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We consider 7-dimensional pseudo-Riemannian spin𝑐 manifolds with structure group 𝐺
∗

2(2)
. On such manifolds, the space of 2-

forms splits orthogonally into components Λ2𝑀 = Λ
2

7
⊕ Λ
2

14
. We define self-duality of a 2-form by considering the part Λ2

7
as the

bundle of self-dual 2-forms. We express the spinor bundle and the Dirac operator and write down Seiberg-Witten like equations
on such manifolds. Finally we get explicit forms of these equations on R4,3 and give some solutions.

1. Introduction

The Seiberg-Witten theory, introduced by Witten in [1],
became one of the most important tools to understand the
topology of smooth 4-manifolds. The Seiberg-Witten theory
is based on the solution space of two equations which are
called the Seiberg-Witten equations. The first one of the
Seiberg-Witten equations is Dirac equation and the second
one is known as curvature equation [2]. The first equation is
the harmonicity condition of spinor fields; that is, the spinor
field belongs to the kernel of the Dirac operator. The second
equation couples the self-dual part of the curvature 2-form
with a spinor field. There exist various generalizations of
Seiberg-Witten equations to higher dimensional Riemannian
manifolds [3–6]. All of these generalizations are done for
the manifolds which have special structure groups. Also
Seiberg-Witten like equations are studied over 4-dimensional
Lorentzian spin𝑐 manifolds [7] and 4-dimensional pseudo-
Riemannian manifolds with neutral signature [8].

Parallel spinors on pseudo-Riemannian spin𝑐 manifolds
are studied by Ikemakhen [9]. In the present work, we con-
sider 7-dimensional manifolds with structure group 𝐺∗

2(2)
. In

order to define spinors and Dirac operator, the manifold 𝑀
must have a spin𝑐-structure. We assume that 7-dimensional
pseudo-Riemannian manifold 𝑀 with signature (−, −, −, −,
+, +, +) has spin𝑐-structure. On the other hand, to write down

curvature equation, we need a self-duality notion of a 2-form
on suchmanifolds. In 4 dimensions, self-duality concept of 2-
forms is well known. The bundle of 2-forms Λ2(𝑀) decom-
poses into two parts on thismanifold [10].Thenwewill define
self-duality of a 2-form on a 7-manifold with structure group
𝐺
∗

2(2)
by using decomposition of 2-forms on this manifold.

2. Manifolds with Structure Group 𝐺
∗

2(2)

The exceptional Lie group 𝐺
2
, automorphism group of octo-

nions, is well known.There is another similar Lie group 𝐺∗
2(2)

which is automorphism group of split octonions [11]. OnR7,
we consider the metric

𝑔
4,3
(𝑥, 𝑦) = −𝑥

1
𝑦
1
− 𝑥
2
𝑦
2
− 𝑥
3
𝑦
3
− 𝑥
4
𝑦
4
+ 𝑥
5
𝑦
5

+ 𝑥
6
𝑦
6
+ 𝑥
7
𝑦
7
,

(1)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

7
) and 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

7
) ∈ R7.

Fromnow on, we denote the pair (R7, 𝑔
4,3
) byR4,3.The isom-

etry group of this space is

𝑂 (4, 3) = {𝐴 ∈ 𝐺𝐿 (7,R) : 𝑔
4,3
(𝐴 (𝑥) , 𝐴 (𝑦))

= 𝑔
4,3
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈R

7

} .

(2)
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The special orthogonal subgroup of 𝑂(4, 3) is

SO (4, 3) = {𝐴 ∈ 𝑂 (4, 3) : det𝐴 = 1} . (3)

The group 𝐺
∗

2(2)
is the subgroup of SO(4, 3), preserving the

following 3-form:

𝜑
0
= −𝑒
127

− 𝑒
135

+ 𝑒
146

+ 𝑒
236

+ 𝑒
245

− 𝑒
347

+ 𝑒
567

, (4)

where {𝑒
1

, . . . , 𝑒
7

} is the dual base of the standard basis
{𝑒
1
, . . . , 𝑒

7
} ofR4,3, with the notation 𝑒𝑖𝑗𝑘 = 𝑒

𝑖

∧𝑒
𝑗

∧𝑒
𝑘 andwith

the metric 𝑔
4,3

= (−1, −1, −1, −1, 1, 1, 1); that is,

𝐺
∗

2(2)
= {𝐴 ∈ 𝐺𝐿 (7,R) : 𝐴

∗

𝜑
0
= 𝜑
0
} , (5)

where𝜑
0
is called the fundamental 3-formonR4,3 [10, 11].The

space of 2-forms Λ2R7 decomposes into two parts Λ2R7 =
Λ
2

7
R7 ⊕ Λ2

14
R7, where

Λ
2

7
R
7

= {𝛼 ∈ Λ
2

R
7

: ⋆ (𝜑
0
∧ 𝛼) = 2𝛼} ,

Λ
2

14
R
7

= {𝛼 ∈ Λ
2

R
7

: ⋆ (𝜑
0
∧ 𝛼) = −𝛼} .

