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Abstract: In this paper, a new representational model based on dual quaternionic matrices
is proposed for classical electromagnetism. After demonstrating the isomorphic matrix
representations of dual quaternions, Maxwell’s equations and the constitutive relations for
electromagnetism are expressed in terms of dual quaternionic matrices. For this purpose, new
8 × 8 matrices connected with quaternion basis elements have been introduced.
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1 Introduction

Quaternions as a generalization of complex numbers to three dimensions were discovered

by Sir William Rowan Hamilton [1] in 1843. Today three types of quaternions are avail-

able: real, complex and dual. A real quaternion is a basic special mathematical entity and

contains four real components. Similarly, a complex quaternion and a dual quaternion

are composed of two real quaternions and also have four complex and dual components,

respectively.

Studies about quaternions in classical electromagnetism can be traced back to J. C.

Maxwell’s works. Although in his famous book Treatise on Electricity and Magnetism

[2] Maxwell used three dimensional vector representation to formulate electromagnetism,

he also gave their quaternionic forms in a number of places. Since quaternions include

vectors and scalars, Maxwell used the V Q and SQ symbols to refer to the vector part
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and scalar part of quaternion Q, respectively [3]. Complex quaternions (also named bi-

quaternions) were used to reformulate classical electrodynamics and Maxwell’s equations

were reduced to their complex quaternion form by Imaeda [4]. Using a new operator,

Colombo et al. [5] have then investigated Imaeda’s approach in a larger framework to

deduce Maxwell’s equations and to study their behavior in two Minkowski space-times,

one with electric charges and the other with magnetic monopoles. Lambek [6], Ward [7],

Gürlebeck and Sprössig [8] have also discussed complex quaternions in physics. Since

quaternion algebra has a more expressive nature than vectors, various equations such as

Maxwell’s four equations, the equation of continuity, and the four dimensional potential

of electromagnetism were given in complex quaternion notation [9]–[20]. Similar work

about electromagnetism related with complex quaternions has been done by Negi et al.

[21]. In their paper, after demonstrating the isomorphic matrix representation of complex

quaternions, Maxwell’s equations and the equation of motion were derived in compact

and expanded forms, respectively, for quaternions and matrix representations.

In the paper by Tolan et al. [22] the field equations for electromagnetism, the potential

and Maxwell equations, have been investigated with new octonionic equations and these

equations have been compared with their vectorial representations. Dirac’s operator and

Maxwell’s equations in vacuum have been derived in the algebra of split octonions by

Gogberashvili [23]. Similarly, Bisht et al. [24, 25] have expressed electromagnetic and

dyonic field equations in terms of split octonions as well.

Except for the well-known practical applications of rigid body movements in three

dimensional space and differential algebra, dual quaternion formalism has not been used

as frequently in other areas of physics as it deserves. However, dual quaternions play

important roles in field theory, supersymmetry [26] and in expressing the Galilean space-

time transformation [27] as well. The formulation of classical electromagnetism by dual

quaternions is quite new. In recent work [28], classical electromagnetism has been re-

formulated by using this type of quaternion. Maxwell’s equations have been rewritten

in terms of dual quaternions and these four equations have been combined in a single

equation. Some dual quaternionic equations related to electromagnetism have also been

developed.

Although the equations of classical electromagnetism can be written in a number

of different forms, dual quaternionic version of these equations has not been studied

adequately. One of the purposes of this paper is also to represent these equations in

dual quaternionic matrix form and to give some arguments confirming that the dual

quaternionic approach facilitates investigation of electromagnetism. The matrix equations

obtained have been compared with their dual quaternionic representations. We also aim

to promote a better understanding between dual quaternions and their matrices. As

mentioned before, dual quaternions are composed of two real quaternions. For this reason,

we produced new 4 and 8-dimensional matrices. The formulation presented in this paper

establishes a relationship between dual quaternionic electromagnetism and the equivalent

matrix algebra.
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2 Dual quaternions

A dual number invented by Clifford [29] in 1873 is

Q = q + εq′. (1)

Here ε is known as the dual unit and has the following properties:

ε �= 0, 0 ε = ε 0 = 0, 1ε = ε1 = ε, ε2 = 0. (2)

The real numbers q and q′ are called the real and dual parts of Q, respectively. It should

be emphasized that dual numbers are extension of real numbers.

