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Abstract

In this article the existence of the convex extension of convex set valued map is considere
ditions are obtained, based on the notion of the derivative of set valued maps, which guaran
existence of convex extension. The conditions are given, when the convex set valued map
convex extension. The convex set valued map is specified, which is the maximal convex exten
the given convex set valued map and includes all other convex extensions. The connection b
Lipschitz continuity and existence of convex extension of the given convex set valued map is s
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The family of all nonempty, compact subsets ofRn is denoted by comp(Rn).
We denote by symbolh(E,D) the Hausdorff distance between the setsE,D ∈

comp(Rn). It is defined as

h(E,D) = max
{

sup
x∈E

d(x,D), sup
y∈D

d(y,E)
}
,
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whered(x,D) = infy∈D ‖ x − y ‖ and‖ · ‖ means the Euclidean norm. It is known th
(comp(Rn),h(·,·)) is a metric space (see, e.g., [2,4]).

Let V (·) : [t0, θ ] → comp(Rn) be a set valued map the graph of which is denoted
grV (·) and defined as

grV (·) = {
(t, x) ∈ [t0, θ ] × Rn: x ∈ V (t)

}
.

Now, we give the definitions of the locally Lipschitz and Lipschitz continuity of the
valued map.

Definition 1.1. If for every t∗ ∈ (t0, θ) there existσ∗ = σ(t∗) > 0, L∗ = L(t∗, σ∗) > 0 such
that for everyt1 ∈ (t∗ −σ∗, t∗ +σ∗), t2 ∈ (t∗ −σ∗, t∗ +σ∗) the inequalityh(V (t1),V (t2)) �
L∗|t1 − t2| holds, then the set valued mapV (·) : (t0, θ) → comp(Rn) is said to be locally
Lipschitz continuous on the open interval(t0, θ).

If there existsK > 0 such thath(V (t1),V (t2)) � K|t1 − t2| for every t1 ∈ [t0, θ ],
t2 ∈ [t0, θ ] then, the set valued mapV (·) : [t0, θ ] → comp(Rn) is said to be Lipschitz
continuous on the closed interval[t0, θ ] with Lipschitz constantK.

For A ⊂ Rn, we denote the convex hull ofA as co(A), the interior ofA as intA. 〈·,·〉
denotes the inner product.

Now let us give the definitions of the derivative sets of the given set valued map
(t, x) ∈ [t0, θ ] × Rn and the set valued mapV (·) : [t0, θ ] → comp(Rn), we define

D+V (t, x) =
{
v ∈ Rn: lim inf

δ→0+
1

δ
d
(
x + δv,V (t + δ)

) = 0

}
,

D−V (t, x) =
{
v ∈ Rn: lim inf

δ→0+
1

δ
d
(
x − δv,V (t − δ)

) = 0

}
.

The setD+V (t, x) (D−V (t, x)) is said to be an upper right-hand side (left-hand s
derivative set of the set valued mapt → V (t) calculated at the point(t, x). Note that the
upper right-hand side (left-hand side) derivative set is closed and it has a close con
with upper Bouligand contingent cone, used in the study of many problems of th
valued and nonsmooth analysis (see, e.g., [2,4,5,9]).

A set valued mapV (·) : [t0, θ ] → comp(Rn) is said to be convex (compact) if grV (·) is
convex (compact) set. It is obvious that the set valued mapV (·) is convex iff

λV (t1) + (1− λ)V (t2) ⊂ V
(
λt1 + (1− λ)t2

)
for all t1, t2 ∈ [t0, θ ] andλ ∈ [0,1].

Let us give the definition of the convex extension of the convex set valued map.

Definition 1.2. Let V (·) : [t0, θ ] → comp(Rn) be a convex set valued map andα > 0 be a
fixed number. If there exists a convex set valued map

W(·) : [t0 − α, θ ] → comp(Rn)
(
W(·) : [t0, θ + α] → comp(Rn)

)
such thatW(t) = V (t) for all t ∈ [t0, θ ], then the set valued mapW(·) is said to be a
left-hand (right-hand) convexα-extension of the set valued mapV (·).
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If there exists a convex set valued mapW(·) : [t0 − α, θ + α] → comp(Rn) such that
W(t) = V (t) for all t ∈ [t0, θ ], then the set valued mapW(·) is said to be a conve
α-extension of the set valued mapV (·).

The existence of the convex extension of the convex set valued map arises in
lutions of some inverse problems of the differential inclusion theory, where it is req
to construct a differential inclusion with prescribed attainable sets or integral funne
[3,6–9]). For a special case, the existence of the convex extension of convex set
map was studied in [3,8]. Some maximality properties of the convex extension is co
ered in [7].

In this article, in Section 2, conditions, based on the notion of the derivative o
valued maps, are obtained, which guarantee the existence of left-hand and righ
convex extensions of the convex set valued mapV (·) : [t0, θ ] → comp(Rn) (Theorems 2.3–
2.5). In Section 3 we give conditions, which guarantee nonexistence of the left-han
right-hand convex extensions of the convex set valued mapV (·) : [t0, θ ] → comp(Rn)

(Theorems 3.3 and 3.5) and formulate a necessary and sufficient condition for t
istence of left-hand and right-hand convex extensions (Theorem 3.6). In Section
maximality property of the convex extension is studied. The convex set valued maps
fined, which are convex left-hand and right-hand extensions of the convex set value
V (·) : [t0, θ ] → comp(Rn) and includes all their other convex left-hand and right-h
extensions respectively (Theorems 4.4 and 4.5). At the end, in Section 5, the conn
between the existence of the convex extension and Lipschitz continuity of the conv
valued mapV (·) : [t0, θ ] → comp(Rn) is studied. It is shown that if the convex set v
ued mapV (·) : [t0, θ ] → comp(Rn) has a convex extension, then it is Lipschitz continu
(Theorem 5.2) and vice versa, if the convex set valued mapV (·) : [t0, θ ] → comp(Rn) is
Lipschitz continuous and intV (t0) �= ∅ and intV (θ) �= ∅, then it has a convex extensio
(Theorem 5.3).

