Dirac Operator on a 7-Manifold with Deformed G_{2} Structure

Nülifer Özdemir and Şirin Aktay

Abstract

In this work, we consider the deforming of a G_{2} structure by a vector field on a 7 -manifold. To obtain the metric corresponding to deformed G_{2} structure, a new map is defined. By using this new map, the covariant derivatives on associated spinor bundles are compared. Then, the relation between Dirac operators on spinor bundles are investigated under some restrictions.

1 Introduction

There are several deformations of a fixed G_{2} structure such as conformal deformations, deformations of a G_{2} structure by a vector field and infinitesimal deformations $[2,6]$. Conformal deformations were given by Fernández and Gray. They investigated how G_{2} structures change after conformally changing the metric [2]. In [4] and [7] relations between Dirac operators on associated spinor bundles were studied.

Other two types of deformations were studied by Karigiannis in [6]. He specially worked on deforming the fundamental 3 -form by a vector field and obtained a new metric from the 3 -form: Let $\left(M, \varphi_{0}, g_{0}\right)$ be a 7 -dimensional Riemannian manifold with structure group G_{2}. If φ_{0} is deformed by a vector field w, then the new 3 -form

$$
\left.\widetilde{\varphi}=\varphi_{0}+w\right\lrcorner * \varphi_{0}
$$

Key Words: G_{2} structure, Dirac operator.
2010 Mathematics Subject Classification: Primary 53C25; 53C27; Secondary 53C10.
This study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1110F170.

Received: May, 2011
Accepted: September, 2011
is always positive-definite. Under this deformation, Karigiannis showed that, for all vector fields u, v the new metric is

$$
\widetilde{g}(u, v)=\frac{1}{\left(1+g_{0}(w, w)\right)^{\frac{2}{3}}}\left(g_{0}(u, v)+g_{0}(u \times w, v \times w)\right),
$$

where \times is the cross product associated to the first G_{2} structure. He also wrote the new Hodge star $\widetilde{*}$ in terms of the old φ_{0}, the old $*_{0}$ and the vector field w corresponding to $\widetilde{\varphi}$ explicitly:

$$
\left.\left.\widetilde{*} \alpha=\left(1+g_{0}(w, w)\right)^{\frac{2-k}{3}}\left(*_{0} \alpha+(-1)^{k-1} w\right\lrcorner\left(*_{0}(w\lrcorner \alpha\right)\right)\right)
$$

where α is a k -form [6].
In this paper we consider this type of deformations. For a fixed vector field w, first we define a map

$$
\begin{aligned}
C_{w}: \Gamma(T M) & \longrightarrow \Gamma(T M) \\
u & \longmapsto C_{w}(u)=\left(1+g_{0}(w, w)\right)^{-1 / 3}(u+u \times w)
\end{aligned}
$$

by use of which we construct the covariant derivative on the spinor bundle under some restrictions. Then we express the Dirac operator \widetilde{D} on the spinor bundle with deformed G_{2} structure in terms of the old one as follows:

$$
\widetilde{D} \widetilde{\sigma}=b^{-2 / 3} \Psi_{w}\left\{D \sigma+\kappa(w)\left(\nabla_{w}^{S} \sigma\right)-\left\{\sum_{i=0}^{6} \kappa\left(e_{i}\right)\left(\nabla_{\left(e_{i} \times w\right)}^{S} \sigma\right)\right\}\right\}
$$

Finally, the relationship between eigenvalues of Dirac operators is investigated.

2 Preliminaries

Let us consider \mathbb{R}^{7} with the standard basis $\left\{e_{0}, \ldots, e_{6}\right\}$ and dual basis $\left\{e_{0}^{*}, \ldots, e_{6}^{*}\right\}$. Consider the 3 -form

$$
\varphi=e^{012}+e^{034}+e^{056}+e^{135}-e^{146}-e^{236}-e^{145}
$$

where $e^{i j k}=e_{i}^{*} \wedge e_{j}^{*} \wedge e_{k}^{*}$. The group G_{2} may be defined as the automorphism group of Octonions. We also have the following characterization:

