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Abstract

Starting from the notion of thickness of Parks we define a notion of robustness for arbitrary subsets of R
k and we investigate its

relationship with the notion of positive reach of Federer. We prove that if a set M is robust, then its boundary ∂M is of positive reach
and conversely (under very mild restrictions) if ∂M is of positive reach, then M is robust. We then prove that a closed non-empty
robust set in R

k (different from R
k) is a codimension zero submanifold of class C1 with boundary. As a partial converse we show

that any compact codimension zero submanifold with boundary of class C2 is robust. Using the notion of robustness we prove
a kind of stability theorem for codimension zero compact submanifolds with boundary: two such submanifolds, whose boundaries
are close enough (in the sense of Hausdorff distance), are diffeomorphic.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Definition 1 (ε-thick set). A set M ⊂ R
k is called ε-thick (with ε > 0) if for every x ∈ M there exists y ∈ M such that

x ∈ B(y, ε) ⊂ M .

This notion is due to Parks [5] (see also [3]). (B(y, ε) is the open ball with center y and radius ε, B(y, ε) is its
closure.) We denote the set of ε-thick subsets of R

k by Tε .

Definition 2 (ε-robust set). We call a set M ⊂ R
k ε-robust (with ε > 0), if M and M ′ = R

k\M are both ε-thick.

We denote the set of ε-robust subsets of R
k by Rε:

Rε = {M | M ∈ Tε and M ′ ∈ Tε}.

* Corresponding author.
E-mail addresses: adeniz@anadolu.edu.tr (A. Deniz), skocak@anadolu.edu.tr (Ş. Koçak), ratiu@bilgi.edu.tr (A.V. Ratiu).
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Fig. 1. The associated segment [a′a′′] to the point a ∈ ∂M .

We call a set M ⊂ R
k robust, if it is ε-robust for some ε > 0 and define its robustness as

robustness(M) = sup{ε > 0 | M ∈Rε}.

Definition 3 (ε-reach set). Let ∅ �= S ⊂ R
k and ε > 0. S is said to be of ε-reach, if for all x ∈ R

k with dist(x, S) < ε

(where dist(x, S) = inf{|x − s|: s ∈ S}), there exists a unique point a ∈ S such that dist(x, S) = |x − a|.

This notion is due to Federer [1]. See also [4].
Define the ε-neighborhood of S as

N(S, ε) = {
x ∈ R

k
∣∣ dist(x, S) < ε

}
.

For an ε-reach set S, we have the projection map (called the nearest point map)

π : N(S, ε) → S

defined with the notations above as π(x) = a for all x ∈ N(S, ε). Note that for all points y on the line segment between
x and a, π(y) = π(x) = a.

Lemma 4. Let M ∈Rε and a ∈ ∂M . Then there exist unique points a′ ∈ M and a′′ ∈ M ′ with |a′ − a| = |a′′ − a| = ε

such that B(a′, ε) ⊂ M and B(a′′, ε) ⊂ M ′.

Proof. Let a ∈ ∂M belong to M . (The case a ∈ M ′ can be handled similarly.) Then M ∈ Tε implies the existence of
a point a′ ∈ M with a ∈ B(a′, ε) ⊂ M . a must lie on the boundary of the disk B(a′, ε), because otherwise a would be
an interior point of M . We now choose a point a′′ as the point on the line a′a such that a is the middle point of the
closed segment [a′a′′] (see Fig. 1).

In order to prove B(a′′, ε) ⊂ M ′, consider a sequence (an) of points in M ′ converging to a and for each n let cn be a
point such that an ∈ B(cn, ε) ⊂ M ′. By restricting to a subsequence if necessary we can assume that (cn) converges to
a point c. Since dist(cn,M) � ε we conclude that dist(c,M) � ε, so B(c, ε) ⊂ M ′. As |an − cn| � ε we conclude that
|a − c| � ε, but since a ∈ M , we get |a − c| = ε, and so |a′ − c| � 2ε. Since B(a′, ε)∩B(c, ε) = ∅, then |a′ − c| � 2ε.
Thus the distance the |a′ − c| = 2ε and c = a′′. We have thus proved that B(a′′, ε) ⊂ M ′.

