr,t*).

We define the set valued ma&-) : [0 — a4, t*] — comp(R") setting
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r— t— 1
Q(I)I(l— 0+05*>X*+ 0+ O

*

P(10). (3.2)

*

It follows from (3.1) and the definition of the set valued m@f;(x*) | () that

Q1) CVE() | (1) forallrelro— oy, 6]. (3.3)

Now, let us take € [tp — ax, t*]. From (3.2), it can be obtained tha® () = P(¢) and
consequently, it follows frond3.3) that

P(t) C V] (x| (1) (3.4)
forall r € [tg — ay, t*]. SinceP (t*) = V (¢*), then it follows from(3.4) that
V(t*) C V(x| ().
Sincet* € [1g, 0] is arbitrary chosen, we havwé(t) C VO,L* (x¢) | (@) forallt € [10,0]. O
Proposition 3.2. Let the set valued may (-) : [fo, 0 + ] — comaR") be a right-hand

convexx-extension of the convex set valued mvap : (7o, 6] — comp(R"). Then for every
fixedo, € (0, o] andx, € W(0 + a,) the inclusion

V() C V() | (1)

holds for anyr € [#g, 6], where the sevai (x4) | (8), t € [t0, 0 + o], is defined by relation
(2.2).

The proof of Proposition 3.2 is similar to proof of the Proposition 3.1.
In the next theorem we give a sufficient condition, when the convex set valued map has
no convex extension.

Theorem 3.3. Let V (-) : [tp, 6] — comp(R") be a convex set valued map. Suppose that for
every fixedr > 0 andx € R" there exist® € V (1p) such that

DYV (tg,v) € DTVEW) | (10, v).

Then the set valued map(-) : [f9, 6] — comp(R") has no left-hand convex extension,
where the set valued map-> V. (x) | (¢), t € [to — «, 0], is defined by relatior2.1).

Proof. Assume the contrary. Let, > 0 and the set valued may (-) : [tp — o, 0] —
compR") be a left-hand convex.-extension of the set valued map(.) : [r, 0] —
compR"™). Choosex, € W (to — ). According to the Proposition 3.1, we have

V() C Vi) | (1) foralltelr, 6], (3.5)

where the seVaL* (x4) | (8), t € [to — ax, 0], is defined by relation (2.1). Sincg(tp) =

VE (xy) | (o), then from (3.5) it follows thatD™V (1o, v) C DTV (x,) | (1o, v) for all

v € V(t0) which is a contradiction to assumption of the theorem. Therefore the proof is
complete. O
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Example 3.4. Let the set valued map (-) : [0, 1] — comp(RY) is defined as

V() ={xeRY: |x| <141}, te[0,1].
It is not difficult to show that the convex set valued miap) : [0, 1] — compRY) has no
convex left-hand extension.

Analogously, the following theorem is true.

Theorem 3.5. Let V (-) : [tp, 6] — comp(R") be a convex set valued map. Suppose that for
every fixedr > 0 andx € R" there existy € V(0) such that
D™V (#,v)Z D VEx) | ©,v).

Then the set valued map(.) : [tp, 6] — comp(R") has no right-hand convex extension,
where the set valued map-> V.R(x) | (), r € [t0, 6 + a], is defined by relatioi2.2).

So we obtain from Theorems 2.3, 2.4, 3.3 and 3.5 the validity of the following theorem
which gives us a necessary and sufficient condition for the existence of left-hand and right-
hand convex extensions of the given convex set valued map.

Theorem 3.6. Leta > 0, V(-) : [tg, 6] — comp(R"™) be a convex set valued map. The set
valued mapV () has a left-handright-hand convexx-extension if and only if there exists
X0 € R" such that

D1V (tg,v) € DYVE(x0) | (to,v) for everyv e V(to)

(D™V(®,v) C D VE(xo) | (0,v) foreveryv e V(6)).

4. Maximal convex extension

Let us give the definition of maximal convexextension of the given convex set valued
map.

Definition 4.1. Let V(-) : [t0, 8] — compR") be a convex set valued mag, > 0 and
W) : [to — o, 0] = cCOMAR™) (W(-) : [to, 0 + o] — cOMP(R™)) be a left-hand (right-
hand) convex,.-extension of the set valued ma-). If

grve() Cgrw()

for every a € (0,a,] and V,(-) : [fo0 — «,0] — compR"), (V4(-) : [t0,0 + a] —
comp(R")), whereV,(-) is left-hand (right-hand) conveax-extension ofV (), thenW(.)
is called maximal left-hand (right-hand) convex-extension of the set valued maf-).