$$
G_{2}=\left\{g \in G L(7, \mathbb{R}) \mid g^{*} \varphi=\varphi\right\}
$$

The group G_{2} is a compact, connected, simply connected and simple Lie subgroup of $S O(7)$ of dimension 14. A G_{2} structure on a 7 -dimensional manifold M is a reduction of the structure group of the frame bundle of M from $S O(7)$
to G_{2}. Let M be a 7 -manifold with a G_{2} structure. The classification of such manifolds are done by Fernández and Gray in [2] by decomposing $\nabla \varphi$ into G_{2}-irreducible components. It turned out that there are 16 such classes. The action of G_{2} on the tangent bundle induces an action of G_{2} on $\wedge^{l}(M)$, the space of l-forms on M. This action gives the following orthogonal decompositions of $\wedge^{l}(M)$:

$$
\begin{gathered}
\wedge^{2}(M)=\wedge_{7}^{2} \oplus \wedge_{14}^{2}, \\
\wedge^{3}(M)=\wedge_{1}^{3} \oplus \wedge_{7}^{3} \oplus \wedge_{27}^{3}
\end{gathered}
$$

where

$$
\begin{gathered}
\wedge_{7}^{2}=\left\{\beta \in \wedge^{2}(M) \mid *(\varphi \wedge \beta)=-2 \beta\right\}, \\
\wedge_{14}^{2}=\left\{\beta \in \wedge^{2}(M) \mid * \varphi \wedge \beta=0\right\}, \\
\wedge_{3}^{1}=\{t \varphi \mid t \in \mathbb{R}\}, \\
\left.\wedge_{7}^{3}=\left\{*(\beta \wedge \varphi) \mid \beta \in \wedge^{1}(M)\right\}=\{w\lrcorner * \varphi \mid w \in \Gamma(T(M))\right\}, \\
\wedge_{27}^{3}=\left\{\gamma \in \gamma^{3}(M) \mid \gamma \wedge \varphi=0, \gamma \wedge * \varphi=0\right\}
\end{gathered}
$$

and \wedge_{k}^{l} denotes a k-dimensional G_{2}-irreducible subspace of $\wedge^{l}(M)$ and $\Gamma(T(M))$ is the set of smooth vector fields on M.

It is known that $\operatorname{Spin}(7)$ is the double cover of $S O(7)$ and a 7 -dimensional manifold is called a spin one if the structure group $S O(7)$ of M can be lifted to $\operatorname{Spin}(7)$. In addition a 7 -dimensional manifold has a G_{2} structure if and only if it is a spin manifold [7].

Let M be a spin manifold of dimension n. By a spinor bundle for M we mean a vector bundle S associated to a representation of $\operatorname{Spin}(n)$ by Clifford multiplication,

$$
S=P_{S p i n(n)} \times{ }_{\kappa} \Delta_{n},
$$

where $\Delta_{n} \cong \mathbb{C}^{2^{n}}$ and $\kappa: \operatorname{Spin}(n) \rightarrow \operatorname{End}\left(\Delta_{n}\right)$ is the restriction of the representation of the Clifford algebra $C l_{n}$ to $\operatorname{Spin}(n)$.

Let $\Gamma(S)$ be the set of sections of the spinor bundle S. It is known that the Levi-Civita covariant derivative ∇ on M determines a covariant derivative

$$
\nabla^{S}: \Gamma(S) \rightarrow \Gamma\left(T^{*} M \otimes S\right)
$$

on the spinor bundle S. The covariant derivative ∇^{S} is given locally by the formula

$$
\nabla_{v}^{S} \sigma=d \sigma(v)+\frac{1}{4} \sum_{i, j} g_{0}\left(\nabla_{v} e_{i}, e_{j}\right) \kappa\left(e_{i}\right) \kappa\left(e_{j}\right) \sigma,
$$

where $v \in \Gamma(T M), \varepsilon=\left\{e_{0}, \ldots, e_{n-1}\right\}$ is a local section of $P_{S O(n)} M$ and $\sigma \in$ $\Gamma(S)$. Then it can be defined a first order differential operator $D: \Gamma(S) \rightarrow$ $\Gamma(S)$ called the Dirac operator of S by setting

$$
D \sigma=\sum_{j=0}^{n-1} \kappa\left(e_{j}\right) \nabla_{e_{j}} \sigma
$$

[3], [7] .

