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Abstract

The nonsingularity problem of a polytope of real matrices and its relation to the (robust) stability problem
is considered. This problem is investigated by using the Bernstein expansion of the determinant function.
Here we adapt the known Bernstein algorithm for checking the positivity of a multivariate polynomial on a
box to the nonsingularity problem. It is shown that for a family of Z-matrices the positive stability problem
is equivalent to the nonsingularity if this family has a stable member. It is established that the stability of
the convex hull of real matrices A1, A2, . . ., Ak is equivalent to the nonsingularity of the convex hull of
matrices A1, A2, . . ., Ak, jI if A1 is stable.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let Rn be the set of real n vectors, Rn×n (Cn×n) be the set of n × n real (complex) matrices.
For Ai ∈ Rn×n (i = 1, 2, . . . , k) define the polytope (convex hull)

A = conv{A1, A2, . . . , Ak} (1)
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0024-3795/$ - see front matter ( 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2007.06.026

www.elsevier.com/locate/laa
mailto:vcaferov@anadolu.edu.tr
mailto:tbuyukkoroglu@anadolu.edu.tr
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as the set of all real convex combinations. (In Section 4, the set of all real convex combinations
of complex matrices will be considered and such a set will also be called the convex hull.) If all
matrices in A are nonsingular then the family A is said to be nonsingular.

If all eigenvalues of a matrix A lie on the open right half plane then A is said to be positive
stable. A is Hurwitz stable if −A is positive stable. If all matrices in the family A are stable then
the family is said to be (robustly) stable.

If the convex hull of matrices A1, A2, . . . , Ak is stable (nonsingular) then all the positive
combinations are also stable (nonsingular).

Nonsingularity and stability problems for a family of matrices and their relationship were
studied in many works (see [1–10]). These problems are NP-hard [11]. Probabilistic approach to
the solution of these problems was studied in [12].

In this paper for the nonsingularity and the stability problems of the polytope (1) we use the
Bernstein expansion of the determinant function. Here we adapt the known algorithm [13,14] for
checking the positivity of a multivariate polynomial on a box to the nonsingularity problem of
the polytope (1). We show that if there is a positive stable member in a compact path-connected
family of Z-matrices then from nonsingularity follows positive stability (Proposition 3.2). We
establish that if there is a stable member in the polytope (1) then stability of (1) is equivalent
to nonsingularity of the family conv{A1, A2, . . . , Ak, jI }, where I is the identity matrix and
j2 = −1.

In [3,5], it is shown that the nonsingularity of an interval matrix family can be tested by
calculating a finite number of determinants and the number of determinants that have to be tested
is exponential in the dimension of the matrices. In [6], the following criterion for the nonsingularity
of the family (1) is obtained: The family (1) is nonsingular if and only if for every nonzero x ∈ Rn

there exists y = y(x) ∈ Rn such that 〈Aix, y〉 < 0 for all i = 1, 2, . . . , k, where 〈·, ·〉 denotes the
scalar product. The major disadvantage of this criterion is that for a given x the general choice
rule of y = y(x) is unknown (see Example 2.3 in Section 2).

For the case k = 2, a polynomial time solution for the Hurwitz stability of the family (1) is
proposed in [1,2]. An exponential time algorithm for checking stability of a symmetric interval
matrix family is given in [9]. In the paper [7], the authors consider the Hurwitz stability problem
for the polytope of real matrices

{
A0 + ∑k

i=1 qkAk : (q1, . . . , qk) ∈ Q
}
, where Q is a box. Here

the problem is reduced to the global minimization of an appropriate norm. For any given error
tolerance ε > 0, it is shown its attainment via solution of a finite number of linear programs.
However, the dependence of the number of linear programs on n and k is unknown. In [6,8]
the following criterion for stability of the family (1) is obtained: The family (1) is Hurwitz
stable if and only if for every nonzero vector x ∈ Cn×1 there exists a positive definite (Hermitian)
matrix P = P(x) such that Re x∗PAix < 0 for all i = 1, 2, . . . , k, where x∗ denotes the complex
conjugate transpose of x. Here, again as in the case of nonsingularity there are serious difficulties
in the applications of this criterion. In [4] using the guardian map concept the stability problem
of a polynomial matrix family with one uncertainty parameter is considered. The transformation
of the stability problem for the family A into the nonsingularity problem for the family {A ⊕
A : A ∈ A} is considered in [5, Chapters 4 and 17]. Here A ⊕ A is the Kronecker sum. This
transformation is not efficient from the computational point of view since A ⊕ A has dimension
n2 × n2.