A real quaternion with four components can be written as

q = q0e0 + q1e1 + q2e2 + q3e3. (3)

Here q0, q1, q2, and q3 are real numbers. e0, e1, e2, and e3 are quaternion basis elements

that obey the following multiplication rules

e2
0 = 1, e2

1 = e2
2 = e2

3 = −1, e0ej = eje0 = ej (j = 1, 2, 3), (4a)

e1e2 = −e2e1 = e3, e3e1 = −e1e3 = e2, e2e3 = −e3e2 = e1. (4b)

A dual quaternion Q is defined in a similar way to dual numbers:

Q = q + εq′ = (q0 + εq′0)e0 + (q1 + εq′1)e1 + (q2 + εq′2)e2 + (q3 + εq′3)e3

= Q0e0 +Q1e1 +Q2e2 +Q3e3. (5)

Here Q0, Q1, Q2 and Q3 are dual numbers. A dual quaternion Q consists of a scalar part

SQ = Q0 and vector part VQ = Q = Q1e1 +Q2e2 +Q3e3.

The product of two dual quaternions P and Q is

PQ = (P0 + P )(Q0 + Q) = P0Q0 + P0Q +Q0P − P ◦ Q + P × Q, (6)

where the dot and cross product indicate, respectively, the usual three-dimensional scalar

and vector products.

For any dual quaternion Q there exists a complex conjugate,

Q∗ = SQ − VQ = Q0 −Q1e1 −Q2e2 −Q3e3, (7)

while the dual conjugate Qc is given by

Qc = (q0 − εq′0)e0 + (q1 − εq′1)e1 + (q2 − εq′2)e2 + (q3 − εq′3)e3

= Qc
0e0 +Qc

1e1 +Qc
2e2 +Qc

3e3. (8)

Here c denotes the dual conjugate. The complex conjugate and dual conjugate are also

dual quaternions.
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The norm of a dual quaternion in general is a dual scalar,

NQ = QQ∗ = Q∗Q = Q2
0 +Q2

1 +Q2
2 +Q2

3. (9)

The inverse of a dual quaternion Q (non-zero norm) is also a dual quaternion and can

be defined as

Q−1 =
Q∗

NQ

. (10)

Dual quaternions of norm unity are called unit dual quaternions.

3 Matrix representations of dual quaternions

In this section, we aim to provide the necessary background for the mathematical for-

mulations to be developed in this paper. In the first section, the skew-symmetric matrix

form of a dual quaternion Q is obtained by using 4 × 4 matrix representations of the

real quaternion basis elements e0,1,2,3. In the second section, new dual quaternionic 8× 8

matrices are produced and their properties are also investigated.

3.1 4 × 4 Matrix representations

Dual quaternionic matrices can be produced in a similar way to the definition of a dual

number Q in Eq. (1). The dual unit ε is represented by a special 2 × 2 matrix as

E =

⎡
⎢⎣ 0 1

0 0

⎤
⎥⎦, (11)

with the property

E2 =

⎡
⎢⎣ 0 0

0 0

⎤
⎥⎦. (12)

Thus, in terms of matrices, a dual number Q = q + εq′ may be expressed as

Q = q(I2) + q′(E × I2) =

⎡
⎢⎣ q q

′

0 q

⎤
⎥⎦, (13)

where I2 is the unit matrix of order two.

On the other hand, for a real quaternion q = q0e0 + q1e1 + q2e2 + q3e3 we can use the

following 4 × 4 real representation of the matrices ψ0, ψ1, ψ2 and ψ3 [21]:

ψ0 =

⎡
⎢⎣ I2 0

0 I2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (14)
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ψ1 =

⎡
⎢⎣ iσ2 0

0 −iσ2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

ψ2 =

⎡
⎢⎣ 0 I2

−I2 0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

ψ3 =

⎡
⎢⎣ 0 iσ2

iσ2 0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

Here σ2 is defined as

σ2 =

⎡
⎢⎣ 0 −i
i 0

⎤
⎥⎦, (18)

where i is the imaginary unit (i =
√−1).

Thus, a real quaternion q is expressed by the following skew-symmetric 4 × 4 matrix

q = q0ψ0 + q1ψ1 + q2ψ2 + q3ψ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1
−q3 −q2 q1 q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

The ψ0, ψ1, ψ2 and ψ3 matrices satisfy the same algebra as that of Eq. (4):

ψ2
0 = I4, ψ2

1 = ψ2
2 = ψ2

3 = −I4, ψ0ψj = ψjψ0 (j = 1, 2, 3), (20a)

ψ1ψ2 = −ψ2ψ1 = ψ3, ψ3ψ1 = −ψ1ψ3 = ψ2, ψ2ψ3 = −ψ3ψ2 = ψ1, (20b)

where I4 is the unit matrix of order 4.
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In terms of 4 × 4 matrices, it is possible to represent a dual quaternion Q = q +

