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Abstract

We give an explicit derivative computation for the restriction of a harmonic function on SG to segments
at specific points of the segments: The derivative is zero at points dividing the segment in ratio 1:3. This
shows that the restriction of a harmonic function to a segment of SG has the following curious property:
The restriction has infinite derivatives on a dense subset of the segment (at junction points) and vanishing
derivatives on another dense subset.
© 2006 Elsevier Inc. All rights reserved.
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We will first briefly recall the rudiments of harmonic analysis on the Sierpinski gasket [1–4].
Let K be the Sierpinski gasket (SG) constructed on the unit equilateral triangle G0 with

vertices {p0,p1,p2} and Gm be the graph in the mth step as in Fig. 1.

Definition 1. The function f ∈ C(K), f :K → R is called harmonic on K if for every minimal
triangle in Gm (m � 1), with vertices {vi, vj , vk}, the equalities

f (vi) + f (vj ) + f (vik) + f (vjk) − 4f (vij ) = 0 (1)

hold, where vij is the midpoint of the segment [vi, vj ].
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Fig. 1. Iterated graphs in SG.

Let

f (p0) = α, f (p1) = β, f (p2) = γ. (2)

Then this triple (α,β, γ ) completely defines a harmonic function f , that is, there exists a unique
harmonic function f :K → R such that f (p0) = α, f (p1) = β and f (p2) = γ . This harmonic
function depends linearly on the triple (α,β, γ ). According to the harmonic extension algorithm
(which can be obtained from (1)), it holds

f (p12) = 1

5
(α + 2β + 2γ ), f (p02) = 1

5
(2α + β + 2γ ),

f (p01) = 1

5
(2α + 2β + γ ). (3)

From (1)–(3) it can be seen that, if a nonconstant harmonic function is monotone on some line
segment that is contained in SG, then it is strictly monotone on it. (In the following we discard
constant functions.)

Let Tm be a minimal triangle with vertices vi, vj and vk in Gm. The sides of Tm can be ordered
by the values |f (vi) − f (vj )|.

Theorem 2. [2] The restriction of f to the two largest edges of Tm is monotone. On the smallest
edge of Tm, the restriction of f might be monotone or not; but if it is not monotone, then it has a
unique extremum. (We changed the wording of the Theorem 2 in [2] slightly.)

It is more or less folklore, that the derivatives at the junction points of any segment E in Gm

(of the restriction of a nonconstant harmonic function to that segment) exist improperly (possibly
with exception of a single point), and we will give for convenience a proof of this fact. But our
main goal will be to show that there exists another dense subset of E, on which the derivatives
of the restriction vanish.

We remark that it is enough to prove these statements for the triangle G0 instead of considering
an arbitrary triangle Tm in Gm, because the procedure of harmonic extension is the same for G0
or Tm.

Now, consider the side [p1,p2] = [0,1] of G0 and the restriction of the harmonic function f

defined by (2) to [p1,p2]. The following lemma can be proved by induction on m.

Lemma 3. Let lm = 1
2 − 1

2m+1 , rm = 1
2 + 1

2m+1 (m = 1,2,3, . . .). Then

f

(
1
m

)
= 3m − 1

m
α +

[
1 −

(
3
)m]

β + 3m + 1
m

γ, (4)

2 2 · 5 5 2 · 5
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f

(
1 − 1

2m

)
= 3m − 1

2 · 5m
α +

[
1 −

(
3

5

)m]
γ + 3m + 1

2 · 5m
β, (5)

f (lm) = 5m − 1

5m+1
α + 3m+1 + 4 · 5m + 3

10 · 5m
β + 4 · 5m − 3m+1 − 1

10 · 5m
γ, (6)

f (rm) = 5m − 1

5m+1
α + 3m+1 + 4 · 5m + 3

10 · 5m
γ + 4 · 5m − 3 · 3m+1 − 1

10 · 5m
β. (7)

(Actually, by symmetry, one of these equalities implies the other three.)
We first consider the junction points and need the following

Lemma 4. Let the function g : [0,1] → R be strictly monotone in a neighborhood of x0 ∈ [0,1],
d ∈ (0,1), a �= 0 and xm = x0 + adm. Assume

g(xm) − g(x0)

xm − x0

is defined and tends to 0 (or ±∞) as m → ∞. If a < 0 then the left derivative of g at x0 exists
and is 0 (or ±∞); if a > 0 then the right derivative of g at x0 exists and is 0 (or ±∞).

Proof. We consider only the case, where g is monotone increasing and a > 0. Let x0 ∈ [0,1)

and x > x0. Then there exists m ∈ N such that

x0 + adm+1 � x � x0 + adm.

As x tends to x0, m tends to infinity and from the inequalities

d · g(xm+1) − g(x0)

xm+1 − x0
� g(x) − g(x0)

x − x0
� 1

d
· g(xm) − g(x0)

xm − x0

we get the result. �
Remark 5. In the above lemma, one-sided monotonicity is obviously enough for one-sided deriv-
ative calculations.

We can now compute the derivative of the restriction at the point p = 1/2, for monotone
restrictions.