2. The existence of convex extension

For givenα > 0, x∗ ∈ Rn and the set valued mapV (·) : [t0, θ ] → comp(Rn), we define
the set valued maps

V L
α (x∗) | (·) : [t0 − α, θ + α] → comp(Rn),

V R
α (x∗) | (·) : [t0 − α, θ + α] → comp(Rn)

setting

V L
α (x∗) | (t) =

(
1− t − t0 + α

α

)
x∗ + t − t0 + α

α
V (t0), (2.1)

V R
α (x∗) | (t) =

(
1− θ + α − t

α

)
x∗ + θ + α − t

α
V (θ). (2.2)

It is obvious thatV L
α (x∗) | (t0) = V (t0) and V R

α (x∗) | (θ) = V (θ). If the set valued
mapV (·) : [t0, θ ] → comp(Rn) is convex, thenV L

α (x∗) | (·) andV R
α (x∗) | (·) are convex

compact and Lipschitz continuous set valued maps.
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The following proposition characterizes the existence of the left-hand convex exte
of the given convex set valued map.

Proposition 2.1. Letα > 0, Vα(·) : [t0−α, θ ] → comp(Rn) andV (·) : [t0, θ ] → comp(Rn)

be convex set valued maps. Suppose thatVα(t0) = V (t0) and V (t) ⊂ Vα(t) for all t ∈
(t0, θ ]. Then the set valued mapW(·) : [t0 − α, θ ] → comp(Rn) defined as

W(t) =
{

Vα(t), t ∈ [t0 − α, t0),
V (t), t ∈ [t0, θ ],

is a left-hand convexα-extension of the set valued mapV (·).

Proposition 2.2. Letα > 0, x0 ∈ Rn andV (·) : [t0, θ ] → comp(Rn) be a convex set value
map. Suppose that

D+V (t0, v) ⊂ D+V L
α (x0) | (t0, v) for all v ∈ V (t0).

ThenV (t) ⊂ V L
α (x0) | (t) for everyt ∈ (t0, θ ], where the setV L

α (x0) | (t), t ∈ [t0, θ ], is
defined by(2.1).

Proof. Assume the contrary. Let there existt∗ ∈ (t0, θ ] and x∗ ∈ V (t∗) such thatx∗ /∈
V L

α (x0) | (t∗). SinceV L
α (x0) | (t∗) is a convex compact set, then there existsw∗ ∈ V L

α (x0) |
(t∗) such that

‖x∗ − w∗‖ = d
(
x∗,V L

α (x0)
∣∣ (t∗)

)
> 0.

According to the Theorem 2.3 from [1], we have

〈x∗ − w∗,w∗ − w〉 � 0 for all w ∈ V L
α (x0) | (t∗). (2.3)

Sincew∗ ∈ V L
α (x0) | (t∗), then we get that there exists av0 ∈ V (t0) such that

w∗ =
(

1− t∗ − t0 + α

α

)
x0 + t∗ − t0 + α

α
v0. (2.4)

Let v ∈ V (t0) be an arbitrary chosen element. Then

w =
(

1− t∗ − t0 + α

α

)
x0 + t∗ − t0 + α

α
v ∈ V L

α (x0) | (t∗). (2.5)

From (2.3)–(2.5) it can be obtained that

〈x∗ − w∗, v0 − v〉 � 0 for everyv ∈ V (t0). (2.6)

Now let us set

x(t) =
(

1− t − t0

t∗ − t0

)
v0 + t − t0

t∗ − t0
x∗, t ∈ [t0, t∗], (2.7)

w(t) =
(

1− t − t0

t∗ − t0

)
v0 + t − t0

t∗ − t0
w∗, t ∈ [t0, t∗]. (2.8)

It follows from (2.1), (2.4) and(2.8) that
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w(t) =
(

1− t − t0 + α

α

)
x0 + t − t0 + α

α
v0, t ∈ [t0, t∗], (2.9)

and

w(t) ∈ V L
α (x0) | (t) for everyt ∈ [t0, t∗]. (2.10)

Let t ∈ (t0, t∗] be fixed. Now let us take an arbitraryw ∈ V L
α (x0) | (t). Then there exists

v ∈ V (t0) such that

w =
(

1− t − t0 + α

α

)
x0 + t − t0 + α

α
v.

By virtue of (2.6)–(2.9), we get〈
x(t) − w(t),w(t) − w

〉
� 0 for all w ∈ V L

α (x0) | (t). (2.11)

Since‖x(t) − w(t)‖ = t−t0
t∗−t0

‖x∗ − w∗‖ > 0, according to [1, Theorem 2.3], it follow
from (2.10) and(2.11) that

d
(
x(t),V L

α (x0) | (t)) = ∥∥x(t) − w(t)
∥∥ = (t − t0)r∗, (2.12)

wherer∗ = ‖x∗−w∗‖
t∗−t0

> 0, t ∈ (t0, t∗].
Let u∗ = x∗−v0

t∗−t0
. Then (2.7) implies that

x(t) = v0 + (t − t0)u∗, t ∈ [t0, t∗]. (2.13)