Now let us give one auxiliary proposition.
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Proposition 4.2. Let V(-) : [t,0] — compR") be a convex set valued mapi(-) :
[to — a@1,0] — cOmp(R™), Va(:) : [to — a2, 0] — comp(R") be left-hand convew; and
az-extensions oV (-), respectivelyy = max{a1, a2} and

E =co(grVi(-) ugrVa()),

E@)={xeR" (t,x)€E}, telio—a,b]
Then the set valued map(-) : [to — «, 8] — comp(R") is a left-hand convex-extension
of the set valued mag ().

Proof. Itis obvious that the set valued majg-) : [to—«, 6] — comp(R") is convex. Now,
let us prove that

E@)=V (@) foralltelt,0]. (4.1)

Since gV () cgrV;(-) C E=QgrE(-) (i =1,2), then grV(-) C grE(-) and conse-
quently

V@) C E@) forallrelr,0]. 4.2)
Now let us show that
E@®) c V(@) forallrelrn,0]. 4.3)

Let ¢ € [r9, 0] and choose an arbitranye E(z). Then(z,x) € E = grE(-). From the
Caratheodory theorem (see, e.g., [10, Theorem 17.1] ), therekexist = {1, 2, ...},
(t;,x;) egrvi(-)UugrVe(-) andr; >0(@G =1,...,k), such that

k k
(I,X)ZZ)»,'(Z,',X,'), Z)\,’ =1 (4.4)
i=1 i=1

If (¢;,x;)egrVe()foralli=1,...,kor(s,x;) egrVe() foralli=1,...,k, then it
is not difficult to verify thatx € V (¢).

Now, we assume that neithéf, x;) € grVi(-) nor (¢;, x;) e grVe(-) foralli =1, ..., k.
Denote

L={i=12 .k (tx)egrVi()}, L={12, ... k\,

M1=ZM, M2=ZM- (4.5)

iely ielp

Itis obvious thatly # @, I» £ @, u1 >0, uz2 > 0anduy + u2=1.
Then from (4.4) and (4.5) we obtain that

(t,x) =p1ty, xp) + po(tn, xp,), (4.6)
where

Ai )
(tr;, x1;) = Z<__(tis Xi)> (j=12).

iel; Ki
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Since(t;, x;) € grVi(-) foreveryi € I, Zle, —1 =1 andVy(-) is a convex set valued map,
then we get thatry,, x7,) € grVa(). Slmllarly, one can be shown that,, xz,) € grVva(-).
Sincer € [1o, 6] andr = paty, + poty,, then

tp =to OF tp, >1o.

Assume that;, > to. Since(t;,, x;,) € grVa(-), thenx;, € Vi(ty,). Since the set valued
mapsVi(:) : [fo — a1, 0] — comp(R") and Va(:) : [fo — a2, 0] — comp(R") are convex
extensions of the set valued m¥g-) : [r9, ] — comp(R") andz;, > to, we obtain that

Xp € Vl(tll) = V(tll) = VZ(tll)*

Thus, (¢, x1,) € grVa(-). Since(ty,, x1,) € grVa(-), Va() : [tog — a2, 6] — comp(R")
is a convex set valued map, then we get from (4.6) that) € grV2(+), that isx € Va(z).
Sincet > 1o thenVa(¢) = V(¢) and consequently € V (¢).

If 77, > to, then the inclusionr € V (¢) is proved analogously.

Sincex € V (¢) is chosen arbitrarily, we obtain the validity of the inclusion (4.3).

From (4.2) and (4.3) it follows the validity of the equality (4.1), which completes the
proof of the proposition. O

Leta > 0andV (-) : [to, #] — comp(R") be a convex set valued map. Define
MY (@) ={x e R": D"V (to,v) C DTVE) | (t0,v), Yv € V(t0)}, 4.7)
MR @) ={xeR" D" V(®,v) D VEx) |0, v), YveV®)}. (4.8)

Here the set valued maps—> V. (x) | (1), t € [to — a, 6], andt — VR(x) | (), t € [1o,
0 + «], are defined by (2.1) and (2.2), respectively.

Proposition 4.3. If the convex set valued magp(-) : [tp, 6] — comp(R") has a left-hand
(right-hand convexx,-extension, the X (o) ¢ R" (MR («) C R") is a nonempty convex
compact set for every € (0, a,].

The following theorem asserts that if the convex set valued Wi&p : [7o, 0] —
comp(R") has a left-hand convex,-extension, then the set valued miép) has the max-
imal left-hand convex,-extension.