εq′ as the summation of skew-symmetric matrices q and q′ that correspond to the real

quaternions q and q′, respectively:

Q = q + εq′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q0 + εq′0 q1 + εq′1 q2 + εq′2 q3 + εq′3

−q1 − εq′1 q0 + εq′0 −q3 − εq′3 q2 + εq′2

−q2 − εq′2 q3 + εq′3 q0 + εq′0 −q1 − εq′1

−q3 − εq′3 −q2 − εq′2 q1 + εq′1 q0 + εq′0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (21a)

Therefore in view of Eqs. (14)–(17) and (21a), the dual quaternion matrix Q is written

by

Q = Q0ψ0 +Q1ψ1 +Q2ψ2 +Q3ψ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q0 Q1 Q2 Q3

−Q1 Q0 −Q3 Q2

−Q2 Q3 Q0 −Q1

−Q3 −Q2 Q1 Q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (21b)

where Q0, Q1, Q2, Q3 are dual numbers. The column matrix representation of an arbi-

trary dual quaternion Q with respect to the basis e0,1,2,3 is merely the collection of its

parameters:

Q =

[
Q0, Q1, Q2, Q3

]T

=

[
Q0, QT

]T

, (22)

where the superscript T indicates the transpose of a matrix. By using the representational

resemblance between real and dual quaternions in 4×4 matrix form many useful identities

can be derived. The product of dual quaternions P and Q can be expressed as

PQ =

⎡
⎢⎣P0 −P T

P P0I3 + P̃

⎤
⎥⎦

⎡
⎢⎣Q0

Q

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P0 −P1 −P2 −P3

P1 P0 −P3 P2

P2 P3 P0 −P1

P3 −P2 P1 P0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q0

Q1

Q2

Q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (23a)

or

PQ =

⎡
⎢⎣Q0 −QT

Q Q0I3 − Q̃

⎤
⎥⎦

⎡
⎢⎣P0

P

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q0 −Q1 −Q2 −Q3

Q1 Q0 Q3 −Q2

Q2 −Q3 Q0 Q1

Q3 Q2 −Q1 Q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P0

P1

P2

P3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (23b)
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where I3 is the 3 × 3 unit matrix,

P̃ =

⎡
⎢⎢⎢⎢⎣

0 −P3 P2

P3 0 −P1

−P2 P1 0

⎤
⎥⎥⎥⎥⎦, and Q̃ =

⎡
⎢⎢⎢⎢⎣

0 −Q3 Q2

Q3 0 −Q1

−Q2 Q1 0

⎤
⎥⎥⎥⎥⎦. (24)

This property is very useful. Although dual quaternion multiplication is associative

and distributive with respect to addition and substraction, it isn’t commutative. But

matrix Eq. (23) shows that P and Q can commute simply with a sign change. Defining

the following matrices:

P̆ =

⎡
⎢⎣P0 −P T

P P0I3 + P̃

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P0 −P1 −P2 −P3

P1 P0 −P3 P2

P2 P3 P0 −P1

P3 −P2 P1 P0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(25)

and

Q̆ =

⎡
⎢⎣Q0 −QT

Q Q0I3 − Q̃

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q0 −Q1 −Q2 −Q3

Q1 Q0 Q3 −Q2

Q2 −Q3 Q0 Q1

Q3 Q2 −Q1 Q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

then the commutative property of multiplication can be expressed in a compact form as

P̆Q = Q̆P. (27)

3.2 8 × 8 Matrix representations

Since dual quaternions have eight real components, we can also obtain their 8× 8 matrix

representations. For this purpose, the 8 × 8 matrix forms of quaternion basis elements

e1, e2, e3 and the dual unit ε must first be produced.

The 8×8 matrix corresponding to dual unit ε can be realized as the following operation

ε = E ⊗ I4 =

⎡
⎢⎣ 0 1

0 0

⎤
⎥⎦ ⊗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ 0 I4

0 0

⎤
⎥⎦. (28)

Here ⊗ denotes the Kronecker product for matrices of arbitrary sizes.
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By the same token, now it is possible to obtain 8× 8 matrices that correspond to the

quaternion basis elements e0,1,2,3 in the following manner:

α0 = I2 ⊗ I4 =

⎡
⎢⎣ I4 0

0 I4

⎤
⎥⎦, (29)

α1 = I2 ⊗ ψ1 =

⎡
⎢⎣ψ1 0

0 ψ1

⎤
⎥⎦, (30)

