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Abstract Let (M, g) be a complete and connected Riemannian manifold of dimension 7.
By using the Bakry—Emery Ricci curvature tensor on M, we prove two theorems which
correspond to the Myers compactness theorem.
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1 Introduction

The purpose of this article is to generalize the well-known Myers compactness theorem [5]
by using the Bakry—Emery Ricci curvature (see [1,4] and [6]) on a complete and connected
Riemannian manifold (M, g) of dimension n.

In [6] (p. 380, Theorem 1.4), G. Wei and W. Wylie assumed that the Bakry—Emery Ricci
curvature has a positive lower bound, i.e.,

Ric + Hess(¢p) > (n — HH > 0 (1)
and also assumed that | ¢ | < k, where ¢ € C°°(M) is a smooth function. Under these
assumptions, they proved that M is compact and diameter has the upper bound

4k
(n—OVH

In the following, we consider the same assumptions given by G. Wei and W. Wylie, but, for
the diameter of M, we obtain a different upper bound which can be compared with (2):

diam(M) < j—ﬁ n @)

Theorem 1 Let (M, g) be a complete and connected Riemannian manifold of dimension n.
If (M, g) admits a smooth function ¢ € C° (M) satisfying the inequalities

Ric + Hess(¢p) > (n — 1)H >0 3)
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and | ¢ | < k, then M is compact and the diameter satisfies

T 2V 2k
diam(M) < —,/ 1 . 4
iam( )_Jﬁ + “)
Comparing (2) and (4), we see that, when the positive constant k satisfies
—1
k> %(ﬁn —4), )

the upper bound (4) is sharper than the upper bound (2).

Instead of the assumption | ¢ |< k given in Theorem 1, we can assume that g(V¢, Vo) €
C® (M) has an upper bound: In [2], Ferndndez-L6pez and Garcia-Rio proved that, if (M, g)
admits a vector field V satisfying the inequality Ric + Ly g > ¢ > 0 where Ly denotes the
Lie derivative, and /g(V, V) has an upper bound, then M is compact. However, no an upper
bound to the diameter of M is given in [2]. In [3], such a bound was obtained for the diameter
of M. Namely, if we have the inequalities Ric+ Ly g > (n — 1)H > Oand /g(V, V) <y,
then M is compact and has

diam(M) < T 1)H («/Ey +/2y2+ (n— 1)2H) (©6)

(see [3]). When the vector field V is taken to be V = %V(ﬁ, the above inequalities yield
Ric + Hess(¢) > (n — 1)H > 0 and g(V¢, Vo) < 4)/2. The inequality (6) still holds and,
under the K :4)/2, it can be also written as

diam(M)§(n_nl)l_l(\/f—i-,/;(—i-(n—lﬂH), %)

In the following Theorem 2, g(V¢, V¢) € C°°(M) has again an upper bound, but now it
depends on both the positive constant K and a distance function r = d(., p) with respect to
a fixed point p € M. We obtain an upper bound for the diameter of M. It can be compared
with the above bound (7):

Theorem 2 Let (M, g) be a complete and connected Riemannian manifold of dimension n,
and let r be the distance function with respect to a fixed point p € M, i.e., r(x) = d(x, p).
Suppose that (M, g) admits a smooth function ¢ € C*°(M) such that

K
(&(Vp, V) (x) = — @)
re(x)
forall x € M — {p}, where K is a positive constant. If (M, g) has the inequality
Ric + Hess(¢p) > (n — HH > 0, ()]

then M is compact and the diameter from p satisfies

diam, (M) < AVEK +n — 11— (10)

Jin—1)H
In the Theorem 2, the diameter bound is given with respect to the point p € M. In other
words, the bound is for “diam , (M)” not for “diam(M)”. But, by using the triangle inequality,
we get
diam(M) = d(p',¢") =d(p', p) +d(q’, p)
2