(6)

A semi-Riemannian 7-manifold 𝑀 with the metric of
signature (−, −, −, −, +, +, +) is called a 𝐺∗

2(2)
manifold if its

structure group reduces to the Lie group 𝐺∗
2(2)

; equivalently,
there exists a nowhere vanishing 3-form on 𝑀 whose local
expression is of the form𝜑

0
. Such a form is called a𝐺∗

2(2)
struc-

ture on𝑀 [12]. If the structure group of𝑀 is the group 𝐺∗
2(2)

then the bundle of 2-formsΛ2(𝑀) decomposes into two parts
similar to Λ

2R7 and we denote it by Λ
2

(𝑀) = Λ
2

7
(𝑀) ⊕

Λ
2

14
(𝑀) [10].
It is known that square of the Hodge ∗ operator on 2-

forms over 4-dimensional Riemannian manifolds is identity
and ±1 are eigenvalues of the Hodge ∗ operator.The elements
of eigenspace of 1 are called self-dual 2-forms and the others
are called anti-self-dual forms. But this situation does not
generalize to higher dimensional manifolds directly. Self-
duality of 2-form has been studied on some higher dimen-
sions [3, 13]. In this work, we need self-duality concept of 2-
forms on 7-dimensional manifolds with structure group
𝐺
∗

2(2)
.
Now we define a duality operator over bundle of 2-form

Λ
2

(𝑀) as

𝑇
𝜑
: Λ
2

(𝑀) 󳨀→ Λ
2

(𝑀) ,

𝑇
𝜑
(𝛼) := ⋆ (𝜑 ∧ 𝛼) .

(7)

The eigenvalues of this map are 2 and −1. Note that the
subbundle Λ2

7
(𝑀) corresponds to the eigenvalue 2 and the

subbundleΛ2
14
(𝑀) corresponds to the eigenvalue−1. Let𝛼 be

a 2-form over𝑀. If 𝛼 belongs toΛ2
7
(𝑀), then we call 𝛼 a self-

dual 2-form. If 𝛼 belongs to Λ2
14
(𝑀), then we call 𝛼 an anti-

self-dual 2-form. Because of decomposition of 2-forms on𝑀,
any 2-form 𝛼 on𝑀 can be written uniquely as

𝛼 = 𝛼
+

+ 𝛼
−

, (8)

where 𝛼+ ∈ Λ
2

7
(𝑀) and 𝛼

−

∈ Λ
2

14
(𝑀). Similar to the 4-

dimensional case, we say that 𝛼+ is self-dual part of 𝛼 and 𝛼−
is anti-self-dual part of 𝛼.

3. Spinor Bundles over 𝐺∗
2(2)

Manifolds

It is known that the group SO(4, 3) has two connected
components. The connected component to the identity of
SO(4, 3) is denoted by SO

+
(4, 3). In this work we deal with

the group SO
+
(4, 3). The covering space of SO(4, 3) is the

group Spin(4, 3) which lies in Clifford algebra Cl
4,3

= Cl(R7,
−𝑔
4,3
) ⊂ C𝑙

4,3
and we denoted the connected component

of 1 ∈ Spin(4, 3) by Spin
+
(4, 3). There is a covering map

𝜆 : Spin
+
(4, 3) → SO

+
(4, 3) which is a 2 : 1 group homomor-

phism given by 𝜆(𝑔)(𝑥) = 𝑔 ⋅ 𝑥 ⋅ 𝑔
−1 for 𝑥 ∈ R4,3, 𝑔 ∈

Spin
+
(4, 3) [10, 11, 14].

One can define another group which lies in the complex
Clifford algebra C𝑙(R4,3) ≅ C𝑙

7
by

Spin𝑐
+
(4, 3) :=

(Spin
+
(4, 3) × 𝑆

1

)

Z
2

, (9)

where the elements of Spin𝑐
+
(4, 3) are the equivalence classes

[𝑔, 𝑧] of pair (𝑔, 𝑧) ∈ Spin
+
(4, 3) × 𝑆

1, under the equivalence
relation (𝑔, 𝑧) ∼ (−𝑔, −𝑧) [9].There exist two exact sequences
as

1 󳨀→ Z
2
󳨀→ Spin

+
(4, 3)

𝜆

󳨀→ SO
+
(4, 3) 󳨀→ 1,

1 󳨀→ Z
2
󳨀→ Spin𝑐

+
(4, 3)

𝜉

󳨀→ SO
+
(4, 3) × 𝑆

1

󳨀→ 1,

(10)

where 𝜉([𝑔, 𝑧]) = (𝜆(𝑔), 𝑧
2

).
Let {𝑒

1
, . . . , 𝑒

7
} be an orthonormal basis of R4,3; then the

Lie algebras of Spin(4, 3) and Spin𝑐(4, 3) are

spin (4, 3) = {𝑒
𝑖
𝑒
𝑗
: 1 ≤ 𝑖, 𝑗 ≤ 7} ,

spin𝑐 (4, 3) = spin (4, 3) ⊕ 𝑖R,
(11)

respectively. The derivative of 𝜉 : Spin𝑐
+
(4, 3) → SO

+
(4, 3) ×

𝑆
1 is obtained as

𝜉
∗
(𝑒
𝑖
𝑒
𝑗
, 𝑖𝑟) = (𝜆

∗
(𝑒
𝑖
𝑒
𝑗
) , 𝑖𝑟) = (2𝐸

𝑖𝑗
, 2𝑖𝑟) , (12)

where𝐸
𝑖𝑗
is the 8×8-matrix whose (𝑖, 𝑗)-entry is 1, (𝑗, 𝑖)-entry

is −1, and the other entries are zero [9]. Since the Clifford
algebra C𝑙

7
is isomorphic to the algebra C(8) ⊕ C(8), we can

project this isomorphism onto the first component. Hence,
we get spinor representation:

𝜅 : C𝑙
7
󳨀→ C (8) ≅ End (C8) . (13)

By restricting 𝜅 to the group Spin𝑐
+
(4, 3) we get

𝜅|Spin𝑐
+
(4,3)

