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Abstract

In this article, the inverse problem of the differential inclusion theory is studied. For a giveh
and a continuous set valued nap> W (), t € [rg, 0], whereW (¢) C R" is compact and convex for
everyr € [1g, 0], itis required to define differential inclusion so that the Hausdorff distance between
the attainable set of the differential inclusion at the time momenith initial set (zg, W(¢g)) and
W (¢) would be less than for everyt € [1g, 0].
0 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In many papers (see, e.g., [1,2,6-10,15,17-19,21], and references therein) the various
properties of integral funnels and attainable sets of the given differential inclusion (DI)
were studied. In this article, the inverse problem of the DI theory is studied.

We denote by symbdl(E, D) the Hausdorff distance between the st C R". It
is defined as

h(E, D) =max[subEJd(x, D), supd(y, E)}
xe ye

whered(x, D) =infycp |x — y||, || - || means the Euclidean norm.
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Consider the DI
x € F(t,x) (1.1)

wherex € R" is the phase state vectors [1, 0] is the time.

The absolutely continuous functior(-) : [70, 8] — R" satisfying the inclusior (¢) €
F(t, x(2)) for almost allz € [g, 6] is said to be a solution of the DI (1.1) (see, e.g., [4]). By
symbolX (#,, X,) we denote the set of all solutions of the DI (1.1) satisfying the condition
x(ty) € X, WhereX, C R", t, € [0, 0]. We set

X(t; 15, Xo) = {x(0) € R": x(-) € X (14, X)},
H(ty, Xi) = {(t,x) € [1,,0] x R": x(t) € X (1 1+, X4 }.

Lete > 0 be a given number and— W (), t € [0, 0], be a given set valued map. We
will study the following problem. It is required to define DI (1.1) so that the inequality

h(X(t; 10, W(10)), W(1)) < e

would be fulfilled for every € [ro, 6].

Such problems may appear in mathematics modelling where it is required to specify the
dynamic of the system through measurement of the phase state of the system.

The inverse problem was investigated in the works [3,5,13]. In this article, the desired
Dl is defined so that the right hand side of the DI satisfies the conditions which guarantee
existence and extendability of the solutions. Note that the notions strong and weak invariant
sets with respect to DI play an important role in construction of such DI (see, e.g., [1,7,8,
11,16)).

To solve the problem, we take a small enough partition of the time intég@] and
on each of the subintervals of the partition we build a piecewise affine interpolation of the
set valued map — W(z), t € [0, ]. Using such approximated affine tube, a linear DI is
defined which solves the problem.

Letr — W(r), t € [0, 0], be a set valued map,

W=gr W()={(t,x) €[t0,0] x R": x € W(1)}

be a closed set. Far, x) € [10, 6] x R" we denote

D:{W(t,x):{deR": Ax(r) e W(r), T>1, lim m:d},
t—>t+0 T — 1t

D-W(t,x) = {de R 3x(x) e W(), T <1, lim “ =% d}.
t—>t—-0 T —1t
The setsDfW(t,x) and D, W(z,x) are respectively said to be lower right hand
side and lower left hand side derivative sets of the set valuedrmap¥ () calculated
at the point(¢, x). These sets are closed and near connected by the lower Bouligand
contingent cone to the s& at (7, x) (see, e.g., [1,2,8,14]). Note that the sBXS W (z, x)
and D_ W(t,x) can be empty for somé, x) € W. It is not difficult to show that, if
W C [to,0] x R" is convex and closed set, thél W (z, x) # ¢ for every (¢,x) € W,
t €[to,0), andD_W(t, x) # ¢ for every(t,x) e W, t € (10, 0].
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2. Special case

In this section, we consider the special case where the set valued mapy (z),
t € [0, 0], is affine tube.

Lets,,t* € R, Vi, V¥ C R", a > 0. From now on, it will be assumed th&j, V* C R”
are convex and compact sets. Define the set valuedrmap/,(¢), t € [t — a, t* + @],
where

t—ti+a t—ty+a
Va()=1- V*, 2.1
a(t) ( t*—t*+2a> U+ 20 2.1)
We set
Vo={(t,x) €lts + o, t* +a] x R": x € Vo (1) }. (2.2)

It is obvious thatV,, C [fx — «, t* + @] x R" andV,(t) C R" are convex, compact sets
for everyr € [t — «, t* 4+ «] and the set valued map— Vy (1), t € [tx — o, t* + o], iS
continuous.