In order to prove the uniqueness, assume the point a ∈ ∂M admits two pairs of points (a′, a′′) and (a′, a′′) with the
required properties. Since B(a′, ε)∩B(a′′, ε) = ∅, |a′ −a′′| � 2ε and since |a′ −a| =| a′′−a| = ε, then |a′−a′′ |� 2ε.
We conclude that |a′ − a′′| = 2ε and that a is the midpoint of [a′a′′]. Similarly a is the midpoint of [a′a′′].

Obviously the pair of points (a′, a′′) also satisfies the required properties in the statement of the lemma, then as
above we conclude that a is the midpoint of [a′a′′] as well. Then a′′ = a′′ and a′ = a′. �

Lemma 4 enables us to associate a closed segment [a′a′′] to every point a ∈ ∂M such that a is the middle point of
this segment. Points of [a′a) are interior points of M and points of (aa′′] are interior points of M ′.

Remark 5. With the notations of Lemma 4, for any point c ∈ [a′a′′], dist(c, ∂M) = |c − a| holds.
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Proof. Let us first see dist(a′, ∂M) = ε. Assume there exists b ∈ ∂M with |a′ − b| < ε. Then, because of b ∈
B(a′, ε) ⊂ M , b would be an interior point of M , contradicting b ∈ ∂M . Similarly, dist(a′′, ∂M) = ε.

Now let c ∈ [a′a), and assume |c−b| < |c−a| for some b ∈ ∂M . Then we would get |a′ −b| � |a′ −c|+ |c−b| <
|a′ − c| + |c − a| = ε, thus dist(a′, ∂M) < ε contradicting dist(a′, ∂M) = ε. �

We will denote the set [a′a′′] − {a′, a′′} by (a′a′′) and call it the open segment associated to a ∈ ∂M . We will call
(a′a) ⊂ (a′a′′) the inner part of (a′a′′) and (aa′′) ⊂ (a′a′′) the outer part.

We will now show that open segments associated to different points are disjoint:

Lemma 6. Let M ∈ Rε , a, b ∈ ∂M , a �= b and let (a′a′′), (b′b′′) be the open segments associated to a and b. Then
(a′a′′) ∩ (b′b′′) = ∅.

Proof. We consider two cases:
(i) Let (a′a′′) and (b′b′′) intersect at a single point c. Then c must be different from both a and b. If we had c = a,

then dist(c, ∂M) = 0. By Remark 5, |c − b| = dist(c, ∂M)=0, so c = b, contradicting a �= b.
c must lie either on the outer parts of the segments or on the inner parts. Otherwise, c would be at the same time

an interior point of M and M ′.
Assume, for example, c ∈ (aa′′) ∩ (bb′′). Then |b − a′′| < |b − c| + |c − a′′| since b, c and a′′ are not collinear. By

Remark 5, we have |b − c| = dist(c, ∂M) = |a − c|.
Hence, |b − a′′| < |a − c| + |c − a′′| = |a − a′′| = ε. But this contradicts dist(a′′, ∂M) = ε.
(ii) If (a′a′′) and (b′b′′) intersect along a common subsegment, then either b′ or b′′ must belong to (a′a′′). But that

would give a distance to a less than ε, contradicting the fact that both b′ and b′′ are at ε distance to ∂M . �
We now show that the union of open segments associated to the points of ∂M is exactly the ε-neighborhood of

∂M .

Lemma 7. Let M ∈Rε and (a′a′′) the open segment associated to a ∈ ∂M . Then
⋃

a∈∂M(a′a′′) = N(∂M,ε).

Proof. By Remark 5, for any c ∈ (a′a′′) we have dist(c, ∂M) = |c − a| < ε. This shows c ∈ N(∂M,ε), i.e.⋃
a∈∂M(a′a′′) ⊂ N(∂M,ε).
To see the other inclusion, let c ∈ N(∂M,ε). Since ∂M is closed, there exists a point a ∈ ∂M realizing the

dist(c, ∂M). It can be c ∈ M or c ∈ M ′. Assume c ∈ M ′ (the other case being similar). We want to show c ∈ [aa′′).
Since B(a′, ε) ⊂ M we have

|c − a′| � dist
(
c,B(a′, ε)

) + ε � dist(c,M) + ε = dist(c, ∂M) + ε = |c − a| + ε.