< 4\/f+n—17(n_71)H (11)
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where the distance between the points p’ and ¢’ (p’, ¢’ € M) gives the diameter of M. For
the case p # p’ and p # ¢’, comparing (7) and (11), we see that, when the positive constant

+/ K satisfies
VK >16(n — HH 1+\/1+—i , (12)
- 128H

the upper bound (11) is sharper than the upper bound (7). If p € M directly gives the diameter
of M, i.e., p= p’ (or p = q’), then we can compare the bounds (7) and (10). In this special
case where diam, (M) = diam(M), we see that, when the positive constant VK satisfies

VK > 8n - 1)H, (13)

the upper bound (10) is sharper than the upper bound (7).

In order to prove the Theorem 1, we use the index form I of a minimizing unit speed geo-
desic segment. To prove the Theorem 2, we establish a comparison estimate for a modified
Laplacian operator.

2 Proofs of the theorems

The gradient, Hessian and Laplacian of any smooth function f € C*°(M) are defined by
gV, V) =V(f), Hess(f)) (V,W) =g(VyVf,W)and Af = tr (VV f) for all vector
field V, W, respectively. For a distance function r(x) = d(x, p) where p € M is a fixed
point, it is well-known that r is only smooth on M — (C » U{ p}) where C), denotes the cut
locus of the point p € M. In addition to this fact, we have Vr = 0, in the adapted coordinates
with respect to the r, and also have g(Vr, Vr) = 1 where r is smooth.

Proof of Theorem 1 Let p,q € M and let o be a minimizing unit speed geodesic segment
from p to g of length £. Considering a parallel orthonormal frame {E| = o, E3, ..., E,}
along o and a smooth function f € C*°([0, £]) such that f(0) = f(£) = 0, we have

L

I(fEi fE) = / (¢(fEi, fE) — ¢(R(fEi, )6, fEp)dt, (14)
0

where I denotes the index form of . From (14), we obtain

J4

> I(fE;. fE) =/((n — D f?— f?Ric(6,6))dt (15)
i=2

0

by g(R(6,0)0, c) = 0. Using the assumption (3) given in Theorem 1 in the integral expres-
sion (15), we get
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D WSfEL fE) < [ ((n=1(f* = Hf?) + [ (Hess(9)) (6, 6)) dt

i=2

(n—D(f2 = Hf?) + f2g(VsV,6)) dt

((n = D(f? = Hf + £26 (g(Vo, 6))) dt (16)

O\N o\m\ O\@

where we have used the parallelism of the metric tensor g and Vs6 = 0. In the expression
(16), the term f26 (g(V, 6)) equals to

d
f26 (8(Vg,6)) = fZE(g(WM'f)(O(t)))- a7

When g(V¢, 6)(o (1)) is denoted by g(V¢, ) for short, the expression (17) can be written
as

2. . ; . d 2 .
f7o @(Vg,0)) =—2ffe(Vo,0) + (f*e(Vo,0)). (18)

Here we also have g(V¢,0) =6 (¢) = %4) (o ()(= ‘2—‘? for short). Thus, the equation (18)
yields

.d d
26 (g(Ve,6)) = —2ffd—‘f + — (fzg(w «iv))
d .
=2 (/) - —(¢>ff> + o (f g(V$,6)). (19)

Integrating both sides of (19), we obtain

4 t
d .. .
/ 26 (3(V, ) dr = / 20 ([ dr =2(ef [ )16+ (F28(V, ) Ig
0 0

l
d .
:2/¢E(ff)dt (20)
0

because of f(0) = f(€) = 0. Now if we take P = ¢ and 0 = ; (ff) then we have, from
the Cauchy—Schwarz inequality,

1/2

¢ ¢ 172,
/Pth < (/ Pza't> (/ det) 1)
0

0
12

l l V4
d .
/¢dt(ff)dt§(/¢>2dt> (/((ff)) ) . 22)
0 0 0
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Using the assumption | ¢ | < k given in Theorem 1 in (22), we obtain
1/2