Theorem 4.4. Suppose that the convex set valued ivdp : [70, 6] — comp(R") has a
left-hand convex,.-extension.
Then the set valued mapfy”(-) : [to — ax, 0] > comp(R™) defined as

V(ML)( 1= {ML(IO —1), 1€[to— ax, o),
V (), t € [to, 0],
is the maximal left-hand convex.-extension of the set valued m&f-), where the set
ML (tg—1), t € [to — ay, t0), iS defined by4.7).

Proof. Since the set valued map(-) : [0, 0] — compR") has a left-hand convex,-
extension then according to Proposition 4.3 theMét(ro — ¢) is nonempty convex and
compact for every € [fg — a, t0]-
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Firstly, let us prove that the set valued m# (-) : (0, a,] — comp(R™) is convex. Let
x1 € ME(a1), x2 € ME(a2) whereaq, as € (0, o] andx € [0, 1]. It is sufficient to show
that

Ax1+ (L= A)x2 € MY (ray + (1= Maz). (4.9)
Sincex; € ML (1), xo € ML (ap), then from (4.7) it follows that

D*V(io,v) C DYV (xi) | (to,v) (i=1,2)
for all v € V(tp). Theorem 2.3 implies that the set valued mép:) : o — «;,0] —
compR") (i =1, 2) defined as
VaL,.(Xi) | (), te€lto—a, ),
V(t), t € [10,0],
is a left-hand convex; -extension of the set valued m&fi-). Let us denote

E =co(grVi(-) UgrVa()),

Et)={xeR" (t,x)€E}, telto—a0],

where @ = max{uq, a2}. Then from Proposition 4.2 we have that the set valued map
E(): [to — «,0] — comp(R") is also a left-hand convex-extension ofV (-) : [tg, 6] —
COmp(R").

Since (1o — «;, x;) € grv;(-) (i =1,2) then it follows from the definition of the set
valued mapE(-) that (ro — «;, x;) € grE(-) (i =1, 2). Since the set valued map(-) :
[to — a, 6] — comp(R™) is convex, then we get

Vi(t)={

Ax1+ (L—2)xz2 € E(fo — (Aar + (1 — Va2)). (4.10)

Denote xg = Ax1 + (1 — A)x2, ag = Aag + (1 — A)ap. Then (4.10) impliesxg €
E(to — ap). Since the set valued map(-) : [t — «, 8] — comp(R") is left-hand convex
a-extension ofV (-) : [#g, 8] — comp(R"), we obtain from Proposition 3.1 that

DY V(tg,v) c D VaLO(xo) | (fo,v) forallve V().

Hencexg € ML (ag). So, (4.9) is satisfied.

Now, we should prove the set valued m%f:f“)(-) : [to — g, 6] — comp(R") is con-
vex. Letyr € Va2 (1), yo € VP (1), 1 €0, 1] and denotey;, = Ay1 + (1 — A)yo,
t, = A1 + (1 — A)r2. We have to prove that

i € VM @1y). (4.11)

If 11,12 € [t0, 0] OF 11, 12 € [tg — a4, to), then validity of the inclusion (4.11) follows from
definition of the set valued ma\zﬁi”“(-) : [to — ax, 6] — comp(R™) and from convexity
of the set valued mapfZ(-) : (0, ] — compR™).

Let 1o — oy < 11 < 19 < 12. Then, from the definition of the set valued mWL)(~),
we havey, € V(t2) andy; € ML (B1), wherepy = tg — t1. Sincey; € M (B1), then we
obtain

D*V(10.v) C D*Vg (y1) | (to,v) forallv e V().
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According to Theorem 2.3, set valued meég-) : [to — B1, 0] — comp(R") defined as

V() = { Vi, 00 1), 1 €lto— 1. 10),
V), t € [to, 0],

is a left-hand conveg;-extension of the set valued m&{-) : 7o, 6] — compR"™). Then
Ya € Vi(8).

If 1, > 1o, theny, e V(1) =V (5,) = Vofi”“(u). So the inclusion (4.11) holds.

Lets, < tg. DenoteB;, =1 —1,. SinceB1 > Bi, v, € Vi(t) = Vi(to — B,.), set valued
map V() : [to — B1, 01 — compR") is a left-hand conveg;-extension of the set valued
mapV (-) : [to, 0] — comp(R"), then it follows from Proposition 3.1 that

V(t) C Vg, (y0) | (1) for everyr €[, 0]
and consequently

DtV (to,v) C D*V4 () | (to. v) forallv e V().