On the other hand

|c − a′| � |c − a| + |a − a′| = |c − a| + ε.

Thus |c − a′| = |c − a| + |a − a′| and the three points c, a, a′ are collinear. Since c ∈ M ′, then c ∈ [aa′′). �
2. Relation with the concept of positive reach

We now investigate the relationship between robustness and positive reach.

Theorem 8. If M ⊂ R
k is ε-robust, then ∂M is of ε-reach.

Proof. (⇒) Let M ∈ Rε , c ∈ N(∂M,ε) and a ∈ ∂M and b ∈ ∂M be two points realizing dist(c, ∂M). Then, by the
proof of Lemma 7 c ∈ (a′a′′) and c ∈ (b′b′′). But by Lemma 6 (a′a′′) and (b′b′′) are disjoint if a �= b. So we get a = b,
showing that ∂M is of ε-reach. �
Theorem 9. Let M ⊂ R

k with M̊ = M (i.e. M is the closure of its interior points). If ∂M is of ε-reach, then M is
δ-robust for all 0 < δ < ε.
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Proof. We have to show that M and M ′ = R
k\M are both δ-thick for 0 < δ < ε. We show below that M is δ-thick.

(Similarly it can be shown that M ′ is δ-thick.)
If x ∈ M\N(∂M,ε), then B(x, δ) ⊂ M .
Now let x ∈ M̊ ∩ N(∂M,ε). As ∂M is of ε-reach, there exists a unique ξ ∈ ∂M with |x − ξ | = dist(x, ∂M).
We first recall that for any other point y on the segment (xξ) the nearest point on ∂M is again ξ . If, on the contrary,

η ∈ ∂M were the nearest point to y, then the inequalities

|x − η| � |x − y| + |y − η| < |x − y| + |y − ξ | = |x − ξ |
would give a contradiction. By this argument, for any point z ∈ M̊ ∩ N(∂M,ε) collinear with x and ξ , the associated
nearest point on ∂M must be again ξ . We next show that we can define the point x′ ∈ M with the properties x ∈
B(x′, δ) ⊂ M .

Let x′ ∈ M̊ ∩ N(∂M,ε) be the point collinear with x and ξ and with distance δ + (1 − δ
ε
)d to ξ where d = |x − ξ |.

It can be easily verified that x ∈ B(x′, δ) ⊂ M .

As the last case, assume x ∈ ∂M . Because of M̊ = M , there exists a sequence {xn} of interior points of M converg-
ing to x. For every xn, there exists according to the preceding cases x′

n ∈ M with xn ∈ B(x′
n, δ) ⊂ M .

Choose a converging subsequence of {x′
n}, say {yn}, with limit y ∈ M̊ . Then we show that x ∈ B(y, δ) ⊂ M .

Assume x /∈ B(y, δ). Then we would have B(x,ρ)∩B(y, δ) = ∅ for some ρ > 0. Then a closed disk with radius δ,
whose center is closer to y than |x −y|−ρ − δ, would not intersect B(x,ρ) also. This means that, for yn close enough
to y, the corresponding xn would lie outside of B(x,ρ), contradicting the convergence xn → x.

B(y, δ) ⊂ M can be shown similarly: If B(y, δ) contains a point of M ′, then for ym close enough to y, B(y, δ)

would also contain a point of M ′. �
3. Robustness of codimension zero submanifolds

In this section we give some relations between robustness and smoothness in R
k . We use the notion of submanifold

with boundary in the sense of Hirsch [2, p. 30]. Codimension of a submanifold is the difference between the dimension
of the ambient manifold and the dimension of the submanifold. Thus, the term “codimension zero” means that the
submanifold has top dimension (i.e. its dimension equals the dimension of the ambient space).

Theorem 10. Let M ⊂ R
k be a compact codimension zero submanifold with boundary of differentiability class Cs

where s � 2. Then M is robust. Moreover, the map

Φ : ∂M × (−r, r) → N(∂M, r)

given by Φ(a,x) = a + x
r

−→
aa′′ is a Cs−1 diffeomorphism, where r = robustness(M).

Proof. By [4, Theorem 4.4.10], the boundary ∂M has positive reach. The conditions of Theorem 9 are satisfied, hence
M ∈ Rε for some ε > 0.