Lemma 6. Let the restriction of the harmonic function f to the edge [p1,p2] = [0,1] be strictly
monotone. Then f ′( 1

2 ) = +∞ for f monotone increasing and f ′( 1
2 ) = −∞ for f monotone

decreasing.

Proof. We give the proof for f monotone increasing.
Using (6), we obtain

lim
m→∞

f (lm) − f ( 1
2 )

lm − 1
2

= lim
m→∞

(
3

5

)
·
(

6

5

)m

(γ − β) = +∞.

Then by Lemma 4 (with x0 = 1
2 , a = − 1

2 , d = 1
2 ) the left-hand derivative at p = 1

2 is +∞.
Analogously, using (7), we obtain that the right-hand derivative at p = 1 is also +∞. �
2
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Applying Lemma 6 to smaller triangles, we see that the derivatives exist improperly at all
inner junction points of [p1,p2] in whose vicinity the restriction is strictly monotone.

We now come to our main point and we will show that the derivative of the restriction of a
harmonic function f on SG to an edge of any Gm is differentiable at a point dividing the edge
in ratio 1:3 and that the derivative there vanishes. It is again enough to show this for the edge
[p1,p2] = [0,1] of G0 as the extension rule for the harmonic function is the same at every scale.

Theorem 7. Let f be a harmonic function on SG and p the point dividing the edge [p1,p2] in
ratio 1:3 (i.e. p = 1/3). Then

(f |[0,1])′
(

1

3

)
= 0.

Proof. Let us first assume that the restriction of f to [0,1] is monotone increasing. To approach
the point p = 1

3 from left and right with geometrically convergent sequences we use the following
sequence of triangles �m = {pm

0 ,pm
1 ,pm

2 }.
Let �0 = G0 = {p0,p1,p2} and let �m be defined as in Fig. 2 (right third of the left third of

�m−1).
One can compute

pm
1 = 1

4
+

(
1

4

)2

+ · · · +
(

1

4

)m

= 1

3
− 1

3

(
1

4

)m

,

pm
2 = pm

1 +
(

1

4

)m

= 1

3
+ 2

3

(
1

4

)m

.

Let f (pm
0 ) = αm, f (pm

1 ) = βm and f (pm
2 ) = γm,α0, β0, γ0 being α,β, γ .

We want to compute the values βm and γm explicitly. Using (3) we get

αm = 1

25
[6αm−1 + 13βm−1 + 6γm−1], (8)

βm = 1

25
[4αm−1 + 16βm−1 + 5γm−1], (9)

γm = 1

5
[αm−1 + 2βm−1 + 2γm−1]. (10)

From (8)–(10) we obtain

5αm + 15βm + 7γm = 5αm−1 + 15βm−1 + 7γm−1

Fig. 2. The sequence of triangles �m .
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for all m = 1,2, . . . . In other words,

5αm + 15βm + 7γm = 5α + 15β + 7γ =: c. (11)

From (11) and continuity of f we get

f

(
1

3

)
= c

27
. (12)

Using (11) we can eliminate αm−1 from (10):

βm = 1

125
[4c + 20βm−1 − 3γm−1], (13)

γm = 1

125
[5c − 25βm−1 + 15γm−1]. (14)

As can be seen from (13) and (14), the sequence

tm = uβm + vγm (15)

with u = 10, v = 1 − √
13, satisfies the recursion formula

tm = w + stm−1, (16)

where w = 9−√
13

25 c, s = 7+√
13

50 .
From (16) tm can be determined:

tm = w
sm − 1

s − 1
+ sm · t0

(
t0 = 10β + (1 − √

13 )γ
)
. (17)

From (13), (14) and (16) we obtain

γm = c

25
− 1

50
tm−1 + v + 6

50
γm−1,

and inserting tm−1 from (17) we get

γm = l + k · sm−1 + h · γm−1, (18)

where l = c
25 + w

50(s−1)
, k = − 1

50 ( w
s−1 + t0), h = v+6

50 .
The recursion (18) gives γm explicitly:

γm =
[

l

h − 1
− k

s − h
+ γ

]
hm + k

s − h
sm + c

27
.

As 0 < h < 1
4 and 0 < s < 1

4 we obtain finally

lim
m→∞

f (pm
2 ) − f ( 1

3 )

pm
2 − 1

3

= 0.

Taking x0 = 1
3 , d = 1

4 and a = 2
3 in Lemma 4, we see that the right derivative of the restriction

of f to [p1,p2] = [0,1] at p = 1/3 exists and is zero.
Similarly, from (13), (14), (16) we get

βm = 1
[

w − vk + t0

]
· sm − v

(
l − k + γ

)
· hm + c
u s − 1 s − h u h − 1 s − h 27
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and this shows that the left derivative at p = 1
3 exists and is also zero. Together we obtain

(f |[0,1])′
(

1

3

)
= 0.

Now we consider the case where the restriction of f to [0,1] is not monotone. In that case we
know that the restriction is monotone in two pieces. If the extremum is not attained at p = 1/3,
then there is a neighborhood ( 1

3 −δ, 1
3 +δ) where the restriction is monotone and the above proof

applies. If the extremum is attained at p = 1/3, then Lemmas 3, 4 and the above proof works
still on two sides of p = 1/3 and we get (f |[0,1])′( 1

3 ) = 0. �
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