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Abstract: In this paper, we write Seiberg–Witten-like equations on contact metric manifolds of dimension 5. Since any

contact metric manifold has a Spinc -structure, we use the generalized Tanaka–Webster connection on a Spin c spinor

bundle of a contact metric manifold to define the Dirac-type operators and write the Dirac equation. The self-duality of

2-forms needed for the curvature equation is defined by using the contact structure. These equations admit a nontrivial

solution on 5-dimensional strictly pseudoconvex CR manifolds whose contact distribution has a negative constant scalar

curvature.
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1. Introduction

Seiberg–Witten equations were defined on 4-dimensional Riemannian manifolds by Witten in [14]. The solution

space of these equations gives differential topological invariants for 4-manifolds [1, 11]. Some generalizations

were given later on higher dimensional manifolds [4, 7, 10].

Seiberg–Witten equations consist of 2 equations. The first is the Dirac equation, which is meaningful for

the manifolds having Spinc−structure. The second is the curvature equation, which couples the self-dual part

of a connection 2-form with a spinor field. In order to be able to write down the curvature equation, the notion

of the self-duality of a 2-form is needed. This notion is meaningful for 4-dimensional Riemannian manifolds.

On the other hand, there are similar self-duality notions for some higher dimensional manifolds [5, 13]. In the

present paper, we propose Seiberg–Witten-like equations for 5-dimensional contact metric manifolds by using

the Spinc -structure and the notion of self-duality given in [12] and [3], respectively.

The paper is organized as follows. We begin with a section introducing some basic facts concerning

contact metric manifolds. In the following section, we study self-dual 2-forms on 5-dimensional contact metric

manifolds. In Section 4, we discuss the Spinc -structures and Dirac-type operators associated to the generalized

Tanaka–Webster connection. In the final section we propose the Dirac and curvature equations and hence write

Seiberg–Witten-like equations on contact metric manifolds of dimension 5. Finally, we obtain a special solution

for these equations on the 5-dimensional strictly pseudoconvex CR manifolds whose contact distribution has a

negative constant scalar curvature.
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2. Contact metric manifolds

A contact form on a smooth manifold M of dimension (2n+1) is a 1-form η such that η∧(dη)n ̸= 0 everywhere

on M . The contact form η induces a hyperplane subbundle H of the tangent bundle TM given by H = Ker η .

The Reeb vector field associated to η is the vector field ξ uniquely determined by η(ξ) = 1 and dη(ξ, .) = 0.

Then (M,η) is called a contact manifold.

Note that given H = Ker η and ξ such that η(ξ) = 1, we can split the tangent bundle into TM = H⊕Rξ .
If X is any vector field on M , then X decomposes as X = XH + fξ for any f ∈ C∞(M,R). XH is called the

horizontal part of X .

If (M,η) is a contact manifold, then the pair (H, dη|H) is a symplectic vector bundle. We fix an almost

complex structure JH on H compatible with dη|H , i.e. dη|H(JH(X), JH(Y )) = dη|H(X,Y ). We can extend

JH to an endomorphism J of the tangent bundle TM by setting Jξ = 0. The relation J2 = −Id+ η⊗ ξ then

holds. With this in mind, gη , given by

gη(X,Y ) = dη(X,JY ) + η(X)η(Y ),

defines a Riemannian metric on TM . The metric gη is called a Webster metric and is said to be associated to

η . Moreover, the following relations hold:

gη(ξ,X) = η(X), gη(JX, Y ) = dη(X,Y ), gη(JX, JY ) = gη(X,Y )− η(X)η(Y )

for any X,Y ∈ Γ(TM). We call (M, gη, η, ξ, J) a contact metric manifold. For detailed information, see [2, 12].

The generalized Tanaka–Webster connection ∇ is a well-known connection on the contact metric manifold

(M, gη, η, ξ, J). This connection satisfies the conditions ∇η = 0 and ∇gη = 0. Moreover, if J is integrable, i.e.

