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Abstract. Motivated by a relation on submodules of a module used by both
A. W. Goldie and P. F. Smith, we say submodules X, Y of M are β∗ equivalent, Xβ∗Y ,
if and only if X+Y

X is small in M
X and X+Y

Y is small in M
Y . We show that the β∗ relation is an

equivalence relation and has good behaviour with respect to addition of submodules,
homomorphisms and supplements. We apply these results to introduce the class of
G∗-supplemented modules and to investigate this class and the class of H-supplemented
modules. These classes are located among various well-known classes of modules
related to the class of lifting modules. Moreover these classes are used to explore an
open question of S. H. Mohamed and B. J. Mueller. Examples are provided to illustrate
and delimit the theory.

2000 Mathematics Subject Classification. 16D10, 16D50.

1. Introduction. Throughout this paper, rings are associative with unity and
modules are unital right R-modules, where R denotes such a ring and M denotes
such a module. The motivation for this paper comes from two sources. The first is the
open problem posed in [6, Open Problem #18, p. 107]: Is every H-supplemented module
supplemented? Recall that a module M is H-supplemented if for every submodule A
there is a direct summand D of M such that A + X = M if and only if D + X = M [6,
p. 95]. In [6, Definition 4.4, p. 56], a module M is called supplemented if for any two
submodules A and B with A + B = M, B contains a supplement of A. This definition

∗ This paper is dedicated to Patrick F. Smith on the occasion of his retirement.



42 G. F. BIRKENMEIER ET AL.

of supplemented is equivalent to the more recent terminology of amply supplemented
(see [2, p. 237] or [8, p. 54]).

The second source of motivation is provided by the concept of the beta equivalence
relation defined on the set of submodules of a module. From [1], for submodules X ,
Y of M, XβY if and only if X ∩ Y ≤e X and X ∩ Y ≤e Y . An equivalent form of this
relation was used by Goldie on the right ideals of a ring in his seminal paper [4] and
by Smith in [7]. Since this relation has proved fruitful in various applications such as
characterizing when a pure subgroup of an Abelian group is a direct summand, it is
natural to consider its dual relation. We say submodules X, Y of M are β∗ equivalent,
Xβ∗Y , if and only if X+Y

X is small in M
X and X+Y

Y is small in M
Y .

We combine the above motivations by defining the following two types of modules:
(1) We say M is Goldie∗-lifting, G∗-lifting, if and only if for each submodule X of

M there exists a direct summand D of M such that Xβ∗D.
(2) We say M is Goldie∗-supplementing, G∗-supplementing, if and only if for each

submodule X of M there exists a supplement submodule S of M such that
Xβ∗S.

In Section 2, we investigate the basic properties of the β∗ relation. We show it
is indeed an equivalence relation on the set of submodules of M, it is a congruence
relative to addition in the lattice of submodules of M and it behaves well with respect
to (weak) supplements and to homomorphic images.

In Section 3, our Theorem 3.5 generalizes and extends the main result of [5].
In Theorem 3.6, we compare the G∗-lifting and G∗-supplementing classes to various
other well-known classes of modules that are related to the class of lifting modules. In
particular, we show that the following implications hold between the various concepts:

(1) lifting =⇒ G∗-lifting ⇐⇒ H-supplemented =⇒ G∗-supplemented =⇒
supplemented,

(2) lifting =⇒ amply supplemented =⇒ G∗-supplemented,
(3) lifting ⇐⇒ amply supplemented and strongly ⊕-supplemented,
(4) G∗-lifting ⇐ G∗-supplemented and strongly ⊕-supplemented.

Theorem 3.6 motivates us to pose the following question:

Must a G∗-supplemented module be amply supplemented?

From Theorem 3.6, a positive answer to our question implies a positive answer to
the open question of Mohamed and Muller stated above in [6, Open Problem #18,
p. 107]. A negative answer provides an interesting class of modules strictly between the
classes of amply supplemented and supplemented modules. Moreover, we investigate
the behaviour of the G∗-supplemented condition with respect to direct sums and
summands. Theorem 3.8 provides a structure theorem for a class of Noetherian
modules.

Let R be a ring and M a right R-module. If X ⊆ M, then X ≤ M, X ≤s M,
X

cs
↪→ M, Rad(M) and End(M) denote X is a submodule of M, X is a small submodule

of M, X is cosmall in M, the Jacobson radical of M and the ring of endomorphisms
of M, respectively.