So, we get from (2.12) and (2.13) that

lim
t→t+0

d(v0 + (t − t0)u∗,V L
α (x0) | (t))

t − t0
= r∗ > 0,

which means that

u∗ /∈ D+V L
α (x0) | (t0, v0). (2.14)

Sincex∗ ∈ V (t∗), v0 ∈ V (t0) andV (·) is a convex set valued map, it follows from (2.
thatx(t) ∈ V (t) for everyt ∈ [t0, t∗] and therefored(x(t),V (t)) = 0 for everyt ∈ [t0, t∗].
Consequently we get from (2.13) that

lim inf
t→t+0

d(v0 + (t − t0)u∗,V (t))

t − t0
= 0,

and therefore

u∗ ∈ D+V (t0, v0). (2.15)

It follows from (2.14) and (2.15) thatD+V (t0, v0) �⊆ D+V L
α (x0) | (t0, v0), which is a con-

tradiction of the condition of the theorem. So, this concludes the proof.�
From Propositions 2.1 and 2.2 we obtain following theorems which specify suffi

conditions for the existence of the left-hand and right-hand convex extensions of the
convex set valued map in terms of derivative sets.
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Theorem 2.3. Let α > 0, x0 ∈ Rn andV (·) : [t0, θ ] → comp(Rn) be a convex set value
map. Assume that

D+V (t0, v) ⊂ D+V L
α (x0) | (t0, v) for everyv ∈ V (t0).

Then the set valued mapW(·) : [t0 − α, θ ] → comp(Rn) defined as

W(t) =
{

V L
α (x0) | (t), t ∈ [t0 − α, t0),

V (t), t ∈ [t0, θ ],
is a left-hand convexα-extension of the set valued mapV (·), where the setV L

α (x0) | (t) is
defined by relation(2.1).

Analogously, the following right-hand convex extension existence theorem is vali

Theorem 2.4. Let α > 0, x1 ∈ Rn andV (·) : [t0, θ ] → comp(Rn) be a convex set value
map. Assume that

D−V (θ, v) ⊂ D−V R
α (x1) | (θ, v) for everyv ∈ V (θ).

Then the set valued mapW(·) : [t0, θ + α] → comp(Rn) defined as

W(t) =
{

V (t), t ∈ [t0, θ ],
V R

α (x1) | (t), t ∈ (θ, θ + α],
is a right-hand convexα-extension of the set valued mapV (·), where the setV R

α (x1) | (t)

is defined by relation(2.2).

Now, let us formulate the convex extension existence theorem.

Theorem 2.5. Letα > 0, x0 ∈ Rn, x1 ∈ Rn andV (·) : [t0, θ ] → comp(Rn) be a convex se
valued map. Assume that

D+V (t0, v) ⊂ D+V L
α (x0) | (t0, v) for everyv ∈ V (t0), (2.16)

D−V (θ, v) ⊂ D−V R
α (x1) | (θ, v) for everyv ∈ V (θ). (2.17)

Then the set valued mapW(·) : [t0 − α, θ + α] → comp(Rn) defined as

W(t) =



V L
α (x0) | (t), t ∈ [t0 − α, t0),

V (t), t ∈ [t0, θ ],
V R

α (x1) | (t), t ∈ (θ, θ + α],
(2.18)

is a convexα-extension of the set valued mapV (·), where the setsV L
α (x0) | (t) and

V R
α (x1) | (t) are defined by relations(2.1)and (2.2), respectively.

Proof. Since forα > 0 andx1 ∈ Rn the inclusion (2.17) is satisfied, then it follows fro
Theorem 2.4 that the set valued mapU(·) : [t0, θ + α] → comp(Rn) defined as

U(t) =
{

V (t), t ∈ [t0, θ ],
V R(x ) | (t), t ∈ (θ, θ + α], (2.19)
α 1
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is a right-hand convexα-extension of the set valued mapV (·). From the definition of the
right-hand convexα-extension,U(·) : [t0, θ + α] → comp(Rn) is convex set valued map
U(t) = V (t) for all t ∈ [t0, θ ], and consequently

D+U(t0, v) = D+V (t0, v) for all v ∈ V (t0). (2.20)

Then from (2.16) and (2.20) we obtain that

D+U(t0, v) ⊂ D+V L
α (x0) | (t0, v) for all v ∈ V (t0).

According to the Theorem 2.3, the set valued mapUL(·) : [t0 − α, θ + α] → comp(Rn)

defined as

UL(t) =
{

V L
α (x0) | (t), t ∈ [t0 − α, t0),

U(t), t ∈ [t0, θ + α], (2.21)

is a left-hand convex extension ofU(·) : [t0, θ + α] → comp(Rn). From (2.18), (2.19) and
(2.21) the proof of the theorem follows.�

3. Impossibility of convex extension

In this section, we will study the case where the convex set valued map has no c
extension and will formulate a necessary and sufficient condition for the existence
convex extension of the given convex set valued map. At first let us give some au
propositions.

Proposition 3.1. Let W(·) : [t0 − α, θ ] → comp(Rn) be a left-hand convexα-extension of
the convex set valued mapV (·) : [t0, θ ] → comp(Rn). Then for every fixedα∗ ∈ (0, α] and
x∗ ∈ W(t0 − α∗) the inclusion

V (t) ⊂ V L
α∗(x∗) | (t)

holds for anyt ∈ [t0, θ ], where the setV L
α∗(x∗) | (t), t ∈ [t0 − α∗, θ ], is defined by relation

(2.1).