Consider the Weingarten map at a ∈ ∂M sending w ∈ Ta(∂M) to −N ′
w(a), where Ta(∂M) denotes the tangent

space of ∂M at a and N ′
w(a) denotes the derivative of the outer normal vector field of ∂M at a in the direction of w.

Here obviously the outer (unit) normal vector N(a) at a equals 1
r

−→
aa′′.

Fix a point a ∈ ∂M and let (w1,w2, . . . ,wk−1) (respectively (κ1, κ2, . . . , κk−1)), be the principal directions (re-
spectively principal curvatures) at a.

Choose a local coordinate system (u1, u2, . . . , uk−1) on ∂M near a such that

∂

∂ui

(a) = wi, i = 1, . . . , k − 1.

Then the Weingarten map at a

w → −N ′
w(a)

is diagonal with respect to the basis (w1,w2, . . . ,wk−1) in Ta(∂M), i.e.

−N ′
w (a) = κiwi, i = 1, . . . , k − 1.
i
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Since robustness(M) = r > 0, we conclude that for all i = 1, . . . , k − 1

0 � |κi | � 1

r

by considering the normal section of ∂M at a along wi .
Since ∂M is of r-reach the map Φ is injective and by Lemma 7 (applied for all 0 < ε < r), Φ is also onto. Since

the normal vector N(a) is of class Cs−1, it is sufficient to prove that the map Φ is regular on ∂M × (−r, r).
With the notations above

∂Φ

∂ui

(a, x) = ∂

∂ui

(a) − x
(−N ′

wi
(a)

) = wi − xκiwi = (1 − xκi)wi for all i = 1, . . . , k − 1,

and
∂Φ

∂x
(a, x) = 1

r

−→
aa′′ = N(a).

Since 1 − xκi �= 0 for all x ∈ (−r, r), we conclude that Φ is regular at (a, x). �
Remark 11. If the differentiability class of M in Theorem 10 is less smooth than C2, then the conclusion need not
hold, i.e. M might not be robust. A counter-example can be manufactured by using Example 4.4.12 in [4].

Remark 12. Under the conditions of Theorem 10, we conclude also that the nearest point map π : N(∂M, r) → ∂M

is of class Cs−1 on the whole tubular neighborhood N(∂M, r), since π = pr1 ◦ Φ−1, where pr1 is the projection of
∂M × (−r, r) on its first factor.

Remark 13. From the proof of Theorem 10, we obtain the estimate

robustness(M) � 1

max{|κw(a)|: w ∈ Ta(∂M), a ∈ ∂M, w �= 0}
where κw(a) is the normal curvature of the hypersurface ∂M at a in the direction of w.

Theorem 14. Let M ⊂ R
k be closed, non-empty and M �= R

k . If M is robust, then M is a codimension zero submani-
fold with boundary of differentiability class C1.

Proof. As M is ε-robust for some ε > 0, we can apply Lemma 7:

N(∂M,ε) =
⋃

a∈∂M

(a′a′′).

To make the dependence of a′′ on a one-to-one, we use a smaller δ-neighborhood with δ < ε and denote the
segment again by (a′a′′):

N(∂M,δ) =
⋃

a∈∂M

(a′a′′).

We define the following function (called the signed-distance to ∂M):

f∂M : R
k → R,

f∂M(x) =
{

dist(x, ∂M) if x ∈ M ′,
−dist(x, ∂M) if x ∈ M.

Since any x ∈ N(∂M,δ) belongs to a unique segment (a′a′′) associated to a ∈ ∂M , the restriction of f∂M to N(∂M,δ),
say f , is given by the formula:

f (x) =
{ |x − a| for x ∈ [aa′′),

−|x − a| for x ∈ (a′a].
We will show that f is of class C1 with |∇f | = 1 (∇ = grad) on the whole domain. As ∂M = f −1(0), this will

yield the theorem.
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Fig. 2. Stadium.

To this end, after fixing a segment (a′a′′), we consider two auxiliary functions f1 and f2 as signed-distance function
to the δ-spheres around a′ respectively a′′, i.e. f1(x) = |x−a′|−δ respectively f2(x) = |x−a′′|−δ for x ∈ N(∂M,δ).