We will study the following problem. It is required to define a DI so that the equality
X (t; ts, Vo (ts)) = Vo (¢) holds for every € [1,, t*]. Here X (¢; t,, V4 (2.)) is the attainable
set of the desired DI at the time momenith initial set(z,, V,(t)).

For (¢, x) € [t, t*] x R", v € (0, «) we set

1
Fy(t,x) = ;[Va(t—i—v)—x], (2.3)
1
——[Va(t—v)—x]. (2.4)
v
Consider some properties of the set valued mé&ps) — F,(¢,x) and (¢, x) —
@, (t, x) which are defined on the spapeg, t*] x R". Denote

a=max{|x|: (,x) € Vy}. (2.5)

D,(t,x)=

Proposition 2.1. The setsF, (z, x) C R" and @, (¢, x) C R" are convex and compact for
any(z, x) € [t t*] x R", the set valued maps, x) — F,(t,x) and(¢, x) — &, (t, x) are
continuous with respect t@, x) in [z, t*] x R" and are Lipschitz with respect towith
constant!. The inequalities

1
max{|| fII: f € F(t,x)} < ;(a + llx1)
1
max{llg|l: ¢ € D1, x)} < ;(a + lIx1l)
are true for any(z, x) € [, t*] x R", wherea > 0 is defined by relatioii2.5).

Proposition 2.2. If (t,x) € Vg, t € [t,t*] and f € F, (¢, x) thenx + §f € V,(t + §) for
anyé € (0,v). If (t,x) € V, t € [ty,t*] and g € @, (¢, x) thenx — d¢ € V,(t — §) for any
§€(0,v).

Here the set valued map— V, (1), t € [tx — «, tx + «] is defined by relatio2.1).
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Proposition 2.3. For every(t, x) € Vy, t € [tx, t*]
F,(t,x)Nd,(t, x)#0.

Proof. Let (¢g, xg) € Vg, to € [+, t*]. Then from (2.1) and (2.2) we have that there exist
vy € V, andv* € V* such that

fo—ty +« fo—ty +
x=1—-— v +7U*.
0 ( t*—t*—i—Za)* 1 — 1+ 2a

Denotedp = 2= It is not difficult to prove thatdg € F, (¢, x), do € ®,(¢, x) and

*—1,

consequentlylp € F,(t,x) N &, (¢, x). O

Proposition 2.4. The inclusions
Fy(t,x) C DI Vy(t,x) for any(t,x) € Vy, t € [t, t*],
®,(t,x) C D, Vu(t,x) for any(r,x) € Vy, t € [t 1],
hold where the se¥,, C [#x — o, * + ] x R" is defined by2.2).
It follows from Proposition 2.4 thab; V, (1, x) # @, D, V4(t,x) # ¢ for any (¢, x) €

Vu, t € [ty, t*].
Consider DI

%€ Fy(t,x) (2.6)

where (¢, x) € [t,,t*] x R" and F,(t,x) is defined by (2.3). We denote by symbol
X, (to, Xo) the set of all solutions of the DI (2.6) satisfying the conditidim) € Xo where
Xo C R"™, 19 € [ty, t*]. Further we set

X, (t: 10, X0) = {x(t) € R": x(-) € X, (t0. X0)}
H, (10, Xo) = {(t,x) € [1x, ] x R": x € X, (t; t0, X0) }.
Let
V={@t,x) €t 1*] x R": x € Va(D)},
Viy={xeR" (1,x) eV}
wherer € [t, t*]. It is obvious thatV (r) = V, (¢) for every: € [z, t*].
Formulate the theorem establishing that integral funnel of the DI (2.6) with initial set
(14, V (t,)) coincides with the seV C [z, t*] x R".
Theorem 2.1. For everyv € (0, @) the equalities
Hy(te, V) =V, X6, V(@) =V(@), X5 1 Va(te)) = Va (@)

are fulfilled for every € [z, t*].