Proof. Choose an arbitraryt∗ ∈ (t0, θ ] and define the set valued mapP(·) : [t0 −α∗, θ ] →
comp(Rn) where

P(t) =
(

1− t − t0 + α∗
t∗ − t0 + α∗

)
x∗ + t − t0 + α∗

t∗ − t0 + α∗
V (t∗).

It is not difficult to show that

P(t0) ⊂ V (t0). (3.1)

Now, let us prove that

P(t) ⊂ V (t) for all t ∈ [t0, t∗].
We define the set valued mapQ(·) : [t0 − α∗, t∗] → comp(Rn) setting
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Q(t) =
(

1− t − t0 + α∗
α∗

)
x∗ + t − t0 + α∗

α∗
P(t0). (3.2)

It follows from (3.1) and the definition of the set valued mapV L
α∗(x∗) | (·) that

Q(t) ⊂ V L
α∗(x∗) | (t) for all t ∈ [t0 − α∗, θ ]. (3.3)

Now, let us taket ∈ [t0 − α∗, t∗]. From (3.2), it can be obtained thatQ(t) = P(t) and
consequently, it follows from(3.3) that

P(t) ⊂ V L
α∗(x∗) | (t) (3.4)

for all t ∈ [t0 − α∗, t∗]. SinceP(t∗) = V (t∗), then it follows from(3.4) that

V (t∗) ⊂ V L
α∗(x∗) | (t∗).

Sincet∗ ∈ [t0, θ ] is arbitrary chosen, we haveV (t) ⊂ V L
α∗(x∗) | (t) for all t ∈ [t0, θ ]. �

Proposition 3.2. Let the set valued mapW(·) : [t0, θ + α] → comp(Rn) be a right-hand
convexα-extension of the convex set valued mapV (·) : [t0, θ ] → comp(Rn). Then for every
fixedα∗ ∈ (0, α] andx∗ ∈ W(θ + α∗) the inclusion

V (t) ⊂ V R
α∗(x∗) | (t)

holds for anyt ∈ [t0, θ ], where the setV R
α∗(x∗) | (t), t ∈ [t0, θ + α∗], is defined by relation

(2.2).

The proof of Proposition 3.2 is similar to proof of the Proposition 3.1.
In the next theorem we give a sufficient condition, when the convex set valued ma

no convex extension.

Theorem 3.3. LetV (·) : [t0, θ ] → comp(Rn) be a convex set valued map. Suppose tha
every fixedα > 0 andx ∈ Rn there existsv ∈ V (t0) such that

D+V (t0, v) �⊆ D+V L
α (x) | (t0, v).

Then the set valued mapV (·) : [t0, θ ] → comp(Rn) has no left-hand convex extensio
where the set valued mapt → V L

α (x) | (t), t ∈ [t0 − α, θ ], is defined by relation(2.1).

Proof. Assume the contrary. Letα∗ > 0 and the set valued mapW(·) : [t0 − α∗, θ ] →
comp(Rn) be a left-hand convexα∗-extension of the set valued mapV (·) : [t0, θ ] →
comp(Rn). Choosex∗ ∈ W(t0 − α∗). According to the Proposition 3.1, we have

V (t) ⊂ V L
α∗(x∗) | (t) for all t ∈ [t0, θ ], (3.5)

where the setV L
α∗(x∗) | (t), t ∈ [t0 − α∗, θ ], is defined by relation (2.1). SinceV (t0) =

V L
α∗(x∗) | (t0), then from (3.5) it follows thatD+V (t0, v) ⊂ D+V L

α∗(x∗) | (t0, v) for all
v ∈ V (t0) which is a contradiction to assumption of the theorem. Therefore the pro
complete. �
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Example 3.4. Let the set valued mapV (·) : [0,1] → comp(R1) is defined as

V (t) = {x ∈ R1: |x| � 1+ √
t}, t ∈ [0,1].

It is not difficult to show that the convex set valued mapV (·) : [0,1] → comp(R1) has no
convex left-hand extension.

Analogously, the following theorem is true.

Theorem 3.5. LetV (·) : [t0, θ ] → comp(Rn) be a convex set valued map. Suppose tha
every fixedα > 0 andx ∈ Rn there existsv ∈ V (θ) such that

D−V (θ, v) �⊆ D−V R
α (x) | (θ, v).

Then the set valued mapV (·) : [t0, θ ] → comp(Rn) has no right-hand convex extensio
where the set valued mapt → V R

α (x) | (t), t ∈ [t0, θ + α], is defined by relation(2.2).

So we obtain from Theorems 2.3, 2.4, 3.3 and 3.5 the validity of the following the
which gives us a necessary and sufficient condition for the existence of left-hand and
hand convex extensions of the given convex set valued map.

Theorem 3.6. Let α > 0, V (·) : [t0, θ ] → comp(Rn) be a convex set valued map. The
valued mapV (·) has a left-hand(right-hand) convexα-extension if and only if there exis
x0 ∈ Rn such that

D+V (t0, v) ⊂ D+V L
α (x0) | (t0, v) for everyv ∈ V (t0)(

D−V (θ, v) ⊂ D−V R
α (x0) | (θ, v) for everyv ∈ V (θ)

)
.

4. Maximal convex extension

Let us give the definition of maximal convexα-extension of the given convex set valu
map.

Definition 4.1. Let V (·) : [t0, θ ] → comp(Rn) be a convex set valued map,α∗ > 0 and
W(·) : [t0 − α∗, θ ] → comp(Rn) (W(·) : [t0, θ + α∗] → comp(Rn)) be a left-hand (right-
hand) convexα∗-extension of the set valued mapV (·). If

grVα(·) ⊂ grW(·)
for every α ∈ (0, α∗] and Vα(·) : [t0 − α, θ ] → comp(Rn), (Vα(·) : [t0, θ + α] →
comp(Rn)), whereVα(·) is left-hand (right-hand) convexα-extension ofV (·), thenW(·)
is called maximal left-hand (right-hand) convexα∗-extension of the set valued mapV (·).

