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Abstract Let (M, g) be a complete and connected Riemannian manifold of dimension n.
By using the Bakry–Emery Ricci curvature tensor on M , we prove two theorems which
correspond to the Myers compactness theorem.
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1 Introduction

The purpose of this article is to generalize the well-known Myers compactness theorem [5]
by using the Bakry–Emery Ricci curvature (see [1,4] and [6]) on a complete and connected
Riemannian manifold (M, g) of dimension n.

In [6] (p. 380, Theorem 1.4), G. Wei and W. Wylie assumed that the Bakry–Emery Ricci
curvature has a positive lower bound, i.e.,

Ric + Hess(φ) ≥ (n − 1)H > 0 (1)

and also assumed that | φ | ≤ k, where φ ∈ C∞(M) is a smooth function. Under these
assumptions, they proved that M is compact and diameter has the upper bound

diam(M) ≤ π√
H

+ 4k

(n − 1)
√

H
. (2)

In the following, we consider the same assumptions given by G. Wei and W. Wylie, but, for
the diameter of M , we obtain a different upper bound which can be compared with (2):

Theorem 1 Let (M, g) be a complete and connected Riemannian manifold of dimension n.
If (M, g) admits a smooth function φ ∈ C∞(M) satisfying the inequalities

Ric + Hess(φ) ≥ (n − 1)H > 0 (3)
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716 M. Limoncu

and | φ | ≤ k, then M is compact and the diameter satisfies

diam(M) ≤ π√
H

√
1 + 2

√
2 k

n − 1
. (4)

Comparing (2) and (4), we see that, when the positive constant k satisfies

k >
(n − 1)π

8
(
√

2π − 4), (5)

the upper bound (4) is sharper than the upper bound (2).
Instead of the assumption | φ |≤ k given in Theorem 1, we can assume that g(∇φ,∇φ) ∈

C∞(M) has an upper bound: In [2], Fernández-López and García-Río proved that, if (M, g)

admits a vector field V satisfying the inequality Ric + LV g ≥ c > 0 where LV denotes the
Lie derivative, and

√
g(V, V ) has an upper bound, then M is compact. However, no an upper

bound to the diameter of M is given in [2]. In [3], such a bound was obtained for the diameter
of M . Namely, if we have the inequalities Ric + LV g ≥ (n − 1)H > 0 and

√
g(V, V ) ≤ γ ,

then M is compact and has

diam(M) ≤ π

(n − 1)H

(√
2γ +

√
2γ 2 + (n − 1)2 H

)
(6)

(see [3]). When the vector field V is taken to be V = 1
2∇φ, the above inequalities yield

Ric + Hess(φ) ≥ (n − 1)H > 0 and g(∇φ,∇φ) ≤ 4γ 2. The inequality (6) still holds and,
under the K=4γ 2, it can be also written as

diam(M) ≤ π

(n − 1)H

(√
K

2
+

√
K

2
+ (n − 1)2 H

)
. (7)

In the following Theorem 2, g(∇φ,∇φ) ∈ C∞(M) has again an upper bound, but now it
depends on both the positive constant K and a distance function r = d(., p) with respect to
a fixed point p ∈ M . We obtain an upper bound for the diameter of M . It can be compared
with the above bound (7):

Theorem 2 Let (M, g) be a complete and connected Riemannian manifold of dimension n,
and let r be the distance function with respect to a fixed point p ∈ M, i.e., r(x) = d(x, p).
Suppose that (M, g) admits a smooth function φ ∈ C∞(M) such that

(g(∇φ,∇φ)) (x) ≤ K

r2(x)
(8)

for all x ∈ M − {p}, where K is a positive constant. If (M, g) has the inequality

Ric + Hess(φ) ≥ (n − 1)H > 0, (9)

then M is compact and the diameter from p satisfies

diam p(M) ≤
√

4
√

K + n − 1
π√

(n − 1)H
. (10)

In the Theorem 2, the diameter bound is given with respect to the point p ∈ M . In other
words, the bound is for “diam p(M)” not for “diam(M)”. But, by using the triangle inequality,
we get

diam(M) = d(p′, q ′) ≤ d(p′, p) + d(q ′, p)

≤
√

4
√

K + n − 1
2π√

(n − 1)H
(11)
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where the distance between the points p′ and q ′ (p′, q ′ ∈ M) gives the diameter of M . For
the case p 	= p′ and p 	= q ′, comparing (7) and (11), we see that, when the positive constant√

K satisfies

√
K ≥ 16(n − 1)H

(
1 +

√
1 + 3

128H

)
, (12)

the upper bound (11) is sharper than the upper bound (7). If p ∈ M directly gives the diameter
of M , i.e., p = p′ (or p = q ′), then we can compare the bounds (7) and (10). In this special
case where diam p(M) = diam(M), we see that, when the positive constant

√
K satisfies

√
K ≥ 8(n − 1)H, (13)

the upper bound (10) is sharper than the upper bound (7).
In order to prove the Theorem 1, we use the index form I of a minimizing unit speed geo-

desic segment. To prove the Theorem 2, we establish a comparison estimate for a modified
Laplacian operator.