Recall from [2] that a submodule N ≤ M is called a supplement (weak supplement)
of a submodule L of M if N + L = M and N ∩ L ≤s N (N ∩ L ≤s M). The module M
is called (weakly) supplemented if every submodule N of M has a (weak) supplement.
M is called lifting if every submodule N of M contains a direct summand D of M
such that N

D ≤s
M
D . A submodule N of M has ample supplements in M if for every
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L ≤ M with M = N + L, there is a supplement L
′
of N with L

′ ≤ L. The module M is
called amply supplemented if all submodules have ample supplements in M. M is called
⊕-supplemented if every submodule of M has a supplement that is a direct summand.
A supplemented module M is called strongly ⊕-supplemented if every supplement
submodule of M is a direct summand. From [3, p. 50], we say a submodule X of M is
projection invariant if eX ⊆ X for each e = e2 ∈ End(MR). �, �n and � denote the ring
of integers, the ring of integers modulo n and the field of rational numbers, respectively.
Other terminology and notation can be found in [2, 6, 8].

2. The β∗ Relation. In this section, we develop the basic properties of the
β∗ relation on the set of submodules of M. These properties will be used in
Section 3.

DEFINITION 2.1. We define the relation ‘β∗’ on the set of submodules of M by
Xβ∗Y if and only if X+Y

X ≤s
M
X and X+Y

Y ≤s
M
Y .

LEMMA 2.2. β∗ is an equivalence relation.

Proof. The reflexive and symmetric properties are clear. For transitivity, assume
Xβ∗Y and Yβ∗Z. So

X + Y
X

≤s
M
X

and
X + Y

Y
≤s

M
Y

and

Y + Z
Y

≤s
M
Y

and
Y + Z

Z
≤s

M
Z

.

Assume B
X ≤ M

X such that X+Z
X + B

X = M
X . Then

X + Z + B
X

= Z + B
X

= M
X

,

so Z + B = M. Hence

M
Y

= Z + Y + B
Y

= Z + Y
Y

+ Y + B
Y

.

Since Z+Y
Y ≤s

M
Y , Y+B

Y = M
Y . Hence Y + B = M. Then

M
X

= Y + B
X

= X + Y
X

+ B
X

.

Since X+Y
X ≤s

M
X , B

X = M
X . Therefore B = M, so X+Z

X ≤s
M
X . Similarly, X+Z

Z ≤s
M
Z . �

Observe that the zero submodule is β∗ equivalent to any small submodule. Also,
note that two submodules may be isomorphic but not β∗ equivalent. For example, let
F be a field and R = [

F F
0 F

]
, X = [

0 F
0 0

]
and Y = [

0 0
0 F

]
. Then X is R-isomorphic to

Y, but X is not β∗ equivalent to Y as can be seen by taking A = [
F F
0 0

]
in (iii) of the

following result. Moreover, if M = �� then m�β∗n� if and only if m and n are divisible
by the same primes.
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THEOREM 2.3. Let X, Y ≤ M. The following are equivalent:
(i) Xβ∗Y.

(ii) X
cs

↪→ X + Y and Y
cs

↪→ X + Y.
(iii) For each A ≤ MR such that X + Y + A = M then X + A = M and Y + A =

M.
(iv) If K ≤ M with X + K = M then Y + K = M, and if H ≤ M with Y + H = M

then X + H = M.

Proof. (i) =⇒ (ii) Clear.
(ii) =⇒ (iii) Let A ≤ M such that X + Y + A = M. Then

X + Y
Y

+ Y + A
Y

= M
Y

=⇒ Y + A
Y

= M
Y

=⇒ Y + A = M.

Similarly, X + A = M.
(iii) ⇐⇒ (iv) Let K ≤ M such that X + K = M. Then X + K + Y = M. By (iii), Y +
K = M. Let H ≤ M such that Y + H = M. Then X + Y + H = M. By (iii), X + H =
M.
Conversely, assume X + Y + A = M. Then X + (Y + A) = M. So Y + (Y + A) = M.
Hence Y + A = M. Similarly, X + A = M.
(iii) =⇒ (i) Let B

Y ≤ M
Y such that X+Y

Y + B
Y = M

Y . Then X + Y + B = M. Hence Y +
B = B = M (since Y ⊆ B), so X+Y

Y ≤s
M
Y . Similarly, X+Y

X ≤s
M
X . �

COROLLARY 2.4. Let X, Y ≤ M such that X ⊆ Y + B and Y ⊆ X + A, where
A, B ≤s M. Then Xβ∗Y.

Proof. Let X + Y + K = M, for some K ≤ M. Then (Y + B) + Y + K = M. So
Y + B + K = M. Hence Y + K = M. Similarly, X + K = M. �

Note that there are modules M with K, X, Y ≤ M such that M = X + K = Y +
K , but X is not β∗ related to Y . Take R = M = �, K = 3�, X = 2� and Y = 5�.

PROPOSITION 2.5. If X, Y, K ⊆ M such that M = X + K = Y + K, Y ∩ K ⊆ X ∩
K and Y

cs
↪→ X + Y (i.e. X+Y

Y ≤s
M
Y ), then X

cs
↪→ X + Y (i.e. X+Y

X ≤s
M
X ), so Xβ∗Y.