It follows from the last inclusion that, € ML (8,) = M (19— 1,) = Va¥ ™ (1), that is the
inclusion (4.11) is satisfied.

Finally, we prove the maximality of the set valued maﬁ“)(-). Leta € (0, o], Vo (4) :
[to — «, 8] — comp(R") be a convexx-extension of the set valued m&f-) andx € V, (¢)
wheret € [0 — «, 1g). Lettg — t = 8. Then O< B8 < o < a,. From Proposition 3.1 we get

DYV (to,v) C DYV (x) | (to.v) forallve V().

So,x € ME(B) = M (1o — 1) and consequently e Voﬁy“(t). O

Analogously the following theorem is true, which characterizes the existence of the
maximal right-hand convex,-extension of the given set valued map.

Theorem 4.5. Suppose that the convex set valued vap : [7, 6] — comp(R") has a
right-hand convex..-extension.

Then the set valued ma@ym(-) : [t0, 0 + o] > comp(R") defined as

VMB) () V@), t € [tg, 0],
i T\ MRE—-0), te®,0+a,
is the maximal right-hand convex.-extension of the set valued m&(g-), where the set
MR —0), t € (0,60 +a,l], is defined by4.8).

5. Lipschitz continuity and existence of convex extension

In this section the connection between the existence of the convex extension and Lip-
schitz continuity of the given set valued map is studied.

It follows from [11, Proposition 2.3 ], that if the set valued m&q-) : [z, 0] —
comp(R") is convex, then it is locally Lipschitz continuous on the open intetxah).
It is not difficult to give an example that the set valued n¥ap) : [#p, 6] — comp(R") is a
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convex one, but it is not continuous on the closed intelirgab]. It is possible to prove that
the convex set valued map(-) : 7o, 6] — comp(R") is continuous on the closed interval
[t0, 0] if and only if it is a compact set valued map. But Example 3.4 illustrates that the
continuity of the convex set valued mé&f-) : [¢g, 6] — comp(R") is not sufficient for the
existence of the convax-extension.

DenoteB = {x € R": | x ||< 1}.

Proposition 5.1. Let W(-) : [#g, 8] — comp(R") be a Lipschitz continuous set valued map
on the closed intervdly, 6] with Lipschitz constant > 0. Suppose thaV (-) : [7, 0] —
comp(R") is convex set valued map satisfying the conditiég) = W (zg), V (0) = W(0)
andgrV () c grw(.). Then the set valued mag(-) : [z, 8] — compaR") is Lipschitz
continuous on the closed intenfad, 6] with Lipschitz constank > 0.

Proof. Since gV (-) c grw(-), then

V() Cc W) foreveryt €1, 0]. (5.1

Let us choose arbitrars, t» € [fo, 6] and lett; < ro. Choosevs € V(t2). Then we have
from (5.1) thatvy € W(z2). Since W(-) is Lipschitz continuous with Lipschitz constant
L >0, W(tp) = V(19), then there existg € V (rg) andb € B such that

v2 =vg + L(t2 — tg)b. (5.2)
Now we define the function(-) : [#o, 2] — R", by
t—t t—t
v(t) = (1— 0 )vo + 0 v2, t€l|tg,2]. (5.3)
2 —1o 2 —1o

SinceV (-) is a convex set valued map ang < V (1p), v2 € V(2), thenv(t) € V(¢) for
everyr € [fg, t2] and consequently(s1) € V (r1). (5.2) and(5.3) imply that|vy — v(t1) || <
L(tp — t1). S0,v2 € V(r1) + L(r2 — 1) B and consequently

V(t2) CV(t1) + L(t2 — t1) B. (5.4)
Analogously, it can be shown that
V(t1) CV(r2) + L(12 — 1) B. (5.5)

(5.4) and(5.5) complete the proof. O

Theorem 5.2. If the convex set valued map(-) : [7, 0] — comp(R") has a convext-
extension, then it is Lipschitz continuous on the closed intgryat].

Proof. Since V(-) : [f9, 0] — com@(R") has convexa-extension, then from Proposi-
tions 3.1 and 3.2, there exisp € R", x1 € R", the set valued map¥/.(xo) | () :
[to — o, 6] — comp(R™), VR(x1) | (-) : [t0, 0 + @] — comp(R™) such that

ViycVEx (), V@) CVEGD) @) (5.6)

for everyt € [to, 6] where the set&/ L (xq) | (1), t € [to — «,0], and VR(x1) | (1), t €
[0, 6 + «], are defined by (2.1) and (2.2), respectively. Denote
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W =grvy (xo) | ) Ngrvf () | (), (5.7)

W) ={xeR" (t,x)e W}, 1€ltn,0l (5.8)

Since ngaL(xo) | () and ngaR(xl) | (-) are convex compact sets, thBhC [t — o, 0 +
a] x R" is also convex and compact. So, the set valued W&y : [z, 6] — cCOmMpER™)
defined by(5.8), is a convex compact one.