Now let us give one auxiliary proposition.
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Proposition 4.2. Let V (·) : [t0, θ ] → comp(Rn) be a convex set valued map,V1(·) :
[t0 − α1, θ ] → comp(Rn), V2(·) : [t0 − α2, θ ] → comp(Rn) be left-hand convexα1 and
α2-extensions ofV (·), respectively,α = max{α1, α2} and

E = co
(
grV1(·) ∪ grV2(·)

)
,

E(t) = {
x ∈ Rn: (t, x) ∈ E

}
, t ∈ [t0 − α, θ ].

Then the set valued mapE(·) : [t0 − α, θ ] → comp(Rn) is a left-hand convexα-extension
of the set valued mapV (·).

Proof. It is obvious that the set valued mapE(·) : [t0−α, θ ] → comp(Rn) is convex. Now,
let us prove that

E(t) = V (t) for all t ∈ [t0, θ ]. (4.1)

Since grV (·) ⊂ grVi(·) ⊂ E = grE(·) (i = 1,2), then grV (·) ⊂ grE(·) and conse
quently

V (t) ⊂ E(t) for all t ∈ [t0, θ ]. (4.2)

Now let us show that

E(t) ⊂ V (t) for all t ∈ [t0, θ ]. (4.3)

Let t ∈ [t0, θ ] and choose an arbitraryx ∈ E(t). Then (t, x) ∈ E = grE(·). From the
Caratheodory theorem (see, e.g., [10, Theorem 17.1] ), there existk ∈ N = {1,2, . . .},
(ti , xi) ∈ grV1(·) ∪ grV2(·) andλi > 0 (i = 1, . . . , k), such that

(t, x) =
k∑

i=1

λi(ti , xi),

k∑
i=1

λi = 1. (4.4)

If (ti , xi) ∈ grV1(·) for all i = 1, . . . , k or (ti , xi) ∈ grV2(·) for all i = 1, . . . , k, then it
is not difficult to verify thatx ∈ V (t).

Now, we assume that neither(ti , xi) ∈ grV1(·) nor (ti , xi) ∈ grV2(·) for all i = 1, . . . , k.

Denote

I1 = {
i = 1,2, . . . , k: (ti , xi) ∈ grV1(·)

}
, I2 = {1,2, . . . , k}\I1,

µ1 =
∑
i∈I1

λi, µ2 =
∑
i∈I2

λi. (4.5)

It is obvious thatI1 �= ∅, I2 �= ∅, µ1 > 0, µ2 > 0 andµ1 + µ2 = 1.

Then from (4.4) and (4.5) we obtain that

(t, x) = µ1(tI1, xI1) + µ2(tI2, xI2), (4.6)

where

(tIj
, xIj

) =
∑
i∈I

(
λi

µj

(ti , xi)

)
(j = 1,2).
j
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Since(ti , xi) ∈ grV1(·) for everyi ∈ I1,
∑

i∈I1

λi

µ1
= 1 andV1(·) is a convex set valued ma

then we get that(tI1, xI1) ∈ grV1(·). Similarly, one can be shown that(tI2, xI2) ∈ grV2(·).
Sincet ∈ [t0, θ ] andt = µ1tI1 + µ2tI2, then

tI1 � t0 or tI2 � t0.

Assume thattI1 � t0. Since(tI1, xI1) ∈ grV1(·), thenxI1 ∈ V1(tI1). Since the set value
mapsV1(·) : [t0 − α1, θ ] → comp(Rn) andV2(·) : [t0 − α2, θ ] → comp(Rn) are convex
extensions of the set valued mapV (·) : [t0, θ ] → comp(Rn) andtI1 � t0, we obtain that

xI1 ∈ V1(tI1) = V (tI1) = V2(tI1).

Thus,(tI1, xI1) ∈ grV2(·). Since(tI2, xI2) ∈ grV2(·), V2(·) : [t0 − α2, θ ] → comp(Rn)

is a convex set valued map, then we get from (4.6) that(t, x) ∈ grV2(·), that isx ∈ V2(t).

Sincet � t0 thenV2(t) = V (t) and consequentlyx ∈ V (t).

If tI2 � t0, then the inclusionx ∈ V (t) is proved analogously.
Sincex ∈ V (t) is chosen arbitrarily, we obtain the validity of the inclusion (4.3).
From (4.2) and (4.3) it follows the validity of the equality (4.1), which completes

proof of the proposition. �
Let α > 0 andV (·) : [t0, θ ] → comp(Rn) be a convex set valued map. Define

ML(α) = {
x ∈ Rn: D+V (t0, v) ⊂ D+V L

α (x) | (t0, v), ∀v ∈ V (t0)
}
, (4.7)

MR(α) = {
x ∈ Rn: D−V (θ, v) ⊂ D−V R

α (x) | (θ, v), ∀v ∈ V (θ)
}
. (4.8)

Here the set valued mapst → V L
α (x) | (t), t ∈ [t0 − α, θ ], and t → V R

α (x) | (t), t ∈ [t0,
θ + α], are defined by (2.1) and (2.2), respectively.

Proposition 4.3. If the convex set valued mapV (·) : [t0, θ ] → comp(Rn) has a left-hand
(right-hand) convexα∗-extension, thenML(α) ⊂ Rn (MR(α) ⊂ Rn) is a nonempty conve
compact set for everyα ∈ (0, α∗].

