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Abstract
Inference for the system reliability R is one of the most popular prob-
lems in the areas of engineering, statistics, biostatistics and etc. There-
fore, there exist considerable numbers of studies concerning this prob-
lem. Traditionally, simple random sampling (SRS) is used for estimat-
ing the system reliability. However, in recent years, ranked set sam-
pling (RSS), cost effective and efficient alternative of SRS, is used to
estimate the system reliability. In this study, we consider the interval
estimation of R when both the stress and the strength are independent
Weibull random variables based on RSS. We first obtain the asymp-
totic confidence interval (ACI) of R by using the maximum likelihood
(ML) methodology. The bootstrap confidence interval (BCI) of R is
also constructed as an alternative to ACI. An extensive Monte-Carlo
simulation study is conducted to compare the performances of ACI and
BCI of R for different settings. Finally, a real data set is analyzed to
demonstrate the implementation of the proposed methods.

Keywords: Stress-strength model, ranked set sampling, asymptotic confidence
interval, bootstrap confidence interval, Monte-Carlo simulation.
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1. Introduction

The estimation of the system reliability R = P (X < Y ) has been considered
many times using both parametric and non-parametric methods [6, 10, 12, 13, 15,
19, 23, 27]. Here, X and Y represent the stress and the strength, respectively. It
is clear that if the stress exceeds the strength, i.e., X > Y the system would fail,
otherwise it continues to work. The basic assumption of this topic is that both
X and Y are independent random variables. For more detailed information, see
Kotz et al. [14].

In the statistical literature, estimation of R has been examined by a quite
number of authors under various distributions of X and Y based on simple random
sampling (SRS) data. However, in recent years, the ranked set sampling (RSS)
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method, originated by McIntyre [16], was used for estimating R, since it is plausible
and efficient alternative of SRS [9, 18, 20, 21, 22].

Akgul and Senoglu [3] obtained the point estimators of R when the stress X
and the strength Y are both independent Weibull random variables with common
shape and different scale parameters based on RSS by using the ML and the
modified ML (MML) methodologies. In this paper, we extend their study to the
interval estimation of R. We obtain the asymptotic confidence interval (ACI)
of R by using the asymptotic properties of ML and MML estimators [2]. We
also construct the bootstrap confidence interval (BCI) of R by using two different
resampling methods proposed by Chen et al. [8] and Modarres et al. [17]. Different
than the ACI, we just use the ML estimator in obtaining BCI of R similar to the
common usage in the literature. The ACI performs well for the large sample sizes.
However, for the small and moderate sample sizes, we prefer the BCI.

This paper is organized as follows: In Section 2, we give brief description of RSS
method. In section 3, we mention the point estimation of R and construct ACI and
BCI of R. In section 4, an extensive Monte-Carlo simulation study is performed.
A real data set is analyzed to demonstrate the implementation of the proposed
methods in Section 5. Final comments and conclusions are given in Section 6.

2. Ranked Set Sampling

The RSS is proposed to use when the variable of interest is more easily ranked
than quantified [5, 11]. Steps of the RSS procedure are given below:

i. Select m random sets via SRS each of size m.
ii. Without doing any certain measurements, rank the units with respect to

the variable of interest.
iii. Select the i−th smallest observations from the i−th set, (i = 1, . . . ,m)

and obtain the certain measurements of these observations.
iv. This complete process is called as a cycle. The cycle is repeated r times,

therefore the sample size is obtained as n = mr.
For better understanding this entire process, see the following table:

Here, X(i)ic, i = 1, . . . ,m and c = 1, . . . , r is called RSS sample. If the ranking is
perfect, i.e. X(1)1c ≤ X(2)2c ≤ · · · ≤ X(m)mc, the probability density function (pdf)
of X(i)ic is the pdf of the i−th order statistics. In this study, all the computations
are performed under the assumption of the perfect ranking. It should be noted
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that for easy understanding and simplicity, we use the notations Xic instead of
X(i)ic.

3. Estimation of R

In this section, we mention the point estimation of the system reliability R
briefly since it is considered by Akgul and Senoglu [3] and we construct the ACI
and the BCI of R.