It is easily seen that the inequalities −f2 � f � f1 hold. Likewise, it can be computed that (∇f1)(x) = a′′−a
δ

and

(∇f2)(x) = − a′′−a
δ

for x ∈ (a′a′′).
As −f2 � f � f1, −f2(x) = f (x) = f1(x) for x ∈ (a′a′′) and (∇(−f2))(x) = (∇f1)(x) for x ∈ (a′a′′), we find

that (∇f )(x) = a′′−a
δ

and |(∇f )(x)| = 1.

Continuity of a′′−a
δ

as it depends on x ∈ N(∂M,δ) can be shown using [4, Lemma 4.4.3], and locally inverting the
function a → a′′. �
Remark 15. The differentiability class in the conclusion of the Theorem 14 need not be higher than C1. As an example
consider M ⊂ R

2 as indicated in Fig. 2 (as a union of a square and two half-disks).

4. A stability theorem of submanifolds

We will now prove a kind of stability theorem for codimension zero submanifolds with boundary in R
k . By Theo-

rem 10, a compact codimension zero submanifold with boundary in R
k of class C2 has positive robustness.

Theorem 16. Let M and N be compact codimension zero submanifolds with boundary in R
k of class Cs (with s � 2)

and let

r = min
{
robustness(M), robustness(N)

}
.

If dH (∂M,∂N) < r
4 , where dH denotes the Hausdorff distance, then ∂M and ∂N are diffeomorphic of class Cs .

Furthermore, M and N are diffeomorphic of class Cs .

Proof. Using Lemma 4 and Remark 5, one can see that for any a ∈ ∂M there exist unique points a′ ∈ M and a′′ ∈ M ′
such that

(i) B(a′, r) ⊂ M (as M is closed).
(ii) B(a′′, r) ⊂ M ′.

(iii) B(a′, r) ∩ B(a′′, r) = {a}.

We consider the closed balls α′ = B(a′, 3
4 r) and α′′ = B(a′′, 3

4 r). We have dH (α′, ∂M) � r
4 and dH (α′′, ∂M) � r

4 .
The hypothesis dH (∂M,∂N) < r

4 implies ∂N ∩ (α′ ∪ α′′) = ∅.

Claim 1. (a′a′′) ∩ ∂N �= ∅.

Assume to the contrary that (a′a′′) ∩ ∂N = ∅. In that case, the set α′ ∪ α′′ ∪ (a′a′′) does not intersect ∂N .
As α′ ∪α′′ ∪ (a′a′′) is connected, it is either contained in N or in N ′. Consider the case α′ ∪α′′ ∪ (a′a′′) ⊂ N . (The

other case can be handled similarly.)
As a ∈ ∂M and dH (∂M,∂N) < r

4 , there exists b ∈ ∂N such that a ∈ B(b, r
4 ). For this b ∈ ∂N , there exist unique

b′ and b′′ such that

(i) B(b′, r) ⊂ N, (ii) B(b′′, r) ⊂ N ′, (iii) B(b′, r) ∩ B(b′′, r) = {b}.
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Fig. 3. The pair of not necessarily intersecting segments [a′a′′] and [b′b′′] in R
k .

We define β ′ = B(b′, 3
4 r) and β ′′ = B(b′′, 3

4 r). As above, we have ∂M ∩ (β ′ ∪ β ′′) = ∅.

α′ ∪ α′′ ∪ (a′a′′) ⊂ N and B(b′′, r) ⊂ N ′ imply
(
α′ ∪ α′′ ∪ (a′a′′)

) ∩ B(b′′, r) = ∅.

From dist(a′, ∂N) � 3
4 r , dist(a′′, ∂N) � 3

4 r and dist(b′′, ∂N) = r we get |a′ − b′′| � 7
4 r and |a′′ − b′′| � 7

4 r .
Now consider the pair of segments in R

k , [a′a′′] and [b′b′′] (see Fig. 3).
We can then write the “quadrilateral” identity:

|a′ − b′|2 + |b′ − a′′|2 + |a′′ − b′′|2 + |b′′ − a′|2 = |a′ − a′′|2 + |b′ − b′′|2 + 4|a − b|2.
|a′ − b′|2 + |a′′ − b′|2 = |a′ − a′′|2 + |b′ − b′′|2 + 4|a − b|2 − |a′ − b′′|2 − |a′′ − b′′|2

� (2r)2 + (2r)2 + 4

(
r

4

)2

−
(

7

4
r

)2

−
(

7

4
r

)2

� 34

16
r2 <

(
7

4
r

)2

.