Comparing our results in this paper with the above results, note that we consider a matrix
polytope in the general form (1). Another essentiality of the our algorithm is that it is sufficiently
fast (see Examples 2.2, 2.3, 4.4). Nevertheless, a serious drawback of using Bernstein expansion is
its need of computing time and memory which grow exponentially with the number of variables.
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2. Nonsingularity via Bernstein expansion

In this section by using determinant function we investigate the nonsingularity problem of the
family (1). For this purpose we use the Bernstein expansion of the determinant function of the
family (1).

In [13,14], the algorithm for estimating the range and checking for the positivity of a multivari-
ate polynomial over a box is given. In this algorithm the expansion of a multivariate polynomial
into Bernstein polynomials is used. Let us briefly describe this algorithm. Here we adopt essentially
the notations from [14].

Let L = (i1, i2, . . . , im) be m-tuple of nonnegative integers and for x = (x1, x2, . . . , xm)

xL = x
i1
1 x

i2
2 · · · xim

m .

For N = (n1, . . . , nm)

L � N ⇔ 0 � ik � nk (k = 1, 2, . . . , m).

An m-variate polynomial p(x) is defined as

p(x) =
∑
L�N

aLxL (x ∈ Rm). (2)

Here N is called the degree of the polynomial p(x).
The ith Bernstein polynomial of degree d is defined as

bd,i(x) =
(

d

i

)
xi(1 − x)d−i , 0 � i � d.

In the multivariate case, the Lth Bernstein polynomial of degree N is defined by

BN,L(x) = bn1,i1(x1) · · · bnm,im(xm) (x ∈ Rm). (3)

The transformation of a polynomial from its power form (2) into its Bernstein form results in

p(x) =
∑
L�N

pL(U)BN,L(x), (4)

where the Bernstein coefficients pL(U) of p over the m-dimensional unit box U = [0, 1] × · · · ×
[0, 1] are given by

pL(U) =
∑
J�L

(
L

J

)
(

N

J

)aJ (L � N). (5)

Here
(

N

L

)
is defined as the product

(
n1
i1

)
· · ·

(
nm

im

)
. In [15] a difference table method for computing

the Bernstein coefficients efficiently that avoids the binomial coefficients and product appearing
in (5) is described.

Denote

m = min{p(x) : x ∈ U}, m̄ = max{p(x) : x ∈ U},
α = min{pL(U) : L � N}, β = max{pL(U) : L � N}.
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Theorem 2.1 [13]. The inequalities

α � m � m̄ � β (6)

are satisfied.

Theorem 2.1 gives the bounds for the range of the multivariate polynomial (2) over the unit
box U . In order to obtain the Bernstein coefficients and bounds over an arbitrary box D, the box
D should be affinely mapped onto U . As a result a new polynomial is being obtained and its
Bernstein coefficients are the Bernstein coefficients of the initial polynomial p(x) (2) over D.

In order to obtain convergent bounds for the range of the polynomial (2) over the box U , the box
U should be divided into two boxes. If the division is continued and one calculates the minimal
and maximal Bernstein coefficients in each subdivision step, the calculated bounds converge to
the exact bounds (provided that the diameter of subboxes tends to zero). Note that by the sweep
procedure the explicit transformation of the subboxes generated by sweeps back to U is avoided.