3 Covariant Derivation of the Deformed Spinor Bundle

Let $\left(M, g_{0}\right)$ be a 7 -dimensional Riemannian manifold with G_{2} structure φ_{0}. For an arbitrary vector field w, we define a map C_{w} as follows:

$$
C_{w}(u):=\frac{1}{\left(1+g_{0}(w, w)\right)^{\frac{1}{3}}}(u+u \times w),
$$

where \times is the cross product associated to φ_{0} and u is a vector field. Note that the map C_{w} is one-to-one and C^{∞}-linear. The inverse of this map is

$$
C_{w}^{-1}(u)=b^{-\frac{2}{3}}\left\{u-u \times w+g_{0}(w, u) w\right\}
$$

where $b=1+g_{0}(w, w)$. From the equation $g_{0}(x \times y, z)=-g_{0}(z \times y, x)$ for all $x, y, z \in \Gamma(T(M))$, the new metric \widetilde{g} we mentioned in our introduction can also be written in the following form

$$
\widetilde{g}(x, y)=g_{0}\left(C_{w}(x), C_{w}(y)\right)
$$

Let \widetilde{M} denote this Riemannian manifold with the new metric \widetilde{g}. It is known that if M has a G_{2} structure, then M is a spin manifold [7]. Then for a deformation $\widetilde{g}(x, y):=g_{0}\left(C_{w}(x), C_{w}(y)\right)$, the spin structure on $\left(M, g_{0}\right)$ induces a spin structure on (M, \widetilde{g}). To each orthonormal frame field $\varepsilon=\left\{e_{0}, e_{1}, \cdots, e_{6}\right\}$ on M, we can associate an orthonormal frame $\psi_{w}(\varepsilon)=\left\{\widetilde{e}_{0}, \cdots, \widetilde{e}_{6}\right\}$ on \widetilde{M}, where $\widetilde{e}_{j}=C_{w}^{-1}\left(e_{j}\right)$ for each j. This gives us an $S O(7)$-equivariant map $\psi_{w}: P_{S O}(M) \rightarrow P_{S O}(\widetilde{M})$. The map ψ_{w} lifts to a $\operatorname{Spin}(7)$-equivariant map

$$
\psi_{w}: P_{\operatorname{Spin}(7)}(M) \rightarrow P_{\operatorname{Spin}(7)}(\widetilde{M})
$$

between principal $\operatorname{Spin}(7)$ bundles. Let $\kappa: \operatorname{Spin}(7) \rightarrow \operatorname{Aut}\left(\Delta_{7}\right)$ be the spinor representation. An isomorphism between associated spinor bundles may explicitly be given by

$$
\Psi_{w}: S=P_{S p i n(7)}(M) \times_{\kappa} \Delta_{7} \rightarrow \widetilde{S}=P_{S p i n(7)}(\widetilde{M}) \times_{\kappa} \Delta_{7}
$$

$$
\Psi_{w}([s, \rho])=\left[\psi_{w}(s), \rho\right]
$$

and the relation between spinor representations is

$$
\widetilde{\kappa}\left(\widetilde{e}_{i}\right)\left(\Psi_{w}(\sigma)\right)=\Psi_{w}\left(\kappa\left(e_{i}\right) \sigma\right)
$$

where $\sigma=[s, \rho]$ is a spinor field.
Let ∇ denote the Levi-Civita covariant derivative of g_{0} and $\widetilde{\nabla}$ that of \widetilde{g}. If we take $\nabla C_{w}=0$, applying the Kozsul formula, we get

$$
\begin{aligned}
2 g_{0}\left(C_{w}\left(\widetilde{\nabla}_{x} y\right), C_{w}(z)\right)= & g_{0}\left(\left(\nabla_{y} C_{w}\right)(z)-\left(\nabla_{z} C_{w}\right)(y), C_{w}(x)\right) \\
& +g_{0}\left(\left(\nabla_{x} C_{w}\right)(z)-\left(\nabla_{z} C_{w}\right)(x), C_{w}(y)\right) \\
& +g_{0}\left(\left(\nabla_{y} C_{w}\right)(x), C_{w}(z)\right) \\
& +g_{0}\left(C_{w}\left(\nabla_{x} y\right), C_{w}(z)\right)+g_{0}\left(\nabla_{x}\left(C_{w}(y)\right), C_{w}(z)\right)
\end{aligned}
$$

Since $\nabla C_{w}=0$, we have

$$
\widetilde{\nabla}=\nabla .
$$

Note that if the G_{2} structure φ_{0} is parallel, then for all vector fields x, y, z we have

$$
\nabla_{x}(y \times z)=\left(\nabla_{x} y\right) \times z+y \times\left(\nabla_{x} z\right)
$$

implying

$$
0=\nabla_{x}\left(C_{w}\right)(y)=x\left[b^{-1 / 3}\right](y+y \times w)+b^{-1 / 3} y \times\left(\nabla_{x} w\right) .
$$