Kh.G. Guseinov et al. / J. Math. Anal. Appl. 277 (2003) 701-713 705

Proof. According to the Proposition 2.4,
Fy(t,x) C DfV(t,x)

for any (t,x) € V, t € [t t*) and according to the Proposition 2.1, set valued map
(t,x) — F,(t,x), ((t,x) € [t«,t*] x R"), is continuous with respect t¢,x) and is
Lipschitz with respect toc. Then, it follows from Theorem 2 of [1, p. 202] (see, also
[8,11,20]), that the se¥ C [1., t*] x R" is positively strongly invariant with respect to the
DI (2.6). It means that for anyg, xo) € V, x(-) € X, (f0, xo0) the inclusionx(z) € V (¢) is
verified for anyr € [ro, t*]. It follows from here that

Hy(t., V(t)) C V, Xo(t: 5, V(1)) C V(1) (2.7)

for everyr € [z, t*].
According to the Proposition 2.4,

D, (t,x) CD_V(t, x)

forany (¢,x) € V, t € [t,, t*], whered, (¢, x) is defined by (2.4). Then it follows from
Proposition 2.3 that

F,(t,x)ND_V(t,x)#0.

Then, it follows from here and Theorem 1 of [1, p. 191] (see, also [12,16,20]), that
the setV is negatively weakly invariant with respect to the DI (2.6). This means that for
every fixed(zo, xo) € V there existx(-) € X, (10, xo) such that the inclusion(z) € V(z) is
verified for everyr € [1, tp]. One can have from here that

V C Hy(t, V (1)), V() CXy(t; 1, V(1)) (2.8)

for everyr € [1,, t*]. SinceV (r) = V,(¢) for everyt € [t1,, t*], the validity of the theorem
follows from (2.7) and (2.8). O

3. Main result

The construction which have built in Section 2 for the set valued map V, (1),
t € [, t*], defined by relation (2.1) will be extended to continuous, convex and compact
valued mag — W (1), t € [to, 0].

It will be assumed that the set valued nrap- W (¢), ¢ € [to, 6], satisfies the following
condition.

(A) The set valued map— W (¢) is continuous otirp, ] and W(¢) C R" is convex,
compact for every € [1, 6].

Since the set valued map—~ W(¢) is continuous otizg, 6], it is uniformly continuous
on [z, 0]. Then, for every > 0, there exist$ = (o) > 0 such that for any, t € [z, 0],
where|t — 7| < 8, the inequality

h(W(), W(1)) <o (3.1)

holds. Choose an arbitrary uniform partitiéh= {ro < 11 < --- < 1, = 6} of the segment
[t0, 0] such that;;1 — 1, = A foranyi =0,1,...,m — 1, and

A< (3.2)
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According to the (3.1) and (3.2)
h(W (), W(tiz1) <o (3.3)

foranyi =0,1,...,m — 1. We setW; = W(,), i =0,1,...,m — 1, and define the set
valued map — WO(r), t € [1o, 8], where

r—t t—t
wot) = <1— ! )W,- + — Wit1 (3.4)
iy1—1 liy1— 1

ast e [t;,tiy1), i =0,1,...,m — 1. It is obvious thatW®(;;,) = W(r;) = W; for every
i=01,...,m.
Proposition 3.1. For anyt € [, 6], the inequality

h(W(t), Wo)) <o (3.5)
holds.

Now we set

WO ={(t, x) € [t0, 0] x R": x € Wo(t)},
Wl =, x) elti,ix1) x R xe WO}, i=0,1,...,m—1,
WP ={xeR": (t,x)e W2}, telttisl. (3.6)

Choosex € (0, %) whereA =1t41—1,i=0,1,...,m—1, and define set valued maps
t—= Vi), [ti —a.tiya+al,i=0,1,...,m — 1, setting

— W41 3.7
ti+l_ti+2a i+1 ( )

t—1 t—1
Vl*([)z(l i +o ) : i+ o

B tivy1— 1t + 2
Proposition 3.2. Let the set valued maps— W[O(t), t € [ti,tiy1] and t — V*(1),

telti —a,tiv1+al, i =0,1,...,m — 1, be defined by the relation@.6) and (3.7),
respectively. Then,

(W), Vi () < M

for everyr € [t;,t;+1] wherei =0,1,...,m — 1, M = max Mo, M1, ..., My_1}, M; =
maxX|lx — yll: x € W;, y € Wiy1}.