By Theorem 2.1, if α > 0 then the polynomial p(x) (2) is positive on U and if β < 0 then p(x)

is negative on U . If α � 0, β � 0 then by the bisection in the chosen coordinate direction the box
U is divided into two boxes and the new Bernstein coefficients for the new boxes can be calculated
easily by using the Bernstein coefficients pL(U) (see [13,14]). In [14], the selection rule for the
coordinate direction of division is suggested. This rule is based on the partial derivatives of a
polynomial in Bernstein form (see (4)). A new box on which the inequality α > 0 or β < 0 is
satisfied should be eliminated, since our polynomial has constant sign on this box. A box, on
which the inequality α > 0 or β < 0 is not satisfied should be divided into two new boxes.

Summarizing the above, we note the followings:

(a) The positivity (or negativity) of a multivariate polynomial over a box D can be tested by
this algorithm. For this purpose the box D should be mapped affinely into the unit box U

(this map changes the initial polynomial also) and the Bernstein coefficients (5) should be
calculated.

(b) If Bernstein coefficients have no constant sign, the box D should be divided into two boxes
on which we proceed as before. It is important to note that by this procedure, the explicit
transformation of the subboxes back to U is avoided.

(c) A subbox on which the Bernstein coefficients have constant sign should be eliminated, since
our aim is to check positivity (or negativity) on the whole box D and the polynomial has
definite sign on this subbox.

(d) If a multivariate polynomial is positive (negative) on the box D the algorithm gives an
affirmative answer after a finite number of steps.

Let us now return to the problem of nonsingularity (1). The polytope (1) is equal to the set

A =
{
A = λ1A1 + · · · + λk−1Ak−1 + (1 − λ1 − · · · − λk−1)Ak

: λ1 ∈ [0, 1], . . . , λk−1 ∈ [0, 1], λ1 + · · · + λk−1 � 1

}
.

Denote

� = {(λ1, . . . , λk−1) : λ1 ∈ [0, 1], . . . , λk−1 ∈ [0, 1], λ1 + · · · + λk−1 � 1}, (7)

f (λ1, . . . , λk−1) = det(A), (8)

where (λ1, . . . , λk−1) ∈ �, A ∈ A.
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By continuity the family A is nonsingular if and only if the determinant function f (λ1, . . . ,

λk−1) (8) is positive or negative on �. This function is a multivariate polynomial while the set � (7)
is not a box. Nevertheless, the above algorithm can be easily adapted to this problem. Indeed by (c)
(see above) we eliminate a subbox D = [α1, β1] × · · · × [αk−1, βk−1] if the array of Bernstein
coefficients has constant sign. Now, for our problem, if the inequality α1 + · · · + αk−1 � 1 is
satisfied, the subbox D will be automatically eliminated since this subbox is remaining outside
the set �.

Example 2.2. Consider A = conv{A1, A2, A3} where

A1 =
⎛
⎝ 3 −1 −2

−1 2 −1
0 0 1

⎞
⎠ , A2 =

⎛
⎝ 5 0 −1

−1 3 −1
−1 −4 2

⎞
⎠ , A3 =

⎛
⎝ 2 −1 −1

−2 2 −2
−1 0 3

⎞
⎠ .

We have

� = {(λ1, λ2) : λ1 ∈ [0, 1], λ2 ∈ [0, 1], λ1 + λ2 � 1},

A = {λ1A1 + λ2A2 + (1 − λ1 − λ2)A3 : (λ1, λ2) ∈ �}

and the determinant function of this family is

f (λ1, λ2) = 2 + 8λ1 − 5λ2
1 + 9λ2 − 33λ1λ2 + 10λ2

1λ2 − 18λ2
2 + 17λ1λ

2
2 + 10λ3

2.

The array of Bernstein coefficients (5) is

B(U) =
⎛
⎜⎝

2 5 2 3
6 7

2 − 13
6 −1

5 1
3 − 14

3 0

⎞
⎟⎠

and has no constant sign. Therefore the bisection procedure must be applied to this problem. The
algorithm reports after 0.01 s that the determinant function f (λ1, λ2) is positive on the set �. It
requires 15 bisection steps (Fig. 1). There are two type of rectangles in the figure. The first type
consists of rectangles on which all Bernstein coefficients are positive (the total number of such
rectangles is 10). The second type of rectangles satisfy the condition α1 + α2 � 1 and have as a
side dotted line segments (the total number of such rectangles is 6). These rectangles are out of
consideration. Consequently A is nonsingular.