[ d [ (d 2
[ Eran (E(ff)) ar| . @3)
0 0
Thus, by using (23), the equation (20) yields
’ ¢ 1/2
/fsz (8(Ve,6))dr <2kt /(*(ff)) . (24)
0 0

By virtue of (24), the inequality (16) becomes

£

S U(fE FED < / ((n = D> — Hf?) di
i=2 0
' 12

2
+ 2k /(%(ff)) dr| . (25)
0

In (25), if the function f is taken to be f(¢) = sin(%t), then we get

; ¢
ZI(fEthi) <(@n- 1)/(7222 cos? ) — H sin® (%t)) dt
0

i=2
' 12
, 2 / 2 (2” t) d (26)
- cos” | — ,
NG ¢
0
and consequently
n

1

> ML fE) = —5; ((n ~)HE — 22k — (n — 1)712) . 27)

i=2

Here, if (n — 1) H¢? — 24/2kx? — (n — 1)7? > 0, then one has

n
> WfEi, fE) =WfEa, fE2) +1(fE3, fE3) ... X(fEn fE)) <O (28)
i=2
which implies I( fE,,, fE,;;) < 0, for some 2 < m < n,. Namely, the index form I is not
positive semi-definite. However, this result contradicts with o being minimizing geodesic.
Hence, we must take

(n— DHE —232kn? — (n — Dn? < 0. (29)
This inequality gives
24/ 2k
e< 14 2k (30)
JH n—1
Thus, we have proved Theorem 1. O
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Proof of Theorem 2 To prove Theorem 2, we consider a modified Laplace operator A defined
by

Af =Af =g(Vo. V) + F(f). (31)
where ¢ € C°°(M) is given in Theorem 2 and F is a real valued smooth function defined on
a subset of real line, and F (f) denotes F o f. In the equation (31), when f is taken to be the

distance function r given in Theorem 2, we obtain, on M — (C,, U {p}),

g(Vr, VZr) =g(Vr,VAr —Vg(Ve¢,Vr)+VF())
= g(Vr,VAr) — g(Vr,Vg(NVp, Vr)) + F'(r)
= g(Vr, VAr) — (Hess(¢))(Vr, Vr) + F'(r) (32)

where F/(r) = % F(r). On the other hand, we have the well-known inequality
1
0 > Ric(Vr, Vr) + —1(Ar)2 + g(Vr, VAr) (33)
n—

on M — (Cp U {p}). From (32) and (33), we find
0 > Ric(Vr, Vr) + (Hess($))(Vr, Vr) — F'(r)
- nlfl(m)2 + g(Vr, VAr). (34)
It is obvious that we have
Ar = Ar+g(Ve,Vr) — F(r) (35)
by (31). Inserting (35) into (34), we obtain
0 > Ric(Vr, Vr) + (Hess(¢))(Vr, Vr) — F'(r)
4 n%l (Ar + g(Vo, Vr) — F(r)’ + g(Vr, VAr). (36)

By virtue of the inequality (a F b)? > ﬁ a?

real number y > 0, we obtain

— 5 b for all real numbers a, b and positive

(Ar+g(Vo,Vr) — F(r))2 > S ! (Ar+g(Vo, Vr))2

+1
1
- (F(r)?*. (37)

Using the same inequality, for the term (Zr +g(Vo, Vr))2 ” in the above inequality, we
get

~ 5 |
(Ar+g(Vo,Vr) — F(r))” > GIDr iy 1

(g(Ve, Vr))? (38)

~ o 1 5
A — —(F
(Ar) y((r))

“(y+ Dy
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forall y, n > 0. Inserting (38) into (36) and denoting @ = (n—1)y >0, B=(n—1)(y+1)n>0
we obtain, on M — (CI7 U {p}),