Proof. There exist canonical isomorphisms K
Y∩K

θ←� Y+K
Y = M

Y , K
X∩K

ψ
→� X+K

X = M
X

and f : K
Y∩K

epi−→ K
X∩K , defined by f (k + Y ∩ K) = k + X ∩ K . Define h : M

Y −→ M
X

by h = ψf θ . Let m ∈ M. Then m = y + k, for some y ∈ Y and k ∈ K . Hence
θ (m + Y ) = θ (y + k + Y ) = k + Y ∩ K , f (k + Y ∩ K) = k + X ∩ K and ψ(k + X ∩
K) = k + X = k + x + X for any x ∈ X . Thus h(m + Y ) = k + x + X .

We claim that h( X+Y
Y ) = X+Y

X . To see that h( X+Y
Y ) ⊆ X+Y

X , let x + y + Y ∈ X+Y
Y .

Note that there exist y1 + k = x + y, where y1 ∈ Y and k ∈ K . Hence h(x + y + Y ) =
x + y − y1 + X ∈ X+Y

X . Now assume x2 + y2 + X ∈ X+Y
X . There exists x3 ∈ X and k3 ∈

K such that y2 = x3 + k3. Hence x2 + y2 + X = k3 + X . Now k3 = −x3 + y2 ∈ X + Y .
So

h(k3 + Y ) = ψf θ (k3 + Y ) =ψf (k3 + Y ∩ K) = ψ(k3 + X ∩ K) = k3 + X = x2 + y2 + X.

Thus h( X+Y
Y ) = X+Y

X . Since X+Y
Y ≤s

M
Y then X+Y

X ≤s
M
X , by [2, p. 11, 2.2(5)]. �

THEOREM 2.6. Let X, Y ≤ M such that Xβ∗Y. Then
(i) X ≤s M if and only if Y ≤s M.
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(ii) X has a (weak) supplement C in M if and only if C is a (weak) supplement for
Y.

Proof. (i) (=⇒) Assume X ≤s M. Let K ≤ M such that Y + K = M. Then
X + Y + K = M. By Theorem 2.3, X + K = M. Since X ≤s M, K = M. Thus Y ≤s

M.
(⇐=) The converse is true because β∗ is symmetric (Lemma 2.2).
(ii) Assume C is a supplement for X . Then M = X + C = X + Y + C. By Theorem 2.3,
Y + C = M. Assume K ⊆ C and Y + K = M. Then X + Y + K = M. By Theo-
rem 2.3, X + K = M. By the minimality of C, K = C. Thus C is a supplement for
Y . The converse is true because β∗ is symmetric (Lemma 2.2). Therefore X has a
supplement C if and only if C is a supplement for Y .

Now assume C is a weak supplement for X . Then X + C = M and X ∩ C ≤s M.
By Theorem 2.3, Y + C = M. We need to show that Y ∩ C ≤s M. Let K ≤ M such that
Y ∩ C + K = M. Since Y ∩ C ⊆ Y , Y + K = M and C + K = M. By Theorem 2.3,
X + K = M. Since Y ∩ C ⊆ C, the modular law yields that C = C ∩ M = (Y ∩ C) +
(C ∩ K). Then

M = Y + C = Y + Y ∩ C + C ∩ K = Y + C ∩ K.

Hence X + Y + C ∩ K = M. By Theorem 2.3, X + C ∩ K = M. So

K = K ∩ M = K ∩ (C ∩ K + X) = (C ∩ K) + X ∩ K,

by the modular law. Now

M = C + K = (Y ∩ C) + (C ∩ K) + (X ∩ K) ⊆ C + X ∩ K ⊆ M.

Hence M = C + (X ∩ K). By the modular law,

X = X ∩ M = X ∩ (
(X ∩ K) + C

) = X ∩ K + X ∩ C.

Thus

M = X + K = X ∩ C + X ∩ K + K = X ∩ K + K = K,

since X ∩ C ≤s M. Therefore Y ∩ C ≤s M. The converse holds by the symmetry of
the β∗ relation. �

COROLLARY 2.7. Let X, Y ⊆ M such that X ⊆ Y and X has a weak supplement C
in M. Then Xβ∗Y if and only if Y ∩ C ≤s M.

Proof. Assume Xβ∗Y . By Theorem 2.6, C is a weak supplement of Y . Hence
Y ∩ C ≤s M.