∇J = 0, then the contact metric manifold (M, gη, η, ξ, J) is called a strictly pseudoconvex CR manifold [12].

3. Self-dual 2-forms on 5-dimensional contact metric manifolds

Let (M, gη, η, ξ, J) be a 5-dimensional contact metric manifold. The p -form α is called a horizontal p -form

if i(ξ)α = 0 where i is contraction operator. For any 2-form α ∈ Ω2(M) we have the splitting α = αH + αξ

where αH = α◦Π, Π : TM → H is the canonical projection and αξ = η∧ i(ξ)α . The decomposition of Ω2(M)

is then given by

Ω2(M) = Ω2
H(M)⊕ η ∧ Ω1

H(M), (1)

where Ω2
H(M) and Ω1

H(M) are the bundles of horizontal forms. Moreover, any horizontal 2-form can be split

into its self-dual and anti-self dual parts as follows.

Let ∗ be the Hodge-star operator acting on the cotangent bundle T ∗M . We can define the operator

⋆ : Ω2(M) → Ω2(M), ⋆(β) := ∗(η ∧ β).

We can restrict the operator ⋆ to the space of horizontal 2-forms Ω2
H(M):

⋆H : Ω2
H(M) → Ω2

H(M), ⋆H(β) := ∗(η ∧ β).

This operator satisfies ⋆2H = id . Then we have the following orthogonal decomposition:

Ω2
H(M) = Ω2

H(M)+ ⊕ Ω2
H(M)−, (2)
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where Ω2
H(M)± is the eigenspace associated to eigenvalue ±1 of the operator ⋆H . The eigenspace Ω2

H(M)+

is called as the space of self-dual 2-forms. In a similar way, the eigenspace Ω2
H(M)− is called the space of

anti-self-dual 2-forms (see [3, 8]). From equalities (1) and (2), we have

Ω2(M) = Ω2
H(M)+ ⊕ Ω2

H(M)− ⊕ η ∧ Ω1
H(M).

Hence, any 2-form α can be written as α = α+
H + α−

H + η ∧ β where β is a 1-form on H . The self-dual part

of α is defined as the self-dual part of αH , i.e. α+ := α+
H .

Locally, we can specify the self-dual and anti-self-dual 2-forms. For this, choose a local orthonormal frame

field {e1, e2 = J(e1), e3, e4 = J(e3), ξ} and denote by {e1, e2, e3, e4, η} the dual basis. From (2), the 2-form dη

has the form dη = e1 ∧ e2 + e3 ∧ e4. The forms e1 ∧ e2 + e3 ∧ e4 , e1 ∧ e3 − e2 ∧ e4 and e1 ∧ e4 + e2 ∧ e3 are an

orthonormal basis for Ω2
H(M)+ . An orthonormal basis for Ω2

H(M)− is given by the forms e1 ∧ e2 − e3 ∧ e4 ,
e1 ∧ e3 + e2 ∧ e4 , and e1 ∧ e4 − e2 ∧ e3 .

4. Dirac operators on contact metric manifolds

In this section we will describe Dirac operators on contact metric manifolds. For this, we need a Spinc -structure.

Any contact metric manifold admits a canonical Spinc -structure. Then we have a Spinc -bundle PSpinc(2n) ,

an S1 -bundle PS1 , and the canonical line bundle L . The spinor bundle S can be identified with the bundle

∧0,∗
H M of the (0, ∗) forms. For the definitions and more details about these notions, we refer to [12]. For our

purpose, we use the following representation of the complex Clifford algebra Cl5 :

κ(e1) =


0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

 , κ(e2) =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 ,

κ(e3) =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , κ(e4) =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 ,

κ(e5) =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 , κ(dη) =


0 0 0 0
0 2i 0 0
0 0 0 0
0 0 0 −2i

 .