The following theorem asserts that if the convex set valued mapV (·) : [t0, θ ] →
comp(Rn) has a left-hand convexα∗-extension, then the set valued mapV (·) has the max-
imal left-hand convexα∗-extension.

Theorem 4.4. Suppose that the convex set valued mapV (·) : [t0, θ ] → comp(Rn) has a
left-hand convexα∗-extension.

Then the set valued mapV (ML)
α∗ (·) : [t0 − α∗, θ ] → comp(Rn) defined as

V (ML)
α∗ (t) =

{
ML(t0 − t), t ∈ [t0 − α∗, t0),
V (t), t ∈ [t0, θ ],

is the maximal left-hand convexα∗-extension of the set valued mapV (·), where the se
ML(t0 − t), t ∈ [t0 − α∗, t0), is defined by(4.7).

Proof. Since the set valued mapV (·) : [t0, θ ] → comp(Rn) has a left-hand convexα∗-
extension then according to Proposition 4.3 the setML(t0 − t) is nonempty convex an
compact for everyt ∈ [t0 − α∗, t0].
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Firstly, let us prove that the set valued mapML(·) : (0, α∗] → comp(Rn) is convex. Let
x1 ∈ ML(α1), x2 ∈ ML(α2) whereα1, α2 ∈ (0, α∗] andλ ∈ [0,1]. It is sufficient to show
that

λx1 + (1− λ)x2 ∈ ML
(
λα1 + (1− λ)α2

)
. (4.9)

Sincex1 ∈ ML(α1), x2 ∈ ML(α2), then from (4.7) it follows that

D+V (t0, v) ⊂ D+V L
αi

(xi) | (t0, v) (i = 1,2)

for all v ∈ V (t0). Theorem 2.3 implies that the set valued mapVi(·) : [t0 − αi, θ ] →
comp(Rn) (i = 1,2) defined as

Vi(t) =
{

V L
αi

(xi) | (t), t ∈ [t0 − αi, t0),

V (t), t ∈ [t0, θ ],
is a left-hand convexαi -extension of the set valued mapV (·). Let us denote

E = co
(
grV1(·) ∪ grV2(·)

)
,

E(t) = {
x ∈ Rn: (t, x) ∈ E

}
, t ∈ [t0 − α, θ ],

where α = max{α1, α2}. Then from Proposition 4.2 we have that the set valued
E(·) : [t0 − α, θ ] → comp(Rn) is also a left-hand convexα-extension ofV (·) : [t0, θ ] →
comp(Rn).

Since(t0 − αi, xi) ∈ grVi(·) (i = 1,2) then it follows from the definition of the se
valued mapE(·) that (t0 − αi, xi) ∈ grE(·) (i = 1,2). Since the set valued mapE(·) :
[t0 − α, θ ] → comp(Rn) is convex, then we get

λx1 + (1− λ)x2 ∈ E
(
t0 − (

λα1 + (1− λ)α2
))

. (4.10)

Denotex0 = λx1 + (1 − λ)x2, α0 = λα1 + (1 − λ)α2. Then (4.10) impliesx0 ∈
E(t0 − α0). Since the set valued mapE(·) : [t0 − α, θ ] → comp(Rn) is left-hand convex
α-extension ofV (·) : [t0, θ ] → comp(Rn), we obtain from Proposition 3.1 that

D+V (t0, v) ⊂ D+V L
α0

(x0) | (t0, v) for all v ∈ V (t0).

Hencex0 ∈ ML(α0). So, (4.9) is satisfied.
Now, we should prove the set valued mapV

(ML)
α∗ (·) : [t0 − α∗, θ ] → comp(Rn) is con-

vex. Let y1 ∈ V
(ML)
α∗ (t1), y2 ∈ V

(ML)
α∗ (t2), λ ∈ [0,1] and denoteyλ = λy1 + (1 − λ)y2,

tλ = λt1 + (1− λ)t2. We have to prove that

yλ ∈ V (ML)
α∗ (tλ). (4.11)

If t1, t2 ∈ [t0, θ ] or t1, t2 ∈ [t0 − α∗, t0), then validity of the inclusion (4.11) follows from
definition of the set valued mapV (ML)

α∗ (·) : [t0 − α∗, θ ] → comp(Rn) and from convexity
of the set valued mapML(·) : (0, α∗] → comp(Rn).

Let t0 − α∗ � t1 < t0 � t2. Then, from the definition of the set valued mapV
(ML)
α∗ (·),

we havey2 ∈ V (t2) andy1 ∈ ML(β1), whereβ1 = t0 − t1. Sincey1 ∈ ML(β1), then we
obtain

D+V (t0, v) ⊂ D+V L(y1) | (t0, v) for all v ∈ V (t0).
β1
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According to Theorem 2.3, set valued mapV∗(·) : [t0 − β1, θ ] → comp(Rn) defined as

V∗(t) =
{

V L
β1

(y1) | (t), t ∈ [t0 − β1, t0),

V (t), t ∈ [t0, θ ],
is a left-hand convexβ1-extension of the set valued mapV (·) : [t0, θ ] → comp(Rn). Then
yλ ∈ V∗(tλ).

If tλ � t0, thenyλ ∈ V∗(tλ) = V (tλ) = V
(ML)
α∗ (tλ). So the inclusion (4.11) holds.

Let tλ < t0. Denoteβλ = t0 − tλ. Sinceβ1 � βλ, yλ ∈ V∗(tλ) = V∗(t0 − βλ), set valued
mapV∗(·) : [t0 − β1, θ ] → comp(Rn) is a left-hand convexβ1-extension of the set value
mapV (·) : [t0, θ ] → comp(Rn), then it follows from Proposition 3.1 that

V (t) ⊂ Vβλ(yλ) | (t) for everyt ∈ [t0, θ ]
and consequently

D+V (t0, v) ⊂ D+V L
βλ

(yλ) | (t0, v) for all v ∈ V (t0).