Now if we take the inner product with y in the above relation, we get $x\left[b^{-1 / 3}\right]=$ 0 . Thus we obtain $\nabla_{x} w=0$. On the other hand, if $\nabla w=0$, it can easily be seen that $\nabla C_{w}=0$. Thus when φ_{0} is parallel, the condition $\nabla C_{w}=0$ is equivalent to the condition $\nabla w=0$. The existence of such non-trivial parallel vector fields on 7 -dimensional manifolds with holonomy a subgroup of G_{2} is due to R.Bryant and S.Salamon [1]. Now we find out how the G_{2} structure changes. We have $\widetilde{\nabla}_{u} \widetilde{\varphi}(x, y, z)=\nabla_{u} \widetilde{\varphi}(x, y, z)=\left(* \varphi_{0}\right)\left(\nabla_{u} w, x, y, z\right)$ for all $u, x, y, z \in \Gamma(T M)$, when $\nabla \varphi_{0}=0$. Since $\nabla w=0$, we get $\widetilde{\nabla} \widetilde{\varphi}=0$ and thus the G_{2} structure remains parallel.

Now assume $\nabla C_{w}=0$. We want to find the relation between covariant derivations on spinor bundles S and \widetilde{S} under this restriction. Thus we calculate $\widetilde{w}_{i j}(v)=\widetilde{g}\left(\widetilde{\nabla}_{v} \widetilde{e}_{i}, \widetilde{e}_{j}\right)$. First note that $\nabla C_{w}=0$ gives

$$
\nabla_{x}(y \times w)-\left(\nabla_{x} y\right) \times w=\frac{2}{3} b^{-2 / 3} g_{0}\left(\nabla_{x} w, w\right) C_{w}(y)
$$

and

$$
\left(\nabla_{x} w\right) \times w=-\frac{2}{3} b^{-1} g_{0}\left(\nabla_{x} w, w\right) w
$$

Then we compute equations below:
$\nabla_{v} \widetilde{e}_{i}=\nabla_{v}\left(C_{w}^{-1}\left(e_{i}\right)\right)=b^{-2 / 3}\left\{\nabla_{v} e_{i}-\nabla_{v}\left(e_{i} \times w\right)+\nabla_{v}\left(g_{0}\left(w, e_{i}\right) w\right)\right\}+b^{2 / 3} v\left[b^{-2 / 3}\right] C_{w}^{-1}\left(e_{i}\right)$,
and

$$
\begin{aligned}
C_{w}\left(\nabla_{v}\left(C_{w}^{-1}\left(e_{i}\right)\right)\right)= & b^{-2 / 3} C_{w}\left(\nabla_{v} e_{i}\right)-b^{-2 / 3} C_{w}\left(\nabla_{v}\left(e_{i} \times w\right)\right) \\
& +b^{-2 / 3} g_{0}\left(w, e_{i}\right) C_{w}\left(\nabla_{v} w\right)+b^{-1} v\left[g_{0}\left(w, e_{i}\right)\right] w+b^{2 / 3} v\left[b^{-2 / 3}\right] e_{i} \\
= & b^{-1} \nabla_{v} e_{i}-\frac{2}{3} b^{-5 / 3} g_{0}\left(\nabla_{v} w, w\right) C_{w}\left(e_{i}\right)-b^{-1}\left(\nabla_{v}\left(e_{i} \times w\right)\right) \times w \\
& +b^{-1} g_{0}\left(w, e_{i}\right) \nabla_{v} w-\frac{2}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right) g_{0}\left(w, e_{i}\right) w \\
& +b^{-1} g_{0}\left(\nabla_{v} w, e_{i}\right) w+b^{-1} g_{0}\left(\nabla_{v} e_{i}, w\right) w+b^{2 / 3} v\left[b^{-2 / 3}\right] e_{i} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\widetilde{w}_{i j}(v)= & \widetilde{g}\left(\widetilde{\nabla}_{v} \widetilde{e}_{i}, \widetilde{e}_{j}\right) \\
= & g_{0}\left(C_{w}\left(\nabla_{v}\left(C_{w}^{-1}\left(e_{i}\right)\right)\right), e_{j}\right) \\
= & g_{0}\left(\nabla_{v} e_{i}, e_{j}\right)-\frac{2}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right) g_{0}\left(e_{i}, e_{j}\right) \\
& +\frac{2}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right) g_{0}(w, w) g_{0}\left(e_{i}, e_{j}\right)+b^{2 / 3} v\left[b^{-2 / 3}\right] g_{0}\left(e_{i}, e_{j}\right) \\
& -\frac{4}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right) g_{0}\left(e_{i} \times w, e_{j}\right)-\frac{4}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right) g_{0}\left(w, e_{i}\right) g_{0}\left(w, e_{j}\right) \\
& +b^{-1} g_{0}\left(w, e_{i}\right) g_{0}\left(\nabla_{v} w, e_{j}\right)+b^{-1} g_{0}\left(\nabla_{v} w, e_{i}\right) g_{0}\left(w, e_{j}\right) .
\end{aligned}
$$

