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1. Introduction
Each real skew-symmetric matrix is orthogonally similar to a matrix

0 XM 0 Anm )
DD @ Oy with nonzero Aq, ..., Ap € R. (1)
—A1 0 —Am O

We prove the following theorem.

Theorem 1. The maximum dimension of a space V of 2n+ 1) x (2n+ 1) real skew-symmetric matrices,
in which every A € V is orthogonally similar to a matrix of the form
0 Mg

e @ 01 with nonzero A4 € R (2)
—Aa O —Aa
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isequal to p(2n) — lifnisevenand p(2n+ 2) — 1ifnis odd.

Here p(m) is the Radon-Hurwitz number of a natural number m and is defined as follows: if m is
presented in the form m = (2a 4+ 1)2%*¢ with ¢ = {0, 1, 2, 3} and non-negative integer a, b, then
p(m) = 2+ 8b.

The Radon-Hurwitz numbers appear in differential topology, coding theory, theoretical physics,
and linear algebra. In particular, the following results are close to Theorem 1:

® p(m) counts the maximum size of a linear subspace of the real m x m matrices, for which each
nonzero matrix is a product of an orthogonal matrix and a scalar matrix; see [5].

o Let F be R, C or the skew-field of real quaternions H. Let IF(im) be the maximum number of
matrices A, Ay, ... € F™ ™ such that each linear combination w1A; + aA; + - - - with real
coefficients is nonsingular except when all ; are zero. Then

R(m) = p(m), C(m) =2b+2, H(m)= p(m/2)+ 4,

see [1,2].
® The maximum numbers of Hermitian, skew-Hermitian, symmetric, or skew-symmetric matrices
A1, Ay, ... € F™*M gych that each linear combination «1A; + oAy + - - - with real coefficients

is nonsingular except when all ¢; are zero, are equal to
F(m/2), F(m)—1, p(m/2)+dr, pQ% 'm)—ds,
respectively, in which dp = dimp F; see [3].

This work was inspired by Bilge, Dereli, and Kogak’s article [4] about spaces of real skew-symmetric
matrices that are orthogonally similar to matrices of the form

[0 A} [o /\}
® D , 0#xreR. 3)
—A 0 -1 0

2. Proof of the theorem

We denote the rank, trace, image, kernel and orthogonal complement of the kernel of A by r4, Tr A,
Im A, Ker A, and Wj, respectively. We also use the notation A _L B for the orthogonality of A and B, that
is Tr(ABT) = 0.

Let Sy, be the set of 2n x 2n real skew-symmetric matrices for which each matrix is orthogonally
similar to a matrix of the form (3) and Sy41 be the set of (2n 4+ 1) x (2n 4 1) real skew-symmetric
matrices for which each matrix is orthogonally similar to a matrix of the form (2). It can be easily
shown that A € S, if and only if

A+ A3 =0 (4)
and A € Syp4q ifand only if
A+ AA=0 and 14 =2n (5)

where 12 = ——rg:z).

Lemma 1. IfA € Syny1, then Wp = Ker (A2 + A2Ian11).
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Proof. Let A € Syp41. ThenImA L Ker A since for each x € R2"1 and y € Ker A we have (Ax, y) =
(x,ATy) = (x, —Ay) = (x,0) = 0.
Letx € Wa. By (5),y := (Az + )»%12,1“) x € KerA,and so {y, y) = (A%x, y) + ()»f,x,y) = 0.Hence

y = 0and x € Ker(A? + A3hn1).
Conversely, let x € Ker(A? + A2lpn41). Then for every y € Ker A we have A3 (x,y) = (A%x,y) +
A3, y) = ((A* + AZhny1)x,y) = (0,y) = 0,and sox € Wy. O

Lemma 2. Let £ C Syn+1 be a subspace containing the matrices A and B. If A L B, then
A’B + ABA + BA® + A2B =0, (6)
AB? + BAB 4 B*A + A2A=0. (7)
Proof. Since A and B lie in the same subspace, by (5),
(A+kB)® + 25,5 (A+kB) =0 (8)

for all k € R where Afka = —Zl—n Tr((A + kB)?). By orthogonality of A and B, Tr(AB) = Tr(BA) = 0.
Then

Mg = —;—n Tr (A + kB)?) = _2171 Tr (4%) - ’2% Tr (B?) = 23 + k3. (9)

Substituting (9) in (8), we obtain

0=A% + 23A + (A’B -+ ABA + BA” + 2}B) k
+ (AB” + BAB + B*A + 33A) K + (B® + 238) K°

for all k which gives the Eqgs. (6) and (7) since A® + )VZ‘A =0and B> + AﬁB =00
Write

Foo |: It } .
0---0 (2n42) x (2n+1)

Note that for any (2n+2) x (2n+ 2) skew-symmetric real matrix B, F' BF is the (2n+1) x (2n+1)
real skew-symmetric matrix formed by removing from B its last column and row. Also note that for
any (2n 4+ 1) x (2n + 1) real skew-symmetric matrix A, FAFT = A & 0.

