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Abstract

We give an iterated function system (IFS) on the plane with the circle as attractor. In doing this, we also
give a sufficient condition for radially contracting functions on the plane (or on R

n) to be a contraction.
A counterexample shows that radial contractiveness is not enough to be a contraction.
© 2006 Elsevier Inc. All rights reserved.
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As is well known, there is not a generally agreed-upon definition of fractals. Self-similarity
and fractional dimension are considered as characteristic features of fractals. Self-similarity is
often understood as being the attractor of an iterated function system (IFS). But simple spaces
such as an interval or a square are trivially attractors of IFS’s, so that some dimension condition
is considered to be desirable. We do not want to delve into these matters and refer to [1–3]. As
an enrichment of the example-repertory, we want to show explicitly that the unit closed disc (the
circle) can be realized as the attractor of an IFS on the plane.

We use the polar coordinates (ρ, θ) on the plane. We give the following IFS on the plane:
Let k : [0,2π] → R be the periodic function with period π/2 given by

k(θ) = −3

8
(sin θ + cos θ) +

√
1 − 9

64
(sin θ − cos θ)2 for 0 � θ � π/2.
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Fig. 1. Graph of k(θ).

Fig. 2. Polar graph of ρ = k(θ).

(For the graph of k see Fig. 1 and for the polar graph of ρ = k(θ) see Fig. 2.)
Now we define an IFS on R2 consisting of 9 functions:

f0
(
ρeiθ

) = ρk(θ)eiθ ,

fn

(
ρeiθ

) = ρk(θ)eiθ + 3
√

2

8
e

π
4 ni, n = 1,3,5,7,

fn

(
ρeiθ

) = ρk(θ)eiθ e
π
4 i + 3

√
2

8
e

π
4 ni, n = 2,4,6,8.

Theorem 1. The functions {fn}n=0,1,...,8 are contractions on the plane and their attractor is the
circle D

2 = {ρeiθ | 0 � ρ � 1}.

Proof. That D
2 = ⋃8

n=0 fn(D
2) is shown in Fig. 3 and results from the definition of f0 which

is obtained by translating the center of the circle to the point 3
√

2
8 e

5π
4 i as shown in Fig. 4 (we

omit the straightforward, plane-geometric details). To show that the functions {fn}n=0,1,...,8 are
contractions on the plane, it is enough to see that f0 is contraction, because the others are obtained
by translations and rotations of it.

Now, f0 is a function on the plane, whose restrictions to rays through the origin are obviously
linear contractions. But interestingly, this property is not enough for a function on the plane to
be a contraction of the plane! (For a counterexample see below.) Some additional constraints are
necessary and we now interrupt this proof and give first the following Theorem 2 and come back
to the proof of Theorem 1 as an application of Theorem 2. �

In the following, it will be more convenient to consider a 2π -periodic function on R as a func-
tion on the circle κ :S1 → R by identification θ ↔ eiθ .
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Fig. 3. Attractor of the IFS {f0, f1, . . . , f8}.

Fig. 4. Construction of f0.

Theorem 2. Let κ :S1 → R
+ be a continuous function with

r = max
eiθ∈S1

κ
(
eiθ

)
.

Assume, there exists s with r < s < 1 such that for eiθ1, eiθ2 ∈ S1 and d(θ1, θ2) < π
2 (where

d(θ1, θ2) denotes the shorter arc-length on S1) the inequality

∣∣κ(
eiθ1

) − κ
(
eiθ2

)∣∣ <
(s2 − r2)

d(θ1, θ2)

s
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holds. Then, the function f : C → C defined by f (ρeiθ ) = ρκ(eiθ )eiθ is a contraction on the
plane with s being a contractivity coefficient.

Proof. Let ρ1e
iθ1 and ρ2e

iθ2 be two points on the plane. We have to show that the distance
contracts with factor s under the mapping f :∥∥f

(
ρ1e

iθ1
) − f

(
ρ2e

iθ2
)∥∥ � s

∥∥ρ1e
iθ1 − ρ2e

iθ2
∥∥.

Consider first the case where d(θ1, θ2) < π
2 :

After squaring and applying the cosine theorem, it will be enough to show the following:

ρ2
1κ2(eiθ1

) + ρ2
2κ2(eiθ2

) − 2ρ1ρ2κ
(
eiθ1

)
κ
(
eiθ2

)
cos(θ1 − θ2)

� s2[ρ2
1 + ρ2

2 − 2ρ1ρ2 cos(θ1 − θ2)
]
,

i.e., denoting κ(eiθ1) and κ(eiθ2) by κ1 and κ2,

ρ2
1

(
s2 − κ2

1

) + ρ2
2

(
s2 − κ2

2

) − 2ρ1ρ2
(
s2 − κ1κ2

)
cos(θ1 − θ2) � 0.

For the expression on the left-hand side to be non-negative, it is enough to show that the discrim-
inant is non-positive:(

s2 − κ1κ2
)2 cos2(θ1 − θ2) − (

s2 − κ2
1

)(
s2 − κ2

2

)
� 0.