This means that |a′ −b′| < 7
4 r and |a′′ −b′| < 7

4 r , implying B(b′, 3
4 r)∩B(a′, r) �= ∅ and B(b′, 3

4 r)∩B(a′′, r) �= ∅,
i.e. β ′ ∩ B(a′, r) �= ∅ and β ′ ∩ B(a′′, r) �= ∅. The connected set β ′ must than intersect ∂M , because it intersects
B(a′, r) ⊂ M and B(a′′, r) ⊂ M ′. But this is a contradiction, as we know ∂M ∩ (β ′ ∪ β ′′) = ∅. This excludes the
possibility α′ ∪ α′′ ∪ (a′a′′) ⊂ N . Consequently, (a′a′′) must intersect ∂N , so Claim 1 is proved.

Let us choose a point in (a′a′′) ∩ ∂N and denote it by n. Since dist(n, ∂M) = |n − a| and dH (∂M,∂N) < r
4 , we

have |n − a| < r
4 .

Claim 2. (a′a′′) ∩ ∂N = {n}.

Consider the quadrilateral a′n′a′′n′′, where [n′n′′] is the associated segment to n ∈ ∂N with |n−n′| = |n−n′′| = r

(see Fig. 4). By the argument used in the end of the proof of Claim 1, consecutive edges of the quadrilateral a′n′a′′n′′
cannot be both less than 7

4 r . On the other hand, by the quadrilateral identity, we get

|a′ − n′|2 + |n′ − a′′|2 + |a′′ − n′′|2 + |n′′ − a′|2 = |a′ − a′′|2 + |n′ − n′′|2 + 4|a − n|2

� (2r)2 + (2r)2 + 4

(
r

4

)2

� 132

16
r2 < 3

(
7

4
r

)2

which means that at most two of the sides of the quadrilateral can be greater than or equal to 7
4 r . In conclusion, exactly

two sides of a′n′a′′n′′ must be at least of length 7
4 r and these two sides must be opposite sides of the quadrilateral,

say for instance, [a′n′′] and [a′′n′].
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Fig. 4. The pair of intersecting segments [a′a′′] and [n′n′′].

Fig. 5. Projection of the segment [nn′′] onto the line a′a′′ .

Let δ be the length of the projection of [nn′′] on the line a′a′′ (see Fig. 5). We will show δ � r
2 . We abbreviate

|a − n| by ρ. We can write

2

(
7

4
r

)2

� |a′ − n′′|2 + |a′′ − n′|2 = (r + ρ)2 + r2 + 2(r + ρ)δ + (r − ρ)2 + r2 + 2(r − ρ)δ

= 4r2 + 2ρ2 + 4rδ,

2r2 + ρ2 + 2rδ � 49

16
r2,

2rδ �
(

49

16
− 2 − 1

16

)
r2 = r2 since ρ = |a − n| < r

4
,

which gives δ � r
2 .

Now we can see that n is the unique point in (a′a′′) ∩ ∂N . Indeed, if there was another such point n, we would
have

|n − n| � |n − a| + |a − n| < r

2
.

Since n ∈ ∂N , thus n /∈ B(n′, r) ∪ B(n′′, r) we must have |n − n| � 2δ � r which contradicts |n − n| < r
2 , proving

Claim 2.
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From Claim 2 it follows that we have a well-defined map:

ϕ : ∂M → ∂N,

ϕ(a) = n, with n ∈ (a′a′′) ∩ ∂N.

Since the associated open segments to different points of ∂M are disjoint, the map ϕ is injective.
On the other hand, the nearest point map π : N(∂M, r) → ∂M , gives us a map

ψ = π |∂N : ∂N → ∂M.

ϕ and ψ are inverse to each other. As ψ is of class Cs−1, it is enough to prove that ϕ is also of class Cs−1. This
would mean that the Cs -submanifolds ∂M and ∂N are Cs−1-diffeomorphic and consequently automatically Cs -
diffeomorphic (see [2, Theorem 2.2.10(b)]).