Conversely, assume Y ∩ C ≤s M. Let KR ≤ MR such that X + Y + K = M. Since
X ⊆ Y , Y + K = M. Since X + C = M and X ⊆ Y , the modular law yields Y =
X + Y ∩ C. Then

M = Y + K = X + Y ∩ C + K = X + K,

since Y ∩ C ≤s M. By Theorem 2.3, Xβ∗Y .
Note that from the hypothesis and the modular law, Y = X + Y ∩ C and X ∩ C ≤s

M. �



46 G. F. BIRKENMEIER ET AL.

Observe that for a minimal right ideal X of R there is a direct summand D in R
such that Xβ∗D. To see this, note that either X = eR for some idempotent (in which
case X is a direct summand) or X2 = 0 (in which case Xβ∗0).

COROLLARY 2.8. Let M = C ⊕ D and L, S, X ≤ M, where S is a weak supplement
of L.

(i) If Xβ∗S then X
X∩L

∼= S
S∩L . If S is a supplement, there is a small cover f : S −→

X
X∩L . If X is projective, then there is an epimorphism h : X −→ S. Whereas, if
S is projective, then there is a projective cover g : S −→ X.

(ii) If Xβ∗D, then X
X∩C

∼= D, X ∩ C ≤s C and there is a small cover h : M
D −→ M

X .
If M is G∗-lifting, then for each X there is a direct summand D such that Xβ∗D,
an epimorphism f : X −→ D and a small cover h : M

D −→ M
X .

(iii) Assume X ⊆ D. Then Xβ∗D if and only if X = D. In particular, Xβ∗M if and
only if X = M.

(iv) Assume D ⊆ X. Then Xβ∗D if and only if X ∩ C ≤s M.

Proof. (i) Since Xβ∗S, Theorem 2.3 yields X
X∩L

∼= X+L
L = M

L = S+L
L

∼= S
S∩L . The

remainder of the proof of this part follows from properties of a projective module.
(ii) This part is a consequence of (i) and Theorem 2.6 which yields that C is a

supplement of X . Hence X ∩ C ≤s C. Then there is a small cover k : C −→ C
X∩C .

Consequently, there is a small cover h : M
D −→ M

X .
(iii) (=⇒) Assume Xβ∗D. Then X + D + C = M. By Theorem 2.3, X ⊕ C = M.

Thus X = D.
(⇐=) Since β∗ is reflexive (Lemma 2.2), X = D =⇒ Xβ∗D.
(iv) This part is a consequence of Corollary 2.7. �
Note that in Corollary 2.8(ii), if Rad(M) = 0, then X ∩ C = 0 so M = C ⊕ X .

PROPOSITION 2.9. Let f : M −→ N be an epimorphism. Then
(i) If X, Y ≤ M such that Xβ∗Y, then f (X)β∗f (Y ).

(ii) If X, Y ≤ N such that Xβ∗Y, then f −1(X)β∗f −1(Y ).
(iii) If f is a small cover, X ≤ M and K ≤ N such that f (X)β∗K, then Xβ∗f −1(K).

Proof. (i) Assume that f (X) + f (Y ) + K = N. Then X + Y + f −1(K) = M. To
see this, let m ∈ M. There exists x ∈ X, y ∈ Y and k ∈ K such that f (m) = f (x) +
f (y) + k. Hence f (m − x − y) = k. So m − x − y ∈ f −1(K). Thus m ∈ X + Y + f −1(K).
So X + Y + f −1(K) = M. Hence M = X + f −1(K) = Y + f −1(K). Consequently, N =
f (X) + K = f (Y ) + K . Therefore, from Theorem 2.3, f (X)β∗f (Y ).

(ii) Let f −1(X) + f −1(Y ) + H = M. Then X + Y + f (H) = N, so, by Theorem 2.3,
X + f (H) = N = Y + f (H). Let m ∈ M. Then f (m) = x + f (h) for some x ∈
X and h ∈ H. Hence f (m − h) = x. So m − h ∈ f −1(X). Thus m ∈ f −1(X) + H.
Hence M = f −1(X) + H. Similarly, M = f −1(Y ) + H. Therefore, from Theorem 2.3,
f −1(X)β∗f −1(Y ).

(iii) Assume that M = X + f −1(K) + A. Then N = f (X) + K + f (A). Since
f (X)β∗K , Theorem 2.3 yields N = f (A) + f (X) and N = f (A) + K . Hence N =
f (A + X) = f (M) and N = f (M) = f (A) + K . Let m ∈ M. Since N = f (A) + f (X),
there exist a ∈ A, x ∈ X such that f (m) = f (a) + f (x). Hence f (m − a − x) = 0. Then
m − a − x ∈ Kerf and m ∈ A + X + Kerf . So M = A + X + Kerf . Since Kerf ≤s M,
M = A + X .