Let (M, gη, η, ξ, J) be a contact metric manifold equipped with a Spinc -structure. Each unitary con-

nection A on L induces a spinorial connection ∇A on S with the generalized Tanaka–Webster connection ∇ .

The Kohn–Dirac operator DA
H is defined as follows:

DA
H =

2n∑
i=1

κ(ei)(∇A
ei),

where {ei} is a local orthonormal frame of H . The Dirac operator DA is defined by

DA = DA
H + ξ · ∇A

ξ

(see also [12]).
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DEǦİRMENCİ and BULUT/Turk J Math

5. Seiberg–Witten-like equations on 5-dimensional contact metric manifolds

In [6], Seiberg–Witten-like equations on 5-dimensional Euclidean space R5 were written. In this section, we

will write Seiberg–Witten-like equations on 5-dimensional contact metric manifolds and give a solution to these

equations on strictly pseudoconvex CR manifolds.

For a spinor ψ we define a 2-form σ(ψ) by the following formula:

σ(ψ)(X,Y ) =< X · Y · ψ,ψ > +gη(X,Y )|ψ|2,

where X,Y ∈ Γ(TM) and <,> is the Hermitian inner product on the spinor space S . Note that σ(ψ) is an

imaginary valued 2-form. The restriction of σ(ψ) to H is denoted by σH(ψ).

Definition 1 Let (M, gη, η, ξ, J) be a contact metric 5-manifold. Fix a Spinc -structure and a connection A

in the U(1)-principal bundle associated with the Spinc -structure. For any ψ ∈ Γ(S) Seiberg–Witten equations

are defined by

DA(ψ) = 0,

F+
A = −1

4
σ(ψ)+,

(3)

where F+
A is the self-dual part of the curvature FA and σ(ψ)+ is the self-dual part of the 2-form σ(ψ) .

Now we give a solution for Seiberg–Witten equations in dimension 5. To do this, we follow the method

given in [9]. From now on we suppose that (M, gη, η, ξ, J) is a strictly pseudoconvex CR manifold.

Let (M, gη) be a contact metric manifold endowed with Spinc -structure. The spinor bundle is then

S = ∧0,∗
H (M). Namely,

S = ∧0,2
H (M)⊕ ∧0,1

H (M)⊕ ∧0,0
H (M),

where ∧0,2
H (M) is the eigenspace corresponding to the eigenvalue 2i of the mapping κ(dη) : S → S and has

dimension 1, ∧0,1
H (M) is the eigenspace corresponding to the eigenvalue 0 of the mapping κ(dη) : S → S

and has dimension 2, and ∧0,0
H (M) is the eigenspace corresponding to the eigenvalue −2i of the mapping

κ(dη) : S → S and has dimension 1.

If ψ0 ∈ ∧0,0
H (M), then ψ0 denotes the spinor corresponding to the constant function 1 in the chosen

coordinates

ψ0 =


0
0
0
1

 .

Moreover, we have dη · ψ0 = −2iψ0 . By using the expression of σH(ψ) in the local coordinates, we obtain the

following identity:

σH(ψ0) = −idη. (4)

5.1. Some identities

In this part, we collect some identities needed for the special solution of Seiberg–Witten equations.
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When M is a strictly pseudoconvex CR manifold, M also has a complex CR structure [2]. Let

{Z1, . . . , Zn} be a local unitary frame of T 1,0 over U ⊂ M where Zα = 1√
2
(eα −

√
−1Jeα), 1 ≤ α ≤ n .

Let us denote by ω := (ωαβ) the matrix of the connection form of ∇ with respect to the frame. Then we can

write the following:

∇Zα =
∑
β

ωαβZβ .

{Z1, . . . , Zn, Z1, . . . , Zn, ξ} is a local frame of the complexified tangent bundle TMC over U .