Before starting the estimation procedure, we give some descriptions about the
collection of the RSS samples used in estimation of R.

In the context of stress-strength model, let Xic, i = 1, . . . ,mx, c = 1, . . . , rx
denote the ranked set sample of size n and Yjl, j = 1, . . . ,my, l = 1, . . . , ry denote
the ranked set sample of size m. Here, mx and my are the set sizes and rx and
ry are the number of cycles for X and Y , respectively. It is clear that the sample
sizes for the stress and the strength are n = mxrx and m = myry, respectively.

3.1. Point Estimation of R. Let X ∼ Weibull(p, σ1) and Y ∼ Weibull(p, σ2)
be two independent random variables, then the system reliability R is obtained as
given below

(3.1) R =

∞∫
0

(
1− e−t

p/σ1

) p

σ1
tp−1e−t

p/σ2dt =
σ2

σ1 + σ2
.

It is clear that the estimator of R is obtained by inserting the estimators of σ1 and
σ2 into the equation given in (3.1). Similar to Akgul and Senoglu [3], we use the
ML methodology to obtain the estimators of the parameters p, σ1 and σ2. The
log-likelihood (lnL) function is obtained as shown below

lnL ∝ lnC + (n+m) ln p− n lnσ1 −m lnσ2 +(3.2)

(p− 1)

rx∑
c=1

mx∑
i=1

lnxic +

rx∑
c=1

mx∑
i=1

(i− 1) ln
(

1− e−x
p
ic/σ1

)
−

rx∑
c=1

mx∑
i=1

(mx − i+ 1)

(
xpic
σ1

)
+ (p− 1)

ry∑
l=1

my∑
j=1

ln yjl +

ry∑
l=1

my∑
j=1

(j − 1) ln
(

1− e−y
p
jl/σ2

)
−

ry∑
l=1

my∑
j=1

(my − j + 1)

(
ypjl
σ2

)
.
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Then, we take the derivatives of lnL with respect to the parameters of interest
and equate them to zero as given in the following equations

∂ lnL

∂p
=

n+m

p

rx∑
c=1

mx∑
i=1

lnxic +
1

σ1

rx∑
c=1

mx∑
i=1

(i− 1)
xpic lnxic

ex
p
ic/σ1 − 1

−

1

σ1

rx∑
c=1

mx∑
i=1

(mx − i+ 1)xpic lnxic +

ry∑
l=1

my∑
j=1

ln yjl +

1

σ2

ry∑
l=1

my∑
j=1

(j − 1)
ypjl ln yjl

ey
p
jl/σ2 − 1

− 1

σ2

ry∑
l=1

my∑
j=1

(my − j + 1)ypjl ln yjl = 0,

∂ lnL

∂σ1
= − n

σ1
− 1

σ2
1

rx∑
c=1

mx∑
i=1

(i− 1)
xpic

ex
p
ic/σ1 − 1

+
1

σ2
1

rx∑
c=1

mx∑
i=1

(mx − i+ 1)xpic = 0,

∂ lnL

∂σ2
= −m

σ2
− 1

σ2
2

ry∑
l=1

my∑
j=1

(j − 1)
ypjl

ey
p
jl/σ2 − 1

+
1

σ2
2

ry∑
l=1

my∑
j=1

(my − j + 1)ypjl = 0.

Solutions of these equations are called as the ML estimators of the parameters.
However, these equations cannot be solved explicitly. We therefore resort to iter-
ative methods as in Akgul and Senoglu [3]. For an alternative to ML, they also
used the MML methodology originated by Tiku [24, 25] which gives the explicit
solutions for the unknown parameters rather than the numerical solutions, see also
Akgul [1]. Besides providing the close form estimators, the MML estimators are
also asymptotically equivalent to ML estimators [7, 26]. In this study, we use the
ML and MML estimators of R obtained by Akgul and Senoglu [3] to construct the
confidence interval of R.

3.2. Interval estimation for R. Now, we consider the interval estimation of
the system reliability R. For this purpose, we construct the ACI and the BCI of
R. We use asymptotic properties of the ML estimators to construct the ACI of R.
Then, for small and moderate sample sizes we constitute the BCI of R.