It follows from the last inclusion thatyλ ∈ ML(βλ) = ML(t0 − tλ) = V
(ML)
α∗ (tλ), that is the

inclusion (4.11) is satisfied.
Finally, we prove the maximality of the set valued mapV

(ML)
α∗ (·). Letα ∈ (0, α∗], Vα(·) :

[t0 −α, θ ] → comp(Rn) be a convexα-extension of the set valued mapV (·) andx ∈ Vα(t)

wheret ∈ [t0 − α, t0). Let t0 − t = β. Then 0< β � α � α∗. From Proposition 3.1 we ge

D+V (t0, v) ⊂ D+V L
β (x) | (t0, v) for all v ∈ V (t0).

So,x ∈ ML(β) = M(t0 − t) and consequentlyx ∈ V
(ML)
α∗ (t). �

Analogously the following theorem is true, which characterizes the existence o
maximal right-hand convexα∗-extension of the given set valued map.

Theorem 4.5. Suppose that the convex set valued mapV (·) : [t0, θ ] → comp(Rn) has a
right-hand convexα∗-extension.

Then the set valued mapV (MR)
α∗ (·) : [t0, θ + α∗] → comp(Rn) defined as

V (MR)
α∗ (t) =

{
V (t), t ∈ [t0, θ ],
MR(t − θ), t ∈ (θ, θ + α∗],

is the maximal right-hand convexα∗-extension of the set valued mapV (·), where the se
MR(t − θ), t ∈ (θ, θ + α∗], is defined by(4.8).

5. Lipschitz continuity and existence of convex extension

In this section the connection between the existence of the convex extension an
schitz continuity of the given set valued map is studied.

It follows from [11, Proposition 2.3 ], that if the set valued mapV (·) : [t0, θ ] →
comp(Rn) is convex, then it is locally Lipschitz continuous on the open interval(t0, θ).

It is not difficult to give an example that the set valued mapV (·) : [t0, θ ] → comp(Rn) is a
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convex one, but it is not continuous on the closed interval[t0, θ ]. It is possible to prove tha
the convex set valued mapV (·) : [t0, θ ] → comp(Rn) is continuous on the closed interv
[t0, θ ] if and only if it is a compact set valued map. But Example 3.4 illustrates tha
continuity of the convex set valued mapV (·) : [t0, θ ] → comp(Rn) is not sufficient for the
existence of the convexα-extension.

DenoteB = {x ∈ Rn: ‖ x ‖� 1}.

Proposition 5.1. Let W(·) : [t0, θ ] → comp(Rn) be a Lipschitz continuous set valued m
on the closed interval[t0, θ ] with Lipschitz constantL > 0. Suppose thatV (·) : [t0, θ ] →
comp(Rn) is convex set valued map satisfying the conditionsV (t0) = W(t0), V (θ) = W(θ)

and grV (·) ⊂ grW(·). Then the set valued mapV (·) : [t0, θ ] → comp(Rn) is Lipschitz
continuous on the closed interval[t0, θ ] with Lipschitz constantL > 0.

Proof. Since grV (·) ⊂ grW(·), then

V (t) ⊂ W(t) for everyt ∈ [t0, θ ]. (5.1)

Let us choose arbitraryt1, t2 ∈ [t0, θ ] and lett1 < t2. Choosev2 ∈ V (t2). Then we have
from (5.1) thatv2 ∈ W(t2). SinceW(·) is Lipschitz continuous with Lipschitz consta
L > 0, W(t0) = V (t0), then there existv0 ∈ V (t0) andb ∈ B such that

v2 = v0 + L(t2 − t0)b. (5.2)

Now we define the functionv(·) : [t0, t2] → Rn, by

v(t) =
(

1− t − t0

t2 − t0

)
v0 + t − t0

t2 − t0
v2, t ∈ [t0, t2]. (5.3)

SinceV (·) is a convex set valued map andv0 ∈ V (t0), v2 ∈ V (t2), thenv(t) ∈ V (t) for
everyt ∈ [t0, t2] and consequentlyv(t1) ∈ V (t1). (5.2) and(5.3) imply that‖v2 −v(t1)‖ �
L(t2 − t1). So,v2 ∈ V (t1) + L(t2 − t1)B and consequently

V (t2) ⊂ V (t1) + L(t2 − t1)B. (5.4)

Analogously, it can be shown that

V (t1) ⊂ V (t2) + L(t2 − t1)B. (5.5)

(5.4) and(5.5) complete the proof. �
Theorem 5.2. If the convex set valued mapV (·) : [t0, θ ] → comp(Rn) has a convexα-
extension, then it is Lipschitz continuous on the closed interval[t0, θ ].