Lemma 3. IfB € Syn 2, then FTBF € Sy, 1.
Proof. Let B € Sy, and B := FFTBFF'. Note that B = F'BF @ 0;. More clearly, B is the (2n + 2) x

(2n + 2) real skew-symmetric matrix formed by changing the last column and row of B with the zero
column and row:

B= [bif ]1<i,j<2n+z =B= [bif ]1gf,j<2n+1 Or.

Since B € Syp42, Bis of the form « - By for some real number o where By is an orthogonal matrix
by (4). The columns (and the rows) of B are mutually perpendicular since By is orthogonal, so the last



1368 Y. Ozdemir / Linear Algebra and its Applications 438 (2013) 1365-1371

column and row of the matrices BB and BB are zero, which can be seen easily by a simple calculation.
On the other hand, other corresponding elements of the matrices BB and BB are obviously equal by the

definition of the skew-symmetric matrix B. Then BB = BB = B-. Hence
(F'BF)® = FTBFFTBFF' BF = F'BBBF = F' BB°F.

It is clear that FTBF = F'BF. Then
(F'BF)® = F'BB*F = —A3F"BF = —A3F"BF,

since B> = —A2lp,47 by (4).

On the other hand, it is known that ry,m, + rvym; < TvyMoMs + T, for any multiplying-allowed
matrices M1, My, M3 [6, Example 2]. Substituting My = FT,M, = Band M3 = F, we have 2n + 1 +
2n 4+ 1 < rprgp + 2n + 2, that is 2n < rerge. Then rerge = 2n since FTBF isan (2n 4+ 1) x (2n + 1)
real skew-symmetric matrix, and so F' BF € Sont1 by (5). O

Lemma 4. IfA € Syp+1, then there exists B € Syp42 such that A = FTBF.
(In fact there exist only two matrices B!, B? such that A = F'BF,j = 1, 2.)

Proof. Let A € Syp41. There exists a unique orthogonal matrix Q such that QTAQ is of the form

T 0 )¥A 0 )"A
Q'AQ =M®&0; whereM = DD )
_)‘-A 0 _)‘-A 0

Obviously, there exist only two skew-symmetric matrices By and B, in Son+2 such that QTAQ =
FTB]-F (j = 1, 2) which are of the form

~ 0 )\.A ~ 0 _)LA
Bi=M®& and B, =M®&® .
—2a O A 0

Consider the orthogonal matrices P; := Q @ 17 and P, := Q @ (—1)1. An easy calculation shows
that P1B1P] = P,BoP) =: By € Syny and P1BoP] = PoB1P} =: B, € Synio. By the definitions,
QFTPI = FT and P;FQT = F. Then

A= QF'BFQ" = QF"P]BPiFQ" = F'BF

and similarly A = FTB,F, which completes the proof.

We also note that there does not exist any matrix P satisfying QF' PT = FT or PFQT = F except
for P = P; or P = P, which means there does not exist any matrix B satisfying A = F' BF except for
B=BiorB=B,. U

Lemma 5. Let {A, B} be a basis for a 2-dimensional subspace in Syp41 such that A L B.

(i) IfKer A = Ker B, then AB + BA = 0.
(ii) IfKer AN Ker B = {0}, then Ker A L. Ker B.

Proof. (i) Let W := W4 = Wp and let x € W. By (7), AB>x + BABx + B?Ax + A2Ax = 0, and so
BABx + B*Ax = 0 by Lemma 1. Then BABx = A%Ax since Ax € W (note that Mx L x for any skew-
symmetric matrix M). Multiplying each side of the last equality by B, —)»%ABX = )\%BAX by Lemma 1

since ABx € W, and so (AB+BA)x = 0.Inthe casex € R*"*! (AB+BA)x = 0 since x can be expressed
asx = x1 + x, wherex; € KerA = KerBand x; € Wy = Wp.
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(ii) Let KerA N Ker B = {0} and let )»f\ = )»12; = 1 for simplicity. Suppose that Ker A does not
orthogonal to Ker B.