α2 = I2 ⊗ ψ2 =

⎡
⎢⎣ψ2 0

0 ψ2

⎤
⎥⎦, (31)

and finally,

α3 = I2 ⊗ ψ3 =

⎡
⎢⎣ψ3 0

0 ψ3

⎤
⎥⎦. (32)

As can be seen, these matrices can be generalized by the following formulas

αj = I2 ⊗ ψj =

⎡
⎢⎣ψj 0

0 ψj

⎤
⎥⎦ (j = 1, 2, 3), (33)

where ψj are the 4 × 4 matrices defined by the Eqs. (14–17). Similar to Eq. (4), α0, α1,

α2, and α3, the basis elements in matrix form, satisfy the following multiplication rules

[21]:

α2
0 = −α2

1 = −α2
2 = −α2

3 = I8, α0αj = αjα0 = αj (j = 1, 2, 3), (34a)

α1α2 = −α2α1 = α3, α3α1 = −α1α3 = α2, α2α3 = −α3α2 = α1. (34b)

Now, an 8×8 matrix corresponding to the dual quaternion Q must be formulated. In

view of Eq. (5) a dual quaternionic matrix Q can be constituted by the following formula:

Q = (q0 + εq′0)α0 + (q1 + εq′1)α1 + (q2 + εq′2)α2 + (q3 + εq′3)α3. (35a)

As can be seen, ε performs the role of the dual unit ε while the matrices α0,j correspond

to the quaternion basis elements e0,1,2,3. So it is possible to express the dual quaternion
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Q as the following 8 × 8 matrix:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0 q1 q2 q3 q′0 q′1 q′2 q′3

−q1 q0 −q3 q2 −q′1 q′0 −q′3 q′2

−q2 q3 q0 −q1 −q′2 q′3 q′0 −q′1
−q3 −q2 q1 q0 −q′3 −q′2 q′1 q′0

0 0 0 0 q0 q1 q2 q3

0 0 0 0 −q1 q0 −q3 q2

0 0 0 0 −q2 q3 q0 −q1
0 0 0 0 −q3 −q2 q1 q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ q q′

0 q

⎤
⎥⎦. (35b)

The sum of the elements along the principal diagonal yields the trace of Q,

TrQ = 8q0. (36)

The 8 × 8 matrix representation of the complex conjugate Q∗ can be defined in a

similar way to Eq. (35):

Q† = (q0 + εq′0)α0 − (q1 + εq′1)α1 − (q2 + εq′2)α2 − (q3 + εq′3)α3 (37a)

or, in expanded form

Q† =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0 −q1 −q2 −q3 q′0 −q′1 −q′2 −q′3
q1 q0 q3 −q2 q′1 q′0 q′3 −q′2
q2 −q3 q0 q1 q

′
2 −q′3 q′0 q′1

q3 q2 −q1 q0 q
′
3 q′2 −q′1 −q′0

0 0 0 0 q0 −q1 −q2 −q3
0 0 0 0 q1 q0 q3 −q2
0 0 0 0 q2 −q3 q0 q1

0 0 0 0 q3 q2 −q1 q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ q† q′†

0 q†

⎤
⎥⎦. (37b)

Quaternion conjugation is used in the formulation of electromagnetism with dual quater-

nions.

On the other hand, the dual conjugate of Q can also be represented as

Q̄ = (q0 − εq′0)α0 + (q1 − εq′1)α1 + (q2 − εq′2)α2 + (q3 − εq′3)α3, (38a)
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where the expanded matrix form is as the following

Q̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0 q1 q2 q3 −q′0 −q′1 −q′2 −q′3
−q1 q0 −q3 q2 q′1 −q′0 q′3 −q′2
−q2 q3 q0 −q1 q′2 −q′3 −q′0 q′1

−q3 −q2 q1 q0 q′3 q′2 −q′1 −q′0
0 0 0 0 q0 q1 q2 q3

0 0 0 0 −q1 q0 −q3 q2

0 0 0 0 −q2 q3 q0 −q1
0 0 0 0 −q3 −q2 q1 q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ q −q

0 q

⎤
⎥⎦. (38b)

4 Matrix representations of dual quaternionic electromagnetism

In general, two basic dual quaternions are used to represent Maxwell’s equations in dual

quaternionic form [28]. One of them is the dual quaternionic differential operator that is

given by

D = ∇ + ε
∂

∂t
=

[
∂

∂x
e1 +

∂

∂y
e2 +

∂

∂z
e3

]
+ ε

∂

∂t
. (39)