2 Proofs of the theorems

The gradient, Hessian and Laplacian of any smooth function f ∈ C∞(M) are defined by
g(∇ f, V ) = V ( f ), (Hess( f )) (V, W ) = g(∇V ∇ f, W ) and � f = tr (∇∇ f ) for all vector
field V, W , respectively. For a distance function r(x) = d(x, p) where p ∈ M is a fixed
point, it is well-known that r is only smooth on M − (

C p ∪ {p}) where C p denotes the cut
locus of the point p ∈ M . In addition to this fact, we have ∇r = ∂r in the adapted coordinates
with respect to the r , and also have g(∇r,∇r) = 1 where r is smooth.

Proof of Theorem 1 Let p, q ∈ M and let σ be a minimizing unit speed geodesic segment
from p to q of length �. Considering a parallel orthonormal frame {E1 = σ̇ , E2, . . . , En}
along σ and a smooth function f ∈ C∞([0, �]) such that f (0) = f (�) = 0, we have

I( f Ei , f Ei ) =
�∫

0

(
g( ḟ Ei , ḟ Ei ) − g(R( f Ei , σ̇ )σ̇ , f Ei )

)
dt, (14)

where I denotes the index form of σ . From (14), we obtain

n∑
i=2

I( f Ei , f Ei ) =
�∫

0

(
(n − 1) ḟ 2 − f 2 Ric(σ̇ , σ̇ )

)
dt (15)

by g(R(σ̇ , σ̇ )σ̇ , σ̇ ) = 0. Using the assumption (3) given in Theorem 1 in the integral expres-
sion (15), we get
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n∑
i=2

I( f Ei , f Ei ) ≤
�∫

0

(
(n − 1)( ḟ 2 − H f 2) + f 2 (Hess(φ)) (σ̇ , σ̇ )

)
dt

=
�∫

0

(
(n − 1)( ḟ 2 − H f 2) + f 2g(∇σ̇ ∇φ, σ̇ )

)
dt

=
�∫

0

(
(n − 1)( ḟ 2 − H f 2) + f 2σ̇ (g(∇φ, σ̇ ))

)
dt (16)

where we have used the parallelism of the metric tensor g and ∇σ̇ σ̇ = 0. In the expression
(16), the term f 2σ̇ (g(V, σ̇ )) equals to

f 2σ̇ (g(∇φ, σ̇ )) = f 2 d

dt
(g(∇φ, σ̇ )(σ (t))) . (17)

When g(∇φ, σ̇ )(σ (t)) is denoted by g(∇φ, σ̇ ) for short, the expression (17) can be written
as

f 2σ̇ (g(∇φ, σ̇ )) = −2 f ḟ g(∇φ, σ̇ ) + d

dt

(
f 2g(∇φ, σ̇ )

)
. (18)

Here we also have g(∇φ, σ̇ ) = σ̇ (φ) = d
dt φ (σ(t))(= dφ

dt for short). Thus, the equation (18)
yields

f 2σ̇ (g(∇φ, σ̇ )) = −2 f ḟ
dφ

dt
+ d

dt

(
f 2g(∇φ, σ̇ )

)
= 2φ

d

dt
( f ḟ ) − 2

d

dt
(φ f ḟ ) + d

dt

(
f 2g(∇φ, σ̇ )

)
. (19)

Integrating both sides of (19), we obtain

�∫
0

f 2σ̇ (g(∇φ, σ̇ )) dt =
�∫

0

2φ
d

dt
( f ḟ )dt − 2

(
φ f ḟ

) |�0 + (
f 2g(∇φ, σ̇ )

) |�0

= 2

�∫
0

φ
d

dt
( f ḟ )dt (20)

because of f (0) = f (�) = 0. Now if we take P = φ and Q = d
dt ( f ḟ ), then we have, from

the Cauchy–Schwarz inequality,

�∫
0

P Q dt ≤
⎛
⎝ �∫

0

P2dt

⎞
⎠

1/2 ⎛
⎝ �∫

0

Q2dt

⎞
⎠

1/2

(21)