Claim 3. ϕ is of class Cs−1.

Consider a local Cs system of coordinates (u1, . . . , uk−1) on ∂M around a ∈ ∂M . Then, we can find a local Cs−1

system of coordinates (u1, . . . , uk−1, uk = f ) on an open set U ⊂ R
k around the point a ∈ ∂M , where f is the

signed-distance function to ∂M . Then there exists a Cs−1 function g on U , such that,

(i) U ∩ ∂N = {x ∈ U | g(x) = 0}.
(ii) ∇g(x) �= 0 for all x ∈ U ∩ ∂N .

In order to prove Cs−1-smoothness of ϕ, it is enough to show ∂g
∂uk

(n) �= 0 for all n ∈ U ∩ ∂N , since

for all m ∈ ∂M, ui

(
ϕ(m)

) = ui(m), i = 1, . . . , k − 1.

Indeed, by Lemma 4.4.4 in [4], ∇uk(n) = 1
r

−→
aa′′ and ∇g(n) = |∇g(n)| 1

r

−→
nn′′. (As ∇g(n) is an outer normal vector

for N at n ∈ ∂N .)
Since |〈 −→

nn′′, 1
r

−→
aa′′〉| = δ � r

2 > 0, the vectors −→
nn

′′ and −→
aa

′′ are not perpendicular. Thus∣∣∣∣ ∂g

∂uk

(n)

∣∣∣∣ =
∣∣∣∣
〈∣∣∇g(n)

∣∣1

r

−→
nn′′, 1

r

−→
aa′′

〉∣∣∣∣
= |∇g(n)|

r

∣∣∣∣
〈

−→
nn′′, 1

r

−→
aa′′

〉∣∣∣∣
= |∇g(n)|

r
δ > 0

for all n ∈ ∂N ∩ U , which finishes the proof of Claim 3.
To prove the last statement of the theorem (that M and N are diffeomorphic of class Cs ), we will use the following

technical fact, whose proof can be given by standard arguments:
There exists a C∞ function

h : [0,1] × R ×
(

− r

4
,
r

4

)
→ R

with the following properties:

(i) h(0, x, y) = x for all x ∈ R, y ∈ (− r
4 , r

4 );
(ii) h(1,0, y) = y for all y ∈ (− r

4 , r
4 );

(iii) h(t, x, y) = x for all x ∈ R \ (− 3
4 r, 3

4 r), y ∈ (− r
4 , r

4 ), t ∈ [0,1];
(iv) h(t, ·, y) : R → R is an increasing C∞-diffeomorphism for all t ∈ [0,1] and y ∈ (− r

4 , r
4 ).

Using the function ϕ : ∂M → ∂N defined and investigated above, we define the function y : ∂M → (−r, r) by

y(a) =
{ |a − ϕ(a)| if ϕ(a) ∈ M ′,

−|a − ϕ(a)| if ϕ(a) ∈ M.
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As ϕ is Cs−1, y is also a Cs−1-function because y(a) = dist(ϕ(a), ∂M) = f (ϕ(a)) and f is also of class Cs−1.
Let Φ : ∂M × (−r, r) → N(∂M, r) be the Cs−1-diffeomorphism in Theorem 10

Φ(a,x) = a + x

r

−→
aa′′ (

a ∈ ∂M, x ∈ (−r, r)
)
.

We can define the isotopy Ft : R
k → R

k using the function h as follows:

Ft(p) = p, for all t ∈ [0,1] and p ∈ R
k \ N

(
∂M,

3

4
r

)
,

and

Ft

(
Φ(a,x)

) = Φ
(
a,h

(
t, x, y(a)

))
for all t ∈ [0,1] and p = Φ(a,x) ∈ N(∂M, r).

Thus:

(i) F0(p) = p, for all p ∈ R
k ;

(ii) F1(a) = ϕ(a), for all a ∈ ∂M (giving F1(∂M) = ∂N );

(iii) For all a ∈ ∂M , the function x ∈ (−r, r) → h(1, x, y(a)) is increasing, giving F1(M) = N ;

(iv) Ft is a C1-diffeomorphism for all t ∈ [0,1].

M and N , being Cs−1-diffeomorphic Cs -manifolds, are Cs -diffeomorphic by [2], Theorem 2.2.10(b). �
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