3.2.1. ACI of R. In this subsection, we construct the ACI of R, by using the
asymptotic distribution of R̂ = σ̂1/(σ̂1 + σ̂2). To do this, we first obtain the Fisher
information matrix defined below

(3.3) IRSS(θ) = −


E
(
∂2 lnL
∂p2

)
E
(
∂2 lnL
∂p∂σ1

)
E
(
∂2 lnL
∂p∂σ2

)
E
(
∂2 lnL
∂σ1∂p

)
E
(
∂2 lnL
∂σ2

1

)
E
(
∂2 lnL
∂σ1∂σ2

)
E
(
∂2 lnL
∂σ2∂p

)
E
(
∂2 lnL
∂σ2∂σ2

)
E
(
∂2 lnL
∂σ2

2

)

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Here, θ represents (p, σ1, σ2). The elements of Fisher information matrix are
denoted by Iij , i, j = 1, 2, 3 and given below

I11 = −E
(
∂2lnL

∂p2

)
=

1

p2

{
(n (mx − 1) +m (my − 1))E1 +

(2n (mx − 1) lnσ1 + 2m (my − 1) lnσ2)E2 +

2ζ (3)
(
n (mx − 1) (lnσ1)

2
+m (my − 1) (lnσ2)

2
)}

+

1

p2

{
(n+m) (1 + Γ′′ (2)) + 2Γ′ (2) (nlnσ1 +mlnσ2) + n(lnσ1)

2
+m(lnσ2)

2
}
,

I22 = −E
(
∂2lnL

∂σ2
1

)
= n (mx − 1)

2ζ (3)− 2

σ2
1

+
n

σ2
1

,

I33 = −E
(
∂2lnL

∂σ2
2

)
= m (my − 1)

2ζ (3)− 2

σ2
2

+
m

σ2
2

,

I12 = I21 = −E
(
∂2lnL

∂p∂σ1

)
= −n (mx − 1)

pσ1
((2ζ (3)− 2) lnσ1 + E3)− n

pσ1
(lnσ1 + Γ′ (2)) ,

I13 = I31 = −E
(
∂2lnL

∂p∂σ2

)
= −m (my − 1)

pσ2
((2ζ (3)− 2) lnσ2 + E3)− m

pσ2
(lnσ2 + Γ′ (2)) ,

I23 = I32 = −E
(
∂2lnL

∂σ1∂σ2

)
= 0,

where

E1 = 2ζ (3) + (1/3) ζ (3)π2 − 6ζ (3) γ + 2ζ (3) γ2 + 6ζ (1, 3)− 4ζ (1, 3) γ + 2ζ (2, 3) ,

E2 = −2ζ (3) γ + 3ζ (3) + 2ζ (1, 3) ,

E3 = −2ζ (3) γ + 2γ + 3ζ (3) + 2ζ (1, 3)− 3

and ζ (·) and ζ (·, ·) are the Riemann zeta function, γ is the Euler constant. For
more detailed information, one may refer to Akgul [1] and Chen et al. [8].

We use the following theorems to compute the asymptotic distribution of R̂.

3.1. Theorem. As n→∞ and m→∞, then

(3.4)
(√
m (p̂− p) ,

√
n (σ̂1 − σ1) ,

√
n (σ̂2 − σ2)

) d→N3

(
0, A−1 (p, σ1, σ2)

)
,

where

A =

 a11 a12 a13
a21 a22 0
a31 0 a33

 .
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Here,

a11 =
I11
m
, a22 =

I22
n
, a33 =

I33
n
, a12 = a21 =

I12√
nm

, a13 = a31 =
I13√
nm

.

Proof. The proof follows from the asymptotic distribution of the ML estimators
under regularity conditions and the central limit theorem. �

3.2. Theorem. As n→∞ and m→∞, then

(3.5)
√
n
(
R̂−R

)
d→N (0, B) .