Proof. Since V (·) : [t0, θ ] → comp(Rn) has convexα-extension, then from Propos
tions 3.1 and 3.2, there existx0 ∈ Rn, x1 ∈ Rn, the set valued mapsV L

α (x0) | (·) :
[t0 − α, θ ] → comp(Rn), V R

α (x1) | (·) : [t0, θ + α] → comp(Rn) such that

V (t) ⊂ V L
α (x0) | (t), V (t) ⊂ V R

α (x1) | (t) (5.6)

for every t ∈ [t0, θ ] where the setsV L
α (x0) | (t), t ∈ [t0 − α, θ ], and V R

α (x1) | (t), t ∈
[θ, θ + α], are defined by (2.1) and (2.2), respectively. Denote
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W = grV L
α (x0) | (·) ∩ grV R

α (x1) | (·), (5.7)

W(t) = {
x ∈ Rn: (t, x) ∈ W

}
, t ∈ [t0, θ ]. (5.8)

Since grV L
α (x0) | (·) and grV R

α (x1) | (·) are convex compact sets, thenW ⊂ [t0 − α, θ +
α] × Rn is also convex and compact. So, the set valued mapW(·) : [t0, θ ] → comp(Rn)

defined by(5.8), is a convex compact one.
From (2.1), (2.2), (5.6)–(5.8) it follows thatW(t0) = V (t0), W(θ) = V (θ), V (t) ⊂

W(t) for everyt ∈ (t0, θ). It is not difficult to verify that the set valued mapW(·) : [t0, θ ] →
comp(Rn) is Lipschitz continuous on the closed interval[t0, θ ]. Then according to Propo
sition 5.1, the set valued mapV (·) : [t0, θ ] → comp(Rn) is Lipschitz continuous. �
Theorem 5.3. Let V (·) : [t0, θ ] → comp(Rn) be a convex and Lipschitz continuous
valued map. IfintV (t0) �= ∅ and intV (θ) �= ∅, then the set valued mapV (·) has a convex
α-extension.

Proof. Let the set valued mapV (·) : [t0, θ ] → comp(Rn) be Lipschitz continuous with
Lipschitz constantL0 > 0. Then

V (t) ⊂ V1(t) for everyt ∈ [t0, θ ], (5.9)

where

V1(t) = V (t0) + L0(t − t0)B, t ∈ [t0, θ ]. (5.10)

Now, let us show that there existα0 > 0 andx∗
0 ∈ Rn such thatV1(t) ⊂ V L

α0
(x∗

0) | (t) for
everyt ∈ [t0, θ ], where the setV L

α0
(x∗

0) | (t) is defined by (2.1).
Let x∗

0 ∈ intV (t0). Then there existsε0 > 0 such thatB(x∗
0, ε0) ⊂ V (t0), where

B(x∗
0, ε0) = {x ∈ Rn: ‖ x − x∗

0 ‖� ε0}.
Chooseα0 > 0 such that

0< α0 � ε0

L0
. (5.11)

SinceB(x∗
0, ε0) ⊂ V (t0), then from(2.1), (5.10) and(5.11) we obtain

V1(t) = V (t0) + L0(t − t0)B = V (t0) + L0

ε0
(t − t0)

(
B

(
x∗

0, ε0
) − x∗

0

)

⊂ V (t0) + 1

α0
(t − t0)

(
V (t0) − x∗

0

) = V L
α0

(
x∗

0

) | (t)
for everyt ∈ [t0, θ ]. So we have from (5.9) that

V (t) ⊂ V L
α0

(
x∗

0

) | (t) for everyt ∈ [t0, θ ],
whereα0 ∈ (0,

ε0
L0

]. SinceV L
α0

(t0, x
∗
0) | (t0) = V (t0), then

D+V (t0, v) ⊂ D+V L
α0

(
t0, x

∗
0

) | (t0, v) for everyv ∈ V (t0). (5.12)

Similarly, it can be proved that there existx∗ ∈ Rn andα1 > 0 such that
1
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D−V (θ, v1) ⊂ D−V R
α1

(
x∗

1

) | (θ, v1) for everyv1 ∈ V (θ). (5.13)

It follows from (5.12) and Theorem 2.3 that the set valued mapW1(·) : [t0 − α0, θ ] →
comp(Rn) defined as

W1(t) =
{

V L
α0

(x∗
0) | (t), t ∈ [t0 − α0, t0),

V (t), t ∈ [t0, θ ],
is a left-hand convexα0-extension of the set valued mapV (·).

Analogously we get from (5.13) and Theorem 2.4 that the set valued mapW2(·) : [t0,
θ + α1] → comp(Rn) defined as

W2(t) =
{

V (t), t ∈ [t0, θ ],
V R

α1
(x∗

1) | (t), t ∈ (θ, θ + α1],
is a right-hand convexα1-extension of the set valued mapV (·).

Let α = min{α0, α1}, x0 ∈ W1(t0 − α), x1 ∈ W2(θ + α). Then it follows from Proposi
tions 3.1 and 3.2 that the inclusions

V (t) ⊂ V L
α (x0) | (t), V (t) ⊂ V R

α (x1) | (t)
hold for anyt ∈ [t0, θ ] and consequently

D+V (t0, v0) ⊂ D+V L
α (x0) | (t0, v0) for everyv0 ∈ V (t0), (5.14)

D−V (θ, v1) ⊂ D−V R
α (x1) | (θ, v1) for everyv1 ∈ V (θ). (5.15)

Hence we get from (5.14), (5.15) and Theorem 2.5 that the set valued mapW(·) : [t0 − α,

θ + α] → comp(Rn) defined as

W(t) =



V L
α (x0) | (t), t ∈ [t0 − α, t0),

V (t), t ∈ [t0, θ ],
V R

α (x1) | (t), t ∈ (θ, θ + α],
is a convexα-extension of the set valued mapV (·). �
Example 5.4. Let V∗ ⊂ Rn, V ∗ ⊂ Rn be compact, convex sets and intV∗ �= ∅, intV ∗ �= ∅.

Then the set valued mapV (·) : [t0, θ ] → comp(Rn) defined as

V (t) =
(

1− t − t0

θ − t0

)
V∗ + t − t0

θ − t0
V ∗

has a convexα-extension.
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