Since N = f (A) + K , there exist a ∈ A, k ∈ K such that f (m) = f (a) + k. Since f is
an epimorphism, there exists y ∈ M such that f (y) = k. Then f (m − a − y) = 0. Hence
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m − a − y ∈ Kerf , thus m ∈ Kerf + A + f −1(K). So M = Kerf + A + f −1(K). Since
Kerf ≤s M, M = A + f −1(K). �

PROPOSITION 2.10. Let X ≤ M and K a maximal submodule of M.
(i) Let C1, C2 ≤ M such that C1 + C2 = M, C2 �= M and Xβ∗C1. Then X � C2.

(ii) If Xβ∗Y and X ⊆ K, then Y ⊆ K.
(iii) If Xβ∗K, then X ⊆ K. Hence, if Xβ∗Y then X ⊆ Rad(M) if and only if Y ⊆

Rad(M).
(iv) If Xβ∗K and X + W = M with X ∩ W ≤s M, then K = X + (K ∩ W ) and

K ∩ W ≤s M.

Proof. (i) Assume X ⊆ C2. Then C1 + X + C2 = M. Hence C1 + C2 = M and
X + C2 = M. But X ⊆ C2 =⇒ C2 = M, a contradiction.

(ii) Assume Y � K . Then Y + K = M and Y + K + X = M. Hence K + X = M.
But X ⊆ K =⇒ K = M, a contradiction.

(iii) This part follows from (ii) using the symmetry of β∗ with K and X replacing
X and Y , respectively.

(iv) This part follows from part (iii) and Theorem 2.6. �
Note that from Lemma 2.10 (i), if X, Y ≤ M such that X � M and Xβ∗Y , then

X + Y �= M.

PROPOSITION 2.11. Let X1, X2, Y1, Y2 ≤ M such that X1β
∗Y1 and X2β

∗Y2. Then
(X1 + X2)β∗(Y1 + Y2) and (X1 + Y2)β∗(Y1 + X2). In particular, X1 + X2 = M if and
only if Y1 + Y2 = M and X1 + Y2 = M if and only if Y1 + X2 = M.

Proof. Let K ≤ M such that X1 + X2 + Y1 + Y2 + K = M. Then X2 + Y1 + Y2 +
K = M and X1 + X2 + Y2 + K = M, because X1β

∗Y1. Moreover Y1 + Y2 + K = M
and X1 + X2 + K = M, because X2β

∗Y2. From Theorem 2.3, (X1 + X2)β∗(Y1 + Y2).
Using Lemma 2.2, we obtain (X1 + Y2)β∗(Y1 + X2). By Corollary 2.8 (iii), X1 + X2 =
M if and only if Y1 + Y2 = M and X1 + Y2 = M if and only if Y1 + X2 = M. �

COROLLARY 2.12. Let X, Y ≤ M and J ≤s M. Then Xβ∗Y if and only if Xβ∗(Y + J).

Proof. (⇒) This implication follows from Proposition 2.11 and the fact that 0β∗J.
(⇐) As above, Yβ∗(Y + J). Now the implication follows from the transitivity of the β∗

relation. �
COROLLARY 2.13. Let X, Y1, . . . , Yn ≤ M. If Xβ∗Yi for each i, then Xβ∗Y, where

Y = �n
i=1Yi.

DEFINITION 2.14. Let X ≤ M. Then Xβ∗ := � { N ≤ M | Nβ∗X}.
Observe that Rad(M) = 0β∗ and that if X ≤ K then X∗

β ≤ K , where K is a maximal
submodule of M by Proposition 2.10. Moreover, if Xβ∗Y , then Xβ∗ = Yβ∗ . Finally,
if M is Noetherian, Corollary 2.13 yields that Xβ∗Xβ∗ . However, this is not true in
general by the following example.

EXAMPLE 2.15. Proposition 2.11 can be extended to finite but not infinite sums.
Let R = � and M = �. Then � = Rad(�) = ∑

m∈�+
1
m � but each 1

m � ≤s � hence
1
m �β∗0 for each m. If Proposition 2.11 was true for even countably infinite sums then
�β∗0, a contradiction since � is not small in �.
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PROPOSITION 2.16. Let M be a Noetherian module which is weakly supplemented
(e.g. G∗-supplemented) and X ≤ M. Then Xβ∗ = X + Rad(M).

Proof. By Corollary 2.13, Xβ∗Xβ∗ . The result is now a consequence of Corollary 2.7
and Corollary 2.12. �

Observe that from Proposition 2.9, if f : M −→ N is an epimorphism and X ≤ M,
then f (Xβ∗ ) ≤ [f (X)]β∗ . Moreover, if f is a small cover, then f (Xβ∗ ) = [f (X)]β∗ .

PROPOSITION 2.17. Let S ≤ M and I ≤ R. If X ≤ R such that In ≤ X ≤ I for some
positive integer n, then SIβ∗SX. In particular, Iβ∗X.