Proof. The proof follows from Theorem 3.1 and delta method. Here,

B =

(
∂R

∂p
,
∂R

∂σ1
,
∂R

∂σ2

)
A−1

 ∂R
∂p
∂R
∂σ1
∂R
∂σ2

 ,

where (
∂R

∂p
,
∂R

∂σ1
,
∂R

∂σ2

)
=

1

(σ1 + σ2)
2 (0,−σ2, σ1)

and

A−1 =
1

u

 a22a33 −a21a33 −a22a31
−a21a33 a11a33 − a213 a12a31
−a22a31 a12a31 a11a22 − a212

 .
In the definition ofA−1, u is defined as u = detA = a11a22a33−a212a33−a213a22. �

The estimate of V ar
(
R̂
)
is V̂ ar

(
R̂
)

= B|p=p̂,σ1=σ̂1,σ2=σ̂2
. Thus,

√
n
(
R̂−R

)
/

√
V̂ ar

(
R̂
)
∼ N (0, 1) .

This result yields the asymptotic 100 (1− α) % confidence interval for R as

(3.6)

R̂− zα/2
√√√√ V̂ ar

(
R̂
)

n
, R̂+ zα/2

√√√√ V̂ ar
(
R̂
)

n

 ,

where, zα/2 denotes the upper α/2 quantile of the standard normal distribution,
i.e., N (0, 1).

It should be noted that ACI of R can alternatively be constructed by inserting
the MML estimator of R into the equation (3.6), because of the reason given in
subsection 3.1.

3.2.2. BCI of R. In this subsection, we construct BCIs for the system reliability
of R by using two different resampling methods. The first method is introduced
by Chen et al. [8] and the second method is proposed by Modarres et al. [17]. It
should be noted that the BCI of R based on Resampling Method I and Resampling
Method II are represented by BCI-I and BCI-II, respectively. These methods are
defined below.
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Resampling Method I: BCI-I
Step 1: Divide the RSS samples xic (i = 1, . . . ,mx, c = 1, . . . , rx) and yjl

(j = 1, . . . ,my, l = 1, . . . , ry) into mx and my subgroups each contains rx
and ry observations, respectively.

Step 2: Resample from each subgroups with replacement.
Step 3: Combine all mx and my subgroups each of sizes rx and ry and

obtain the RSS resamples x∗ic (i = 1, . . . ,mx, c = 1, . . . , rx) and y∗jl, (j =

1, . . . ,my, l = 1, . . . , ry), respectively. Here, ∗ notation represents the
sample drawn with replacement.

Step 4: By using x∗ic and y∗jl, compute the bootstrap estimates of R, say R̂∗.
Step 5: Repeat step 1-4, B times to get the bootstrap estimates R̂∗1, . . . , R̂∗B

of R.
Step 6: Rank them from the smallest the largest (R̂∗(1), . . . , R̂

∗
(B)).

Step 7: The approximate 100(1− α)% BCI of R is constructed as below(
R̂∗((α/2)B), R̂

∗
(1−(α/2)B)

)
(3.7)

It should be stated that we adopt the procedure described by Chen et al. [8] to
obtain the BCI of R, see also Akgul et al. [4].

Resampling Method II: BCI-II
Step 1: Combine all observations for each RSS sample xic (i = 1, . . . ,mx, c =

1, . . . , rx) and yjl (j = 1, . . . ,my, l = 1, . . . , ry), say x�ic and y�jl, respec-
tively.

Step 2: Randomly draw mx elements from x�ic, say x�1, . . . , x
�
mx

and my

elements from y�jl, say y
�
1 , . . . , y

�
my

, order them from the smallest to largest
as x�(1) ≤ · · · ≤ x�(mx)

and y�(1) ≤ · · · ≤ y�(my)
, and retain x∗i1 = x�(i) and

y∗j1 = y�(j), respectively.
Step 3: Perform Step 2 for i = 1, . . . ,mx and j = 1, . . . ,my, respectively.
Step 4: Repeat Step 2 and 3 rx and ry times to obtain x∗ic (i = 1, . . . ,mx, c =

1, . . . , rx) and y∗jl (j = 1, . . . ,my, l = 1, . . . , ry), respectively, and compute
the bootstrap estimates of R, say R̂∗.

For BCI-II of R follow Steps 5-7 given in resampling method I. For more detailed
information, see Modarres et al. [17] and Akgul et al. [4].

