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doi:10.3906/fiz-1109-18

Electromagnetic energy conservation with complex

octonions

Mustafa Emre KANSU1, Murat TANIŞLI2 and Süleyman DEMİR2
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Abstract

Octonions are the eight dimensional hypercomplex numbers that form a noncommutative and nonas-

sociative division algebra. In this study, a general framework for the real, complex octonions and their

algebra are provided by using the Cayley-Dickson multiplication rule between the octonionic basis elements.

Maxwell’s equations without sources are shown in Gauss units in dimensionless form. The local energy

conservation equation, which has been previously defined in a complexified quaternionic form, is similarly

rearranged for isotropic media by using the complex octonions. As a result, the terms of density and flow

of electromagnetic energy are attained.
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1. Introduction

Quaternions and octonions are useful tool for the representations and generalizations of quantities in
the high-dimensional physical theory. These algebraic structures are used in areas such as quantum physics,
classical electrodynamics, the representations of robotic systems’ kinematics, acoustics, wave and group the-
ory, supersymmetric quantum mechanics etc. While quaternions have a four dimensional noncommutative but
associative algebraic structure, the octonions possess eight components and both noncommutative and nonas-
sociative algebraic properties. According to the case of physical structures, quaternions and octonions can be
used in the real, complex, dual, split, hyperbolic forms with the different dimensions and algebraic properties.
In literature, there are a lot of studies about on the classical electromagnetism with different algebras [1–16].

After defining electromagnetism and energy conservation with complexified quaternions in the electro-
magnetic field by Tanışlı [5], a study of the classical electromagnetism’s energy will be alternatively described
by the complex octonions in sixteen dimensions. As in previous studies, the equations are obtained for isotropic
media.

438



KANSU, TANIŞLI, DEMİR

Organization of this paper is as follows: Section 2 introduces the octonion algebra and its properties.
Maxwell’s equations without sources, the complex octonionic field equation and differential operator are pre-
sented in section 3. Hence, the detailed equations of electromagnetic energy conservation, electromagnetic energy
flow and density are suggested via the octonionic representations. The results, conclusions and fundamental
features of this study are drawn and emphasized in the last section.

2. Preliminaries

Octonions are from the family of hypercomplex numbers and have eight dimensions. They were found
in 1843 by John. T. Graves, and two years later independently by Arthur Cayley who formally published his
finding. They are therefore at times also called “Cayley numbers”. They are a unique division algebra in
that their multiplication is alternative but generally noncommutative and nonassociative [15–19]. Let A be an
octonion, expressed as,

A =
7∑

n=0

anen = a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7, (1)

where terms an are real number coefficients of the octonion and the e n ’s are its basis elements. For two
octonions such as A and B, the summation and substraction processes are given as

A ± B =
7∑

n=0

(an ± bn) en

= (a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7) (2)

± (b0e0 + b1e1 + b2e2 + b3e3 + b4e4 + b5e5 + b6e6 + b7e7) .

The octonion A has scalar and vectorial parts as well. For defined octonion in equation (1), the scalar and
vectorial parts can be given, respectively, as

SA = a0e0; (3)

VA = a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7. (4)

Therefore, the octonion A can be written briefly as

A = SA + VA = a0e0 + �A. (5)

Many multiplication rules can be found in literature that all represent an octonion algebra. In this study, we
chose a multiplication rule obtained from Cayley-Dickson construction with the following properties:

−e4ei=e ie4=ê i, e4ê i= −ê ie4=e i, e4e4= −e0,

e iej= −δije0+εijkek, ê iêj= −δije0−εijkek, i, j, k ∈ (1, 2, 3) ,

−êjei=e iêj= −δije4−εijkêk.