1

. ~ \2
0 > Ric(Vr, Vr) + (Hess(¢))(Vr, Vr) + oy Sr— (Ar)
+g(Vr,VAr) — F'(r) — é(F(r))2 — %(g(w, vr)?. (39)
From the Cauchy—Schwarz inequality, we have
(8(Ve, Vr)? < g(Ve, V) g(Vr, Vr) = g(Vé, V¢h), (40)
which implies
1 1
~ 5 (V9. Vr)? = ~58(V9. V9). (41)
Using (41) in (39), one has
) 1 ~ \2
0 > Ric(Vr, Vr) 4 (Hess(¢))(Vr, Vr) + Py S—1 (Ar)
- 1 1
+8(Vr,VAr) = F'(r) — o (F(r)* - Eg(ng, V). (42)

From the assumption (8) given in Theorem 2, we obtain, on M — (C p U{ p}),

0 > RiC(Vr, Vr) + (HCSS(¢))(VV, Vr) + m (Zr)z
- Lo , K
+8(Vr,VAr) = F (r) — — (F(r)" — ——. (43)
o pr

In the above expression, if we take 8 = 47’( and F(r) = 5‘7

then the inequality (43) yields
0 > Ric(Vr, Vr) + (Hess(¢))(Vr, Vr)

o ~ \2 ~
A Vr, VAr). 44
+a2+(n—1)a+4K( r) +a(vr ) (“44)

Applying the assumption (9) given in Theorem 2 to (44), it follows that

0> d,(Ar) + (Ar)> + (n — DH. (45)

o
a2+ (m—Da+4K

Because of Ar = Ar — gV, Vr) + g—r, we have

. -~ . a
lim rAr = lim (rAr — rg(V, Vr) + E) (46)
2 -1 4K
:n—1+%§a+(n Jo 2K 47)
o

Thus, with the aid of the well-known Sturm-Liouville comparison argument, we obtain

ng\/(n—l)H(n—l—l—ot—f—M()cot el — DA r (48)
a Va2 +(n— Da +4K
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on M — (C pU{ p}). To conclude the proof of Theorem 2, we can use the same arguments
givenin [7]: Letg € M and let o be a minimizing unit speed geodesic segment from p to g
where the point p € M is given in Theorem 2. Assume that

Va2 + (n— Da + 4K
Jan —1)H

Then, since o is a minimizing unit speed geodesic segment from p € M to g € M, we have
the fact

d(p.q) > (49)

Va2 +(n — Da +4K
Jan—1)H

Thus the distance function r is smooth at this point. Namely, at this point, left hand side of
(48) is a constant. But it is obvious that, when

eM—(C,U{p}). (50)

Va2 + (n—Da +4K

T s 51
Joan—1)H oD
right hand side of (48) goes to —oo. This is a contradiction. Hence must be
Va2 + (n— Da + 4K
d(p.q) < (52)

Jan —1)H

Here o = 24/K gives the minimum value of right hand side of (52). Inserting o = 2VK

into (52), we find
b/

Thus, we have proved Theorem 2. O

(53)

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Bakry, D., Emery, M.: Diffusions Hypercontractives. In: Séminaire de probabilitiés XIX, Lect. Notes in
Math. 1123, 177-206 (1985)

2. Fernandez-Loépez, M., Garcia-Rio, E.: A remark on compact Ricci solitons. Math. Ann. 340, 893-896

(2008)

Limoncu, M.: Modifications of the Ricci tensor and applications. Arch. Math. 95, 191-199 (2010)

4. Lott, J.: Some geometric properties of the Bakry-Emery-Ricci Tensor. Comment. Math. Helv. 78, 865-883

(2003)

Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401-404 (1941)

6. Wei, G., Wylie, W.: Comparison geometry for the Bakry—Emery Ricci tensor. J. Differ. Geom. 83, 377405
(2009)

7. Zhu, S.: The comparison geometry of Ricci curvature. Comparison Geometry. MSRI Publications, vol. 30,
pp. 221-262 (1997)

w

4

@ Springer



	The Bakry--Emery Ricci tensor and its applications to some compactness theorems
	Abstract
	1 Introduction
	2 Proofs of the theorems
	References