Let {θ1, . . . , θn, θ1, . . . , θn, η} be the corresponding dual basis. Thus,

ζ = θ
1 ∧ . . . ∧ θn : U → Λ0,n

H (M)

is a local section in determinant line bundle Λ0,n
H (M). The Webster connection ∇ defines a covariant derivative

in the canonical line bundle Λ0,n
H (M) such that

∇(θ
1 ∧ . . . ∧ θn) = −Tr(ω)θ1 ∧ . . . ∧ θn.

Since ∇ is a metric with respect to gη , the trace Tr(ω) is purely imaginary. Therefore, this connection ∇ in

Λ0,n
H (M) induces a connection on the associated S1 -principal bundle PS1 . Let us denote this connection by A .

Then,

ζ∗A = −Tr ω = Trω

is a local connection form on S1 -bundle PS1 . Let FA be the curvature form of the connection A . The curvature

form FA is a 2-form on M with values in iR . Over U ⊂M we have

FA = dA = Trdω. (5)

Moreover,

Ric(X,Y ) = Tr(dω)− Tr(ω ∧ ω) = Trdω. (6)

From (5) and (6) it follows that

FA = Ric. (7)

Here we follow the similar procedures given in [2].

In the following, the Ricci form ρH is defined by

ρH(X,Y ) = Ric(X, JHY ) = gη(X,JHRicY )

for any X,Y ∈ Γ(H). In the case of a strictly pseudoconvex CR manifold, the almost complex structure JH is

complex. Therefore, we have the equation

Ric(X,Y ) = iρH(X,Y ) (8)

for any X,Y ∈ Γ(H).
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Proposition 2 Let ρH be a Ricci form on H and sH be a scalar curvature of the subbundle H . Then the

following identity holds:

ρ+H = −sH
4
dη, (9)

where ρ+H is a the self-dual part of the Ricci form ρH .

Proof In local coordinates the almost complex structure J is given as follows.

J =


0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0


Since J ◦Ric = Ric ◦ J , we obtain the reduced form of the Ric as follows.

Ric =


R11 0 R13 R14 0
0 R11 −R14 R13 0
R13 −R14 R33 0 0
R14 R13 0 R33 0
0 0 0 0 R55


The Ricci form ρH can be written in the following way:

ρH = −R11e
1 ∧ e2 −R33e

3 ∧ e4 −R13(e
1 ∧ e4 − e2 ∧ e3) +R14(e

1 ∧ e3 + e2 ∧ e4).

Since the 2-forms e1 ∧ e4 − e2 ∧ e3 and e1 ∧ e3 + e2 ∧ e4 are anti-self-dual 2-forms, the self-dual part of ρH is

given by

ρ+H =
−R11 −R33

2
dη = −R11 +R22 +R33 +R44

4
dη = −sH

4
dη,

where sH is the restricted scalar curvature to H . 2

5.2. A special solution to 5-dimensional Seiberg–Witten equations

Let (M, gη, η, ξ, J) be a strictly pseudoconvex contact manifold of dimension 5. Suppose that the scalar

curvature sH of the subbundle H is negative and constant. Then let ψ =
√
−sHψ0 . In this case, ψ ∈ ∧0,0

H (M).

From (4) we have

σH(ψ) = isHdη. (10)

By using (7),(8), (9), and (10) we obtain

F+
A = Ric+ = iρ+H = −isH

4
dη = −1

4
σH(ψ). (11)

Note that since dη is a self-dual 2-form, σH(ψ) is also i.e., σH(ψ)+ = σH(ψ). Because of σ(ψ)+ = σH(ψ)+

and with identity (11), we get

F+
A = −1

4
σ(ψ)+.
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DEǦİRMENCİ and BULUT/Turk J Math

One can show that ∇A
eiψ0 = 0. Therefore, we deduce that

DA
Hψ = 0.

Moreover,

DAψ = 0.

The pair (A,ψ =
√
−sHψ0) is a solution of Seiberg–Witten-like equations in (3).
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