The local tangent frame field $\varepsilon=\left\{e_{0}, \cdots, e_{6}\right\}$ on the open set U_{α}, determines a local frame field $S=\left\{\sigma_{0}, \cdots, \sigma_{6}\right\}$ for spinor bundle S. Similarly, $\widetilde{\varepsilon}=\left\{\widetilde{e}_{0}, \cdots, \widetilde{e}_{6}\right\}$ determines a local frame field $\widetilde{S}=\left\{\widetilde{\sigma}_{0}, \cdots, \widetilde{\sigma}_{6}\right\}$ for the spinor bundle \widetilde{S}, where $\widetilde{\sigma}_{i}=\Psi_{w}\left(\sigma_{i}\right)$ for each $0 \leq i \leq 6$. From the local expression
for the covariant derivation on the spinor bundle, we get

$$
\begin{aligned}
\nabla_{v}^{\widetilde{S}} \widetilde{\sigma}_{\alpha}= & \frac{1}{4} \sum_{i, j} \widetilde{w}_{i j}(v) \widetilde{\kappa}\left(\widetilde{e}_{i}\right) \widetilde{\kappa}\left(\widetilde{e}_{j}\right) \widetilde{\sigma}_{\alpha} \\
= & \frac{1}{4} \Psi_{w}\left\{\sum_{i, j} \widetilde{w}_{i j}(v) \kappa\left(e_{i}\right) \kappa\left(e_{j}\right) \sigma_{\alpha}\right\} \\
= & \frac{1}{4} \Psi_{w}\left\{\sum_{i, j} g_{0}\left(\nabla_{v} e_{i}, e_{j}\right) \kappa\left(e_{i}\right) \kappa\left(e_{j}\right) \sigma_{\alpha}+\frac{14}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right)\left(3+g_{0}(w, w)\right) \sigma_{\alpha}\right. \\
& +b^{-1}\left(w \cdot \nabla_{v} w+\nabla_{v} w \cdot w\right) \sigma_{\alpha}-\frac{4}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right)(w \cdot w) \sigma_{\alpha} \\
& \left.+\frac{4}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right) \kappa\left(\sum_{k=0}^{6}\left(e_{k} \times w\right) \cdot e_{k}\right) \sigma_{\alpha}\right\} \\
= & \Psi_{w}\left\{\nabla_{v}^{S} \sigma_{\alpha}+b^{-2} g_{0}\left(\nabla_{v} w, w\right)\left(3+g_{0}(w, w)\right) \sigma_{\alpha}\right. \\
& \left.+\frac{1}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right) \kappa\left(\sum_{k=0}^{6}\left(e_{k} \times w\right) \cdot e_{k}\right) \sigma_{\alpha}\right\},
\end{aligned}
$$

since $v \cdot w+w \cdot v=-2 g_{0}(v, w) 1$ for all vector fields v, w. Thus we obtain the following lemma:

Lemma 1. Let ∇^{S} and $\nabla^{\widetilde{S}}$ denote the covariant derivatives on spinor bundles S and \widetilde{S} respectively. If $\nabla C_{w}=0$, then

$$
\begin{aligned}
\nabla_{v}^{\widetilde{S}} \widetilde{\sigma}= & \Psi_{w}\left\{\nabla_{v}^{S} \sigma+b^{-2} g_{0}\left(\nabla_{v} w, w\right)\left(3+g_{0}(w, w)\right) \sigma\right. \\
& \left.+\frac{1}{3} b^{-2} g_{0}\left(\nabla_{v} w, w\right) \kappa\left(\sum_{k=0}^{6}\left(e_{k} \times w\right) \cdot e_{k}\right) \sigma\right\},
\end{aligned}
$$

where $\Psi_{w}(\sigma)=\widetilde{\sigma} \in \Gamma(\widetilde{S})$ and $v \in \Gamma(T(M))$.