: Spin𝑐
+
(4, 3) 󳨀→ Aut (C8) (14)

and 𝜅|Spin𝑐
+
(4,3)

is called spinor representation of the group
Spin𝑐
+
(4, 3); shortly we denote it by 𝜅. The elements of C8 are

called spinors and the complex vector space C8 is called the
spinor space and it is denoted by Δ

4,3
. By using spinor repre-

sentation, the Clifford multiplication of vectors with spinors
is defined by

𝑋 ⋅ 𝜓 := 𝜅 (𝑋) (𝜓) , (15)
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where 𝑋 ∈ R4,3 and 𝜓 ∈ Δ
4,3
. The spinor space has a nonde-

generate indefinite Hermitian inner product as

⟨𝜓
1
, 𝜓
2
⟩
Δ
4,3

:= 𝑖
4(4−1)/2

⟨𝜅 (𝑒
1
𝑒
2
𝑒
3
𝑒
4
) 𝜓
1
, 𝜓
2
⟩ , (16)

where ⟨𝑧, 𝑤⟩ = ∑
8

𝑖=1
𝑧
𝑖
𝑤
𝑖
is the standard Hermitian inner

product on C8 for 𝑧 = (𝑧
1
, . . . , 𝑧

8
), 𝑤 = (𝑤

1
, . . . , 𝑤

8
) ∈ C8.

The new inner product ⟨ , ⟩
Δ
4,3

is invariant with respect to
the group spin𝑐

+
(4, 3) and satisfies the following property:

⟨𝜅 (𝑍) 𝜓
1
, 𝜓
2
⟩
Δ
4,3

= − ⟨𝜓
1
, 𝜅 (𝑍) 𝜓

2
⟩
Δ
4,3

, (17)

where 𝑍 ∈ R4,3 and 𝜓
1
, 𝜓
2
∈ Δ
4,3
. In this work, we use the

following spinor representation 𝜅:

𝜅 (𝑒
1
) = 𝜀 ⊗ 𝜀 ⊗ 𝛿,

𝜅 (𝑒
2
) = −𝛿 ⊗ 𝛿 ⊗ 𝜏,

𝜅 (𝑒
3
) = −𝛿 ⊗ 𝐼 ⊗ 𝛿,

𝜅 (𝑒
4
) = 𝛿 ⊗ 𝜏 ⊗ 𝜏,

𝜅 (𝑒
5
) = −𝐼 ⊗ 𝜀 ⊗ 𝜏,

𝜅 (𝑒
6
) = −𝜏 ⊗ 𝜀 ⊗ 𝛿,

𝜅 (𝑒
7
) = 𝐼 ⊗ 𝐼 ⊗ 𝜀,

(18)

where

𝐼 = (

1 0

0 1

) ,

𝛿 = (

0 1

1 0

) ,

𝜏 = (

1 0

0 −1

) ,

𝜀 = (

0 −1

1 0

) .

(19)

Now, we recall the main definitions concerning spin𝑐-
structure and the spinor bundle. Let 𝑀 be a 7-dimensional
pseudo-Riemannian manifold with structure group 𝐺

∗

2(2)
.

Then, there is an open covering {𝑈
𝛼
}
𝛼∈𝐴

of𝑀 and transition
functions 𝑔

𝛼𝛽
: 𝑈
𝛼
∩ 𝑈
𝛽
→ 𝐺
∗

2(2)
⊂ SO
+
(4, 3) for 𝑇𝑀.

If there exists another collection of transition functions

𝑔̃
𝛼𝛽

: 𝑈
𝛼
∩ 𝑈
𝛽
󳨀→ Spin𝑐

+
(4, 3) (20)

such that the following diagram commutes

U𝛼 ∩ U𝛽 SO+(4, 3)

g̃𝛼𝛽

g𝛼𝛽

𝜉

Spinc+(4, 3)

(21)

(i.e., 𝜉 ∘ 𝑔̃
𝛼𝛽

= 𝑔
𝛼𝛽

and the cocycle condition 𝑔̃
𝛼𝛽
𝑔̃
𝛽𝛾

= 𝑔̃
𝛼𝛾

on 𝑈
𝛼
∩ 𝑈
𝛽
∩ 𝑈
𝛾
is satisfied), then 𝑀 is called a spin𝑐 man-

ifold. Then one can construct a principal Spin𝑐
+
(4, 3)-bundle

𝑃Spin𝑐
+
(4,3)

on𝑀 and a bundle map Λ : 𝑃Spin𝑐
+
(4,3)

→ 𝑃SO
+
(4,3)

.
Let (𝑃Spin𝑐

+
(4,3)

, Λ) be a spin𝑐-structure on 𝑀. We can
construct an associated complex vector bundle:

𝑆 = 𝑃Spin𝑐
+
(4,3)

×
𝜅
Δ
4,3
, (22)

where 𝜅 : Spin𝑐
+
(4, 3) → Aut(Δ

4,3
) is the spinor represen-

tation of Spin𝑐
+
(4, 3). This complex vector bundle is called

spinor bundle for a given spin𝑐-structure on𝑀 and sections
of 𝑆 are called spinor fields. The Clifford multiplication given
by (15) can be extended to a bundle map:

𝜇 : 𝑇𝑀 ⊗ 𝑆 󳨀→ 𝑆. (23)

Parallel spinors on the spinor bundle 𝑆 are studied in [9].
Since𝑀 is a pseudo-Riemannian spin𝑐 manifold, then by

using the map

ℓ : Spin𝑐
+
(4, 3) 󳨀→ 𝑆

1

,

ℓ ([𝑔, 𝑧]) = 𝑧
2

,

(24)

we can get an associated principal 𝑆1-bundle:

𝑃
𝑆
1 = 𝑃Spin𝑐

+
(4,3)

×
ℓ
𝑆
1

. (25)