Note that the determinant function is not positive on the whole box [0, 1] × [0, 1]. For example,
it is zero for λ1 = 1, λ2 = 1 and is negative for λ1 = 0.7, λ2 = 0.7.

Example 2.3. Consider A = conv{A1, A2, A3}, where

A1 =
⎛
⎝−1 −1 0

1 0 1
1 0 −1

⎞
⎠ , A2 =

⎛
⎝−1 0 0

1 −1 1
1 0 −1

⎞
⎠ , A3 =

⎛
⎝0 −1 1

1 0 1
0 0 −1

⎞
⎠ .

This example is taken from [6]. There the nonsingularity of this polytope is proved by choosing
an appropriate map y(x) from Rn to Rn. Here we prove the nonsingularity of A by the Bernstein
expansion. We have

f (λ1, λ2) = −1 − λ1 + λ1λ2 + λ2
2 − λ2

1λ2 − 2λ1λ
2
2 − λ3

2.
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Fig. 1. Bisection of rectangles.

The array of Bernstein coefficients is

B(U) =
⎛
⎝ −1 −1 −2/3 −1

−3/2 −4/3 −7/6 −2
−2 −2 −7/3 −4

⎞
⎠

and all coefficients are negative. Hence f (λ1, λ2) < 0 on [0, 1] × [0, 1] and A is nonsingular.

Remark 2.4. If there exist two subboxes D1 and D2 such that all Bernstein coefficients on D1 are
positive and all Bernstein coefficients on D2 are negative then the process should be terminated.
In this case the family A is singular by continuity.

3. Z-matrices: positive stability is equivalent to nonsingularity

A real n × n matrix A = [aij ] is said to be a Z-matrix if aij � 0 for all i /= j .

Theorem 3.1 [16, p. 114]. Let A ∈ Rn×n be Z-matrix. Then A has at least one real eigenvalue
and is positively stable if and only if every real eigenvalue of A is positive.

Stability problems of Z-matrices are studied in [16,17].

Proposition 3.2. LetA ⊂ Rn×n be a compact path-connected family of Z-matrices. Assume that
the family A has at least one positive stable matrix A1. If the family A is nonsingular then it is
positive stable.

Proof. Suppose the contrary that the family A is not positive stable and assume that A2 is not
positive stable. Consider the continuous path f (t) : [0, 1] → A connecting A1 and A2, i.e.

f (0) = A1, f (1) = A2, f (t) ∈ A (t ∈ [0, 1]).
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Consider the motion of the eigenvalues of f (t) starting at t = 0. By the continuity theorem of
eigenvalues [5, p. 52] there exist continuous functions si : [0, 1] → C (i = 1, 2, . . . , n) such that
s1(t), s2(t), . . . , sn(t) are the eigenvalues of f (t). We set

C− = {z ∈ C : Re z � 0},
K = {i : i ∈ {1, 2, . . . , n} and there exists t ∈ [0, 1] such that si(t) ∈ C−}.

C− is the closed left-half plane and i ∈ K if and only if the curve si(t) intersects the imaginary axis.
K is non-empty since A2 is not positive stable. For i ∈ K define Ti = {t ∈ [0, 1] : si(t) ∈ C−}.
From continuity of si(t) and closedness of C− it follows that Ti is compact. Let

ti = min Ti (i ∈ K), t̃ = min{ti : i ∈ K}.
It is obvious that si(ti) belongs to the boundary of C−, i.e. the imaginary axis. t̃ is the minimal
value of t such that at least one of the eigenvalues of f (t̃) lies on the imaginary axis and the matrix
f (τ) is positive stable for all τ < t̃ . The matrix f (t̃) is not positive stable.