In particular, assume $\nabla \varphi_{0}=0$. In this case, the condition $\nabla C_{w}=0$ is equivalent to the condition $\nabla w=0$ and thus, the covariant derivative on the spinor bundle \widetilde{S} is $\nabla_{v}^{\widetilde{S}} \widetilde{\sigma}=\Psi_{w}\left(\nabla_{v}^{S} \sigma\right)$.

4 The Dirac Operator on the Deformed Spinor Bundle

Let $\nabla C_{w}=0$. We can calculate the Dirac operator on the spinor bundle \widetilde{S} : For any spinor $\Psi_{w}(\sigma)=\widetilde{\sigma}$,

$$
\begin{aligned}
\widetilde{D} \widetilde{\sigma}= & \sum_{i=0}^{6} \widetilde{\kappa}\left(\widetilde{e}_{i}\right)\left(\nabla_{\widetilde{e}_{i}}^{\widetilde{S}} \widetilde{\sigma}\right) \\
= & \sum_{i=0}^{6} \widetilde{\kappa}\left(\widetilde{e}_{i}\right) \circ \Psi_{w}\left\{\nabla_{\widetilde{e}_{i}}^{S} \sigma+b^{-2} g_{0}\left(\nabla_{\widetilde{e}_{i}} w, w\right)\left(3+g_{0}(w, w)\right) \sigma\right. \\
& \left.+\frac{1}{3} b^{-2} g_{0}\left(\nabla_{\widetilde{e}_{i}} w, w\right) \kappa\left(\sum_{k=0}^{6}\left(e_{k} \times w\right) \cdot e_{k}\right) \sigma\right\} \\
= & \sum_{i=0}^{6} \Psi_{w} \circ \kappa\left(e_{i}\right)\left\{\nabla_{\widetilde{e}_{i}}^{S} \sigma+b^{-2} g_{0}\left(\nabla_{\widetilde{e}_{i}} w, w\right)\left(3+g_{0}(w, w)\right) \sigma\right. \\
& \left.+\frac{1}{3} b^{-2} g_{0}\left(\nabla_{\widetilde{e}_{i}} w, w\right) \kappa\left(\sum_{k=0}^{6}\left(e_{k} \times w\right) \cdot e_{k}\right) \sigma\right\} \\
= & \Psi_{w}\left\{b^{-2 / 3} D \sigma+b^{-2 / 3} \kappa(w)\left(\nabla_{w}^{S} \sigma\right)-b^{-2 / 3}\left\{\sum_{i=0}^{6} \kappa\left(e_{i}\right)\left(\nabla_{\left(e_{i} \times w\right)}^{S} \sigma\right)\right\}\right\} \\
& +\frac{1}{2} b^{-1 / 3} \Psi_{w}\left\{\kappa\left(C_{w}(u)\right)\left\{b^{-2}\left(3+g_{0}(w, w)\right) \sigma+\kappa(\widetilde{w}) \sigma\right\}\right\} \\
& +b^{-2 / 3} \Psi_{w}\left\{g_{0}\left(\nabla_{w} w, w\right) \kappa(w)\left\{b^{-2}\left(3+g_{0}(w, w)\right) \sigma+\kappa(\widetilde{w}) \sigma\right\}\right\},
\end{aligned}
$$

where $u=\operatorname{grad}\left(g_{0}(w, w)\right)$ and $\widetilde{w}=\sum_{k=0}^{6}\left(e_{k} \times w\right) . e_{k}$. Hence we obtain the theorem below:

Theorem 2. If $\nabla C_{w}=0$, then the Dirac operator \widetilde{D} on the spinor bundle \widetilde{S} is

$$
\begin{aligned}
\widetilde{D} \widetilde{\sigma}= & \Psi_{w}\left\{b^{-2 / 3} D \sigma+b^{-2 / 3} \kappa(w)\left(\nabla_{w}^{S} \sigma\right)-b^{-2 / 3}\left\{\sum_{i=0}^{6} \kappa\left(e_{i}\right)\left(\nabla_{\left(e_{i} \times w\right)}^{S} \sigma\right)\right\}\right\} \\
& +\frac{1}{2} b^{-1 / 3} \Psi_{w}\left\{\kappa\left(C_{w}(u)\right)\left\{b^{-2}\left(3+g_{0}(w, w)\right) \sigma+\kappa(\widetilde{w}) \sigma\right\}\right\} \\
& +b^{-2 / 3} \Psi_{w}\left\{g_{0}\left(\nabla_{w} w, w\right) \kappa(w)\left\{b^{-2}\left(3+g_{0}(w, w)\right) \sigma+\kappa(\widetilde{w}) \sigma\right\}\right\}
\end{aligned}
$$

where $u=\operatorname{grad}\left(g_{0}(w, w)\right)$ and $\widetilde{w}=\sum_{k=0}^{6}\left(e_{k} \times w\right) . e_{k}$.
In addition assume $\nabla \varphi_{0}=0$. In this case, since $\nabla C_{w}=0$ if and only if $\nabla w=0$, the Dirac operator is

$$
\widetilde{D} \widetilde{\sigma}=b^{-2 / 3} \Psi_{w}\left\{D \sigma+\kappa(w)\left(\nabla_{w}^{S} \sigma\right)-\left\{\sum_{i=0}^{6} \kappa\left(e_{i}\right)\left(\nabla_{\left(e_{i} \times w\right)}^{S} \sigma\right)\right\}\right\} .
$$

Let λ be an eigenvalue of D associated with the spinor σ. Then we get

$$
\widetilde{D} \widetilde{\sigma}=b^{-2 / 3} \Psi_{w}\left\{\lambda \sigma+\kappa(w)\left(\nabla_{w}^{S} \sigma\right)-\left\{\sum_{i=0}^{6} \kappa\left(e_{i}\right)\left(\nabla_{\left(e_{i} \times w\right)}^{S} \sigma\right)\right\}\right\} .
$$

Hence $\Psi_{w}(\sigma)=\widetilde{\sigma}$ may not be an eigenspinor. Thus, there is not any obvious relation between eigenvalues of Dirac operators D and \widetilde{D}. Nevertheless, we can deduce the following:

Let $\nabla \varphi_{0}=0$ and $\nabla w=0$. If λ is an eigenvalue of \widetilde{D} associated with the spinor $\tilde{\sigma}=\Psi_{w}(\sigma)$, from the equation

$$
\widetilde{D} \Psi_{w} \sigma=b^{-2 / 3} \Psi_{w}\left\{D \sigma+\kappa(w)\left(\nabla_{w}^{S} \sigma\right)-\left\{\sum_{i=0}^{6} \kappa\left(e_{i}\right)\left(\nabla_{\left(e_{i} \times w\right)}^{S} \sigma\right)\right\}\right\}
$$

we get

$$
\lambda \sigma=b^{-2 / 3}\left\{D \sigma+\kappa(w)\left(\nabla_{w}^{S} \sigma\right)-\left\{\sum_{i=0}^{6} \kappa\left(e_{i}\right)\left(\nabla_{\left(e_{i} \times w\right)}^{S} \sigma\right)\right\}\right\} .
$$

Now by using the equation

$$
\sum_{i=0}^{6} \kappa\left(e_{i}\right)\left(\nabla_{e_{i} \times w}^{S} \sigma\right)=-\sum_{i=0}^{6} \kappa\left(e_{i} \times w\right) \nabla_{e_{i}}^{S} \sigma,
$$

we have the identity

$$
\lambda \sigma b^{2 / 3}-\kappa(w)\left(\nabla_{w}^{S} \sigma\right)=b^{1 / 3} \sum_{i=0}^{6} \kappa\left(C_{w}\left(e_{i}\right)\right) \nabla_{e_{i}}^{S} \sigma
$$

Hence we express the following lemma:

Lemma 3. Let $\nabla \varphi_{0}=0$ and $\nabla w=0$. If there exist a scalar λ and a spinor $\sigma \in \Gamma(S)$ satisfying the equation

$$
\sum_{i=0}^{6} b^{1 / 3} \kappa\left(C_{w}\left(e_{i}\right)\right) \nabla_{e_{i}}^{S} \sigma=\lambda b^{2 / 3} \sigma-\kappa(w)\left(\nabla_{w}^{S} \sigma\right),
$$