Also, the map ℓ induces a bundle map:

𝐿 : 𝑃Spin𝑐
+
(4,3)

󳨀→ 𝑃
𝑆
1 . (26)

Now, fix a connection 1-form 𝐴 : 𝑇𝑃
𝑆
1 → 𝑖R over the

principal𝑈(1)-bundle 𝑃
𝑆
1 . Let ∇ be the Levi-Civita covariant

derivative associated with the metric 𝑔
4,3

which determines
an so(4, 3)-valued connection 1-form 𝜔 on the principal
bundle 𝑃SO

+
(4,3)

. The connection 1-form 𝜔 can be written
locally

𝜔 = ∑

𝑖<𝑗

𝜔
𝑖𝑗
𝐸
𝑖𝑗
, (27)

where {𝑒
1
, 𝑒
2
, . . . , 𝑒

7
} is a local orthonormal frame on open

set 𝑈 ⊂ 𝑀 and 𝜔
𝑖𝑗
= 𝑔
4,3
(∇𝑒
𝑖
, 𝑒
𝑗
). By using the connection

1-form 𝐴 and 𝜔, one can obtain a connection 1-form on the
principal bundle 𝑃SO

+
(4,3)

×̃𝑃
𝑆
1 (the fibre product bundle):

𝜔 × 𝐴 : 𝑇 (𝑃SO
+
(4,3)

×̃𝑃
𝑆
1) 󳨀→ SO

+
(4, 3) × 𝑖R. (28)

The connection 𝜔 × 𝐴 can be lift to a connection 1-form 𝑍
𝐴

on the principal bundle 𝑃SO𝑐
+
(4,3)

via the 2-fold covering map:

𝜋 := (Λ, 𝐿) : 𝑃Spin𝑐
+
(4,3)

󳨀→ 𝑃SO
+
(4,3)

×̃𝑃
𝑆
1 (29)

and the following commutative diagram.

ZA

𝜉∗d𝜋

𝜔 × A
T(PSO+(4,3)

×̃ PS1) SO(4, 3) ⊕ iR

T(PSpin𝑐+ (4,3)) Lie(Spinc+(4, 3)) ≅ spin(4, 3) ⊕ iR

(30)
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One can obtain a covariant derivative operator ∇𝐴 on the
spinor bundle 𝑆 by using the connection 1-form𝑍

𝐴.The local
form of the covariant derivative ∇𝐴 is

∇
𝐴

Ψ = 𝑑Ψ +

1

2

∑

𝑖<𝑗

𝜀
𝑖
𝜀
𝑗
𝜔
𝑖𝑗
𝜅 (𝑒
𝑖
𝑒
𝑗
)Ψ +

1

2

𝐴Ψ, (31)

where {𝑒
1
, . . . , 𝑒

7
} is a orthonormal frame on open set 𝑈 ⊂

𝑀. We note that some authors use the term 𝐴Ψ instead of
(1/2)𝐴Ψ in the local formula of∇𝐴Ψ.The covariant derivative
∇
𝐴 is compatible with the metric ⟨ , ⟩

Δ
4,3

𝑋⟨𝜓
1
, 𝜓
2
⟩
Δ
4,3

= ⟨∇
𝐴

𝑋
𝜓
1
, 𝜓
2
⟩
Δ
4,3

+ ⟨𝜓
1
, ∇
𝐴

𝑋
𝜓
2
⟩
Δ
4,3

(32)

and the Clifford multiplication

∇
𝐴

𝑋
(𝑌 ⋅ 𝜓) = 𝑌 ⋅ ∇

𝐴

𝑋
𝜓 + (∇

𝑋
𝑌) ⋅ 𝜓, (33)

where 𝜓, 𝜓
1
, 𝜓
2
are spinor fields and sections of 𝑆, 𝑋, and 𝑌

are vector fields on𝑀. We can define the Dirac operator 𝐷
𝐴

as the following composition:

𝐷
𝐴
:= 𝜇 ∘ ∇

𝐴

: Γ (𝑆)

∇
𝐴

󳨀→ Γ (𝑇𝑀
∗

⊗ 𝑆)

𝑔
4,3

≃ (𝑇𝑀 ⊗ 𝑆)

𝜇

󳨀→ Γ (𝑆) ,

(34)

which can be written locally as

𝐷
𝐴
(𝜓) =

7

∑

𝑖=1

𝜀
𝑖
𝜅 (𝑒
𝑖
) ∇
𝐴

𝑒
𝑖

(𝜓) , (35)

where {𝑒
1
, 𝑒
2
, . . . , 𝑒

7
} is any oriented local orthonormal frame

of 𝑇𝑀.

4. Seiberg-Witten Like Equations on
𝐺
∗

2(2)
Manifolds

Let 𝑀 be a spin𝑐 manifold with structure group 𝐺
∗

2(2)
. Fix

a spin𝑐-structure and a connection 𝐴 in the principal 𝑈(1)-
bundle 𝑃

𝑆
1 associated with the spin𝑐-structure. Note that the

curvature 𝐹
𝐴
of the connection 𝐴 is 𝑖R-valued 2-form. The

curvature 2-form 𝐹
𝐴
on the 𝑃

𝑆
1 determines an 𝑖R-valued 2-

form on𝑀 uniquely (see [15]) and we denote it again by 𝐹
𝐴
.