Let λ be an arbitrary real eigenvalue of the matrix f (t̃). It is evident that λ � 0. If λ = 0 then
f (t̃) is singular which contradicts the nonsingularity assumption. If λ > 0 then f (t̃) is positive
stable by Theorem 3.1. This contradiction shows that the family A is positive stable. �

Note that a similar result is true for positive definiteness of symmetric interval matrices, i.e. a
symmetric interval matrix family is positive definite if and only if it contains at least one positive
definite matrix and is nonsingular (see [10]).

Example 3.3. Consider the family A as in Example 2.2. This family consists of Z-matrices and
it is nonsingular. Since A1 is positive stable then the family A is positive stable by Proposition
3.2.

4. Stability of an arbitrary real polytope

Let the polytope (1) be given, where Ai ∈ Rn×n (i = 1, 2, . . . , k). In this section we investigate
the stability of the polytope (1).

Proposition 4.1. Let the polytope (1) be given and B ∈ Cn×n. Then the following equality is true

{(1 − λ)A + λB : λ ∈ [0, 1], A ∈ A} = conv{A1, . . . , Ak, B}. (9)

Here

conv{A1, . . . , Ak, B}
=

{
λ1A1 + · · · + λkAk + λk+1B :

k+1∑
i=1

λi = 1, λi � 0 (i = 1, 2, . . . , k + 1)

}
.

The proof is immediate.

Theorem 4.2. Let the polytope (1)be given andA1 is positive (Hurwitz) stable.Then the following
are equivalent.

(i) All matrices in A are positively (Hurwitz) stable.
(ii) The polytope conv{A1, . . . , Ak, jI } is nonsingular where I is the identity matrix.
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Proof. (i) ⇒ (ii). From (i) it follows that for all A ∈ A and ω � 0

det(A − jωI) /= 0. (10)

Let ω = − λ
1−λ

, where λ ∈ [0, 1). Then from (10) it follows that:

det((1 − λ)A + λjI ) /= 0. (11)

The relation (11) is also true for λ = 1. By Proposition 4.1 condition (ii) follows from (11).
(ii) ⇒ (i). If (ii) is satisfied then by Proposition 4.1 the relation (11) and consequently (10)

is true. Since the polytope A consists of real matrices it follows that A has no pure imaginary
eigenvalue. On the other hand A has at least one stable member. Then (i) is true. Indeed, if A is
not stable then there exists an unstable matrix in A. Since A has at least one stable member, by
continuity and connectedness there exists A∗ ∈ A which has pure imaginary eigenvalues. This
contradiction shows that (i) is true. �

Remark 4.3. The condition (ii) in Theorem 4.2 can be replaced by the following condition:
(ii′) The polytope conv{A1, . . . , Ak, −jI } is nonsingular.

Denote

� = {(λ1, . . . , λk) : λ1 ∈ [0, 1], . . . , λk ∈ [0, 1], λ1 + · · · + λk � 1},
F (λ1, . . . , λk) = det(A)

where (λ1, . . . , λk) ∈ �, A = λ1A1 + · · · + λkAk + (1 − λ1 − · · · − λk)jI .
The condition (ii) in Theorem 4.2 says that F(λ1, . . . , λk) /= 0 for all (λ1, . . . , λk) ∈ �. This

also can be tested by the Bernstein expansion. Indeed an arbitrary matrix A from the family
conv{A1, . . . , Ak, jI } can be written as

A = AR + jAI

where AR = λ1A1 + · · · + λkAk, AI = (1 − λ1 − · · · − λk)I . Consider a nonzero vector x ∈
Cn×1, x = xR + jxI and the equation

(AR + jAI )(xR + jxI ) = 0.

This equation can be written as(
AR AI

−AI AR

) (
xR

−xI

)
= 0.

This homogenous linear equation has a nonzero solution if and only if

det

(
AR AI

−AI AR

)
/= 0. (12)

This determinant is equal to det
(
A2

R + A2
I

)
and is nonnegative. (If A, B, C, D are n × n matrices

and AB = BA then by the Schur identity

det

(
A B

C D

)
= det(DA − CB),

see [18, p. 11]). The calculation gives a multivariate polynomial whose degree is doubled in
comparison with (8).