Proof. Clearly, the statement is true for n = 1. Assume that n > 1. Let B ≤ M such
that SI + B = M. Then SI2 + BI = MI, . . . , SIn + BIn−1 = MIn−1. Hence

M = SI + B ≤ MI + B = SI2 + BI + B = SI2 + B ≤ MI2 + B ≤ · · · ≤ SIn + B ≤ M.

Thus SIn + B = M. So SX + B = M. By Theorem 2.3, SIβ∗SX . �
EXAMPLE 2.18. Let M = R = � and K = p�, for some prime p. Take X = p2�.

Then Xβ∗ = K �= X = X + Rad(M). Therefore the condition that X has a weak
supplement is not superfluous in Propositions 2.10 (iv) and 2.16.

3. G∗-lifting and G∗-supplemented. In this section, we use the β∗ equivalence
relation to define the class of G∗-lifting modules and the class of G∗-supplemented
modules. Some basic properties including behaviour with respect to direct sums and
direct summands are developed for these classes. We locate these classes of modules
between the class of lifting modules and the class of supplemented modules. Moreover,
we indicate a connection between these modules and an Open Problem of Mohamed
and Mšller [6, Open Problem #18, p. 107].

DEFINITION 3.1. (i) We say M is ‘Goldie∗-lifting, G∗-lifting’, if and only if for each
X ≤ M there exists a direct summand D of M such that Xβ∗D.

(ii) We say M is ‘Goldie∗-supplemented, G∗-supplemented’, if and only if for each
X ≤ M there exists a supplement submodule S of M such that Xβ∗S.

THEOREM 3.2. M is G∗-supplemented (G∗-lifting) if and only if for each X ≤ M
there exists a supplement S (direct summand D) and a small submodule H of M such
that

X + H = S + H = X + S
(X + H = D + H = X + D).

Proof. Assume that M is G∗-supplemented. There exists a supplement S such
that Xβ∗S. Hence there exists W ≤ M such that S + W = M and S ∩ W ≤s S. By
Proposition 2.11, Xβ∗(X + S) and Sβ∗(X + S). From Theorem 2.6, W is a weak
supplement for S, X , and X + S. By the modular law,

X + H = S + H = X + S,

where H = (X + S) ∩ W ≤s M.
The converse follows from Corollary 2.4. The proof is similar for G∗-lifting. �



GOLDIE-SUPPLEMENTED MODULES 49

COROLLARY 3.3. (i) If for each X ≤ M there exists a supplement S and H ≤s M such
that X = S + H, then M is G∗-supplemented. The converse holds if M is also distributive.

(ii) Let M be G∗-supplemented and X ≤ M such that Rad(M) ≤ X. Then X =
S + H, where S is a supplement and H ≤s M.

Proof. (i) From Theorem 3.2 the hypothesis implies that M is G∗-supplemented.
Assume that M is G∗-supplemented and distributive. Let X ≤ M. Then there are
S, L ≤ M such that Xβ∗S, S + L = M and S ∩ L ≤s S. By Theorem 2.3, X + L = M.
So S = S ∩ (X + L) = S ∩ X + S ∩ L = S ∩ X . Hence S ≤ X . From Theorem 2.6, L
is a weak supplement of X , so X ∩ L ≤s M. Thus X = X ∩ (S + L) = S + H, where
H = X ∩ L.

(ii) This part follows from Theorem 3.2. �

COROLLARY 3.4. Assume Rad(M) is small in M (e.g. M is finitely generated). Then
M is G∗-supplemented if and only if for each X ≤ M there exists a supplement submodule
S of M such that S + Rad(M) = X + Rad(M).

Proof. This result is a consequence of Theorem 3.2 and Corollary 2.4. �

The following theorem generalizes and extends Theorem 3.16 of [5]. To see this
observe that our result holds if every submodule of M is projection invariant (i.e.
X ≤ M and e = e2 ∈ End(MR), then eX ⊆ X).

THEOREM 3.5. Assume that M = A ⊕ B, where A = aM, B = bM, {a, b} is a set
of orthogonal idempotents of End(MR), and U = aU + bU for each U ≤ M (e.g. each
U is fully invariant). Then M is G∗-supplemented (G∗-lifting) if and only if A and B are
G∗-supplemented (G∗-lifting).

Proof. (⇒) Let X ≤ A. Then there exist S, L ≤ M such that S + L = M, S ∩
L ≤s S and Xβ∗S. We claim that Xβ∗aS as submodules of A. To see this, suppose
that X + aS + K = A, for some K ≤ A. Then X + S + K + L = M. By Theorem 2.3,
X + K + L = M. Then X + K + aL = A and bL = B. Thus bS ≤ bL. So aS + L = M.
Since S is a supplement of L in M, S = aS. Therefore Xβ∗aS.