Let0 #= w € Ker B.By (5), there exists anonzeroz € Ker Asuch that B*z2+z = wandA*>w+w = bz
for some nonzero b € R since Ker A and Ker B are 1-dimensional subspaces (In the case Ker A L Ker B,
it cannot be found such a vector z € Ker A. Note that if z € Wg, thenw = B24+z=—-242z=0 by
Lemma 1). By multiplying each side of B>z +z = w by A and A>w 4+ w = bz by B, respectively, we get

AB’z = Aw and BA*w = bBz. (10)
By (7) and (6), AB*z + BABz = 0 and BA’>w + ABAw = O since z € Ker A and w € Ker B. Then
BABz = —Aw and ABAw = —bBz (11)

by (10). From the fact that (Mu, v) = (u, M'v) and M'M = MM" = —M? for any skew-symmetric
matrix M, we obtain

(Aw, Bz) = —(BABz, Bz) = —(ABz, B'Bz) = (ABz, Bz)
= —(Bz,ABzz) = —(Bz, Aw),

which means (Aw, Bz) = 0. Thenw | ABz and z L BAw, i.e. ABz € Wp and BAw € W,. By Lemma 1,
we obtain B?°ABz = —ABz and A°BAw = —BAw. Then BAw = ABz and BAw = bABz by (11), and so
b=1.

On the other hand, B>z = (W — z) L w and A>’w = (bz — w) L z by Lemma 1. Using these
orthogonalities, we get (w, w) = (w, z) = b(z,z) andby b = 1, (w, w) = (w, z) = (z, z). Then

O<{w—z,w—2z)=(w,w) —2(w,z) + (z,z) =0,
which is a contradiction. O

Lemma 6. Let {Aq, Ay, ..., Ak} be an orthogonal basis for a subspace in Syp+1. Either the matrices
A1, Ay, ..., Ay have common kernel or the kernels of the matrices A1, Ay, . . ., Ay intersect pairwise in
the zero vector.

Proof. Let {A, B, C} be an orthogonal basis for a subspace in S,;,+1 and suppose that Ker A = Ker C
and Ker A N Ker B = {0}.

Let 0 # x € KerA,y := Bxand z := Ay = ABx. Note that y # 0 since Ker A N Ker B = {0}. By
Lemma 1, we have Az = A%y = —Aﬁy sincey = Bx € Wy, and so z # 0 since y # 0. By Lemma 5,
X € Wp. Thus by Lemma 1, B?x = —kﬁx, and so By = —Agx. By (6) and (7),

0 = (AB® + BAB + B?A + A2A)x = A(—A2x) + BABx = Bz
0 = (B*C + BCB + CB* 4+ A5C)x = BCBx + C(—A}x) = BCBx = BCy,

which means z, Cy € Ker B. Cy = 0z for some nonzero & € R since z € Ker Band dimKerB = 1. A
and C anticommute on W4 = W by Lemma 5. Then

0 = ACy + CAy = A(02) + Cz = =0}y + Cz,

andso Cz = Okf\y. Then C?y = 8Cz = sziy which is a contradiction since 8% > 0, C?y = —A%y and
y#0. 0

Let £ be a subspace of Sy,+1 and {A1, Ay, . . ., Ak} be an orthogonal basis of £.If A1, A, . . ., A have
common kernel, then we call £ is of the first type and {A1, A, . .., A} is a first type basis. Similarly, if
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the kernels of A1, Az, . . ., Ay intersect pairwise in the zero vector, then we call £ is of the second type
and {A1, Ay, ..., Ax} is a second type basis. We note that any subspace of Sy,,+1 must be either of the
first type or of the second type.

Remark 1. Let {A, B} be a basis for a 2-dimensional subspace of the second type in Syp4+1 such that
ki = )»% = 1and let {f1, f>, ..., font+1} be an orthonormal basis of R?™*1 such that Af; = 0 and
Bf; = 0 (it is possible since Ker A L Ker B). Let x € Ker A and y € Ker B. By (7) and Lemma 1,

AB?X + BABx = 0 => BABX = 0 = ABx = Yy = Bx = —yAy

for some y € R.In the case x = f; andy = f>, we have y = =1 since A and B preserve the distance
on Wy and Wp, respectively (recall that )\f\ = )% = 1), and so Af, = =£Bf;. Hence, for o, 8 € R,
Ker(aA + BB) is a 1-dimensional subspace spanned by the vectors («f; 4+ Bf2) or (af; — Bfo).

Remark 2. LetA € Sy, 1 and B € Sy, such that B = [by by - - - byyy2] and A = FTBF where each
biisa (2n+2) x 1 column vector. The column vector by is of the form (v, 0)! for some v € R?"+1,
Since B is orthogonal, (v, 0) L bjforeachj =1, ..., 2n+ 1 and thus v perpendicular to each column

vector of A (recall that A = F' BF), which implies v € Ker A.
Lemma 7. Let K C Sy and M C Syu43 be subspaces.