(6)

Here, êk ≡ e4+k , k ∈ (1, 2, 3) and e0 = 1 [16]. These rules can also be introduced in tabular form, and is
presented as such in Table.
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Table. Cayley-Dickson multiplication rules for octonions.

e0 e1 e2 e3 e4 e5 e6 e7

e0 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 -1 e3 -e2 e5 -e4 -e7 e6

e2 e2 -e3 -1 e1 e6 e7 -e4 -e5

e3 e3 e2 -e1 -1 e7 -e6 e5 -e4

e4 e4 -e5 -e6 -e7 -1 e1 e2 e3

e5 e5 e4 -e7 e6 -e1 -1 -e3 e2

e6 e6 e7 e4 -e5 -e2 e3 -1 -e1

e7 e7 -e6 e5 e4 -e3 -e2 e1 -1

By using these rules, the product of octonions, A and B is expressed as

AB = a0b0 + a0
�B + �Ab0 − �A · �B + �A× �B . (7)

Octonions also have an octonionic conjugate which is denoted by changing the signs of the vectorial parts:

Ā = SA − VA = a0e0 − �A. (8)

According to the octonionic conjugate process for octonions A and B, one can expresses the following rules:

(
¯̄A
)

= A,
(
A + B

)
= Ā + B̄,

(
AB

)
= B̄Ā. (9)

If there is no scalar parts in equation (7), the scalar and vectorial products of the octonions A and B are given

the manner, respectively, [15, 16, 19]

�A · �B = −1
2

[
AB +

(
AB

)]
, (10)

�A× �B =
1
2

[
AB −

(
AB

)]
. (11)

The norm of the octonion A is obtained by multiplying the octonion and its octonionic conjugate; the result of
this norm is a real number:

N (A) = AĀ = ĀA =
7∑

n=0

a2
n. (12)

For two octonions, the norm is multiplicative:

N (AB) = N (A) N (B) . (13)

Nonzero octonions also have a multiplicative inverse. The inverse of the octonion, A, is denoted by A−1 and
this term can be obtained by the norm and the conjugate of the octonion:

A−1 =
Ā

N(A)
. (14)

A complex octonion X can be understood as a combination of two octonions A and A′ with a new unit i:

X = A + iA′ (15)
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X = (a0e0+a1e1+a2e2+a3e3+a4e4+a5e5+a6e6+a7e7)

+i (a′
0e0 + a′

1e1 + a′
2e2 + a′

3e3 + a′
4e4 + a′

5e5 + a′
6e6 + a′

7e7) ,
(16)

X =
7∑

n=0

(an + ia′
n) en = (a0 + ia′

0) e0 + (a1 + ia′
1) e1 + (a2 + ia′

2) e2 + (a3 + ia′
3) e3

+(a4 + ia′
4) e4 + (a5 + ia′

5) e5 + (a6 + ia′
6) e6 + (a7 + ia′

7) e7, (17)

X =
7∑

n=0

xnen = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7. (18)

Here, the xn ’s are complex numbers and i denotes the complex unit
(
i =

√
−1

)
. While complex octonions have

similar algebraic properties as the octonions, they differ by having 16 dimensions and an additional complex
unit i. This means that there exists an additional complex conjugate of a complex octonion. Octonion conjugate

X̄ and complex conjugate X∗ are written as:

X̄ = (a0 + ia′
0) e0 − (a1 + ia′

1) e1 − (a2 + ia′
2) e2 − (a3 + ia′

3) e3

− (a4 + ia′
4) e4 − (a5 + ia′

5) e5 − (a6 + ia′
6) e6 − (a7 + ia′

7) e7,
(19)

X∗ = (a0 − ia′
0) e0 + (a1 − ia′

1) e1 + (a2 − ia′
2) e2 + (a3 − ia′

3) e3

+(a′
4 − ia′

4) e4 + (a5 − ia′
5) e5 + (a6 − ia′

6) e6 + (a7 − ia′
7) e7.

(20)

In Cayley-Dickson notation, the complex octonionic differential operator and its octonionic conjugate are defined
in literature [15, 16, 19]:

Dt =
i
c

∂

∂t
e0 +

∂

∂x
e5 +

∂

∂y
e6 +

∂

∂z
e7, (21)

Dt =
i
c

∂

∂t
e0 −

∂

∂x
e5 −

∂

∂y
e6 −

∂

∂z
e7. (22)

The multiplication of equations (21) and (22) is commutative and the result is equal to

DtDt = DtDt = − 1
c2

∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= Δ − 1

c2

∂2

∂t2
= ∇2 − 1

c2

∂2

∂t2
, (23)

where the symbols Δ and c present the Laplacian operator and speed of light, respectively.