From (2.1), (2.2), (5.6)—(5.8) it follows tha¥ (rg) = V (t0), W) = V(#), V() C
W (¢) for everyr € (19, 0). Itis not difficult to verify that the set valued map(.) : [#, 0] —
comp(R") is Lipschitz continuous on the closed intery@l 6]. Then according to Propo-
sition 5.1, the set valued magp(-) : [to, 8] — comp(R™) is Lipschitz continuous. O

Theorem 5.3. Let V(-) : [r0, 0] — compR") be a convex and Lipschitz continuous set
valued map. lint V (r0) # ¥ andint V (6) # ¢, then the set valued map(-) has a convex
a-extension.

Proof. Let the set valued map (-) : [7, 8] — comp(R") be Lipschitz continuous with
Lipschitz constanLg > 0. Then

V() c Vi(¢t) foreveryr € [1g, 0], (5.9)
where
Vi(t) =V (tg) + Lo(t —t9)B, t € [tg,0]. (5.10)

Now, let us show that there exigg > 0 andxg € R" such thatVy(¢) C VaL (x5) | (¢) for

0
everyr € [tg, 6], where the seVaLO(xg) | (t) is defined by (2.1).

Let x5 € intV(to). Then there existgo > 0 such thatB(xg, e0) C V(to), where
B(x},£0) = {x € R": || x — x§ [|< e0}.
Chooseaxg > 0 such that

O<ap< z_" (5.11)

0
SinceB(xg, 0) C V(t0), then from(2.1), (5.10) and(5.11) we obtain

Lo * *
Va(t) = V(to) + Lo(t — 10) B = V (t0) + 6—0(t — 10)(B(x§. €0) — x3)

1
C V(o) + a—o(t —10)(V(t0) — x3) = Vs (x5) | (1)
for everyt € [1p, 0]. So we have from (5.9) that
V(1) C Vg (xg) 1 (1) foreveryr ero, 6],
whereao € (0, 721. SinceV,% (t0. x§) | (to) = V (to), then
DtV (to,v) C DTV (t0,x5) | (fo,v) for everyv € V (to). (5.12)
Similarly, it can be proved that there exist € R" anday > 0 such that



Kh.G. Guseinov et al. / J. Math. Anal. Appl. 314 (2006) 672—688 687

D V(®,v1) C D"V, (x]) ] (6.v1) foreveryvi € V(©). (5.13)

It follows from (5.12) and Theorem 2.3 that the set valued Wag) : [to — g, 0] —
comp(R") defined as

Wi) = { Ve () 1 (1), 1 € [10 — a0, 1o),
V@), t € [to, 01,
is a left-hand convexg-extension of the set valued m&fx-).

Analogously we get from (5.13) and Theorem 2.4 that the set valuedWhaép : (1o,
6 4+ a1] — comp(R") defined as

V), 1 € [to, 0],
VRE) 1), 1€6.6+ai],
is a right-hand conveu;-extension of the set valued ma&f-).

Let o« = min{ag, @1}, xo € W1(to — ), x1 € W2(6 + o). Then it follows from Proposi-
tions 3.1 and 3.2 that the inclusions

Wa(r) = {

V) C Vo) [ @), V) CVEED @)

hold for any: € [#g, 6] and consequently
D'V (t0,v0) C D'V, (x0) | (0, vo) for everyug € V (1), (5.14)
D™ V(®,v1) C D_VaR(xl) | (8,v1) foreveryvyeV(9). (5.15)

Hence we get from (5.14), (5.15) and Theorem 2.5 that the set valuedap[z — «,
6 + o] — comp(R") defined as
VEGo) [ (1), 1€lto—a.t0),
Wi)=3 V@), t € [0, 6],
Vi) [ (@), te®,6+al,
is a convexx-extension of the set valued mdf(-). O

Example5.4. Let V, C R", V* C R" be compact, convex sets and Wt~ @, int V* £ (.
Then the set valued map(-) : [tp, 0] — comp(R") defined as

t — I t — 1
V(t):(l— to)v 4Oy
— 10

0 T H—19
has a conver-extension.
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