We can define a map

𝜎 (𝜓) (𝑋, 𝑌) = ⟨𝑋 ⋅ 𝑌 ⋅ 𝜓, 𝜓⟩
Δ
4,3

+ 𝑔
4,3
(𝑋, 𝑌)

󵄨
󵄨
󵄨
󵄨
𝜓
󵄨
󵄨
󵄨
󵄨

2

, (36)

where 𝑋,𝑌 ∈ Γ(𝑇𝑀). Note that the map 𝜎(𝜓) satisfies the
following properties:

𝜎 (𝜓) (𝑋, 𝑌) = −𝜎 (𝜓) (𝑌,𝑋) ,

𝜎 (𝜓) (𝑋, 𝑌) = −𝜎 (𝜓) (𝑋, 𝑌) .

(37)

Hence, the map 𝜎 associates an 𝑖R-valued 2-form with
each spinor field 𝜓 ∈ Γ(𝑆), so we can write

𝜎 : Γ (𝑆) 󳨀→ Ω
2

(𝑀, 𝑖R) . (38)

In local frame {𝑒
1
, 𝑒
2
, . . . , 𝑒

7
} on 𝑈 ⊂ 𝑀, the map 𝜎 can be

expressed as

𝜎 (𝜓) = −

1

4

∑

𝑖<𝑗

⟨𝜅 (𝑒
𝑖
𝑒
𝑗
) 𝜓, 𝜓⟩

Δ
4,3

𝑒
𝑖
∧ 𝑒
𝑗
. (39)

Now we are ready to express the Seiberg-Witten equa-
tions. Let 𝑀 be a spin𝑐 manifold with structure group 𝐺∗

2(2)
.

Fix a Spin𝑐
+
(4, 3) structure and take a connection 1-form𝐴 on

the principal bundle 𝑃
𝑆
1 and a spinor field 𝜓 ∈ Γ(𝑆). We write

the Seiberg-Witten like equations as

𝐷
𝐴
𝜓 = 0,

𝐹
+

𝐴
= −

1

4

𝜎 (𝜓)
+

,

(40)

where 𝐹+
𝐴
is the self-dual part of the curvature 𝐹

𝐴
and 𝜎(𝜓)+

is the self-dual part of the 2-form 𝜎(𝜓) corresponding to the
spinor 𝜓 ∈ Γ(𝑆).

5. Seiberg-Witten Like Equations on R4,3

Let us consider these equations on the flat space 𝑀 = R4,3

with the 𝐺∗
2(2)

structure given by 𝜑
0
. We use the standard

orthonormal frame {𝑒
1
, 𝑒
2
, . . . , 𝑒

7
} on 𝑀 = R4,3 and the

spinor representation in (18). The spin𝑐 connection ∇
𝐴 on

R4,3 is given by

∇
𝐴

𝑗
Ψ =

𝜕Ψ

𝜕𝑥
𝑗

+ 𝐴
𝑗
Ψ, (41)

where 𝐴
𝑗
: R4,3 → 𝑖R and Ψ : R4,3 → Δ

4,3
are smooth

maps. Then, the associated connection on the line bundle
𝐿
Γ
= R4,3 × C is the connection 1-form

𝐴 =

7

∑

𝑖=1

𝐴
𝑖
𝑑𝑥
𝑖
∈ Ω
1

(R
4,3

, 𝑖R) (42)

and its curvature 2-form is given by

𝐹
𝐴
= 𝑑𝐴 = ∑

𝑖<𝑗

𝐹
𝑖𝑗
𝑑𝑥
𝑖
∧ 𝑑𝑥
𝑗
∈ Ω
2

(R
4,3

, 𝑖R) , (43)

where 𝐹
𝑖𝑗
= 𝜕𝐴
𝑗
/𝜕𝑥
𝑖
−𝜕𝐴
𝑖
/𝜕𝑥
𝑗
for 𝑖, 𝑗 = 1, . . . , 7. Now we can

write the Dirac operator 𝐷
𝐴
on R4,3 with respect to a given

spin𝑐-structure and spin𝑐-connection ∇𝐴.
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We denote the dual basis of {𝑒
1
, 𝑒
2
, . . . , 𝑒

7
} by {𝑒1, 𝑒2, . . . ,

𝑒
7

}. Now one can give a frame for the space of self-dual 2-
forms on R4,3 as

𝑓
1
= 𝑒
1

∧ 𝑒
2

+ 𝑒
3

∧ 𝑒
4

− 𝑒
5

∧ 𝑒
6

,

𝑓
2
= 𝑒
1

∧ 𝑒
3

− 𝑒
2

∧ 𝑒
4

− 𝑒
6

∧ 𝑒
7

,

𝑓
3
= 𝑒
1

∧ 𝑒
4

+ 𝑒
2

∧ 𝑒
3

− 𝑒
5

∧ 𝑒
7

,

𝑓
4
= 𝑒
1

∧ 𝑒
5

− 𝑒
2

∧ 𝑒
6

− 𝑒
4

∧ 𝑒
7

,

𝑓
5
= 𝑒
1

∧ 𝑒
6

+ 𝑒
2

∧ 𝑒
5

− 𝑒
3

∧ 𝑒
7

,

𝑓
6
= 𝑒
1

∧ 𝑒
7

+ 𝑒
3

∧ 𝑒
6

+ 𝑒
4

∧ 𝑒
5

,

𝑓
7
= 𝑒
2

∧ 𝑒
7

+ 𝑒
3

∧ 𝑒
5

− 𝑒
4

∧ 𝑒
6

.