Proof. Leti =0,1,...,m — 1 be fixed. Choose arbitrary € [#;, t;+1] andx, € Wio(t*).
Then, it follows from the relation (3.4) that there existe W;, x;+1 € W;11 such that

ty — 1 ty — 1
Xy = <1— * ! )xi + = X1 (3.8)
liv1 — 1t j

Choose the point

t—tito Ix —li +o
f=1- i i1 3.9
* ( tit1—t +2(X>XI + tiv1—t +2LZXI+1 (3.9)
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Itis obvious thatc* € V.*(z,). It can be obtained from (3.8) and (3.9) that

[tig1 4+t — 2t]
xe —x*| <« llxiv1 — x|
: Sl — )i — i+ 20 T
tiv1+1t)/2—t A o
|(1+l z)/ *I i< <*m

a—— M <
(tiv1 — )ty — 1 + 200) A(A + 2a) A

This implies
WO(t,) C V¥ (t,) + %MB. (3.10)
whereB = {x € R": ||x| < 1}. Analogously, it is possible to show that
V(1) € WOt + %MB. (3.11)
From (3.10) and (3.11) we have the validity of the propositiom.

Leti =0,1,...,m — 1 be fixed. We set

Vi={@ x)elti —a, tiyr+a]l x R": x € VF(1)},

VO={(t,x) €[t tiz1] x R": x € Vi*(1)},

Vi ={xeR" (t,x) e VP, tell,til, (3.12)
where V*(¢) is defined by(3.7). It is obvious that the setsqo C [#,ti+1] x R™ and
V¥ C[ti —a, tir1+a] x R are convex, compact aﬂqo(t) = V*(¢) foreveryr € [t;, t; y1].

Let v € (0, «). Define set valued magy, x) — Pi(t,x), (t,x) € [t;, ti+1] x R", i =
0,1,...,m—1, setting
. 1
Pi(t,x)==[V{(t +v) —x]. (3.13)
V
Now, we consider DI
X € P, x) (3.14)

where(t, x) € [t;, ti+1] X R", i =0, 1, .. Lm— 1, is fixed. Analogously to Proposition 2.1,
it is not difficult to prove that the seP! (t,x) is convex and compact for every, x) €
[#i, ti+1] x R", the set valued maps, x) — P, (t,x) (i =0,1,...,m — 1) are continuous
on the spacéy;, r;+1] x R" and Lipschitz with respect to with constant%, the inequality
. 1
max{|| f: f e P)(,x)} < ;(bi + Ilx11)
is verified for every(t, x) € [#;, t;+1] x R", whereb; = maxX{||x|: (z,x) € V*}.
By the symbolY/ (z,, X.), we denote the set of all solutions of the DI (3.14) satisfying
the conditionx (z,) € X, whereX, C R", t, € [t;, t;+1]. We set

Yy (5 1, Xo) = {x(1) € R": x() € Vi (1, X },
R} (14, Xo) = {(1, %) € [t ti2] X R"1x € Y] (15 15, X2 ).
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Proposition 3.3. For any fixedv € (0, «)
R (6, V) = V0, Yi(t:4, V2w)) = VP
for everyr € [, ti+1].
The proof of the proposition follows from Theorem 2.1.

We formulate the proposition which characterises Hausdorff distance between the
attainable sets of the DI (3.14).

Proposition 3.4. Let X1, X2 C R" be compact sets. Then
. . 1
h(Y, (5 1, X1), Y, (13 1, X2)) < a(X1, X2) - eXp[——(t - tl-)}
V
for everyr € [#;, t;11].

Consider DI
xePy(t,x), (t,x)€lto0]xR", (3.15)

whereP,(t, x) = Pi(t,x) as(t,x) € [t;, ti+1) x R", i =0,1,...,m — 1, the setPi (¢, x)
is defined by (3.13).