(i) {A® 01 |A € K} C Son+1 is a subspace with dimension dim K.
(ii) {FTBF |B € M} C Syny1 is a subspace with dimension dim M.

Proof. (i) Let K C Sy, be a subspace and {Aq, ..., Ax} be an orthogonal basis of K. Forj =1, ..., k,
Aj®01 € Sppy1 sinceitsatisfies (5)and has rank 2n. Obviously, the matricesA; @01, Ay P01, . .., AxD
01 span k-dimensional subspace in Sy;41 since forall oy, ..., € R

a1(A1 @ 0y) + -+ - + o (A B 01) = (1A1 + - - - + ogAy) D 05.

(ii) Let M C Syn42 be a subspace and {Aq, ..., Ax} be an orthogonal basis of M. Forj =1,...,k,
Bj = FTA]-F € Son+1 by Lemma 3. The set of matrices {By, ..., B} is a linearly independent set in
Son+1 since {Aq, . .., Ak} is in Syp42. Also note that since

1B+ +aBy = FT((J{1A1 + -+ aAF

forall oy, ..., ax € R, we have a1B1 + - - - + oxBx € Syn+1 by Lemma 3. Hence {By, ..., By} spans
k-dimensional subspace in Spp41. O

We remark that, since there is a subspace of dimension p(2n) — 1 in Sy, (in fact a maximal one,
[4, Proposition 3]), there is also a subspace of dimension p(2n) — 1 in Sy;4+1. Similarly, since there is
a subspace of dimension p(2n + 2) — 1 in Sy,4» (in fact a maximal one, [4, Proposition 3]), there is
also a subspace of dimension p(2n + 2) — 1in Syp+1.

Lemma 8. Let £ be a subspace in Syp41.

(i) If L is of the first type, then there exists a subspace K C Sy such that dim(£) = dim(K).
(ii) If £ is of the second type, then there exists a subspace M C Syp4 such that dim(£) = dim(M).

Proof. (i) Let £ be a subspace of the first type in Spp41 and {A1, A, . . ., Ax} be a first type basis of £
(i.e. A1, Ag, ..., Ar have common kernel). There exists an orthogonal matrix P such that PTA]-P is of
the form (2):

PTAP =: B; ® 0; (Bj = F'(PTA{P)F € Sy,).
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Let K be the subspace in S, spanned by the matrices By, By, ..., Bi. Then dim(K) = dim(£) = k.
(ii) Let £ be a subspace of the second type in Syp41 and {A1, Az, ..., Ak} be a second type basis
of £ such that )Lf‘j = 1forallj = 1,2,...,k By Lemma 5, we can assume that A;f; = 0 for some

corresponding orthonormal basis {fi, fo, . .., fon+1} of R Let «, B € Rand A := a1A1 + azA;.
By Lemma 4, there exist B}, B, B}, B3 and B', B? in S5 such that

A1 =F'BiF, Ay =F'ByF, A=FBF (i=1,2).

Combining Remarks 1 and 2, these matrices have to be of the form

1| M —fi 1| A2 —f; 1| A —v'
B] - ’ Bz - ’ B - ’
fr 0 L 0 v 0
2| A i 2| A2 £ 2| A vl
B‘] - k] Bz - ’ B - k]
—fi1 0 —f, 0 —v 0

where v = a1fi — azfp or v = «a1fi + azfs (it depends on the relation between Aif; and A,f, as
remarked in Remark 1).

Letv := a1f1 + aofs. Defining By := B} and By := B%, we obtain a1By + 2By = B! € San+2. Thus
Bi and B; span 2-dimensional subspace in Syp42. (One can define By := B% and By := B% and obtain
o1B1 + a2By = B? € Sonpa.)

Let v := a1fi — aof>. Defining By := Bl and B, := B2, we obtain 1By + a3B; = B! € Syp42. Thus
By and B; span 2-dimensional subspace in Sy, . (Similarly, one can define By := B% and By := B}
and obtain o;B; + a2By = B? € Son+2-)

Applying the same argument to A and «3As3 for 3 € R, we obtain B such that A; = FTB3F
and 1By + a2By + a3B3 € Syp4o. In this way, one can obtain {B1, By, ..., B¢} as a basis of k-
dimensional subspace M in Sy, such that A = FTBF where A = o1A; + a2Ay + - - - + oAy and
B = a1B1 +aBy + -+ -+ oyBy. O

Proof of Theorem 1. From Lemmas 7 and 8, it follows obviously that a maximal subspace of Sy;+1
has dimension max{p(2n) — 1, p(2n + 2) — 1}. Using the fact that2 = p(2n) < 4 < p(2n + 2) for
the case nis odd and p(2n) > 4 > p(2n + 2) = 2 for the case n is even, we complete the proof. [
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