3. Maxwell’s equations and octonionic electromagnetic energy con-

servation

Maxwell’s equations are central for the description of classical electromagnetism and optics. In Gauss
unit system, four Maxwell’s equations in vectorial form are [20]

�∇ · �D = 4πρ

�∇ · �B = 0

�∇× �E = −1
c

∂ �B
∂t

�∇× �H = 4π
c

�J + 1
c

∂ �D
∂t ,

(24)
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where �D , �E , �B , �H , ρ , �J and c are used for defining of the electrical flux density, electric field, magnetic
flux density, magnetic field, electrical charge density, electrical current density and speed of light, respectively.

For the isotropic media in electromagnetism, the constitutive equations as �D = ε0
�E and �B = μ0

�H are valid.
Here, the terms ε0 and μ0 represent permittivity and permeability constants for free space. There is an usual
assumption as ε0 = μ0 = c = 1 for theoretical studies in physics, and then Maxwell’s equations will be

�∇ · �E = 4πρ

�∇ · �B = 0

�∇× �E = −∂ �B
∂t

�∇× �B = 4π �J + ∂ �D
∂t .

(25)

In equation (25), if the charge and current densities are equal to zero, Maxwell’s equations in dimensionless
form can be rewritten as the following equations:

�∇ · �E = 0

�∇ · �B = 0

�∇× �E = −∂ �B
∂t

�∇× �B = ∂ �E
∂t

.

(26)

From the third and fourth Maxwell’s equations in equation (26), the expression for the electromagnetic energy

density (termed the Poynting Theorem) may be derived from:

−�E ·
(

�∇× �B
)

+ �B ·
(

�∇× �E
)

+ �E · ∂ �E

∂t
+ �B · ∂ �B

∂t
= 0. (27)

Using the vectorial identities as �∇·
(

�A × �B
)

= �B ·
(

�∇× �A
)
− �A ·

(
�∇× �B

)
, this equation may then be described

as the conservation law for electromagnetic energy as

∂u
∂t

+ �∇ · �S = 0 , (28)

where
�S = �E × �B (29)

is termed the Poynting vector. The rate of change of the energy density ∂u
∂t is then defined as

∂u
∂t

=
1
2

∂

∂t

(
E2 + B2

)
=

1
2

∂

∂t

(
�E · �E + �B · �B

)
. (30)

At this stage, a field F that describes the electric and magnetic fields in isotropic media can be defined in
complex octonion form:

F = E + iB = (Exe5 + Eye6 + Eze7) + i (Bxe1 + Bye2 + Bze3) . (31)

Maxwell’s equations, which are denoted in equation (26), can then be written directly from the octonion product:

DtF = 0. (32)
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As known from the complexified quaternionic Lagrange density [5], an equation can be suggested in the complex
octonionic form as

F∗ · (DtF) = 0. (33)

Equation (33) can be considered as another way in field theories for supporting of studies in literature. Using

the components of the field and differential operator, if equation (33) is clearly written, and then we present

F∗ · (DtF) = [(Exe5 + Eye6 + Eze7) − i (Bxe1 + Bye2 + Bze3)] ·

·
{(

i
∂

∂t
e0 + ∇

)
[(Exe5 + Eye6 + Eze7) + i (Bxe1 + Bye2 + Bze3)]

}
= 0, (34)

where dot “ ·” denotes the scalar product of complex octonion.