Using the identity(
s2 − κ1κ2

)2 = s2(κ1 − κ2)
2 + (

s2 − κ2
1

)(
s2 − κ2

2

)
,

it will suffice to show

(s2 − κ1κ2)
2

(s2 − κ2
1 )(s2 − κ2

2 )
= 1 + s2(κ1 − κ2)

2

(s2 − κ2
1 )(s2 − κ2

2 )
� 1

cos2(θ1 − θ2)
= 1 + tan2(θ1 − θ2),

i.e.,

s2(κ1 − κ2)
2

(s2 − κ2
1 )(s2 − κ2

2 )
� tan2(θ1 − θ2).

Now, by assumptions of the theorem the bound

(κ1 − κ2)
2 � (s2 − r2)2

s2
d(θ1, θ2)

2

holds. Hence

s2(κ1 − κ2)
2

(s2 − κ2
1 )(s2 − κ2

2 )
� (s2 − r2)2d(θ1, θ2)

2

(s2 − κ2
1 )(s2 − κ2

2 )

� d(θ1, θ2)
2 � tan2(θ1 − θ2)

(
by d(θ1, θ2) � π

2

)
.

To settle the case d(θ1, θ2) � π/2, again apply the cosine theorem:
∥∥f

(
ρ1e

iθ1
) − f

(
ρ2e

iθ2
)∥∥2 = ρ2

1κ2
1 + ρ2

2κ2
2 − 2ρ1ρ2κ1κ2 cos(θ1 − θ2)

� s2(ρ2
1 + ρ2

2 − 2ρ1ρ2 cos(θ1 − θ2)
) = s2

∥∥ρ1e
iθ1 − ρ2e

iθ2
∥∥2

because κ2
1 � s2, κ2

2 � s2 and κ1κ2 � s2 and cos(θ1 − θ2) � 0. �
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Corollary 3. Let κ :S1 → R
+ be a continuous function with

r = max
eiθ∈S1

κ
(
eiθ

)
< 1.

Assume the inequality |κ(eiθ1)− κ(eiθ2)| < 1−r
2 d(θ1, θ2) holds for d(θ1, θ2) < π

2 . Then the func-
tion f : C → C defined by f (ρeiθ ) = ρκ(eiθ )eiθ is a contraction on the plane with s being
a contractivity coefficient.

Proof. Let us apply Theorem 2 for s = 1+r
2 . It will suffice to show 1−r

2 < s2−r2

s
which is imme-

diate. �
Remark 4. Theorem 2 can be generalized to R

n in obvious terms with the use of a function
κ :Sn−1 → [0,1) measuring the contractions on the rays.

End of proof of Theorem 1. Using Corollary 3, it is enough to show

∣∣k(θ1) − k(θ2)
∣∣ <

1 − r

2
d(θ1, θ2).

By periodicity it suffices to consider the case d(θ1, θ2) = |θ1 − θ2|. By applying the mean-value
theorem to the piece-wise differentiable function k, one gets∣∣k(θ1) − k(θ2)

∣∣ � M|θ1 − θ2| where M = max
0�θ�2π

∣∣k′(θ)
∣∣.

So it will be enough to show M � 1−r
2 . By easy computation, M = 3

8 (1 − 3√
55

) and r = − 3
8 +

√
55
8

and M � 1−r
2 holds. �

Remark 5. If one considers the π/2-periodic function

k(θ) = −a(sin θ + cos θ) +
√

1 − a2(sin θ − cos θ)2

within the meaningful range 0 < a < 1√
2

, then it satisfies the hypothesis of Corollary 3 for ex-

ample in the interval 3
8 � a <

√
2

2 :

In this case, maximum of |k′(θ)| is |k′(π/2)| = a(1 − a√
1−a2

), maximum of k(θ) is k(0) =
−a + √

1 − a2 and thus it is enough to show a(1 − a√
1−a2

) <
1+a−

√
1−a2

2 or 1 − 3a2 <

(1 − a)
√

1 − a2 which holds certainly for 3
8 � a < 1√

2
as easily can be seen. (For the range

1√
3

� a < 1√
2

it is obvious and for 3
8 � a < 1√

3
the inequality amounts to 5a3 −a2 −3a +1 < 0.)

We now give the promised counterexample, that a function on the plane, which contracts the
rays emanating from origin linearly, does not need to be a contraction on the plane:

Example 6. Let f : R2 → R
2 be given by f (ρeiθ ) = ρk(θ)eiθ with

k(θ) = 7

10
+ 2

10
cos 4θ.

(
See Fig. 5 for ρ = k(θ).

)

f contracts a ray with angle θ with k(θ) � 9
10 .

But f is not a contraction on R2: For z1 = 5 and z2 = 2
√

2e
π
4 i we have d(f (z1), f (z2)) =√

53 >
√

13 = d(z1, z2).
2
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Fig. 5. Polar graph of ρ = k(θ) of the counterexample.

As a final remark, we would like to note that even the circle itself (without the inside) can be
realized as the attractor of an iterated function system of contractions with the same means as
above, but this time the contractions being not one-to-one.
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