In the light of Eq. (35), the dual quaternionic differential operator D can be expressed

as the following 8 × 8 real matrix formulation

D = (ε∂t)α0 + ∂xα1 + ∂yα2 + ∂zα3, (40a)

which maps to

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∂x ∂y ∂z ∂t 0 0 0

−∂x 0 −∂z ∂y 0 ∂t 0 0

−∂y ∂z 0 −∂x 0 0 ∂t 0

−∂z −∂y ∂x 0 0 0 0 ∂t

0 0 0 0 0 ∂x ∂y ∂z

0 0 0 0 −∂x 0 −∂z ∂y

0 0 0 0 −∂y ∂z 0 −∂x

0 0 0 0 −∂z −∂y ∂x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣∇ ∂tI4

0 ∇

⎤
⎥⎦. (40b)

Unauthenticated
Download Date | 10/18/17 7:03 PM



S. Demir / Central European Journal of Physics 5(4) 2007 487–506 497

Here, ∇ is a skew-symmetric 4×4 matrix that represents the vector part of the differential

operator D:

∇ = ∂x ψ1 + ∂y ψ2 + ∂z ψ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ∂x ∂y ∂z

−∂x 0 −∂z ∂y

−∂y ∂z 0 −∂x

−∂z −∂x ∂x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (41)

Thus, D is called the operator matrix.

The other physical quantity is also a dual quaternion, M, that includes both the

electric field E and the magnetic field H ,

M = −E + εH = −[E1e1 + E2e2 + E3e3] + ε[H1e1 +H2e2 +H3e3]. (42)

In analogy to Eq. (35) with q0 = q′0 = 0, q1 = −E1, q2 = −E2, q3 = −E3 and

q′1 = H1, q
′
2 = H2, q

′
3 = H3, its matrix form can be formulated as

M = (−E1 + εH1)α1 + (−E2 + εH2)α2 + (−E3 + εH3)α3. (43a)

By using this formula, the isomorphic matrix representation of M describes the 8 × 8

matrix as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −E1 −E2 −E3 0 H1 H2 H3

E1 0 E3 −E2 −H1 0 −H3 H2

E2 −E3 0 E1 −H2 H3 0 −H1

E3 E2 −E1 0 −H3 −H2 H1 0

0 0 0 0 0 −E1 −E2 −E3

0 0 0 0 E1 0 E3 −E2

0 0 0 0 E2 −E3 0 E1

0 0 0 0 E3 E2 −E1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ E† H

0 E†

⎤
⎥⎦ . (43b)

Here E† and H are, respectively, 4 × 4 real quaternionic matrices that correspond to the

conjugate of the electric field E and the magnetic field H ,

E† = ET = [E1ψ1 + E2ψ1 + E3ψ3]
T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 E1 E2 E3

−E1 0 −E3 E2

−E2 E3 0 −E1

−E3 −E2 E1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

(44)
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and

H = H1ψ1 +H2ψ2 +H3ψ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 H1 H2 H3

−H1 0 −H3 H2

−H2 H3 0 −H1

−H3 −H2 H1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (45)

Henceforth we will call M the electromagnetic field matrix.

Using Gaussian and natural units ε = μ = c = 1, operation of the dual quaternionic

differential operator D on the dual quaternion M gives [28]

DM =
∂H

∂t
+ S (46)

where S is the dual quaternionic current density

S = ρv + εJ . (47)

Eq. (46) is the expression of Maxwell’s equations of classical electrodynamics; these four

equations are combined into a single equation. Here ρv is the electric charge density

while J is the electric current density. Like Eq. (46), by operation of matrix D on the

electromagnetic field matrix M Maxwell’s equations are now expressed in the following

8 × 8 matrix form:

DM = J, (48)

where the matrix J is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρv
∂H1

∂t
∂H2

∂t
∂H3

∂t
0 J1 J2 J3

−∂H1

∂t
ρv −∂H3

∂t
∂H2

∂t
−J1 0 −J3 J2

−∂H2

∂t
∂H3

∂t
ρv −∂H1

∂t
−J2 J3 0 −J1

−∂H3

∂t
−∂H2

∂t
∂H1

∂t
ρv −J3 −J2 J1 0

0 0 0 0 ρv
∂H1

∂t
∂H2

∂t
∂H3

∂t

0 0 0 0 −∂H1

∂t
ρv −∂H3

∂t
∂H2

∂t

0 0 0 0 −∂H2

∂t
∂H3

∂t
ρv −∂H1

∂t

0 0 0 0 −∂H3

∂t
−∂H2

∂t
∂H1

∂t
ρv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

As can be seen, the trace of J gives

TrJ = 8ρv (50)

and provides easy determination of the electric charge density ρv.
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Electromagnetic fields are generally functions of space and time. In the special case

in which they are time-independent, by setting the time derivative equals to zero, then

dual the quaternionic Eq. (46) gets a new form as

DM =

[
∇ + ε

∂

∂t

]
[−E + εH ] = ρv + εJ . (51)