In above equations, we take into consideration the Cayley-Dickson method for the multiplications of the

complex octonionic basis, and the octonionic F∗ (DtF) and F∗ (DtF) terms can be written as:

ie0

�
−B ·

∂B

∂t
− Bx (∇ × E)x − By (∇ × E)y − Bz (∇ × E)z − E ·

∂E

∂t
+ Ex (∇ × B)x + Ey (∇ × B)y + Ez (∇ × B)z

�

+ie1

�
Bx (∇ · E) + By

∂Bz

∂t
+ By (∇ × E)z − Bz

∂By

∂t
− Bz (∇ × E)y − Ex (∇ · B) − Ey

∂Ez

∂t
+ Ey (∇ × B)z + Ez

∂Ey

∂t
− Ez (∇ × B)y

�

+ie2

�
−Bx (∇ × E)z − Bx

∂Bz

∂t
+ By (∇ · E) + Bz

∂Bx

∂t
+ Bz (∇ × E)x + Ex

∂Ez

∂t
− Ex (∇ × B)z − Ey (∇ · B) − Ez

∂Ex

∂t
+ Ez (∇ × B)x

�

+ie3

�
Bx

∂By

∂t
+ Bx (∇ × E)y − By

∂Bx

∂t
− By (∇ × E)x + Bz (∇ · E) − Ex

∂Ey

∂t
+ Ex (∇ × B)y + Ey

∂Ex

∂t
− Ey (∇ × B)x − Ez (∇ · B)

�

+e4

�
−B ·

∂E

∂t
+ Bx (∇ × B)x + By (∇ × B)y + Bz (∇ × B)z − E ·

∂B

∂t
− Ex (∇ × E)x − Ey (∇ × E)y − Ez (∇ × E)z

�
(35)

+e5

�
Bx (∇ · B) − By

∂Ez

∂t
+ By (∇ × B)z + Bz

∂Ey

∂t
− Bz (∇ × B)y − Ex (∇ · E) + Ey

∂Bz

∂t
+ Ey (∇ × E)z − Ez

∂By

∂t
− Ez (∇ × E)y

�

+e6

�
Bx

∂Ez

∂t
− Bx (∇ × B)z + By (∇ · B) − Bz

∂Ex

∂t
+ Bz (∇ × B)x − Ex

∂Bz

∂t
− Ex (∇ × E)z − Ey (∇ · E) + Ez

∂Bx

∂t
+ Ez (∇ × E)x

�

+e7

�
−Bx

∂Ey

∂t
+ Bx (∇ × B)y + By

∂Ex

∂t
− By (∇ × B)x + Bz (∇ · B) + Ex

∂By

∂t
+ Ex (∇ × E)y − Ey

∂Bx

∂t
− Ey (∇ × E)x − Ez (∇ · E)

�

and

ie0

�
−B ·

∂B

∂t
− Bx (∇ × E)x − By (∇ × E)y − Bz (∇ × E)z − E ·

∂E

∂t
+ Ex (∇ × B)x + Ey (∇ × B)y + Ez (∇ × B)z

�

−ie1

�
Bx (∇ · E) + By

∂Bz

∂t
+ By (∇ × E)z − Bz

∂By

∂t
− Bz (∇ × E)y − Ex (∇ · B) − Ey

∂Ez

∂t
+ Ey (∇ × B)z + Ez

∂Ey

∂t
− Ez (∇ × B)y

�

−ie2

�
−Bx (∇ × E)z − Bx

∂Bz

∂t
+ By (∇ · E) + Bz

∂Bx

∂t
+ Bz (∇ × E)x + Ex

∂Ez

∂t
− Ex (∇ × B)z − Ey (∇ · B) − Ez

∂Ex

∂t
+ Ez (∇ × B)x

�

−ie3

�
Bx

∂By

∂t
+ Bx (∇ × E)y − By

∂Bx

∂t
− By (∇ × E)x + Bz (∇ · E) − Ex

∂Ey

∂t
+ Ex (∇ × B)y + Ey

∂Ex

∂t
− Ey (∇ × B)x − Ez (∇ · B)

�

−e4

�
−B ·

∂E

∂t
+ Bx (∇ × B)x + By (∇ × B)y + Bz (∇ × B)z − E ·

∂B

∂t
− Ex (∇ × E)x − Ey (∇ × E)y − Ez (∇ × E)z

�
(36)