It is obvious that the seR, (¢, x) is convex and compact for eve¢y, x) € [0, 0] x R",
the set valued ma@, x) — P, (t, x) is continuous at the points, x) € [f0, 8] x R" where
t#t,i=0,1,...,m. Further, the set valued map, x) — P, (¢, x) is right continuous
ast=1t;,i=0,1,...,m — 1, left continuous as = r,, = 6, is Lipschitz with respect ta
with constant: and

max{|[ flI: f € Po(t,x)} < =(b+IIxll),

< |

whereb = maxbo, b1, ..., b1}, bi = maxX{|x||: (¢, x) € V).
By symbolY, (z., X ), we denote the set of all solutions of the DI (3.15) satisfying the
conditionx () € X, whereX, C R", t, € [r0, 0]. We set

Yy (t; 1, Xo) = {x(1) € R": x () € Yy (14, X}

Theorem 3.1. For every fixed € (0, @) the inequality
h(Y, (t: o, W(t0)), WO(t)) < 3%1\4

holds for anyt € [0, 8], whereM > 0 is defined in Propositio.2

Proof. Letzt, € [10, 0]. If t, = 19, then the validity of the theorem is obvioustlfe (1, 61,
then there exists =0, 1, ..., m — 1 such that, € (¢, #x+1]. Consider the setW (r9) and
V(to). SinceV{(t) = V§(t) ast € [to, 1], W(to) = Wo = Wi(10), then we obtain from
Proposition 3.2 that

o

h(VQ(t0), Wo) < M. (3.16)
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Consequently, it follows from relation (3.16) and Proposition 3.4 that
1
h(Yu(t; t0, Wo), Yy (t; to, V(10))) < %M eXp[——(t - to)} (3.17)
vV

foranyr € [, 11].
According to Proposition 3.3, we have

Yo (15 10, V(10)) = V(1) (3.18)

foranyr € [, t1].

SinceVé)(t) = Vi) ast € [to, 1], where the set valued map-> Vi (1), ¢ € [to, t1], is
defined by (3.7), the set valued map> VOO(t), t € [0, 11], is defined by (3.12), it follows
from (3.17), (3.18), and Proposition 3.2 that

h(Y,(t; 10, Wo), W (1))
< (Yo (t; 10, Wo), V) + h(VE(@), W)

<aM+aMex 1(r 10) <aM 1+ex 1(r 10)
SaAT T A po 0

foranyr € [, t1].
Since WQ(t) = WO(r) for everyt € [to, 1], where the set valued map— WJ(t),
t € 1o, 1], is defined by (3.6), we obtain

h(Yv(t; to, Wo), WO(I)) < %M<1+ exp[—}AD (3.19)
v
foranyr € [, t1].

Now, we consider the segmept, t2]. Denotele = Y, (11; to, Wo). Since Wf(tl) =
W(t1) = W1, A =11 — tg, then from (3.19) we have

h(YL wi) < %M(l—i— exp[—%]). (3.20)
SinceV (1) = Vi (t1), W(t1) = W(t1) = W1, then from Proposition 3.2 we obtain that

n(V2(11), W1) < %M. (3.21)
It follows from (3.20) and (3.21)

(YL vOam)) < %M(Z n exp[—éD. (3.22)
Then, according to the (3.22), Propositions 3.3 and 3.4, we have

h(Yu(t; 12, YE), V2®) = (Y, (15 11, Y1), Yo (1 12, VR (20))

< gM<2+ exp[—éD exp[—l(t — tl)j| (3.23)
A v v

for everyr € [11, 12]. SinceA =1 — 11, Vlo(t) = Vi), Yu(t; 1, le) =Y, (t; 19, Wo) for
anyr € [t1, 12], then it follows from (3.23), Propositions 3.2 and 3.3 that
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h(Y,(t; 10, Wo), W) < h(Y, (1512, Y), V(D) + (VL) W)

<aM+aM 2+ ex A ex 1(t 1)
S A A P v v 1
< gM<1+2ex;{—é} +exp[—}(t - to)D
A % v
foranyt € [r1, 12].