4. Simulation Study

In this section, we perform an extensive Monte-Carlo simulation study to com-
pare the average confidence lengths (ACL) and the coverage probabilities (CP) of
the confidence intervals constructed in this study. In our simulation setup, we take
the set sizes and the number of cycles as (mx,my) = (3, 3), (3, 4), (4, 4), (4, 5) and
(5,5) and rx = ry = 5 and 10, respectively. Therefore, in the context of RSS, the
sample sizes for X and Y are obtained as n = mxrx and m = myry. It should be
noted that the sample sizes of SRS observation are also denoted as n and m.

The SRS and the RSS observation are generated under the assumption of both
densities have Weibull distribution with the common shape and the different scale
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Table 1. Average confidence lengths and CPs based on the ACI of the
ML and the MML estimators of R and the BCI of R under RSS when
p =1.5.

SRS
ACIML ACIMML BCI

rx = ry (mx,my) ACL CP ACL CP ACL CP
σ1 = 1, σ2 = 1

5

(3,3) 0.3502 0.91 0.3502 0.91 0.3675 0.92
(3,4) 0.3289 0.94 0.3288 0.93 0.3409 0.93
(4,4) 0.3051 0.92 0.3051 0.92 0.3158 0.92
(4,5) 0.2901 0.92 0.2900 0.93 0.2989 0.92
(5,5) 0.2739 0.93 0.2739 0.93 0.2811 0.93

10

(3,3) 0.2505 0.93 0.2504 0.93 0.2552 0.93
(3,4) 0.2346 0.92 0.2346 0.92 0.2380 0.93
(4,4) 0.2176 0.95 0.2176 0.95 0.2206 0.94
(4,5) 0.2065 0.93 0.2064 0.93 0.2089 0.93
(5,5) 0.1948 0.93 0.1948 0.93 0.1969 0.93

σ1 = 1, σ2 = 2

5

(3,3) 0.3264 0.92 0.3256 0.92 0.3290 0.91
(3,4) 0.3037 0.90 0.3023 0.91 0.3012 0.9
(4,4) 0.2852 0.92 0.2847 0.92 0.2864 0.91
(4,5) 0.2703 0.93 0.2696 0.93 0.2686 0.93
(5,5) 0.2556 0.93 0.2552 0.93 0.2555 0.92

10

(3,3) 0.2338 0.94 0.2335 0.94 0.2317 0.93
(3,4) 0.2190 0.93 0.2185 0.93 0.2162 0.93
(4,4) 0.2034 0.93 0.2033 0.94 0.2011 0.93
(4,5) 0.1928 0.93 0.1926 0.93 0.1894 0.92
(5,5) 0.1823 0.93 0.1821 0.93 0.1799 0.93

σ1 = 2, σ2 = 1

5

(3,3) 0.3260 0.90 0.3250 0.90 0.3288 0.91
(3,4) 0.3055 0.91 0.3053 0.92 0.3079 0.91
(4,4) 0.2848 0.92 0.2843 0.93 0.2845 0.92
(4,5) 0.2710 0.94 0.2708 0.94 0.2713 0.93
(5,5) 0.2563 0.93 0.2558 0.93 0.2560 0.93

10

(3,3) 0.2340 0.93 0.2338 0.94 0.2317 0.93
(3,4) 0.2191 0.94 0.2191 0.94 0.2185 0.93
(4,4) 0.2035 0.94 0.2033 0.93 0.2013 0.94
(4,5) 0.1931 0.93 0.1931 0.94 0.1907 0.93
(5,5) 0.1824 0.95 0.1823 0.94 0.1793 0.94

parameters. The parameter settings are taken as p = 1.5, σ1, σ2 =(1,1), (1,2)
and (2,1). All the computations are performed in Matlab R2013a based on 1000
Monte-Carlo runs.

The 95% ACIs are constructed by using the asymptotic distributions of the
ML estimators of p, σ1 and σ2, and replacing them with the corresponding MML
estimators based on SRS and RSS. For the 95% BCIs, we use B=1000 bootstrap
resamples. They are computed based on the ML estimators of R under SRS and
RSS. Results are reported in Table 1.

