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Abstract. In this paper, the General Rosenau–RLW equation is solved by using meshless 
kernel based method of lines. To test the accuracy of the method some numerical experiments 
are presented. Obtained numerical results are compared with some earlier works. It is seen that 
the method is very efficient and reliable due to obtained numerical results are very satisfactory.

1. Introduction

The General Rosenau RLW equation has following form

ut − uxxt + uxxxxt + ux + (up)x = 0 (1)

where p ≥ 2 is an integer.
If p = 2, then Eq. (1) is called the usual Rosenau–RLW equation, [1, 2]. Moreover, if p = 3,

then Eq. (1) is called the modified Rosenau–RLW equation and if p ≥ 4 then it is called as the
General Rosenau–RLW equation.
It is known that the solitary wave solution os Eq.(1) is

u(x, t) = eln{(p+3)(3p+1)(p+1)/[2(p2+3)(p2+4p+7)]}/(p+1)

× sech4/(p+1)[ (p−1)√
4p2+8p+20

(x− ct)]
(2)

where p ≥ 2 is an integer and

c = (p4 + 4p3 + 14p2 + 20p + 25)/(p4 + 4p3 + 10p2 + 12p + 21).

In the literature there a lot of studies about the Rosenau RLW equation see also references [3]
- [10]. In this study as different from other publications evaluated numerical solutions of the
General Rosenau–RLW equation by using the meshless kernel based method of lines (MKBMOL)
will be presented. In this paper, we consider the following initial–boundary value problem of
the general Rosenau–RLW equation with an initial condition:

u(x, 0) = u0(x) = 0, xl ≤ x ≤ xr (3)
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and boundary conditions
u(xl, t) = u(xr, t) = 0, (4)

The initial–boundary value problem possesses the following conservative properties:

Q(t) =

∫ xr

xl

u(x, t)dx =

∫ xr

xl

u0(x, 0)dx = Q(0),

and
E(t) = ‖u‖2L2

+ ‖ux‖2L2
+ ‖uxx‖2L2

= E(0).

When −xl ≫ 0 and xr ≫ 0, the initial boundary value problem (1)-(3) is consistent, so the
boundary condition (3) is reasonable.

2. Application of the MKBMOL

In this section, the MKBMOL will be used to obtain the numerical solution of the Eq. (1) with
initial and boundary conditions (3) and (4). In the method, time discretization isn’t necessary
and radial basis functions are used as kernel function. The method of lines approximates the
solution u by a linear combination [11]

u(x, t) =

N
∑

j=1

αj(t)υj(x), (5)

where αj(t) is unknown and υj(x) is obtained by kernel functions such as Multiquadric [12],
Gaussian or Wendland’s [13] functions.
Multiquadric and Gaussian radial basis functions are defined as follows:

Multiquadric(MQ) φ(r) =
√

(εr)2 + 1

Gaussian(GA) φ(r) = exp(−r2/ε2)

where r = |x − xj | is the Euclidean distance between collocation points x and xj . The general
form of compactly supported radial basis functions are defined as follows:

φl,k(r) = (1− r)n+p(r) (6)

where p is a prescribed polynomial for k ≥ 1 with following conditions:

(1− r)n+ =

{

(1− r)n, if 0 ≤ r < 1

0, if r ≥ 1
(7)

In our algorithms used following Wendland’s functions are as follows:

φ6,4(r) = (1− r)10+ (5 + 50r + 210r2 + 450r3 + 429r4),

φ7,5(r) = (1− r)12+ (9 + 108r + 566r2 + 1644r3 + 2697r4 + 2048r5).
(8)

Derivatives in (1) with respect to time and space variables can be expressed as follows

ut(x, t) =
N
∑

j=1

α′
j(t)υj(x), (9)
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ux(x, t) =
N
∑

j=1

αj(t)υ
′
j(x), (10)

uxxt(x, t) =

N
∑

j=1

α′
j(t)υ

′′
j (x), (11)

uxxxxt(x, t) =

N
∑

j=1

α′
j(t)υ

iv
j (x), (12)

Substituting the Eqs.(9-12) in to (1) we get

N
∑

j=1

α′
j(t)υj(x) +

N
∑

j=1

α′
j(t)υ

iv
j (x)−

N
∑

j=1

α′
j(t)υ

′′
j (x) +

N
∑

j=1

αj(t)υ
′
j(x)

+
[

N
∑

j=1

αj(t)υ
′
j(x)]

p = 0

(13)

The Eq.(13) can be written as follows

N
∑

j=1

(υj(x) + υivj (x)− υ′′j (x))α
′
j(t) = −

N
∑

j=1

αj(t)υj(x)− [
N
∑

j=1

αj(t)υ
′
j(x)]

p (14)

The Eq.(13) is written as follows by using MATLAB notations

(V + V iv − V ′′) ∗ α′(t) = −(V ∗ α(t)) − (V ′ ∗ α(t)). ∧ p (15)

Also the Eq. (15) is rewritten as follows:

α′(t) = −(V + V iv − V ′′)−1[(V ∗ α(t)) + (V ′ ∗ α(t)). ∧ p] (16)

since matrices V and others are invertible. V + V iv − V ′′ and vectors α(t) and α′(t) are defined
as follows