�∫
0

φ
d

dt
( f ḟ )dt ≤

⎛
⎝ �∫

0

φ2dt

⎞
⎠

1/2 ⎛
⎝ �∫

0

(
d

dt
( f ḟ )

)2

dt

⎞
⎠

1/2

. (22)
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Using the assumption | φ | ≤ k given in Theorem 1 in (22), we obtain

�∫
0

φ
d

dt
( f ḟ )dt ≤ k

√
�

⎛
⎝ �∫

0

(
d

dt
( f ḟ )

)2

dt

⎞
⎠

1/2

. (23)

Thus, by using (23), the equation (20) yields

�∫
0

f 2σ̇ (g(∇φ, σ̇ )) dt ≤ 2k
√

�

⎛
⎝ �∫

0

(
d

dt
( f ḟ )

)2

dt

⎞
⎠

1/2

. (24)

By virtue of (24), the inequality (16) becomes

n∑
i=2

I( f Ei , f Ei ) ≤
�∫

0

(
(n − 1)( ḟ 2 − H f 2)

)
dt

+ 2k
√

�

⎛
⎝ �∫

0

(
d

dt
( f ḟ )

)2

dt

⎞
⎠

1/2

. (25)

In (25), if the function f is taken to be f (t) = sin( π
�

t), then we get

n∑
i=2

I( f Ei , f Ei ) ≤ (n − 1)

�∫
0

(
π2

�2 cos2
(π

�
t
)

− H sin2
(π

�
t
))

dt

+ 2kπ2

�
√

�

⎛
⎝ �∫

0

cos2
(

2π

�
t

)
dt

⎞
⎠

1/2

, (26)

and consequently

n∑
i=2

I( f Ei , f Ei ) ≤ − 1

2�

(
(n − 1)H�2 − 2

√
2kπ2 − (n − 1)π2

)
. (27)

Here, if (n − 1)H�2 − 2
√

2kπ2 − (n − 1)π2 > 0, then one has

n∑
i=2

I( f Ei , f Ei ) = I( f E2, f E2) + I( f E3, f E3) . . . I( f En, f En) < 0 (28)

which implies I( f Em, f Em) < 0, for some 2 ≤ m ≤ n,. Namely, the index form I is not
positive semi-definite. However, this result contradicts with σ being minimizing geodesic.
Hence, we must take

(n − 1)H�2 − 2
√

2kπ2 − (n − 1)π2 ≤ 0. (29)

This inequality gives

� ≤ π√
H

√
1 + 2

√
2 k

n − 1
. (30)

Thus, we have proved Theorem 1. ��
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Proof of Theorem 2 To prove Theorem 2, we consider a modified Laplace operator �̃ defined
by

�̃ f = � f − g(∇φ,∇ f ) + F( f ), (31)

where φ ∈ C∞(M) is given in Theorem 2 and F is a real valued smooth function defined on
a subset of real line, and F( f ) denotes F ◦ f . In the equation (31), when f is taken to be the
distance function r given in Theorem 2, we obtain, on M − (

C p ∪ {p}),

g(∇r,∇�̃r) = g (∇r,∇�r − ∇g(∇φ,∇r) + ∇F(r))

= g(∇r,∇�r) − g(∇r,∇g(∇φ,∇r)) + F ′(r)

= g(∇r,∇�r) − (Hess(φ))(∇r,∇r) + F ′(r) (32)

where F ′(r) = d
dr F(r). On the other hand, we have the well-known inequality

0 ≥ Ric(∇r,∇r) + 1

n − 1
(�r)2 + g(∇r,∇�r) (33)

on M − (
C p ∪ {p}). From (32) and (33), we find

0 ≥ Ric(∇r,∇r) + (Hess(φ))(∇r,∇r) − F ′(r)

+ 1

n − 1
(�r)2 + g(∇r,∇�̃r). (34)

It is obvious that we have

�r = �̃r + g(∇φ,∇r) − F(r) (35)

by (31). Inserting (35) into (34), we obtain

0 ≥ Ric(∇r,∇r) + (Hess(φ))(∇r,∇r) − F ′(r)

+ 1

n − 1

(
�̃r + g(∇φ,∇r) − F(r)

)2 + g(∇r,∇�̃r). (36)

By virtue of the inequality (a ∓ b)2 ≥ 1
γ+1 a2 − 1

γ
b2 for all real numbers a, b and positive

real number γ > 0, we obtain

(
�̃r + g(∇φ,∇r) − F(r)