From Table 1, the ACLs for both ACIs and BCIs based on RSS are shorter than
the corresponding confidence lengths based on SRS. It clear that the lengths of the
confidence intervals decrease when the sample sizes (n,m) increase, as expected.
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Table 1. (Continued)
RSS

ACIML ACIMML BCI − I BCI − II

rx = ry (mx,my) ACL CP ACL CP ACL CP ACL CP
σ1 = 1, σ2 = 1

5

(3,3) 0.2611 0.91 0.2612 0.91 0.2504 0.90 0.2648 0.91
(3,4) 0.2356 0.93 0.2353 0.92 0.2230 0.90 0.2347 0.91
(4,4) 0.2061 0.93 0.2061 0.93 0.1933 0.90 0.2044 0.91
(4,5) 0.1891 0.94 0.1889 0.92 0.1751 0.91 0.1858 0.92
(5,5) 0.1702 0.94 0.1702 0.94 0.1571 0.92 0.1663 0.92

10

(3,3) 0.1867 0.95 0.1866 0.94 0.1828 0.93 0.1879 0.94
(3,4) 0.1678 0.95 0.1675 0.91 0.1637 0.93 0.1675 0.93
(4,4) 0.1466 0.95 0.1465 0.94 0.1423 0.94 0.1460 0.94
(4,5) 0.1343 0.95 0.1342 0.93 0.1297 0.94 0.1333 0.93
(5,5) 0.1208 0.94 0.1207 0.94 0.1163 0.93 0.1197 0.93

σ1 = 1, σ2 = 2

5

(3,3) 0.2338 0.91 0.2380 0.91 0.2300 0.90 0.2416 0.91
(3,4) 0.2090 0.91 0.2081 0.90 0.2014 0.90 0.2114 0.90
(4,4) 0.1838 0.92 0.1862 0.91 0.1770 0.91 0.1877 0.92
(4,5) 0.1682 0.93 0.1675 0.92 0.1604 0.92 0.1684 0.92
(5,5) 0.1521 0.93 0.1535 0.92 0.1462 0.92 0.1538 0.93

10

(3,3) 0.1671 0.92 0.1691 0.92 0.1683 0.92 0.1728 0.93
(3,4) 0.1498 0.92 0.1485 0.90 0.1493 0.92 0.1533 0.92
(4,4) 0.1314 0.94 0.1322 0.92 0.1330 0.94 0.1357 0.94
(4,5) 0.1198 0.94 0.1193 0.92 0.1193 0.93 0.1229 0.93
(5,5) 0.1081 0.94 0.1088 0.93 0.1082 0.93 0.1113 0.94

σ1 = 2, σ2 = 1

5

(3,3) 0.2330 0.92 0.2367 0.92 0.2302 0.90 0.241 0.91
(3,4) 0.2106 0.92 0.217 0.90 0.2064 0.90 0.2165 0.91
(4,4) 0.1842 0.92 0.1861 0.91 0.1775 0.91 0.1877 0.92
(4,5) 0.1689 0.93 0.1725 0.93 0.1623 0.92 0.1717 0.92
(5,5) 0.1522 0.93 0.1536 0.93 0.1457 0.92 0.1534 0.93

10

(3,3) 0.1671 0.93 0.1696 0.91 0.1685 0.92 0.1725 0.93
(3,4) 0.1506 0.93 0.1548 0.90 0.1523 0.93 0.1559 0.93
(4,4) 0.1312 0.93 0.1325 0.92 0.1325 0.93 0.1357 0.93
(4,5) 0.1201 0.93 0.1225 0.92 0.1211 0.94 0.1239 0.94
(5,5) 0.1079 0.94 0.1086 0.93 0.1085 0.93 0.1112 0.93

In the context of RSS, when we compare the ACIs of R we realized that the ACLs
of ACIML and the ACLs of ACIMML are more or less the same and they close
to each other as the set sizes increase. On the other hand, the ACLs of BCI-I is
shorter than the ACLs of BCI-II. Also, the BCI-I is provides the shortest ACLs
among the others.