then λ is an eigenvalue of \widetilde{D} associated with the spinor $\widetilde{\sigma}=\Psi_{w}(\sigma)$.
It is known that if the G_{2} structure φ_{0} is parallel, then there are nonzero parallel spinors in $\Gamma(S)$ [5]. Let $\sigma \in \Gamma(S)$ be a nonzero parallel spinor. In this case since Ψ_{w} is an isomorphism, the spinor $\widetilde{\sigma}=\Psi_{w}(\sigma) \in \Gamma(\widetilde{S})$ is nonzero too. We showed that for all vector fields $v, \nabla_{v}^{\widetilde{S}} \widetilde{\sigma}=\Psi_{w}\left(\nabla_{v}^{S} \sigma\right)$ when $\nabla w=0$. So $\nabla_{v}^{S} \sigma=0$ if and only if $\nabla_{v}^{\widetilde{S}} \widetilde{\sigma}=0$, i.e. there is a one-to-one correspondence between nonzero parallel spinors on S and nonzero parallel spinors on \widetilde{S}.

Recall that a spinor $\sigma \in \Gamma(S)$ is called harmonic if $D \sigma=0$, that is, if $\sigma \in \operatorname{Ker}(D)$. The existence of nonzero harmonic spinors is determined by the sign of the scalar curvature of the metric. Let (M, g) be compact. If the scalar curvature s of g is zero, then every harmonic spinor on M is parallel. If the scalar curvature is positive, then there are no nonzero harmonic spinors [5].

Now $\nabla \varphi_{0}=0$ implies that g_{0} is Ricci-flat [5]. Hence the scalar curvature s_{0} of g_{0} is 0 . Similarly the scalar curvature \widetilde{s} of \widetilde{g} is 0 since $\widetilde{\nabla} \widetilde{\varphi}=0$. Thus there exist nonzero harmonic spinors in $\Gamma(S)$ and $\Gamma(\widetilde{S})$. Moreover every harmonic spinor is parallel. It is easy to see that each parallel spinor is harmonic.

Let $\widetilde{\sigma}=\Psi_{w}(\sigma) \in \Gamma(\widetilde{S})$ be a nonzero harmonic spinor, i.e. $\widetilde{D} \widetilde{\sigma}=0$. Then we have $\widetilde{\nabla} \widetilde{\sigma}=0$, which is possible if and only if $\nabla \sigma=0$. Since $D \sigma=$ $\sum_{j=0}^{6} \kappa\left(e_{j}\right) \nabla_{e_{j}} \sigma$, we get $D \sigma=0$. Thus $\widetilde{D} \widetilde{\sigma}=0$ if and only if $D \sigma=0$. Therefore we obtain

$$
\Psi_{w}(\operatorname{Ker} D)=\operatorname{Ker}(\widetilde{D})
$$

which shows that if we apply the deformation $\left.\widetilde{\varphi}=\varphi_{0}+w\right\lrcorner * \varphi_{0}$ to a 3-form on a manifold with parallel G_{2} structure, then kernels of Dirac operators D and \widetilde{D} are isomorphic.

References

[1] Bryant, R., Salamon, S., On the Construction of Some Complete Metrics with Exceptional Holonomy, Duke Mathematical Journal (3) 58 (1989) 829-850.
[2] Fernández, M. and Gray, A., Riemannian manifolds with structure group G_{2}, Ann. Mat. Pura Appl. (4) 132 (1982) 19-25.
[3] Friedrich, T., Dirac Operators in Riemannian Geometry, American Mathematical Society, Providence, 2000.
[4] Hijazi, O., Spectral Properties of the Dirac operator and geometrical structures, Proceedings of the Summer School on Geometric Methods in Quantum Field Theory, Villa de Leyva, Colombia, July 12-30, (1999), World Scientific 2001.
[5] Joyce, D. D., Compact Manifolds with Special Holonomy, Oxford University Press, New York, 2000.
[6] Karigiannis, S., Deformations of G_{2} and $\operatorname{Spin}(7)$ Structures on Manifolds, Canadian Journal of Mathematics 57 (2005), 1012-1055.
[7] Lawson H. B., Michelsohn M. L., Spin Geometry, Princeton University Press, Princeton, New Jersey, 1989.

Nülifer ÖZDEMİR,
Department of Mathematics,
Science Faculty,
Anadolu University,
Eskişehir, Turkey.
Email: nozdemir@anadolu.edu.tr
Şirin AKTAY,
Department of Mathematics,
Science Faculty,
Anadolu University,
Eskişhir, Turkey.
Email: sirins@anadolu.edu.tr