)2 ≥ 1

γ + 1

(
�̃r + g(∇φ,∇r)

)2

− 1

γ
(F(r))2 . (37)

Using the same inequality, for the term “
(
�̃r + g(∇φ,∇r)

)2
” in the above inequality, we

get

(
�̃r + g(∇φ,∇r) − F(r)

)2 ≥ 1

(γ + 1)η + γ + 1

(
�̃r

)2 − 1

γ
(F(r))2

− 1

(γ + 1)η
(g(∇φ,∇r))2 (38)
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for all γ, η > 0. Inserting (38) into (36) and denoting α=(n−1)γ >0, β =(n−1)(γ+1)η>0
we obtain, on M − (

C p ∪ {p}),

0 ≥ Ric(∇r,∇r) + (Hess(φ))(∇r,∇r) + 1

α + β + n − 1

(
�̃r

)2

+ g(∇r,∇�̃r) − F ′(r) − 1

α
(F(r))2 − 1

β
(g(∇φ,∇r))2 . (39)

From the Cauchy–Schwarz inequality, we have

(g(∇φ,∇r))2 ≤ g(∇φ,∇φ)g(∇r,∇r) = g(∇φ,∇φ), (40)

which implies

− 1

β
(g(∇φ,∇r))2 ≥ − 1

β
g(∇φ,∇φ). (41)

Using (41) in (39), one has

0 ≥ Ric(∇r,∇r) + (Hess(φ))(∇r,∇r) + 1

α + β + n − 1

(
�̃r

)2

+ g(∇r,∇�̃r) − F ′(r) − 1

α
(F(r))2 − 1

β
g(∇φ,∇φ). (42)

From the assumption (8) given in Theorem 2, we obtain, on M − (
C p ∪ {p}),

0 ≥ Ric(∇r,∇r) + (Hess(φ))(∇r,∇r) + 1

α + β + n − 1

(
�̃r

)2

+ g(∇r,∇�̃r) − F ′(r) − 1

α
(F(r))2 − K

βr2 . (43)

In the above expression, if we take β = 4K
α

and F(r) = α
2r , then the inequality (43) yields

0 ≥ Ric(∇r,∇r) + (Hess(φ))(∇r,∇r)

+ α

α2 + (n − 1)α + 4K

(
�̃r

)2 + g(∇r,∇�̃r). (44)

Applying the assumption (9) given in Theorem 2 to (44), it follows that

0 ≥ ∂r (�̃r) + α

α2 + (n − 1)α + 4K

(
�̃r

)2 + (n − 1)H. (45)

Because of �̃r = �r − g(∇φ,∇r) + α
2r , we have

lim
r→0+ r�̃r = lim

r→0+

(
r�r − rg(∇φ,∇r) + α

2

)
(46)

= n − 1 + α

2
≤ α2 + (n − 1)α + 4K

α
. (47)

Thus, with the aid of the well-known Sturm–Liouville comparison argument, we obtain

�̃r ≤
√

(n − 1)H

(
n − 1 + α + 4K

α

)
cot

( √
α(n − 1)H√

α2 + (n − 1)α + 4K
r

)
(48)
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on M − (
C p ∪ {p}). To conclude the proof of Theorem 2, we can use the same arguments

given in [7]: Let q ∈ M and let σ be a minimizing unit speed geodesic segment from p to q
where the point p ∈ M is given in Theorem 2. Assume that

d(p, q) >

√
α2 + (n − 1)α + 4K√

α(n − 1)H
π. (49)

Then, since σ is a minimizing unit speed geodesic segment from p ∈ M to q ∈ M , we have
the fact

σ

(√
α2 + (n − 1)α + 4K√

α(n − 1)H
π

)
∈ M − (

C p ∪ {p}) . (50)

Thus the distance function r is smooth at this point. Namely, at this point, left hand side of
(48) is a constant. But it is obvious that, when

r →
(√

α2 + (n − 1)α + 4K√
α(n − 1)H

π

)−
, (51)

right hand side of (48) goes to −∞. This is a contradiction. Hence must be

d(p, q) ≤
√

α2 + (n − 1)α + 4K√
α(n − 1)H

π. (52)

Here α = 2
√

K gives the minimum value of right hand side of (52). Inserting α = 2
√

K
into (52), we find

d(p, q) ≤
√

4
√

K + n − 1
π√

(n − 1)H
. (53)

Thus, we have proved Theorem 2. ��
Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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