Now aS + aL = A and aL ∩ aS ≤ L ∩ S ≤s S = aS. Hence aS is a supplement in
A. Therefore A is G∗-supplemented. Similarly, B is G∗-supplemented. The proof for M
being G∗-lifting is similar.

(⇐) Let U ≤ M, U1 = aU and U2 = bU . There exist L1, S1 ≤ A such that U1β
∗S1,

L1 + S1 = A and L1 ∩ S1 ≤s S1. Likewise, there exist L2, S2 ≤ B such that U2β
∗S2,

L2 + S2 = B and L2 ∩ S2 ≤s S2. By Proposition 2.11, Uβ∗(S1 + S2). Moreover, S1 +
S2 + L1 + L2 = M and (S1 + S2) ∩ (L1 + L2) = (S1 ∩ L1) + (S2 ∩ L2). Assume that
(S1 + S2) ∩ (L1 + L2) + K = S1 + S2, for some K ≤ M. Then (S1 ∩ L1) + (S2 ∩ L2) +
aK + bK = S1 + S2. Hence (S1 ∩ L1) + aK = S1. But S1 ∩ L1 ≤s S1. So aK = S1.
Similarly, bK = S2. Hence S1 + S2 is a supplement in M. Therefore M is G∗-
supplemented. The proof for A and B being G∗-lifting is similar. �

Recall from [6, p. 95] that M is called H-supplemented if for every submodule A
there is a direct summand D such that A + X = M if and only if D + X = M.

THEOREM 3.6. Let M be a module and consider the following conditions:
(a) M is lifting.
(b) M is G∗-lifting.
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(c) M is H-supplemented [6, p. 95].
(d) M is G∗-supplemented.
(e) M is supplemented.

Then (a) =⇒ (b) ⇐⇒ (c) =⇒ (d) =⇒ (e).

Proof. (a) =⇒ (b). This implication follows from [2, p. 266, 22.3 (a)⇔(b)] and
Corollary 2.8 (iv).

(b) ⇐⇒ (c). This equivalence follows from Theorem 2.3.
(b) =⇒ (d). This implication follows from the fact that every direct summand is a

supplement.
(d) =⇒ (e). Let X be a submodule of M. Then Xβ∗S, where S is a supplement.

So there exists W ≤ M such that S is a supplement of W . There exists a supplement
T such that Wβ∗T . Hence S is a supplement of T , by Theorem 2.6. From [2, p. 234,
20.4(9)], T is a supplement of S. By Theorem 2.6, T is a supplement of X . Therefore
M is supplemented. �

PROPOSITION 3.7. (i) Let M be G∗-supplemented and K a maximal submodule of
M. Then K = S + (K ∩ T), where S is a supplement of T, T is a supplement of K, T is
a local module, Kβ∗S and K is G∗-supplemented.

(ii) Let M be G∗-lifting and K a maximal submodule of M. There exist C, D ≤ M
such that M = C ⊕ D, Kβ∗D, K = D ⊕ (K ∩ C), C is a local module and K is G∗-lifting.

Proof. (i) Since M is G∗-supplemented there exists a supplement S such that Kβ∗S.
By Theorem 3.6, K has a supplement T . From Theorem 2.6, T is a supplement
of S. By [2, p. 234, 20.4(9)], S is a supplement of T . Proposition 2.10 yields
that K = S + (K ∩ T). Then K ∩ T is a maximal submodule of T . Let t ∈ T such
that t /∈ K . Then K + tR = M. Since T is a supplement of K , T = tR. Therefore T is
a local module. To see that K is G∗-supplemented, let X ≤ K . There exist S1, L1 ≤ M
such that Xβ∗S1, S1 + L1 = M and S1 ∩ L1 ≤s S1. By Proposition 2.10, S1 ≤ K . By
the modular law, K = S1 + (K ∩ L1). But S1 ∩ (K ∩ L1) ≤ S1 ∩ L1 ≤s S1. So S1 is a
supplement in K . Therefore K is G∗-supplemented.

(ii) Since M is G∗-lifting there exist C, D ≤ M such that M = C ⊕ D and Kβ∗D.
From Theorem 2.6, C is a supplement of K . By Proposition 2.10, K = D ⊕ (K ∩ C).
As in part (i), C is a local module. To see that K is G∗-lifting, let X ≤ K . There exist
C1, D1 ≤ M such that M = C1 ⊕ D1 and Xβ∗D1. By Proposition 2.10, D1 ≤ K . Thus
K = D1 ⊕ (K ∩ C1). Therefore K is G∗-lifting. �

Using the previous result, we obtain a structure theorem for G∗-lifting Noetherian
modules.

THEOREM 3.8. Let M be a Noetherian module such that each submodule is projection
invariant. If M is G∗-lifting, then M is a finite direct sum of local modules.