An alternative way to investigate the equality det(λ1A1 + · · · + λk+1jI ) = 0 on {λ = (λ1, . . . ,

λk+1) : λ1 + · · · + λk+1 = 1, λi ∈ [0, 1], (i = 1, . . . , k + 1)} is the use of a system of polyno-
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mial equations. Indeed assume that det(λ1A1 + · · · + λk+1jI ) = f (λ) + jg(λ). Then we obtain
the following system of polynomial equations over the (k + 1)-dimensional unit box:

f (λ) = 0,

g(λ) = 0,

λ1 + · · · + λk+1 − 1 = 0.

(13)

The existence problem of the solution of (13) can be investigated by the Bernstein expansion,
domain-splitting and eliminations. A subbox [α1, β1] × · · · × [αk+1, βk+1] on which f (λ) /= 0 or
g(λ) �= 0 or α1 + · · · + αk+1 > 1 or β1 + · · · + βk+1 < 1 should be eliminated. For the remaining
subboxes the existence test provided by Miranda’s theorem can be applied. This test provides a
generalization of the fact that if a univariate continuous function f has a sign change at the end
points of an interval then this interval contains a zero of f (for details see [19]).

Example 4.4. Let A = conv{A1, A2, A3} where

A1 =
⎛
⎝−1 1 0

−1 −1 −1
1 1 −1

⎞
⎠ , A2 =

⎛
⎝−1 1 0

−1 0 −1
0 1 −1

⎞
⎠ , A3 =

⎛
⎝−1 1 0

1 −1 −1
0 1 −1

⎞
⎠

and A1 is Hurwitz stable. The determinant function

f (λ1, λ2, λ3) = det(A2
R + A2

I )

is a sextic polynomial.
In the table below, we give sweep directions, the minimal and maximal Bernstein coefficients,

and the eliminated subboxes. Observe that it is not encountered a box D = [α1, β1] × [α2, β2] ×
[α3, β3] with α1 + α2 + α3 � 1 in the eliminations. The algorithm reports after 0.6 s that the
determinant function det

(
A2

R + A2
I

)
is positive on the box U = [0, 1] × [0, 1] × [0, 1] and by

Theorem 4.2 the family A is Hurwitz stable.

Subboxes Minimal Bernstein Maximal Bernstein Sweep directions and
coefficients coefficients eliminated subboxes

[0, 1] × [0, 1] × [0, 1] −5/18 4325 Divide first interval[
0, 1

2

]
× [0, 1] × [0, 1] −1/6 69673/64 Divide second interval[

1
2 , 1

]
× [0, 1] × [0, 1] 17/64 4325 Eliminate[

0, 1
2

]
×

[
0, 1

2

]
× [0, 1] −17/180 1117/4 Divide third interval[

0, 1
2

]
×

[
1
2 , 1

]
× [0, 1] 1/16 69673/64 Eliminate[

0, 1
2

]
×

[
0, 1

2

]
×

[
0, 1

2

]
−27/800 4049/64 Divide first interval[

0, 1
2

]
×

[
0, 1

2

]
×

[
1
2 , 1

]
5/48 1117/4 Eliminate[

0, 1
4

]
×

[
0, 1

2

]
×

[
0, 1

2

]
−1531/115200 63225/4096 Divide second interval[

1
4 , 1

2

]
×

[
0, 1

2

]
×

[
0, 1

2

]
959/61440 4049/64 Eliminate[

0, 1
4

]
×

[
0, 1

4

]
×

[
0, 1

2

]
5971/368640 4 Eliminate[

0, 1
4

]
×

[
1
4 , 1

2

]
×

[
0, 1

2

]
19/1440 63225/4096 Eliminate

The solution of this example as a solution of the system of polynomial equations (13) is
investigated also. The sweep directions are chosen as the directions in which the box edge lengths
are larger. After 190 sweeps in 19 s the algorithm gives an affirmative answer.
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