(44)

Let 𝐹
𝐴
be the curvature form of the 𝑖R-valued connection

1-form 𝐴 and let 𝐹+
𝐴
be its self-dual part. Then,

𝐹
+

𝐴
=

7

∑

𝑖=1

⟨𝐹
𝐴
, 𝑓
𝑖
⟩

𝑓
𝑖

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖

󵄨
󵄨
󵄨
󵄨

2
=

1

3

{(𝐹
12
+ 𝐹
34
− 𝐹
56
) 𝑓
1

+ (𝐹
13
− 𝐹
24
− 𝐹
67
) 𝑓
2
+ (𝐹
14
+ 𝐹
23
− 𝐹
57
) 𝑓
3

+ (𝐹
15
− 𝐹
26
− 𝐹
47
) 𝑓
4
+ (𝐹
16
+ 𝐹
25
− 𝐹
37
) 𝑓
5

+ (𝐹
17
+ 𝐹
36
+ 𝐹
45
) 𝑓
6
+ (𝐹
27
+ 𝐹
35
− 𝐹
46
) 𝑓
7
} .

(45)

Now we calculate the 2-form 𝜎(𝜓)
+, for a spinor 𝜓 ∈ 𝑆. Then

𝜎(𝜓) can be written in the following way:

𝜎 (𝜓) = ∑

𝑖<𝑗

⟨𝑒
𝑖
𝑒
𝑗
𝜓, 𝜓⟩ 𝑒

𝑖

∧ 𝑒
𝑗

. (46)

The projection onto the subspace Λ2
7
(R4,3, 𝑖R) is given by

𝜎 (𝜓)
+

=

7

∑

𝑖=1

⟨𝜎 (𝜓) , 𝑓
𝑖
⟩

𝑓
𝑖

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖

󵄨
󵄨
󵄨
󵄨

2
. (47)

If 𝜎(𝜓)+ is calculated explicitly, then we obtain the following
identity:

3𝜎 (𝜓)
+

= {−3𝜓
2
𝜓
1
+ 3𝜓
1
𝜓
2
+ 𝜓
4
𝜓
3
− 𝜓
3
𝜓
4
− 𝜓
6
𝜓
5

+ 𝜓
5
𝜓
6
− 𝜓
8
𝜓
7
+ 𝜓
7
𝜓
8
} 𝑓
1
+ {3𝜓

3
𝜓
1
+ 𝜓
4
𝜓
2

− 3𝜓
1
𝜓
3
− 𝜓
2
𝜓
4
+ 𝜓
7
𝜓
5
− 𝜓
8
𝜓
6
− 𝜓
5
𝜓
7
+ 𝜓
6
𝜓
8
}

⋅ 𝑓
2
+ {−3𝜓

4
𝜓
1
+ 𝜓
3
𝜓
2
− 𝜓
2
𝜓
3
+ 3𝜓
1
𝜓
4
+ 𝜓
8
𝜓
5

+ 𝜓
7
𝜓
6
− 𝜓
6
𝜓
7
− 𝜓
5
𝜓
8
} 𝑓
3
+ {−3𝜓

6
𝜓
1
+ 𝜓
5
𝜓
2

+ 𝜓
8
𝜓
3
+ 𝜓
7
𝜓
4
− 𝜓
2
𝜓
5
+ 3𝜓
1
𝜓
6
− 𝜓
4
𝜓
7
− 𝜓
3
𝜓
8
}

⋅ 𝑓
4
+ {−3𝜓

5
𝜓
1
− 𝜓
6
𝜓
2
− 𝜓
7
𝜓
3
+ 𝜓
8
𝜓
4
+ 3𝜓
1
𝜓
5

+ 𝜓
2
𝜓
6
+ 𝜓
3
𝜓
7
− 𝜓
4
𝜓
8
} 𝑓
5
+ {−3𝜓

7
𝜓
1
− 𝜓
8
𝜓
2

+ 𝜓
5
𝜓
3
− 𝜓
6
𝜓
4
− 𝜓
3
𝜓
5
+ 𝜓
4
𝜓
6
+ 3𝜓
1
𝜓
7
+ 𝜓
2
𝜓
8
}

⋅ 𝑓
6
+ {−3𝜓

8
𝜓
1
+ 𝜓
7
𝜓
2
− 𝜓
6
𝜓
3
− 𝜓
5
𝜓
4
+ 𝜓
4
𝜓
5

+ 𝜓
3
𝜓
6
− 𝜓
2
𝜓
7
+ 3𝜓
1
𝜓
8
} 𝑓
7
.

(48)