Thus, the dual quaternionic matrix reformulation can be expressed as⎡
⎢⎣∇ ∂tI4

0 ∇

⎤
⎥⎦ ×

⎡
⎢⎣ E† H

0 E†

⎤
⎥⎦ =

⎡
⎢⎣ ρvI4 j

0 ρvI4

⎤
⎥⎦ . (52)

Here j is a 4× 4 real quaternionic matrix that corresponds to the electric current density

vector J ,

j = j1ψ1 + j2ψ2 + j3ψ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 j1 j2 j3

−j1 0 −j3 j2

−j2 j3 0 −j1
−j3 −j2 j1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (53)

Another consequence of Maxwell’s equations can be obtained by the existence of a

electromagnetic potential. Similarly to Eq. (39), it is possible to define the electromag-

netic potential as the following:

P = A − εϕ = [A1e1 + A2e2 + A3e3] − εϕ. (54)

This is called the dual quaternionic electromagnetic potential. Here A and ϕ are the

magnetic vector potential and the electric field potential, respectively. Now, we can

formulate the 8 × 8 matrix form of the dual quaternionic electromagnetic potential as

P = (−ϕε)α0 + A1α1 + A2α2 + A3α3. (55a)

This formula maps to following matrix:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 A1 A2 A3 −ϕ 0 0 0

−A1 0 −A3 A2 0 −ϕ 0 0

−A2 A3 0 −A1 0 0 −ϕ 0

−A3 −A2 A1 0 0 0 0 −ϕ
0 0 0 0 0 A1 A2 A3

0 0 0 0 −A1 0 −A3 A2

0 0 0 0 −A2 A3 0 −A1

0 0 0 0 −A3 −A2 A1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ A −ϕI4

0 A

⎤
⎥⎦, (55b)
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where A is

A = A1ψ1 + A2ψ2 + A3ψ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 A1 A2 A3

−A1 0 −A3 A2

−A2 A3 0 −A1

−A3 −A2 A1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (56)

By remembering the usual definitions of electric and magnetic fields;

E = −∇ϕ− ∂A

∂t
, H = ∇× A, (57)

the dual quaternion product between the dual conjugate form of D and P leads to

DcP =

[
∇ − ε

∂

∂t

]
[A − εϕ] = H + εE. (58)

As shown, this operation allows determination of fields H and E [28]. The isomorphic

matrix mapping of the this equation can be derived easily as

D̄P =

⎡
⎢⎣∇ −∂tI4

0 ∇

⎤
⎥⎦ ×

⎡
⎢⎣ A −ϕI4

0 A

⎤
⎥⎦ =

⎡
⎢⎣ H E

0 H

⎤
⎥⎦ . (59)

In the light of definitions (44) and (45), the expanded form of the field matrix can be

written easily as following

⎡
⎢⎣ H E

0 H

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 H1 H2 H3 0 E1 E2 E3

−H1 0 −H3 H2 −E1 0 −E3 E2

−H2 H3 0 −H1 −E2 E3 0 −E1

−H3 −H2 H1 0 −E3 −E2 E1 0

0 0 0 0 0 H1 H2 H3

0 0 0 0 −H1 0 −H3 H2

0 0 0 0 −H2 H3 0 −H1

0 0 0 0 −H3 −H2 H1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(60)

and represents the components of the fields H and E. Thus Maxwell’s equations can be

described in an isomorphic 8-dimensional real matrix representation.

As pointed out before, in order to reformulate classical electromagnetism, 4×4 matri-

ces with dual coefficients can also be used instead of 8×8 matrices with real components.
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Using definition (21b), the dual quaternionic differential operator D is expressed as

D =

⎡
⎢⎣ ∂0 ∇T

−∇ ∂0I3 + ∇̃

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂0 ∂1 ∂2 ∂3

−∂1 ∂0 −∂3 ∂2

−∂2 ∂3 ∂0 −∂1

−∂3 −∂2 ∂1 ∂0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (61)

where ∂0, ∂1, ∂2, and ∂3 are ε∂t, ∂x, ∂y, and ∂z , respectively. Here, matrix ∇̃ is defined as