In terms of CPs, when σ1 = σ2 = 1, the CPs of ACIML and ACIMML of R
based on RSS are closer to nominal value than their SRS counterparts. However,
the CPs of BCI of R based on SRS is better than the CPs of BCIs of R based on
RSS when rx = ry = 5. As the number of cycles increase, the performances of
BCIs are shown similarity for both SRS and RSS with respect to the CPs.

When σ1 = 1, σ2 = 2 and σ2 = 2, σ1 = 1, the CPs of ACIML based on RSS is
better than the corresponding CPs based on SRS. However, the CPs of ACIMML

based on RSS is lower approximately 1% and 2% than its SRS counterpart overall.
In view of BCIs, the CPs of BCI-I and BCI-II based on RSS are more or less the
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same with the CPs of BCI based on SRS in most of the cases especially when
rx = ry = 10.

5. Data Analysis

In this section, we analyze the strength data set to illustrate the implementation
of the interval estimation procedure, proposed in this paper. This data set is about
the strength measured in GPA for single carbon fibers of lengths 20 mm (Data
Set I) and 50 mm (Data Set II) with sample sizes 69 and 65, respectively, see
Ghitany et al. [10]. Besides the single carbon fibers of lengths 20 mm and 50 mm,
the single carbon fibers of lengths 20 mm and 10 mm are also considered in the
context of the estimation of the system reliability R [6, 15]. However, different
than these studies, we consider the strength data (Data Set I and Data Set II)
as population of interest, see Akgul et al. [4]. Then, we select samples randomly
from these populations via SRS and RSS. Therefore, by selecting 21 observations
from Data Set I and Data Set II, we obtain the random samples based on SRS,
namely X and Y , respectively. By taking the set sizes mx = my = 3 and the
number of cycles rx = ry = 7, then applying RSS procedure given in Section 2, we
obtain the corresponding samples based on RSS, called as X and Y, respectively.

Akgul and Senoglu [3] obtain the ML and the MML estimates of R based on
SRS and RSS. Now, we construct the 95% ACIs for R. Also, 95% BCIs of R are
constructed based on 5000 bootstrap replications. The results are reported in
Table 2.

Table 2. 95% ACIs and BCIs of R for the strength data based on SRS
and RSS.

Sampling CIs Lower Upper LengthMethods

SRS
ACIML 0.2228 0.5135 0.2906
ACIMML 0.2206 0.5108 0.2902
BCI 0.2362 0.5096 0.2734

RSS

ACIML 0.2734 0.4853 0.2118
ACIMML 0.2701 0.4811 0.2110
BCI − I 0.2767 0.4916 0.2149
BCI − II 0.2693 0.4682 0.1989

It is clear from Table 2 that the lengths of confidence intervals based on RSS
are shorter than the length of confidence intervals based on SRS. Also, ACIs of R
under the ML and MML estimates based on SRS and RSS are more or less the
same in its own right. To illustrate this situation, we draw the histograms for the
replications of BCI (based on SRS), BCI-I (based on RSS) and BCI-II (based on
RSS) of R under ML and MML estimates based on 5000 replication in Figure 1.

Obviously, all histograms match with the normal distribution. Furthermore, the
means and the standard deviations of bootstrap replications of R are calculated
and it is seen that they are in agreement with the ML and the MML estimates of
R based on SRS and RSS given in Akgul and Senoglu [3]. Since, the distribution
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Figure 1. Histogram of bootstrap replications of R with normal curves.

of the bootstrap replications of R is normal, we can use the mean for estimate of
R [23].

6. Conclusions

In this paper, we consider the interval estimation of R = P (X < Y ) when the
stress X and the strength Y are both independent Weibull random variables with
common shape and different scale parameters based on RSS data. We provide the
asymptotic distributions of the ML estimators which are used to construct ACI of
R. By substituting the ML estimators with the MML estimators, we also derive
the ACI of R based on MML estimators. For the small and the moderate sample
sizes we construct the BCI of R. The ACIs and the BCI of R are compared with
their SRS counterparts.

In the context of RSS data, it is observed that the ACI based on ML estimator
works well even for small sample sizes in terms of CP. From the real data example,
it is seen that length of the confidence intervals based on RSS are smaller than
their SRS counterparts.
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