Hence, the curvature equation can be written explicitly as

𝐹
12
+ 𝐹
34
− 𝐹
56
=

1

4

{3𝜓
2
𝜓
1
− 3𝜓
1
𝜓
2
− 𝜓
4
𝜓
3
+ 𝜓
3
𝜓
4

+ 𝜓
6
𝜓
5
− 𝜓
5
𝜓
6
+ 𝜓
8
𝜓
7
− 𝜓
7
𝜓
8
} ,

𝐹
13
− 𝐹
24
− 𝐹
67
=

1

4

{−3𝜓
3
𝜓
1
− 𝜓
4
𝜓
2
+ 3𝜓
1
𝜓
3

+ 𝜓
2
𝜓
4
− 𝜓
7
𝜓
5
+ 𝜓
8
𝜓
6
+ 𝜓
5
𝜓
7
− 𝜓
6
𝜓
8
} ,

𝐹
14
+ 𝐹
23
− 𝐹
57
=

1

4

{3𝜓
4
𝜓
1
− 𝜓
3
𝜓
2
+ 𝜓
2
𝜓
3
− 3𝜓
1
𝜓
4

− 𝜓
8
𝜓
5
− 𝜓
7
𝜓
6
+ 𝜓
6
𝜓
7
+ 𝜓
5
𝜓
8
} ,

𝐹
15
− 𝐹
26
− 𝐹
47
=

1

4

{−3𝜓
6
𝜓
1
+ 𝜓
5
𝜓
2
+ 𝜓
8
𝜓
3
+ 𝜓
7
𝜓
4

− 𝜓
2
𝜓
5
+ 3𝜓
1
𝜓
6
− 𝜓
4
𝜓
7
− 𝜓
3
𝜓
8
} ,

𝐹
16
+ 𝐹
25
− 𝐹
37
=

1

4

{−3𝜓
5
𝜓
1
− 𝜓
6
𝜓
2
− 𝜓
7
𝜓
3
+ 𝜓
8
𝜓
4

+ 3𝜓
1
𝜓
5
+ 𝜓
2
𝜓
6
+ 𝜓
3
𝜓
7
− 𝜓
4
𝜓
8
} ,

𝐹
17
+ 𝐹
36
+ 𝐹
45
=

1

4

{−3𝜓
7
𝜓
1
− 𝜓
8
𝜓
2
+ 𝜓
5
𝜓
3
− 𝜓
6
𝜓
4

− 𝜓
3
𝜓
5
+ 𝜓
4
𝜓
6
+ 3𝜓
1
𝜓
7
+ 𝜓
2
𝜓
8
} ,

𝐹
27
+ 𝐹
35
− 𝐹
46
=

1

4

{−3𝜓
8
𝜓
1
+ 𝜓
7
𝜓
2
− 𝜓
6
𝜓
3
− 𝜓
5
𝜓
4

+ 𝜓
4
𝜓
5
+ 𝜓
3
𝜓
6
− 𝜓
2
𝜓
7
+ 3𝜓
1
𝜓
8
} .

(49)

Dirac equation𝐷
𝐴
Ψ = 0 can be expressed as follows:

𝜕𝜓
8

𝜕𝑥
1

−

𝜕𝜓
7

𝜕𝑥
2

−

𝜕𝜓
6

𝜕𝑥
3

+

𝜕𝜓
5

𝜕𝑥
4

−

𝜕𝜓
3

𝜕𝑥
5

−

𝜕𝜓
4

𝜕𝑥
6

+

𝜕𝜓
2

𝜕𝑥
7

= −𝐴
1
𝜓
8
+ 𝐴
2
𝜓
7
+ 𝐴
3
𝜓
6
− 𝐴
4
𝜓
5
+ 𝐴
5
𝜓
3

+ 𝐴
6
𝜓
4
− 𝐴
7
𝜓
2
,

𝜕𝜓
7

𝜕𝑥
1

+

𝜕𝜓
8

𝜕𝑥
2

−

𝜕𝜓
5

𝜕𝑥
3

−

𝜕𝜓
6

𝜕𝑥
4

+

𝜕𝜓
4

𝜕𝑥
5

−

𝜕𝜓
3

𝜕𝑥
6

−

𝜕𝜓
1

𝜕𝑥
7

= −𝐴
1
𝜓
7
− 𝐴
2
𝜓
8
+ 𝐴
3
𝜓
5
+ 𝐴
4
𝜓
6
− 𝐴
5
𝜓
4

+ 𝐴
6
𝜓
3
+ 𝐴
7
𝜓
1
,

−

𝜕𝜓
6

𝜕𝑥
1

−

𝜕𝜓
5

𝜕𝑥
2

−

𝜕𝜓
8

𝜕𝑥
3

−

𝜕𝜓
7

𝜕𝑥
4

+

𝜕𝜓
1

𝜕𝑥
5

+

𝜕𝜓
2

𝜕𝑥
6

+

𝜕𝜓
4

𝜕𝑥
7

= 𝐴
1
𝜓
6
+ 𝐴
2
𝜓
5
+ 𝐴
3
𝜓
8
+ 𝐴
4
𝜓
7
− 𝐴
5
𝜓
1
− 𝐴
6
𝜓
2

− 𝐴
7
𝜓
4
,

−

𝜕𝜓
5

𝜕𝑥
1

+

𝜕𝜓
6

𝜕𝑥
2

−

𝜕𝜓
7

𝜕𝑥
3

+

𝜕𝜓
8

𝜕𝑥
4

−

𝜕𝜓
2

𝜕𝑥
5

+

𝜕𝜓
1

𝜕𝑥
6

+

𝜕𝜓
3

𝜕𝑥
7

= 𝐴
1
𝜓
5
− 𝐴
2
𝜓
6
+ 𝐴
3
𝜓
7
− 𝐴
4
𝜓
8
+ 𝐴
5
𝜓
2
− 𝐴
6
𝜓
1

− 𝐴
7
𝜓
3
,
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−

𝜕𝜓
4

𝜕𝑥
1

−

𝜕𝜓
3

𝜕𝑥
2

−

𝜕𝜓
2

𝜕𝑥
3

+

𝜕𝜓
1

𝜕𝑥
4

−

𝜕𝜓
7

𝜕𝑥
5

+

𝜕𝜓
8

𝜕𝑥
6

+

𝜕𝜓
6

𝜕𝑥
7

= 𝐴
1
𝜓
4
+ 𝐴
2
𝜓
3
+ 𝐴
3
𝜓
2
− 𝐴
4
𝜓
1
+ 𝐴
5
𝜓
7
− 𝐴
6
𝜓
8

− 𝐴
7
𝜓
6
,

−

𝜕𝜓
3

𝜕𝑥
1

+

𝜕𝜓
4

𝜕𝑥
2

−

𝜕𝜓
1

𝜕𝑥
3

−

𝜕𝜓
2

𝜕𝑥
4

+

𝜕𝜓
8

𝜕𝑥
5

+

𝜕𝜓
7

𝜕𝑥
6

−

𝜕𝜓
5

𝜕𝑥
7

= 𝐴
1
𝜓
3
− 𝐴
2
𝜓
4
+ 𝐴
3
𝜓
1
+ 𝐴
4
𝜓
2
− 𝐴
5
𝜓
8
− 𝐴
6
𝜓
7

+ 𝐴
7
𝜓
5
,

𝜕𝜓
2

𝜕𝑥
1

−

𝜕𝜓
1

𝜕𝑥
2

−

𝜕𝜓
4

𝜕𝑥
3

−

𝜕𝜓
3

𝜕𝑥
4

+

𝜕𝜓
5

𝜕𝑥
5

−

𝜕𝜓
6

𝜕𝑥
6

+

𝜕𝜓
8

𝜕𝑥
7

= −𝐴
1
𝜓
2
+ 𝐴
2
𝜓
1
+ 𝐴
3
𝜓
4
+ 𝐴
4
𝜓
3
− 𝐴
5
𝜓
5

+ 𝐴
6
𝜓
6
− 𝐴
7
𝜓
8
,

𝜕𝜓
1

𝜕𝑥
1

+

𝜕𝜓
2

𝜕𝑥
2

−

𝜕𝜓
3

𝜕𝑥
3

+

𝜕𝜓
4

𝜕𝑥
4

−

𝜕𝜓
6

𝜕𝑥
5

−

𝜕𝜓
5

𝜕𝑥
6

−

𝜕𝜓
7

𝜕𝑥
7

= −𝐴
1
𝜓
1
− 𝐴
2
𝜓
2
+ 𝐴
3
𝜓
3
− 𝐴
4
𝜓
4
+ 𝐴
5
𝜓
6

+ 𝐴
6
𝜓
5
+ 𝐴
7
𝜓
7
.

(50)

These equations admit nontrivial solutions. For example,
direct calculation shows that the spinor field

𝜓 = (0, 0, 𝜓
3
, 𝑖𝜓
3
, 𝜓
3
, 𝑖𝜓
3
, 0, 0) (51)

with 𝜓
3
(𝑥
1
, 𝑥
2
, . . . , 𝑥

7
) = 𝑒

−(𝑖/2)𝑥
2

1
𝑥
2 and the connection 1-

form

𝐴 (𝑥
1
, 𝑥
2
, . . . , 𝑥

7
) = (𝑖𝑥

1
𝑥
2
) 𝑑𝑥
1
+ (

𝑖

2

𝑥
2

1
)𝑑𝑥
2

(52)

satisfy the above equations.
Now we consider the space

C = A × Γ (𝑆) , (53)

where A is the space of connection 1-forms on the principle
bundle 𝑃

𝑆
1 and Γ(𝑆) is the space of spinor fields. The space

C is called the configuration space. There is an action of the
gauge groupG := Map(𝑋, 𝑆1) on the configuration space by

𝑢 ⋅ (𝐴, 𝜓) := (𝐴 + 𝑢
−1

𝑑𝑢, 𝑢
−1

𝜓) , (54)

where 𝑢 ∈ G and (𝐴, 𝜓) ∈ C. The action of the gauge group
enjoys the following equalities:

𝐹
𝐴+𝑢
−1
𝑑𝑢

= 𝐹
𝐴
,

𝐷
𝐴
(𝑢
−1

𝜓) = 𝑢
−1

𝐷
𝐴
𝜓.

(55)

Hence, if the pair (𝐴, 𝜓) is a solution to the Seiberg-Witten
equations, then the pair (𝐴 + 𝑢

−1

𝑑𝑢, 𝑢
−1

𝜓) is also a solution
to the Seiberg-Witten equations.

One can obtain infinitely many solutions for the Seiberg-
Witten equations on R4,3: Consider the spinor

𝜓 = (0, 0, 𝜓
3
, 𝑖𝜓
3
, 𝜓
3
, 𝑖𝜓
3
, 0, 0) ,

𝜓
3
(𝑥
1
, 𝑥
2
, . . . , 𝑥

7
) = 𝑒
−(𝑖/2)𝑥

2

1
𝑥
2

(56)

and the connection 1-form

𝐴 (𝑥
1
, 𝑥
2
, . . . , 𝑥

7
) = (𝑖𝑥

1
𝑥
2
) 𝑑𝑥
1
+ (

𝑖

2

𝑥
2

1
)𝑑𝑥
2
. (57)

Since the pair (𝐴, 𝜓) is a solution on R4,3, the pair (𝐴 +

𝑖𝑑𝑓, 𝑒
−𝑖𝑓

𝜓) is also a solution, where 𝑢 = 𝑒
𝑖𝑓 and 𝑓 is a smooth

real valued function on R4,3.
The moduli space of Seiberg-Witten equations on the

manifold with structure group 𝐺∗
2(2)

is

M =

{(𝐴, 𝜓) ∈ C : 𝐷
𝐴
𝜓 = 0, 𝐹

+

𝐴
= − (1/4) 𝜎 (𝜓)

+

}

G
.
(58)

Whether the moduli space M has similar properties of
moduli space of Seiberg-Witten equations on a 4-dimensional
manifold is a subject of another work.
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[4] N. Değirmenci and N. Özdemir, “Seiberg-Witten like equa-

tions on 8-manifolds with structure group spin(7),” Journal of
Dynamical Systems and Geometric Theories, vol. 7, no. 1, pp. 21–
39, 2009.

[5] Y. H. Gao and G. Tian, “Instantons and the monopole-like
equations in eight dimensions,” Journal of High Energy Physics,
vol. 5, article 036, 2000.

[6] T. Nitta and T. Taniguchi, “Quaternionic Seiberg-Witten equa-
tion,” International Journal of Mathematics, vol. 7, no. 5, p. 697,
1996.
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