∇̃ =

⎡
⎢⎢⎢⎢⎣

0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

⎤
⎥⎥⎥⎥⎦. (62)

The dual conjugate of the operator matrix D must also be

D̄ =

⎡
⎢⎣−∂0 ∇T

−∇ −∂0I3 + ∇̃

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−∂0 ∂1 ∂2 ∂3

−∂1 −∂0 −∂3 ∂2

−∂2 ∂3 −∂0 −∂1

−∂3 −∂2 ∂1 −∂0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (63)

Similarly, the dual quaternion M that represents the electromagnetic fields E and H

can be rewritten as

M = −E + εH = (−E1 + εH1)e1 + (−E2 + εH2)e2 + (−E3 + εH3)e3

= M1e1 +M2e1 +M3e3. (64)

Then, the column matrix form of M becomes

M =

[
0, M1, M2, M3

]T

=

[
0, MT

]T

. (65)

Using Eq. (23), Maxwell’s equations of classical electrodynamics are now expressed

in the following matrix form: ⎡
⎢⎣ ∂0 −∇T

∇ ∂0I3 + ∇̃

⎤
⎥⎦

⎡
⎢⎣ 0

M

⎤
⎥⎦ =

⎡
⎢⎣ ρv

S

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂0 −∂1 −∂2 −∂3

∂1 ∂0 −∂3 ∂2

∂2 ∂3 ∂0 −∂1

∂3 −∂2 ∂1 ∂0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

M1

M2

M3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρv

S1

S2

S3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (66)
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Let us define the electromagnetic potential of an electrically charged particle P = A −
εϕ = P0e0 + P1e1 + P2e2 + P3e3 by the following dual matrix representation:

P =

⎡
⎢⎣ P0 P T

−P P0I3 + P̃

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P0 P1 P2 P3

−P1 P0 −P3 P2

−P2 P3 P0 −P1

−P3 −P2 P1 P0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (67)

where P̃ is

P̃ =

⎡
⎢⎢⎢⎢⎣

0 −P3 P2

P3 0 −P1

−P2 P1 0

⎤
⎥⎥⎥⎥⎦, (68)

or

P =

[
P0, P1, P2, P3

]T

=

[
P0, P T

]T

. (69)

Similarly to Eq. (59), operating D̄ on P gives the elements of the electromagnetic field

matrix F: ⎡
⎢⎣−∂0 −∇T

∇ −∂0I3 + ∇̃

⎤
⎥⎦

⎡
⎢⎣P0

P

⎤
⎥⎦ =

⎡
⎢⎣ 0

F

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−∂0 −∂1 −∂2 −∂3

∂1 −∂0 −∂3 ∂2

∂2 ∂3 −∂0 −∂1

∂3 −∂2 ∂1 −∂0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P0

P1

P2

P3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

F1

F2

F3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (70)

where F is

F =

[
0, F1, F2, F3

]T

=

[
0, H1 + εE1, H2 + εE2, H3 + εE3

]T

. (71)

Thus, the components of the electric field E and B can be obtained by evaluating matrix

elements:

F1 = ∂1P0 − ∂0P1 − ∂3P2 + ∂2P3

H1 + εE1 = ε
∂ϕ

∂x
− ε

∂A1

∂t
− ∂A2

∂z
+
∂A3

∂y
=

[
∂A3

∂y
− ∂A2

∂z

]
+ ε

[
∂ϕ

∂x
− ∂A1

∂t

]
(72a)

F2 = ∂2P0 + ∂3P1 − ∂0P2 − ∂1P3

H2 + εE2 = ε
∂ϕ

∂y
+
∂A1

∂z
− ε

∂A2

∂t
− ∂A3

∂x
=

[
∂A1

∂z
− ∂A3

∂x

]
+ ε

[
∂ϕ

∂y
− ∂A2

∂t

]
(72b)
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and

F3 = ∂3P0 − ∂2P1 + ∂1P2 − ∂0P3

H3 + εE3 = ε
∂ϕ

∂z
− ∂A1

∂y
+
∂A2

∂x
− ε

∂A3

∂t
=

[
∂A2

∂x
− ∂A1

∂y

]
+ ε

[
∂ϕ

∂z
− ∂A3

∂t

]
. (72c)

5 Conclusions

As mentioned before, except for the well-known practical applications in rigid body move-

ments in three dimensional space, especially in robotics, dual quaternionic formalism has

not been used frequently in other areas of physics as it deserves. This work has been

contributed to increase usage of this algebra by introducing special matrices for dual

quaternions. The dual quaternionic matrices in electromagnetism that we derived not

only provide a simple and elegant representation of Maxwell’s and relavant field equa-

tions, but also simplify their manipulations. The use of matrix techniques also has an

advantage in that it enables us to deal with the eight real components of the quaternionic

equations simultaneously while maintaining the simplicity of the mathematical derivation.