−e5

�
Bx (∇ · B) − By

∂Ez

∂t
+ By (∇ × B)z + Bz

∂Ey

∂t
− Bz (∇ × B)y − Ex (∇ · E) + Ey

∂Bz

∂t
+ Ey (∇ × E)z − Ez

∂By

∂t
− Ez (∇ × E)y

�

−e6

�
Bx

∂Ez

∂t
− Bx (∇ × B)z + By (∇ · B) − Bz

∂Ex

∂t
+ Bz (∇ × B)x − Ex

∂Bz

∂t
− Ex (∇ × E)z − Ey (∇ · E) + Ez

∂Bx

∂t
+ Ez (∇ × E)x

�

−e7

�
−Bx

∂Ey

∂t
+ Bx (∇ × B)y + By

∂Ex

∂t
− By (∇ × B)x + Bz (∇ · B) + Ex

∂By

∂t
+ Ex (∇ × E)y − Ey

∂Bx

∂t
− Ey (∇ × E)x − Ez (∇ · E)

�
.
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Here, adding equation (35) and equation (36), and multiplying by
(
−1

2

)
, equation (34) is equal to

F∗ · (DtF) = ie0

(
Ex

∂Ex

∂t
+ Ey

∂Ey

∂t
+ Ez

∂Ez

∂t

)
− ie0

(
Ex

(
∂Bz

∂y
− ∂By

∂z

)
+ Ey

(
∂Bx

∂z
− ∂Bz

∂x

)

+Ez

(
∂By

∂x
− ∂Bx

∂y

))
+ ie0

(
Bx

∂Bx

∂t
+ By

∂By

∂t
+ Bz

∂Bz

∂t

)
+ ie0

(
Bx

(
∂Ez

∂y
− ∂Ey

∂z

)

+By

(
∂Ex

∂z
− ∂Ez

∂x

)
+ Bz

(
∂Ey

∂x
− ∂Ex

∂y

))
(37)

= −1
2

[
F∗ (DtF) + F∗ (DtF)

]
= 0,

and in a more simple manner,

F∗ · (DtF) = ie0

(
E · ∂E

∂t
+ B · ∂B

∂t

)
+ ie0 (B · (∇× E) − E · (∇× B)) = 0. (38)

Equation (38) is also equal to the expression for conservation of the electromagnetic energy (termed the

Poynting Theorem) presented in equations (27), (28) or (30). In other words, in equation (38), the terms

B · (∇× E) − E · (∇× B) and E · ∂E
∂t + B · ∂B

∂t will be equal to ∇ · (E × B) = ∇ · S and 1
2

∂
∂t (E · E + B · B) ,

respectively. Here, S is the classical Poynting vector (electromagnetic energy flow) in complex octonionic form.

At this stage, the conservation of energy for classical electromagnetism is obtained as

F∗ · (DtF) = ie0

(
E · ∂E

∂t
+ B · ∂B

∂t

)
+ ie0 (B · (∇× E) − E · (∇× B))

=
1
2

∂

∂t
(E · E + B · B) + ∇ · (E × B) =

∂

∂t
(u) + ∇ · S = 0,

(39)

where u is also the octonionic electromagnetic energy density. The conservation equation for the electromagnetic
energy with a non-associative algebra has been attained once again.

4. Conclusions

The known procedure for deriving local field conservation laws is to apply Noether’s theorem, making use
of the translational and rotational invariances of a second order Lagrangian. In this study, we have reformulated
the complex octonionic field equation for classical electromagnetism and derived the local conservation equation
for energy, thus eliminating the use of translational invariance. The classical Poynting Theorem is recovered
from the complex octonionic field equation. The result obtained is consistent with known properties of classical
electromagnetism, and advertises the usefulness of complex octonion algebra for this and similar physics
problems. For example, the procedure used here to derive the local energy conservation equation for classical
electromagnetism may be applied to derive the local linear momentum and local angular momentum conservation
equations or the local energy conservation equation in bi-isotropic media with the Drude-Born-Fedorov equations
for classical electromagnetism.

To obtain the conservation equations for the electromagnetism in different multiplication rules for the
complex octonions’ basis require of choosing the different field and differential operator in different basis.
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