SinceW?(t) = WO(r) for anyt € [t1, £2], then we obtain that

h(Y, (t; 10, Wo), WO(I)) < %M<1+ 2 exp{—é} + exp[—%AD

v

for everyr € [11, 12].
It is possible analogously to show that

h(Y, (t; 10, Wo), Wo(t)) < %M<1+ 2exp{—é} + 2exp{—2—A} + exp[—EAD
v V

v

foranyr € [, t3].
Further assuming that the inequality

i—-1

h(Y (1 1o, Wo), WO()) < %M (1 +2)° exp[—%A} + exp[—l;AD (3.24)

j=1

holds for anyr € [f;—1,1] (i =2,3, ..., k), let us prove that the inequality
0 o i J i+1
h(Yo(t: to, Wo), WO()) < —M[1+2) "exp —>A|+exp ———A|| (3.25)
A a v v

is fulfilled for everyr € [#;, t;+1].
Let Y,f =Y, (t; to, Wo). SinceWiO(ti) = W(t;) = W; then we obtain from (3.24) that

i—1 . .
h(YEw;) < %M(l+22exp[—%A} +exp[—l;AD. (3.26)

j=1

Since V2(1;) = V*(t), W2(t) = W(;) = W;, then from Proposition 3.2 we have
that

h(VO), Wi) < %M. (3.27)

It follows from (3.26) and (3.27)
o = j i
h(Yv,V,(tz))\AM<2+2jX:=lexp[ VA}+exp[ UAD.

SinceA =t;41 — t;, then according to Propositions 3.3 and 3.4 we have from here that
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h(Yo(t; 1, Y]), VE®) = h(Yo (15 13, YE), Yo (85 11, V(1)) )

i-1 . .
o j i 1 _
< ZM(2+ 2j§:lexp[—;A} + exp[—;AD exp[—;(t — t,)i|

o i j i+1
=—M|[2 - - .
- ( Zexp[ VA} +exp[ - Ai| (3.28)
j=1
for everyr € [#;, ti41]. SinceV2(t) = Vi*(1), Yu(t; t;, YE) = Y, (¢; to, Wo), W2(t) = WO(r)

foranyt € [1;, t;+1], then it follows from (3.28), Proposition 3.2 and Proposition 3.3 that

(Y (t; to, Wo), WO1)) = h(Y, (; t0, Wo), W2(1))
<h(Yo(t; 1, YE), VO®) +h(VE(1), Wl(r))

i . .
o o Jj i+1
<—M+-—M 25 expl —=A|+exp — A
A +A ( ‘1 p[ v i|+ p[ v i|)

j=

i . .
o Jj i+1
:ZM(1+2 E exp[—;A}+exp[— 5 AD
j=1
foranyt € [1;, ti+1].

So validity of the inequality (3.25) is proved. Thus we obtain thatfar (1, tx+1] the
inequality

h(Y, (1 t0, Wo), WO(t,))

k .
< %M(HzZexp[—%A}+exp[—ktlAD (3.29)

j=1

holds. Sincet, € [0, 0] is arbitrary chosen moment of time, it follows from (3.19)
and (3.29) that

h(Yo(t: 10, Wo), WO(1)) < %M(1+ 22exp[—%A}) (3.30)

j=1

foranyr € [1o, 6]. It is not difficult to verify that

m . o0 A

E exp[—iA} < /exp[——r} dr <1
; v v

Jj=1 0

Then, from here and from (3.30) it follows validity of the theorenm
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Theorem 3.2. Lete > 0 be a given number. Then there exist- 0, « > 0 such that for
anyv € (0, @) the inequality

h(Y,(1: 10, W(t0)), W(1)) < &

holds for every € [1g, 6].

Proof. Lete > 0 be a given number. Then, for= 5, it can be defined =4(¢/2) > 0
such that for the partitio = {tp < 11 < --- < t,, = 6} of the segmenro, 0], whereA <§
andA =t —t; foranyi =0,1,...,m — 1, the relation (3.5) is verified.

We choosex € (0, 4) so that the inequality

&
o< 6_MA
holds whereVf > 0 is defined in Theorem 3.1. Now, let (0, «) be a fixed number. Then,
it follows from (3.5) and Theorem 3.1 that

(Y, (t; 10, Wo), W(0)) < h(Y,(; 10, Wo), WO(0)) + h(WO(r), W (1))

o +3aM<8+s
<o —M<L -+ =-=¢
A 2 2

foranyt € [1,0]. O

From Theorem 3.1 and 3.2, it follows thatdf > O has the smallest order relative
to A, which is greater than one, then the Hausdorff distance between the reachable sets
Y, (¢; to, Wo) andW (1), t € [tg, 0] tends to zero aa — 0 for everyr € [1g, 0].
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