In this paper, starting with definition of a dual number we have developed the iso-

morphism between dual quaternions and those of 4 × 4 and 8 × 8 matrices with dual

and real components, respectively. Although the dual quaternion product doesn’t sat-

isfy the commutation property, by using the representational resemblance between real

and dual quaternions in matrix form, dual quaternionic matrices can commute simply

with a sign change (Eq. (23)). Since dual quaternions are composed of eight real

components, new 8 × 8 matrices have been produced. For this purpose, first we de-

rived a special matrix that corresponds to the dual unit ε. Eq. (28) shows that ε

is the equivalent 8 × 8 matrix representation of ε. By combining the 8 × 8 matrices

that correspond to the quaternion basis elements e0,1,2,3 and the dual unit ε, we ob-

tained an 8 × 8 real matrix of the dual quaternion Q. Then we described how a dual

quaternion maps into its isomorphic matrix representation. Formulation of the matrix

Q = (q0 +εq′0)α0 +(q1 +εq′1)α1 +(q2 +εq′2)α2 +(q3 +εq′3)α3 is very similar to the definition

of a dual quaternion Q = (q0 + εq′0)e0 +(q1 + εq′1)e1 +(q2 + εq′2)e2 +(q3 + εq′3)e3. As seen,

ε performs the role of the dual unit ε while matrices α0,1,2,3 correspond to e0,1,2,3. Thus,

we have developed the isomorphism between dual quaternions and their matrices.

Transformation matrices are widely used for kinematic analysis and trajectory plan-

ning in robotics. Whenever a sensor is mounted on a robot hand, exposure of the relation-

ship between the sensor and the hand is needed; this is called as the hand-eye calibration

problem. Almost all efforts related to this problem aim to solve a homogeneous matrix

equation of the form AX = XB [30, 31]. Therefore, the matrix equations obtained in this

paper can also contribute to solve this problem.

Indeed, the matrix representations of dual quaternions help us to simplify manipula-

tions of equations. We have reformulated the equations of classical electromagnetism by

using dual quaternionic matrices as Negi et al. [21] did with complex quaternionic matri-

ces. Isomorphic matrix representations of Maxwell’s equations have also been given. We
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have offered two different matrix formulations that are 8-dimensional with real compo-

nents and 4-dimensional with dual components. The expressions with real matrices are

quite explicit and simple. Because of separate locations in matrix, components of physical

quantities such as the electric and magnetic fields or the electric charge density ρv and

components of the electric current density J etc. can easily be shown and manipulated

(Eqs. (43b) and (49)). On the other hand, a 8 × 8 matrix has 64 real quantities in it

while a 4 × 4 matrix has only 16 dual quantities. One can think that 4 × 4 dual number

matrix elements seem not so clear as real 8× 8 matrices and this leads to an obstacle for

the evaluation of results. But this is not true. Because of having a very useful symbol

ε, dual numbers provide separation of quantities of different physical nature explicitly.

Thus, it can be seen easily how to relate independent results. For example, the real parts

of Eq. (72) are associated with components of the magnetic field H while the dual parts

with symbol ε are related to components of the electric field E.

Since dual quaternions are used generally to investigate spatial screw motion of a

rigid body, the formulation of classical electromagnetism by this type of quaternions is

quite new [28]. Therefore, this paper fills a gap and contains useful results. The dual

quaternionic equations that are derived are similar to complex quaternionic [4]–[21] and

octonionic formulations [22], [23]. Moreover, the mathematics of the paper is easy to fol-

low and comprehend. The dual quaternionic formulation is preferable to the octonionic

representation while it is as useful as the complex quaternionic version of electromag-

netism. If the octonion formalism is used, in this case 8 basis elements must be used

instead of 4. Because of having the very useful symbol ε, dual quaternions with only 4

basis elements can easily express physical quantities up to 8-dimensional space. Further-

more, this special structure helps us to separate quantities in different physical phenomena

much more explicitly than octonions. Besides, there are many definitions for the products

of octonion units [22]. These diversities in the octonion product lead to differences in the

expressions of the differential operator, field equations, potential and source equations etc.

and finally will cause many versions of the octonionic electromagnetism to arise as well.

Therefore, a dual quaternionic formulation of the classical electromagnetism appears to

be a fruitful choice.
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