Proof. Since M is Noetherian, it is a finite direct sum of indecomposable
Noetherian modules. By [5, Corollary 2.4.], each indecomposable direct summand
of M is G∗-lifting. From Proposition 3.7 (ii), each indecomposable direct summand of
M is local. �

EXAMPLE 3.9. In this example, we show that the one-way implications of
Theorem 3.6 cannot be reversed.

(i) Let R = �8 and M = �2 ⊕ �4 ⊕ �8. By [6, p. 97]., M is G∗-lifting (i.e. H-
supplemented) but not lifting.
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(ii) Let R be a commutative local ring which has two incomparable ideals I and J.
Let M = R/I ⊕ R/J. By [6, p. 97, Lemma A.4(1)], M is amply supplemented hence G∗-
supplemented by Proposition 3.11; but M is not G∗-lifting by [6, p. 97, Lemma A.4(3)]
and Theorem 3.6. For a concrete example, let F be a field and

T = F [x]/ < x4 >=
{

a1 + bx + cx2 + dx3 | a, b, c, d ∈ F and x = x+ < x4 >
}

.

Let R = {a1 + cx2 + dx3 ∈ T}. Thus R is a subring of T . Moreover R is a commutative
local Kasch Ring. The ideals of R are: 0, R, Fx2, Fx3, Fx2 + Fx3. Note that Fx2 + Fx3

is maximal and Fx2 ∩ Fx3 = 0. Then M = R/Fx2 ⊕ R/Fx3 is ⊕-supplemented and
amply supplemented but not G∗-lifting [6, p. 97].

(iii) (See [2, p. 279, Example 23.7]) Let K be the quotient field of a discrete valuation
domain R which is not complete. Let M = K ⊕ K . Then M is supplemented but not
G∗-supplemented. To see this, assume that M is G∗-supplemented. Let X ≤ M. Then
Xβ∗S, where S is a supplement in M. By [2, p. 233, 20.2], S is coclosed in M. From
[2, p. 279, Example 23.7], S is a direct summand of M. Thus M is G∗-lifting. By
Theorem 3.6 and [6, p. 97–98], M is not G∗-lifting, a contradiction.

COROLLARY 3.10. (i) M is a lifting module if and only if M is amply supplemented
and strongly ⊕-supplemented.

(ii) If M is G∗-lifting, then M is G∗-supplemented and ⊕-supplemented.
(iii) If M is G∗-supplemented and strongly ⊕-supplemented, then M is G∗-lifting.

Proof. (i) This part is in [2, p. 266].
(ii) This part follows from Theorem 3.6 and [6, pp. 95–96].
(iii) Let X ≤ M. Then there exists a supplement submodule S of M such that

Xβ∗S. Since M is strongly ⊕-supplemented S is a direct summand of M. Hence M is
G∗-lifting. �

PROPOSITION 3.11. Let M be a module. Consider the following conditions:
(i) M is amply supplemented.

(ii) For each X ≤ M there exists a supplement S and L ≤ M such that M = S +
L = X + L, S ∩ L ⊆ X ∩ L and S

cs
↪→ X + S.

(iii) M is G∗-supplemented.
Then (i) =⇒ (ii) =⇒ (iii).

Proof. (i) =⇒ (ii) Assume X is small. Take S = 0 and L = M. So now assume X
is not small. Since M is weakly supplemented, there exists L such that X + L = M
and X ∩ L ≤s M. Also, there exists a supplement S of L such that S ⊆ X . Hence
S + L = M and S ∩ L ⊆ X ∩ L and S ∩ L ≤s S. Thus L is a weak supplement for
both S and X . By Corollary 2.7, Xβ∗S. From Theorem 2.3, S

cs
↪→ X + S.

(ii) =⇒(iii) By Proposition 2.5, Xβ∗S. Thus M is G∗-supplemented. �
Note that if M is amply supplemented then its submodules which have the same

supplements in M are β∗ equivalent, by [2, p. 254, Exercise 8].

PROPOSITION 3.12. If M is a quasi-projective module then the following conditions
are equivalent:

(i) M is supplemented,
(ii) M is G∗-supplemented,

(iii) M is amply supplemented,
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(iv) M is lifting,
(v) M is G∗ lifting,

(vi) M is semiperfect.

Proof. This result follows Theorem 3.6, Proposition 3.11 and [2, 27.8 and
27.21]. �
Open questions and problems

(1) Must a G∗-supplemented module be amply supplemented?
(2) If M is finitely generated and each maximal submodule is β∗ equivalent to a

supplement submodule, is M G∗-supplemented?
(3) Characterize those rings for which every (cyclic, finitely generated) module is

G∗-lifting.
(4) Characterize those rings for which every (cyclic, finitely generated) module is

G∗-supplementing.
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