V := υj(xk)

V ′ := υ′j(xk)

V ′′ := υ′′j (xk)

V iv = υivj (xk)

α(t) = [α1(t), α2(t), ...αn(t)]
T

α′(t) = [α′
1(t), α

′
2(t), ...α

′
n(t)]

T

(17)

for 1 ≤ k ≤ N and 1 ≤ j ≤ N. Where the symbol “∗” defines the pointwise product, the symbol
“. ∧ p” defines the component-by-component multiplication of vectors. Eq.(16) is an ordinary
differential equation with respect to α(t) and it is solved by using any ordinary differential
equation solver in MATLAB.
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3. Numerical examples

In this section, numerical experiments on a test problem to confirm and illustrate the accuracy
of our proposed method will be presented. The accuracy of the method is measured by the
root mean square error L2 and maximum error L∞. In the tables comparisons with numerical
solutions references [9]-[10] are presented. Where L2 and L∞ are calculated as follows:

L2 =

√

h
N
∑

j=1

∣

∣

∣
uexactj − unum.

j

∣

∣

∣

2
, L∞ = max

1≤j≤N

∣

∣

∣
uexactj − unum.

j

∣

∣

∣
.

The results in term of errors for different values of p at time T = 40 for ∆t = 0.1 at the
interval (xl, xr) = (−60, 120) with h = 0.5 are reported in Tables 1-3. Obtained results with
the MQ, G and Wendland’s functions are compared with some previous results. The method
by using MQ, G and Wendland’s functions provides higher accuracy then compared with other
numerical results in [9] and [10]. Especially method with the W(7,5) function provided least
error and use of the MQ provided the highest errors between the used kernel functions interms
of the error norms.
The invariants remain almost constant when compared with analytical values of invariants.
Calculated numerical results are very satisfactorily. The motion of single solitary waves are
plotted in Figures 1-3. The program is run up to time T=40 over the solution domain. Initially
the peak of the solitary wave was positioned at x = 0 and at the end of running time location of
peak position of the wave moves to the right-side with the preserved amplitude and shape while
time increasing. In Figures 1-3, the motion of single solitary wave motion can be seen.

Table 1. Comparison of invariants and error norms with p=4 and h=0.5

Method h ∆t T L2 L∞ Q E

Analytical 6.265806 2.8676946

Wendland 7-5 0.5 0.1 40 0.00093510 0.00035069 6.266377 2.868226

Wendland 6-4 0.5 0.1 40 0.00002355 0.00001031 6.265844 2.867735

Gaussian 0.5 0.1 40 0.00066954 0.00029706 6.265806 2.867684

Multiquadric 0.5 0.1 40 0.00110452 0.00042250 6.265992 2.867617

[9] 0.5 0.1 40 0.00447881 0.00171122

[10] 0.5 0.1 40 0.07451730 0.02787120

Table 2. Comparison of invariants and error norms with p=8 and h=0.5

Method h ∆t T L2 L∞ Q E

Analytical 9.742086 4.735164

Wendland 7-5 0.5 0.1 40 0.00038078 0.00013784 9.742126 4.735346

Wendland 6-4 0.5 0.1 40 0.00007522 0.00002949 9.742181 4.735225

Gaussian 0.5 0.1 40 0.00170387 0.00062856 9.742146 4.735302

Multiquadric 0.5 0.1 40 0.00127623 0.00047892 9.742227 4.735082

[9] 0.5 0.1 40 0.00431841 0.00161891

[10] 0.5 0.1 40 0.08037300 0.02953370
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Table 3. Comparison of invariants and error norms with p=16 and h=0.5

Method h ∆t T L2 L∞ Q E

Analytical 17.148841 8.375324

Wendland 7-5 0.5 0.1 40 0.00233340 0.00044109 17.168699 8.375376

Wendland 6-4 0.5 0.1 40 0.00231987 0.00044493 17.169258 8.375400

Gaussian 0.5 0.1 40 0.00302310 0.00053860 17.172776 8.375393

Multiquadric 0.5 0.1 40 0.00762184 0.00227095 17.116828 8.375272

[9] 0.5 0.1 40 0.00357250 0.00118750

[10] 0.5 0.1 40 0.06130440 0.02254710
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Figure 1. Motion of the single solitary wave for p = 4.
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Figure 2. Motion of the single solitary wave for p = 8.
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Figure 3. Motion of the single solitary wave for p = 16.

Conclusions

In this study the General Rosenau–RLW equation was solved by using a meshless technique
which was MKBMOL. The main advantage of this technique there was no linearization to
the nonlinear part of given equation. This equation was converted to a ordinary differential
equation system and solved by using MATLAB codes. Here we present the numerical results
of the Adams-Bashford multi-step method but any one can be present some numerical results
by using other one step or multi step methods since MATLAB uses a ode solver package. From
numerical results it is seen that the technique gives very reliable and sensitive result with all
used kernel functions. Therefore it is said that this method is very reliable and applicable to
this type equations. Also for different form of this type evaluation equations and systems this
method can be applied at the future works.
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